	E U R E A U VERITAS
	FCC Test Report (GFSK)
Report No.:	RF191108E12
FCC ID:	JNZYR0076
Test Model:	YR0076
Received Date:	Nov. 08, 2019
Test Date:	Nov. 18 to 22, 2019
Issued Date:	Dec 05, 2019
Applicant:	LOGITECH FAR EAST LTD.
Address:	#2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
FCC Registration / Designation Number:	723255 / TW2022
	TAF
	Testing Laboratory 2022
nly with our prior written permission. The port are not indicative or representativ nless specifically and expressly noted. rovided to us. You have 60 days from owever, that such notice shall be in writ hall constitute your unqualified acceptar tention, the uncertainty of measuremen	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time ice of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to declare the compliance or non-compliance to the specification. The report oduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	elease	e Control Record	4
1	c	Certificate of Conformity	5
2	S	ummary of Test Results	6
	2.1 2.2	Measurement Uncertainty Modification Record	
3	Ģ	General Information	. 7
Ū	3.1	General Description of EUT (GFSK)	
	3.2	Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	3.4.1	Configuration of System under Test	
	3.5	General Description of Applied Standards	14
4	Т	est Types and Results	15
	4.1	Radiated Emission and Bandedge Measurement	15
		Limits of Radiated Emission and Bandedge Measurement	15
		Test Instruments	
		Test Procedures	
	4.1.4	Deviation from Test Standard	17
		Test Setup	
	4.1.6	EUT Operating Conditions	19
	4.1.7	Test Results	
	4.2	Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
	4.2.7 4.3	Test Results 6dB Bandwidth Measurement	
	-	Limits of 6dB Bandwidth Measurement	
		Test Setup	
		•	29
		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Conditions	
		Test Results	
	4.4	Conducted Output Power Measurement	
	4.4.1	Limits of Conducted Output Power Measurement	
	4.4.2	Test Setup	31
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		EUT Operating Conditions	
	4.5	Power Spectral Density Measurement.	
	4.5.1		
		Test Setup	
		Test Instruments	
		Test Procedure Deviation from Test Standard	
		EUT Operating Condition	
		Test Results	
	4.5.7		94

A	ppend	lix – Information of the Testing Laboratories	38
5	Р	ictures of Test Arrangements	37
		Test Results	
		EUT Operating Condition	
	-	Deviation from Test Standard	
		Test Procedure	
		Test Instruments	
		Test Setup	
		Limits of Conducted Out of Band Emission Measurement	
	46	Conducted Out of Band Emission Measurement	35

	Release Control Record	
Issue No.	Description	Date Issued
RF191108E12	Original release.	Dec 05, 2019

1 **Certificate of Conformity**

Product:	Wireless Keyboard
Brand:	logitech G
Test Model:	YR0076
Sample Status:	ENGINEERING SAMPLE
Applicant:	LOGITECH FAR EAST LTD.
Test Date:	Nov. 18 to 22, 2019
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Vivian Huang	, Date:	Dec 05, 2019	
	Vivian Huang / Specialist J			
Approved by :	Valle	, Date:	Dec 05, 2019	

Clark Lin / Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -6.46 dB at 0.44688 MHz.			
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -12.6 dB at 39.85MHz.			
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.			
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.			
15.247(b)	Conducted power	PASS	Meet the requirement of limit.			
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.			
15.203	Antenna Requirement	PASS	No antenna connector is used.			

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)	
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB	
Conducted Emissions	-	2.7 dB	
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.1 dB	
	1GHz ~ 6GHz	5.1 dB	
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.8 dB	
	18GHz ~ 40GHz	5.3 dB	

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (GFSK)

Product	Wireless Keyboard
PMN	G913
Brand	logitech G
Test Model	YR0076
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	3.7Vdc from battery or 5Vdc from USB interface
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 2Mbps
Operating Frequency	2402 ~ 2481MHz
Number of Channel	80
Output Power	3.467mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	USB to Micro-B Cable x 1 (Shielded, 1.95m, with one core) (P/N: 502-001138)

Note:

1. The device of Bluetooth and GFSK modulation type can't transmit simultaneously.

2. The EUT may have a lot of colors for marketing requirement.

3. The antenna provided to the EUT, please refer to the following table:

. The antenna provided to the EOT; please refer to the following table.																				
Antenna Gain (dBi)	na Gain (dBi) Frequency range(GHz) Antenna Type		Connector Type																	
2.37	2.4~2.4835	ceramic antenna		ceramic antenna		ceramic antenna		ceramic antenna		ceramic antenna		ceramic antenna		ceramic antenna		ceramic antenna		2.4~2.4835 ceramic and		None
4. The EUT could be supplied with rechargeable battery as the following table:																				
Brand Model No. Spec.																				
Kunshan Synergy ScienTech Co.,Ltd 533-000152 or AHB355085PCT-02 Output: 3.7Vdc, 1500mAh, 5.6wh																				
E. For redicted emissions, the FUT was pre-tested under the following medas:																				

5. For radiated emissions, the EUT was pre-tested under the following modes:

Pre-test Mode Description

Mode A Power from USB adapter

Mode B Power from Battery

From the above modes, the worst case was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

6. For conducted emissions, the EUT was pre-tested under the following modes:

Pre-test Mode	Description
Mode A	Power from USB adapter

Mode B Power from Laptop

From the above modes, the worst case was found in **Mode B**. Therefore only the test data of the mode was recorded in this report.

7. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

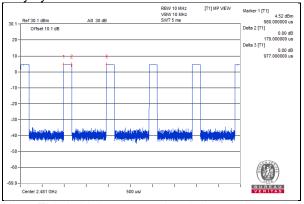
3.2 Description of Test Modes

80 channels are provided for GFSK mode:

Channel	Freq. (MHz)						
1	2402	21	2422	41	2442	61	2462
2	2403	22	2423	42	2443	62	2463
3	2404	23	2424	43	2444	63	2464
4	2405	24	2425	44	2445	64	2465
5	2406	25	2426	45	2446	65	2466
6	2407	26	2427	46	2447	66	2467
7	2408	27	2428	47	2448	67	2468
8	2409	28	2429	48	2449	68	2469
9	2410	29	2430	49	2450	69	2470
10	2411	30	2431	50	2451	70	2471
11	2412	31	2432	51	2452	71	2472
12	2413	32	2433	52	2453	72	2473
13	2414	33	2434	53	2454	73	2474
14	2415	34	2435	54	2455	74	2475
15	2416	35	2436	55	2456	75	2476
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	79	2480
20	2421	40	2441	60	2461	80	2481

3.2.1 Test Mode Applicability and Tested Channel Detail

CONFIGURE MODE	APPLICABLE TO				DECODIDITION		
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION		
-	\checkmark		V	V	-		
RE≥1	G: Radiated Emiss	sion above 1GHz &	& RE<1G·R	adiated Emission b	nelow 1GHz		
Band	edge Measuremen						
PLC:	Power Line Condu	icted Emission	APCM: Ar	tenna Port Conduc	cted Measurement		
Radiated Er	nission Test (A	<u>bove 1GHz):</u>					
🛛 Pre-Scar	has been con	ducted to deter	mino the worst	t casa mada fra	om all possible combinations		
					F with antenna diversity		
architect		,					
Following	g channel(s) wa	as (were) select	ted for the fina	l test as listed b	pelow.		
AVAIL	BLE CHANNEL		TESTED CHAN	NNEL	MODULATION TYPE		
	1 to 80		1, 41, 80		GFSK		
adiated Er	nission Test (E	<u> Below 1GHz):</u>					
					om all possible combinations F with antenna diversity		
		lialions, uala la	ales and anten	na pons (ii Eu i			
architect	architecture). Solution of the final test as listed below.						
	,	as (were) select	ted for the fina	l test as listed b	elow.		
Following	,	as (were) select	ted for the fina TESTED CHAN		MODULATION TYPE		
Following	g channel(s) wa						
 ✓ Following AVAILA Power Line ✓ Pre-Scar 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En has been cond available modu	nission Test: ducted to deter	TESTED CHAN 80 mine the worst	NNEL	MODULATION TYPE		
 Following AVAILA Power Line Pre-Scar between architect Following 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En has been cond available modu ure). g channel(s) wa	nission Test: ducted to deter llations, data ra	TESTED CHAN 80 mine the worst ates and anten	NEL t-case mode fro na ports (if EUT	MODULATION TYPE GFSK om all possible combinations F with antenna diversity		
 Following AVAILA Power Line Pre-Scar between architect Following 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En has been cond available modu ure).	nission Test: ducted to deter llations, data ra	TESTED CHAN 80 mine the worst ates and anten	NEL t-case mode fro na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations F with antenna diversity below. MODULATION TYPE		
 Following AVAILA Power Line Pre-Scar between architect Following 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En has been cond available modu ure). g channel(s) wa	nission Test: ducted to deter llations, data ra	TESTED CHAN 80 mine the worst ates and anten ted for the fina	NEL t-case mode fro na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations T with antenna diversity below.		
 Following AVAIL/ Power Line Pre-Scar between architect Following AVAIL/ 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En a has been cond available modu ure). g channel(s) wa ABLE CHANNEL 1 to 80	nission Test: ducted to deter lations, data ra	TESTED CHAN 80 mine the worst ates and anten ted for the fina TESTED CHAN 80	NEL t-case mode fro na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations F with antenna diversity below. MODULATION TYPE		
 Following AVAIL/ Power Line Pre-Scar between architect Following AVAIL/ 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En has been cond available modu ure). g channel(s) wa ABLE CHANNEL	nission Test: ducted to deter lations, data ra	TESTED CHAN 80 mine the worst ates and anten ted for the fina TESTED CHAN 80	NEL t-case mode fro na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations F with antenna diversity below. MODULATION TYPE		
 ✓ Following AVAILA Power Line ✓ Pre-Scar between architect ✓ Following ▲ Following ▲ AVAILA 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En has been cond available modu ure). g channel(s) wa ABLE CHANNEL 1 to 80 rt Conducted I	nission Test: ducted to deter lations, data ra as (were) select Measurement:	TESTED CHAN 80 mine the worst ates and anten ted for the fina TESTED CHAN 80	NEL t-case mode fro na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations F with antenna diversity below. MODULATION TYPE GFSK		
