Logitech Antenna Under Test (AUT) Report

Model Name: YR0083

Equipment Type: Wireless Keyboard

Manufacturer: Logitech Technology (Suzhou) Co., Ltd

Test Location: Suzhou, China No.3 Song Shan Road, New District

Teste Personnel: Toby

_Report Date: <u>2024.03.12</u>

Report No: EVT-700-006367 Page 1 of 16

Report Release History

Report version	Description	Date Issued
YR0083 AUT Report	Original release	2024/03/12

Table of Contents

1.	I. EUT Antenna Information	
2.	Measured Values and Calculation of Antenna Gains	3
3.	Conducted Power Measurement	4
	3.1 Test Setup	4
	3.2 Test Instruments	4
	3.3 Test Procedure	4
	3.4 Test Result of RF conducted Power	4
4.	2D Radiation Pattern Measurement	6
	4.1 Test Location	6
	4.2 Description of the anechoic chamber	6
	4.3 Test Instruments	6
	4.4 Test Procedure	7
	4.5 Test Setup photos	8
	4.6 2D Pattern Test Plot	10

Report No: EVT-700-006367 Page 2 of 16

1. EUT Antenna Information

1) Antenna Material: PCB on board

2) Antenna Type: Printed monopole antenna

3) Antenna Dimension: 20 x 1 mm

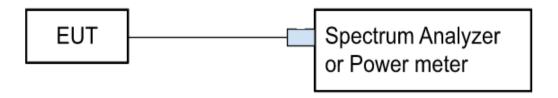
4) Operating Frequency: 2.4 GHz - 2.4835 GHz

5) Input Impedance : 50 Ω6) Standing-Wave Ratio : 2:1

2. Measured Values and Calculation of Antenna Gains

Measure peak horizontal/vertical EIRP on each x-y, y-z, x-z plane. The highest measured values will be used to calculate the antenna peak gain.

Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)


		Plane 0°, <i>θ</i> =90°		Plane =0~360°		Plane =0~360°	Max Peak	Conducted	Antenna Peak Gain (dBi)
Frequency	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	EIRP (dBm)	Power (dBm)	
2405	-20.02	1.63	-3.64	-2.39	-1.71	-6.35	1.63	-1.14	2.77
2444	-20.51	2.12	-4.22	-1.77	-1.64	-8.14	2.12	-0.47	2.59
2474	-19.46	2.51	-4.53	-1.51	-1.82	-7.99	2.51	-0.17	2.68

Test Date: 2024.03.12

Report No: EVT-700-006367 Page 3 of 16

3. Conducted Power Measurement

3.1 Test Setup

3.2 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9020B	MY60110508	2023.7.25
RF signal cable Woken	Huber+suhner 10844497	276	2023.07.28

Note: The calibration interval of the above test instruments is <u>12</u> months

3.3 Test Procedure

A spectrum analyzer or Power meter was used to perform output power measurement, setting the detector to average and configuring EUT continuously transmitting power(100% duty cycle).

3.4 Test Result of RF conducted Power

Frequency	Conducted Power (dBm)		
2405	-1.14		
2444	-0.47		

Report No: EVT-700-006367 Page 4 of 16

Frequency	Conducted Power (dBm)	
2474	-0.17	

Test Date: <u>2024.03.12</u>

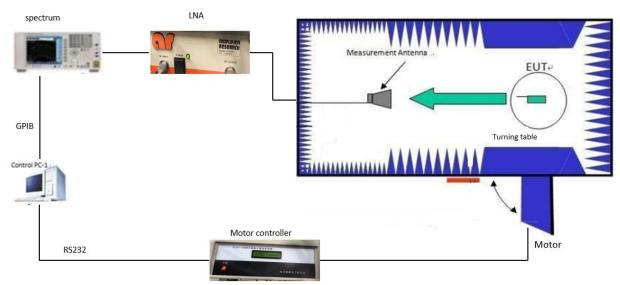
Report No: EVT-700-006367 Page 5 of 16

4. 2D Radiation Pattern Measurement

4.1 Test Location

2D radiation pattern measurement in Logitech China SZ 2.4GHz FAC anechoic chamber.

4.2 Description of the anechoic chamber


Chamber specification

Length: 5.0m Width: 2.8m Height: 2.8m

Turntable height: 1.4m

Measurement antenna height: 1.4m

Block diagram to show the chamber and test equipment.