 ✓ Following AVAILA Power Line ✓ Pre-Scar between architect ✓ Following AVAILA Availa Antenna Po ✓ This item mode. 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En a has been cond available modu ure). g channel(s) wa ABLE CHANNEL 1 to 80 rt Conducted I a includes all tes	nission Test: ducted to deter llations, data ra as (were) select Measurement: st value of each	TESTED CHAN 80 mine the worst ates and anten ted for the fina TESTED CHAN 80	INEL t-case mode from na ports (if EUT test as listed b I test as listed b NEL	MODULATION TYPE GFSK om all possible combinations T with antenna diversity below. MODULATION TYPE GFSK GFSK		
 ✓ Following AVAIL/ Pre-Scar between architect ✓ Following AVAIL/ 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En a has been cond available modu ure). g channel(s) wa ABLE CHANNEL 1 to 80 rt Conducted I a includes all tes a has been cond	nission Test: ducted to deter lations, data ra as (were) select Measurement: st value of each ducted to deter	TESTED CHAN 80 mine the worst ates and anten ted for the fina TESTED CHAN 80 n mode, but on mine the worst	INEL t-case mode from na ports (if EUT test as listed b I test as listed b I test as listed b I test as listed b	MODULATION TYPE GFSK om all possible combinations F with antenna diversity below. MODULATION TYPE GFSK		
 Following AVAIL/ Power Line Pre-Scar between architect Following AVAIL/ Antenna Po This item mode. Pre-Scar between architect 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En has been cond available modu ure). g channel(s) wa ABLE CHANNEL 1 to 80 rt Conducted I n includes all tes n has been cond available modu ure).	nission Test: ducted to deter lations, data ra as (were) select Measurement: st value of each ducted to deter lations, data ra	TESTED CHAI 80 mine the worst ates and anten ted for the fina TESTED CHAI 80 n mode, but on mine the worst ates and anten	IVEL t-case mode from na ports (if EUT test as listed b I test as listed b I test as listed b I test as listed b test as listed b test as listed b	MODULATION TYPE GFSK om all possible combinations T with antenna diversity below. MODULATION TYPE GFSK ctrum plot of worst value of each om all possible combinations T with antenna diversity		
 Following AVAIL/ Power Line Pre-Scar between architect Following AVAIL/ Avail/ Avail/ This item mode. Pre-Scar between architect Pre-Scar between architect Following 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En a has been cond available modu ure). g channel(s) wa ABLE CHANNEL 1 to 80 rt Conducted I a includes all tes a has been cond available modu ure). g channel(s) wa	nission Test: ducted to deter lations, data ra as (were) select Measurement: st value of each ducted to deter lations, data ra	TESTED CHAN 80 mine the worst ates and anten ted for the fina TESTED CHAN 80 n mode, but on mine the worst ates and anten ted for the fina	IVNEL t-case mode from na ports (if EUT test as listed b I test as listed b I test as listed b t-case mode from na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations r with antenna diversity below. MODULATION TYPE GFSK Ctrum plot of worst value of each om all possible combinations r with antenna diversity below. Delow.		
 Following AVAIL/ Pre-Scar between architect Following AVAIL/ 	g channel(s) wa ABLE CHANNEL 1 to 80 Conducted En has been cond available modu ure). g channel(s) wa ABLE CHANNEL 1 to 80 rt Conducted I n includes all tes n has been cond available modu ure).	nission Test: ducted to deter lations, data ra as (were) select Measurement: st value of each ducted to deter lations, data ra	TESTED CHAI 80 mine the worst ates and anten ted for the fina TESTED CHAI 80 n mode, but on mine the worst ates and anten	IVNEL t-case mode from na ports (if EUT test as listed b I test as listed b I test as listed b t-case mode from na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations T with antenna diversity below. MODULATION TYPE GFSK ctrum plot of worst value of each om all possible combinations T with antenna diversity		



Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY	
RE≥1G	25deg. C, 65%RH	3.7Vdc	Nelson Teng	
RE<1G	25deg. C, 65%RH	3.7Vdc	Nelson Teng	
PLC	24deg. C, 76%RH	120Vac, 60Hz (system)	Andy Ho	
APCM	25deg. C, 60%RH	3.7Vdc	Jyunchun Lin	

3.3 Duty Cycle of Test Signal

Duty cycle = 0.179/0.977 = 0.183

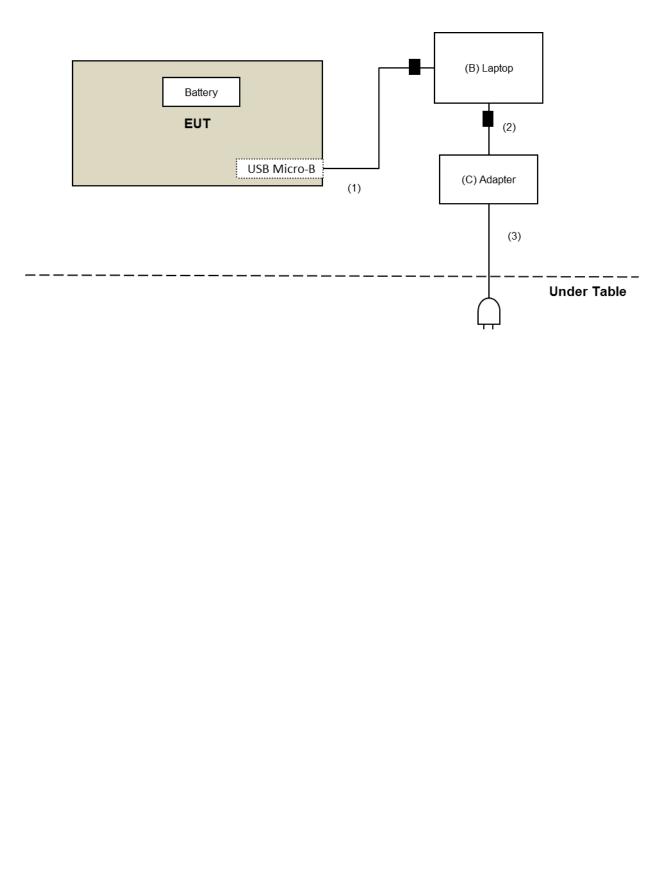
Note: This is highest operational duty cycle.

3.4 Description of Support Units

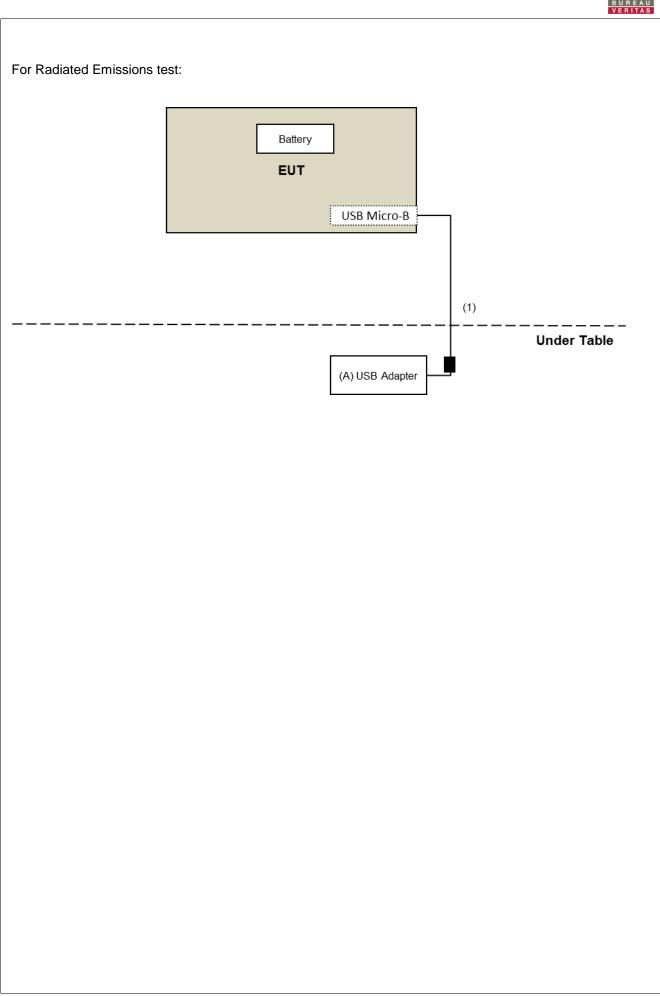
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	USB Adapter	ASUS	AD876320	NA	NA	Provided by Lab
В.	Laptop	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab
C.	Adapter	DELL	LA65NS2-01	6TM1C	NA	Provided by Lab

Note:


1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	1.95	Yes	1	Supplied by client
2.	DC Cable	1	1.6	No	1	Provided by Lab
3.	AC Cable	1	0.9	No	0	Provided by Lab


Note: The cores are originally attached to the cables.