4.3 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer	N9010A	MY49061163	2024.7.25

Report No: EVT-700-006367 Page 6 of 16

Keysight			
Horn Antenna ETS	BBHA 9120 D(1201)	D69250	2024.07.28
RF signal cable	SUCOFLEX104	SN293270/4	2024.07.28
Software	FAC-Radio Measurement System	Version 1.1.0.7	N/A
Turntable controller	BJ3AC-100	N/A	2024.07.28
LNA	LN1G11	321282	2024.07.28

Note: The calibration interval of the above test instruments is ____12 months

4.4 Test Procedure

- i. Connect the EUT to Spectrum Analyzer and record the power setting of EUT and the measured conducted power.
- ii. Fasten the EUT in the center of the turntable, record the coordinates and take pictures.
- iii. Configuring EUT continuously transmitting power(100% duty cycle).
- iv. Make sure the transmit signal is stable and at the maximum RF power level.
- v. Setup the channel power function by spectrum analyzer.
- vi. Read the channel power level on the spectrum analyzer and record in the following positions.
 - 1. The turntable is then stepped between 0 to 360 degrees along the horizontal plane in 15-degree increments.
 - 2. Data is recorded using the spectrum analyzer for both theta and phi polarizations at each position.
- vii. Rotate the EUT with 90 degrees and repeat step f.1 and step f.2 until all 3 planes(X-Y,X-Z,Y-Z) were measured.
- viii. According to substitution techniques, a substitution horn antenna is substituted for EUT at the same position and the signal generator exports the CW signal to the substitution antenna via a TX cable. Rotated the turntable and moved the receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a value of spectrum reading equal to "Raw Value" gotten from step vii. Record the power level of S.G.

$$EIRP = P_{SigGen} + G_T - L_C$$

Report No: EVT-700-006367 Page 7 of 16

where:

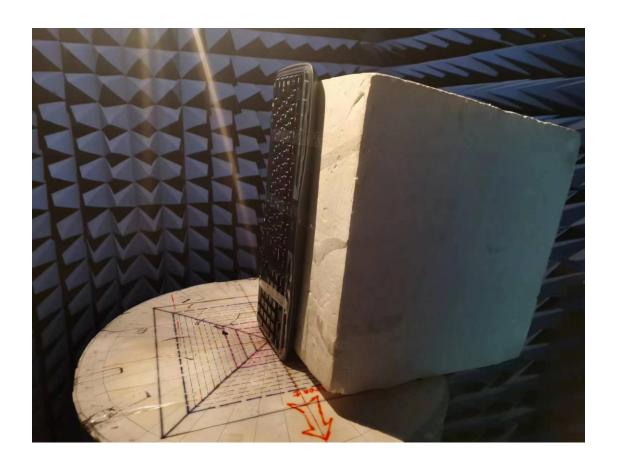
P_{SigGen} = power setting of the signal generator that produces the same received power reading as the DUT, in dBm;

 G_T = gain of the substitute antenna, in dBd (ERP) or dBi (EIRP);

 L_{C} = signal loss in the cable connecting the signal generator to the substitute antenna, in dB

ix. Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

4.5 Test Setup photos


X-Y Plane:

X-Z Plane:

Y-Z Plane:

4.6 2D Pattern Test Plot

X-Y Plane: Horizontal

Report No: EVT-700-006367

Page 10 of 16

Rad #1: Tairua DJ_RadPatt_m_#9_TX_05_H_240108_1_CORR Rad #2: Tairua DJ_RadPatt_m_#9_TX_44_H_240108_1_CORR Rad #3: Tairua DJ_RadPatt_m_#9_TX_74_H_240108_1_CORR

[imgfile: tmp/_gnuplot20240313-11894-kcfpgi-0.png]

Radiation pattern #1:

Tairua DJ_RadPatt_m_#9_TX_05_H_240108_1_CORR

Average power = -7.70 dBmFront average power = -3.80 dBm (From 0 deg to 180 deg)

Min power = -23.03 dBm @ -57.00 deg Max power = 1.63 lBm @ 48.00 deg

Radiation pattern #2:

Tairua DJ_RadPatt_m_#9_TX_44_H_240108_1_CORR

Average power = -8.14 dBm Front average power = -4.62 dBm (From 0 deg to 180 deg)

Min power = -21.92 dBm @ -129.00 deg Max power = 2.12 dBm @ 48.00 deg

Delta max power = 0.58 dBm Delta average power = -0.44 dBm Delta front average power = -0.82 dBm

Radiation pattern #3:

Tairua DJ_RadPatt_m_#9_TX_74_H_240108_1_CORR

Average power = -8.30 dBmFront average power = -4.69 dBm (From 0 deg to 180 deg)