For Conducted Emissions test:

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver ESR7 R&S	ESR7	102026	Apr. 24, 2019	Apr. 23, 2020
Spectrum Analyzer Keysight	N9030B	MY57141948	May 25, 2019	May 24, 2020
Pre-Amplifier EMCI	EMC001340	980142	Jan. 25, 2019	Jan. 24, 2020
Loop Antenna Electro-Metrics	EM-6879	269	Jan. 22, 2019	Jan. 21, 2020
RF Cable	NA	LOOPCAB-001	Jan. 14, 2019	Jan. 13, 2020
RF Cable	NA	LOOPCAB-002	Jan. 14, 2019	Jan. 13, 2020
Pre-Amplifier EMCI	EMC330N	980538	Apr. 30, 2019	Apr. 29, 2020
Trilog Broadband Antenna SCHWARZBECK	VULB9168	9168-0842	Nov. 08, 2019	Nov. 07, 2020
RF Cable	8D	966-5-1	May 03, 2019	May 02, 2020
RF Cable	8D	966-5-2	May 03, 2019	May 02, 2020
RF Cable	8D	966-5-3	May 03, 2019	May 02, 2020
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-02	Jan. 28, 2019	Jan. 27, 2020
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-1819	Nov. 25, 2018	Nov. 24, 2019
Pre-Amplifier EMCI	EMC12630SE	980509	May 03, 2019	May 02, 2020
RF Cable EMCI	EMC104-SM-SM-1500	180503	May 03, 2019	May 02, 2020
RF Cable EMCI	EMC104-SM-SM-2000	180501	May 03, 2019	May 02, 2020
RF Cable EMCI	EMC104-SM-SM-6000	180505	May 03, 2019	May 02, 2020
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 28, 2019	Jan. 27, 2020
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 25, 2018	Nov. 24, 2019
RF Cable	EMC102-KM-KM-1200	160924	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC102-KM-KM-1200	160925	Jan. 28, 2019	Jan. 27, 2020
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 04, 2019	June 03, 2020
Power meter Anritsu	ML2495A	1014008	May 13, 2019	May 12, 2020
Power sensor Anritsu	MA2411B	0917122	May 13, 2019	May 12, 2020

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. 5.

3. Loop antenna was used for all emissions below 30 MHz.

4. Tested Date: Nov. 22, 2019

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

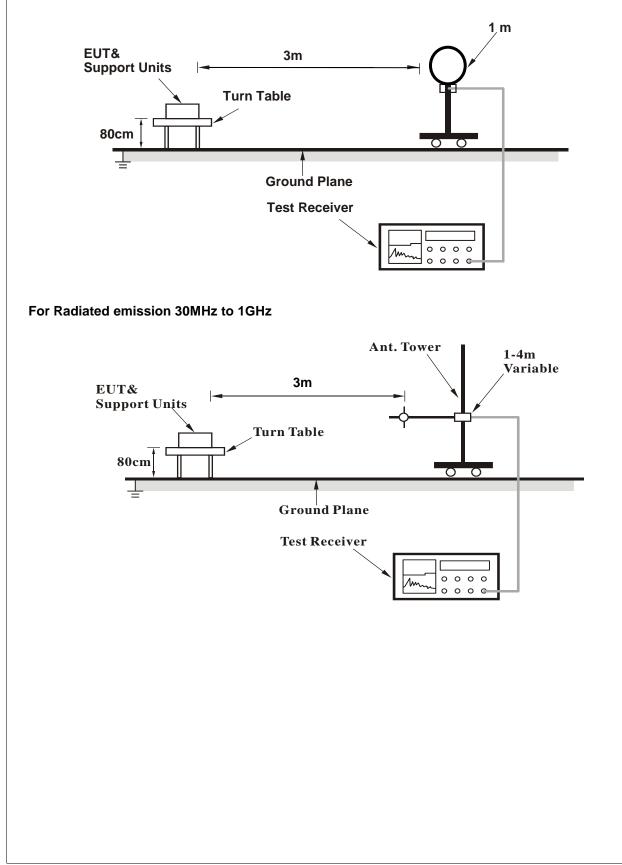
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

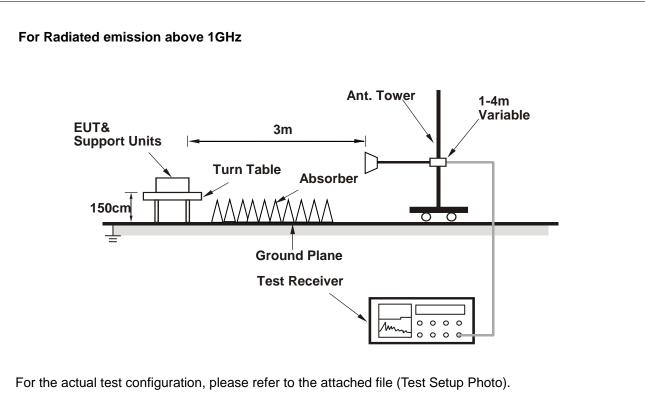
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (RF Sample with Receiver [Number Lock]) has been activated to set the EUT under transmission condition continuously at specific channel frequency.
- TX Modulated standard duty 2402MHz
- TX Modulated standard duty 2442MHz
- TX Modulated standard duty 2481MHz

4.1.7 Test Results

Above 1GHz Data:

CHA	ANNEL	TX Channel 1	DETECTOR	Peak (PK)
FRE	QUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	37.6 PK	74.0	-36.4	1.01 H	121	40.7	-3.1	
2	2390.00	27.4 AV	54.0	-26.6	1.01 H	121	30.5	-3.1	
3	*2402.00	101.4 PK			1.01 H	121	104.5	-3.1	
4	*2402.00	45.2 AV			1.01 H	121	48.3	-3.1	
5	4804.00	51.0 PK	74.0	-23.0	2.27 H	151	49.8	1.2	
6	4804.00	30.9 AV	54.0	-23.1	2.27 H	151	29.7	1.2	
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	37.0 PK	74.0	-37.0	3.01 V	77	40.1	-3.1	
2	2390.00	26.0 AV	54.0	-28.0	3.01 V	77	29.1	-3.1	
3	*2402.00	100.7 PK			3.01 V	77	103.8	-3.1	
4	*2402.00	45.7 AV			3.01 V	77	48.8	-3.1	
5	4804.00	50.0 PK	74.0	-24.0	1.26 V	214	48.8	1.2	
6	4804.00	30.0 AV	54.0	-24.0	1.26 V	214	28.8	1.2	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 41	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2442.00	101.1 PK			1.05 H	126	104.3	-3.2	
2	*2442.00	45.4 AV			1.05 H	126	48.6	-3.2	
3	4884.00	50.8 PK	74.0	-23.2	2.30 H	153	49.5	1.3	
4	4884.00	30.5 AV	54.0	-23.5	2.30 H	153	29.2	1.3	
5	7326.00	53.1 PK	74.0	-20.9	3.40 H	209	45.9	7.2	
6	7326.00	36.1 AV	54.0	-17.9	3.40 H	209	28.9	7.2	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ.	EMISSION LEVEL			ANTENNA HEIGHT	TABLE ANGLE	RAW VALUE	CORRECTION FACTOR	

NO.	FREQ. (MHz)	LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)
1	*2442.00	100.4 PK			3.03 V	71	103.6	-3.2
2	*2442.00	45.5 AV			3.03 V	71	48.7	-3.2
3	4884.00	50.0 PK	74.0	-24.0	1.28 V	191	48.7	1.3
4	4884.00	30.0 AV	54.0	-24.0	1.28 V	191	28.7	1.3
5	7326.00	52.8 PK	74.0	-21.2	2.35 V	306	45.6	7.2
6	7326.00	35.6 AV	54.0	-18.4	2.35 V	306	28.4	7.2

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 80	DETECTOR	Peak (PK)
FREQUENCY RANGE		FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2481.00	101.5 PK			1.00 H	122	104.6	-3.1
2	*2481.00	45.9 AV			1.00 H	122	49.0	-3.1
3	2483.50	65.8 PK	74.0	-8.2	1.00 H	122	68.9	-3.1
4	2483.50	37.2 AV	54.0	-16.8	1.00 H	122	40.3	-3.1
5	4962.00	50.9 PK	74.0	-23.1	2.30 H	159	49.5	1.4
6	4962.00	30.6 AV	54.0	-23.4	2.30 H	159	29.2	1.4
7	7443.00	53.3 PK	74.0	-20.7	3.37 H	194	46.0	7.3
8	7443.00	36.1 AV	54.0	-17.9	3.37 H	194	28.8	7.3
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2481.00	101.1 PK			2.96 V	61	104.2	-3.1
2	*2481.00	45.8 AV			2.96 V	61	48.9	-3.1
3	2483.50	46.6 PK	74.0	-27.4	2.96 V	61	49.7	-3.1
4	2483.50	35.8 AV	54.0	-18.2	2.96 V	61	38.9	-3.1
5	4962.00	49.9 PK	74.0	-24.1	1.23 V	199	48.5	1.4
6	4962.00	29.6 AV	54.0	-24.4	1.23 V	199	28.2	1.4
7	7443.00	52.9 PK	74.0	-21.1	2.33 V	291	45.6	7.3
8	7443.00	35.8 AV	54.0	-18.2	2.33 V	291	28.5	7.3

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

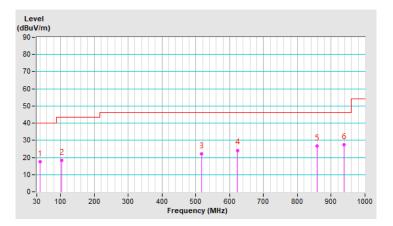
3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

Below 1GHz Data:

CHANNEL	TX Channel 80	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)