Min power = -22.15 dBm @ -132.00 deg Max power = 2.51dBm @ 48.00 deg

Delta max power = 0.21 dBm Delta average power = -0.60 dBm Delta front average power = -0.90 dBm

X-Y Plane: Vertical

Rad #1: Tairua DJ_RadPatt_m_#9_TX_05_V_240108_0_CORR Rad #2: Tairua DJ_RadPatt_m_#9_TX_44_V_240108_0_CORR Rad #3: Tairua DJ_RadPatt_m_#9_TX_74_V_240108_0_CORR

[imgfile: tmp/_gnuplot20240313-11895-16dbfo-0.png]

Radiation pattern #1:

Tairua DJ_RadPatt_m_#9_TX_05_V_240108_0_CORR

Average power = -27.73 dBm Front average power = -25.15 dBm (From 0 deg to 180 deg)

Min power = -46.45 dBm @ -132.00 deg Max power = -20.02 dBm @ -51.00 deg

Radiation pattern #2:

Tairua DJ_RadPatt_m_#9_TX_44_V_240108_0_CORR

Average power = -27.21 dBm Front average power = -25.40 dBm (From 0 deg to 180 deg)

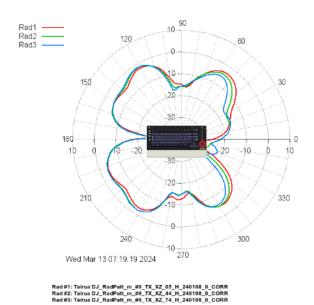
Min power = -50.16 dBm @ -129.00 deg Max power = -20.51 dBm @ 180.00 deg

Delta max power = -0.49 dBm Delta average power = 0.53 dBm Delta front average power = -0.26 dBm

Radiation pattern #3:

Tairua DJ_RadPatt_m_#9_TX_74_V_240108_0_CORR

Average power = -27.97 dBm Front average power = -26.59 dBm (From 0 deg to 180 deg)


Min power = -42.57 dBm @ -96.00 deg Max power = -19.46 dBm @ -180.00 deg

Delta max power = 0.56 dBm

Delta average power = -0.24 dBm

Delta front average power = -1.44 dBm

X-Z Plane: Horizontal

[imgfile: tmp/_gnuplot20240313-11895-1xjt7ua-0.png]

Radiation pattern #1:

Tairua DJ_RadPatt_m_#9_TX_XZ_05_H_240108_0_CORR

Average power = -10.98 dBm Front average power = -9.83 dBm (From 0 deg to 180 deg)

Min power = -36.85 dBm @ -18.00 deg Max power = -2.39 dBm @ 120.00 deg

Radiation pattern #2:

Tairua DJ_RadPatt_m_#9_TX_XZ_44_H_240108_0_CORR

Average power = -11.07 dBmFront average power = -10.13 dBm (From 0 deg to 180 deg)

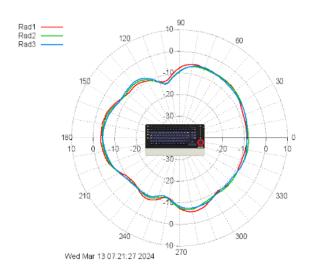
Min power = -37.49 dBm @ -24.00 deg Max power = -1.77 dBm @ 120.00 deg

Delta max power = 0.62 dBm

Delta average power = -0.09 dBm

Delta front average power = -0.30 dBm

Radiation pattern #3:


Tairua DJ_RadPatt_m_#9_TX_XZ_74_H_240108_0_CORR

Average power = -11.39 dBmFront average power = -10.65 dBm (From 0 deg to 180 deg)

Min power = -40.17 dBm @ -33.00 deg Max power = -1.51 dBm @ 123.00 deg

Delta max power = 0.88 dBm Delta average power = -0.40 dBm Delta front average power = -0.82 dBm

X-Z Plane: Vertical

[imgfile: tmp/_gnuplot20240313-11894-thndxk-0.png]

Rad #1: Tairua DJ_RadPatt_m_#9_TX_XZ_05_V_240108_0_CORR Rad #2: Tairua DJ_RadPatt_m_#9_TX_XZ_44_V_240108_0_CORR Rad #3: Tairua DJ_RadPatt_m_#9_TX_XZ_74_V_240108_0_CORR

Radiation pattern #1:

Tairua DJ_RadPatt_m_#9_TX_XZ_05_V_240108_0_CORR

Average power = -7.78 dBmFront average power = -7.59 dBm (From 0 deg to 180 deg)

Min power = -13.27 dBm @ 105.00 deg Max power = -3.64 dBm @ -177.00 deg

Radiation pattern #2:

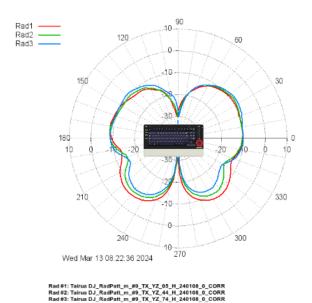
Tairua DJ_RadPatt_m_#9_TX_XZ_44_V_240108_0_CORR

Average power = -7.87 dBm Front average power = -7.69 dBm (From 0 deg to 180 deg)

Min power = -14.18 dBm @ 105.00 deg Max power = -4.22 dBm @ 177.00 deg

Delta max power = -0.58 dBm
Delta average power = -0.08 dBm
Delta front average power = -0.11 dBm

Radiation pattern #3:


Tairua DJ_RadPatt_m_#9_TX_XZ_74_V_240108_0_CORR

Average power = -8.04 dBmFront average power = -7.73 dBm (From 0 deg to 180 deg)

Min power = -14.36 dBm @ 105.00 deg Max power = -4.53 dBm @ 177.00 deg

Delta max power = -0.89 dBm
Delta average power = -0.25 dBm
Delta front average power = -0.14 dBm

Y-Z Plane: Horizontal

[imgfile: tmp/_gnuplot20240313-11895-1pmtj1r-0.png]

Radiation pattern #1:

Tairua DJ_RadPatt_m_#9_TX_YZ_05_H_240108_0_CORR

Average power = -12.44 dBmFront average power = -13.61 dBm (From 0 deg to 180 deg)

Min power = -30.76 dBm @ -90.00 deg Max power = -6.35 dBm @ -132.00 deg

Radiation pattern #2:

Tairua DJ_RadPatt_m_#9_TX_YZ_44_H_240108_0_CORR

Average power = -13.28 dBmFront average power = -13.44 dBm (From 0 deg to 180 deg)

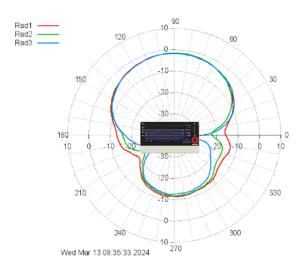
Min power = -37.85 dBm @ -90.00 deg Max power = -8.14 dBm @ -129.00 deg

Delta max power = -1.78 dBm

Delta average power = -0.84 dBm

Delta front average power = 0.17 dBm

Radiation pattern #3:


Tairua DJ_RadPatt_m_#9_TX_YZ_74_H_240108_0_CORR

Average power = -13.48 dBmFront average power = -12.63 dBm (From 0 deg to 180 deg)

Min power = -48.09 dBm @ -90.00 deg Max power = -7.99 dBm @ 36.00 deg

Delta max power = -1.63 dBm Delta average power = -1.05 dBm Delta front average power = 0.97 dBm

Y-Z Plane: Vertical

Rad #1: Tairua DJ_RadPatt_m_#9_TX_YZ_05_V_240108_0_CORR Rad #2: Tairua DJ_RadPatt_m_#9_TX_YZ_44_V_240108_0_CORR Rad #3: Tairua DJ_RadPatt_m_#9_TX_YZ_74_V_240108_0_CORR

[imgfile: tmp/_gnuplot20240313-11895-8jtm1e-0.png]

Radiation pattern #1:

Tairua DJ_RadPatt_m_#9_TX_YZ_05_V_240108_0_CORR

Average power = -10.09 dBmFront average power = -5.93 dBm (From 0 deg to 180 deg)

Min power = -20.81 dBm @ -147.00 deg Max power = -1.71 dBm @ 84.00 deg

Radiation pattern #2:

Tairua DJ_RadPatt_m_#9_TX_YZ_44_V_240108_0_CORR

Average power = -11.31 dBm Front average power = -6.59 dBm (From 0 deg to 180 deg)

Min power = -23.88 dBm @ -147.00 deg Max power = -1.64 dBm @ 84.00 deg

Delta max power = 0.07 dBm Delta average power = -1.22 dBm Delta front average power = -0.66 dBm

Radiation pattern #3:

Tairua DJ_RadPatt_m_#9_TX_YZ_74_V_240108_0_CORR

Average power = -12.65 dBm Front average power = -6.34 dBm (From 0 deg to 180 deg)

Min power = -32.00 dBm @ -6.00 deg Max power = -1.82 dBm @ 93.00 deg

Delta max power = -0.12 dBm

Delta average power = -2.56 dBm

Delta front average power = -0.42 dBm