	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	40.09	17.5 QP	40.0	-22.5	2.00 H	108	31.1	-13.6				
2	103.63	18.3 QP	43.5	-25.2	3.00 H	87	35.0	-16.7				
3	517.26	22.2 QP	46.0	-23.8	3.00 H	117	29.4	-7.2				
4	624.15	24.2 QP	46.0	-21.8	4.00 H	290	29.2	-5.0				
5	857.94	26.7 QP	46.0	-19.3	1.00 H	210	28.8	-2.1				
6	937.67	27.6 QP	46.0	-18.4	2.00 H	360	28.5	-0.9				

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

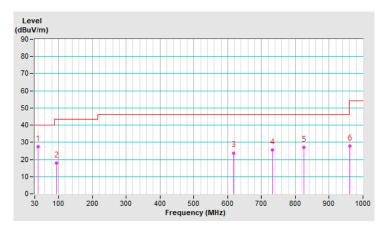
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 80	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M												
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	39.85	27.4 QP	40.0	-12.6	1.00 V	187	41.0	-13.6					
2	94.22	17.9 QP	43.5	-25.6	3.00 V	144	35.9	-18.0					
3	616.88	23.8 QP	46.0	-22.2	3.00 V	317	28.8	-5.0					
4	732.95	25.6 QP	46.0	-20.4	3.00 V	223	29.0	-3.4					
5	826.26	27.0 QP	46.0	-19.0	1.00 V	124	29.1	-2.1					
6	961.83	27.9 QP	54.0	-26.1	1.00 V	340	28.4	-0.5					

REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

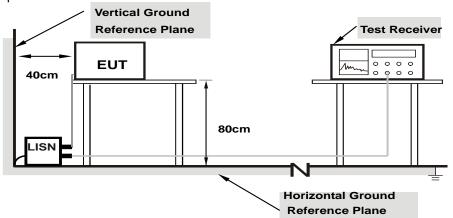
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 17, 2019	Mar. 16, 2020
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 14, 2019	Mar. 13, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Conduction 1.

3 Tested Date: Nov. 19, 2019



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6

4.2.7 Test Results

Phase Line (L) Detector Function Quasi-Peak (QP) / Average (AV)
--

	Phase Of Power : Line (L)											
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15391	9.97	46.97	30.54	56.94	40.51	65.79	55.79	-8.85	-15.28		
2	0.16562	9.97	43.98	29.84	53.95	39.81	65.18	55.18	-11.23	-15.37		
3	0.21641	9.97	38.60	29.79	48.57	39.76	62.96	52.96	-14.39	-13.20		
4	0.44688	9.98	40.49	28.78	50.47	38.76	56.93	46.93	-6.46	-8.17		
5	1.43359	10.04	23.89	15.92	33.93	25.96	56.00	46.00	-22.07	-20.04		
6	14.32422	10.73	16.91	9.24	27.64	19.97	60.00	50.00	-32.36	-30.03		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase Neutral (N)						Dete	Detector Function Quasi-Peak (QP) / Average (AV)				/
	Phase Of Power : Neutral (N)										
No	Frequency Correction Reading Value Em				on Level SuV)		mit BuV)		rgin B)		
	(MHz)	(dE	3)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	9.9	7	47.45	30.04	57.42	40.01	65.79	55.79	-8.37	-15.78
2	0.16172	9.9	7	41.22	26.76	51.19	36.73	65.38	55.38	-14.19	-18.65
3	0.18516	9.9	7	46.19	37.19	56.16	47.16	64.25	54.25	-8.09	-7.09
4	0.21250	9.9	7	39.04	29.32	49.01	39.29	63.11	53.11	-14.10	-13.82
5	0.24766	9.9	7	34.22	22.03	44.19	32.00	61.84	51.84	-17.65	-19.84
6	0.27891	9.9	7	36.45	26.89	46.42	36.86	60.85	50.85	-14.43	-13.99
7	0.32969	9.9	8	34.04	20.02	44.02	30.00	59.46	49.46	-15.44	-19.46
8	0.43516	9.9	8	40.05	28.05	50.03	38.03	57.15	47.15	-7.12	-9.12
9	1.06250	10.0	02	24.97	17.39	34.99	27.41	56.00	46.00	-21.01	-18.59
10	25.87109	10.9	90	22.65	21.89	33.55	32.79	60.00	50.00	-26.45	-17.21

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

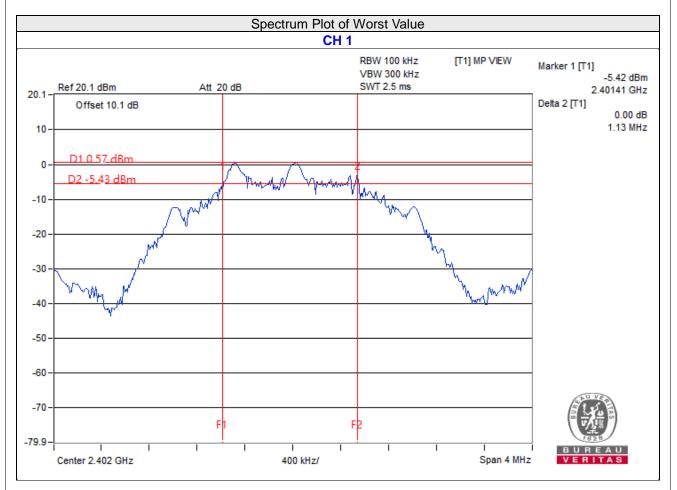
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation from Test Standard

No deviation.

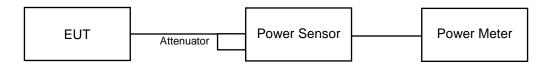
4.3.6 EUT Operating Conditions


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

- TX Modulated standard duty 2402MHz
- TX Modulated standard duty 2442MHz
- TX Modulated standard duty 2481MHz

4.3.7 Test Results

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2402	1.13	0.5	Pass
41	2442	1.21	0.5	Pass
80	2481	1.14	0.5	Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

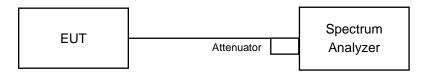
Same as Item 4.3.6.

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2402	1.309	1.17	30	Pass
41	2442	3.206	5.06	30	Pass
80	2481	3.467	5.40	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2402	1.294	1.12
41	2442	3.192	5.04
80	2481	3.443	5.37



4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

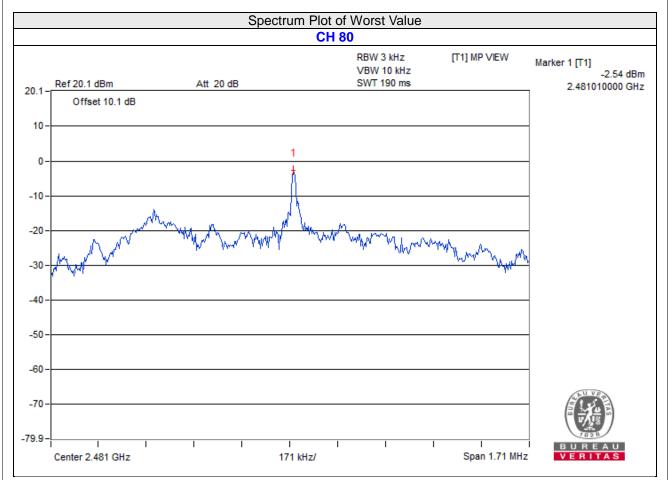
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.3.6.

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2402	-6.77	8	Pass
41	2442	-2.83	8	Pass
80	2481	-2.54	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

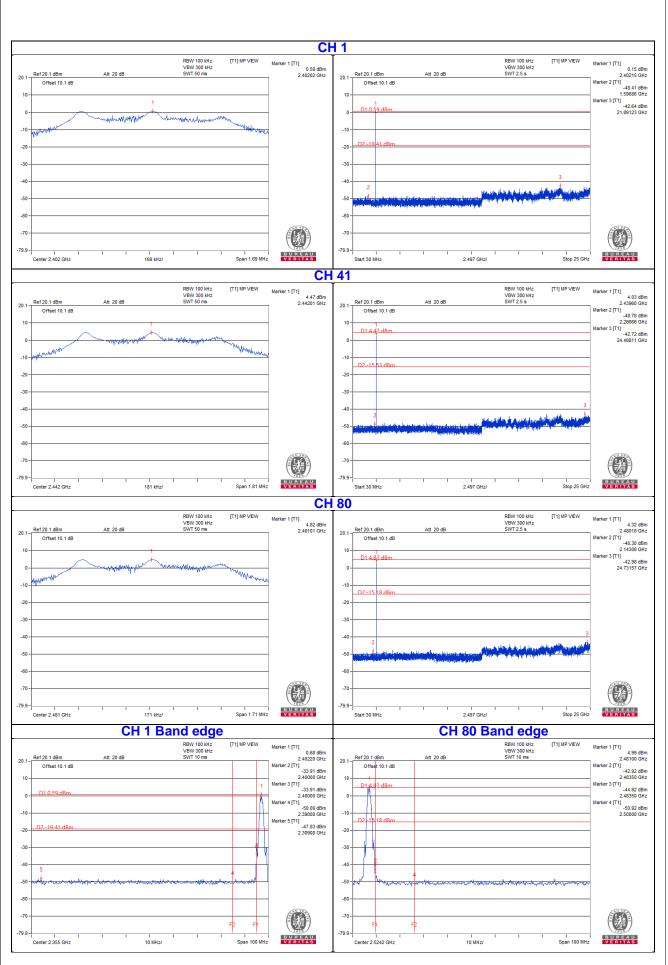
MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.
- 4.6.5 Deviation from Test Standard

No deviation.


4.6.6 EUT Operating Condition

Same as Item 4.3.6.

4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---