	BUREAU VERITAS
	FCC Test Report
Report No.:	RF180115E03
FCC ID:	JNZYR0067
Test Model:	Y-R0067
Received Date:	Jan. 15, 2018
Test Date:	Jan. 16 to 18, 2018
Issued Date:	Jan. 26, 2018
Applicant:	LOGITECH FAR EAST LTD.
Address:	#2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
FCC Registration / Designation Number:	723255 / TW2022
	AC-MRA TAF
	Testing Laboratory 2022
with our prior written permission. The port are not indicative or representatives ses specifically and expressly noted. vided to us. You have 60 days from rever, that such notice shall be in writ al constitute your unqualified acceptar ntion, the uncertainty of measuremen	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time ice of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to declare the compliance or non-compliance to the specification. The report roduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	elease	e Control Record	4
1	C	Certificate of Conformity	5
2	S	ummary of Test Results	6
	2.1	Measurement Uncertainty	
	2.2	Modification Record	
3	G	eneral Information	
	3.1	General Description of EUT (GFSK)	
	3.2 3.2.1	Description of Test Modes Test Mode Applicability and Tested Channel Detail	
	3.3	Description of Support Units	
	3.3.1	Configuration of System under Test	
	3.4	Duty Cycle of Test Signal	
	3.5	General Description of Applied Standards	
4	т	est Types and Results	13
	4.1	Radiated Emission and Bandedge Measurement	13
	4.1.1		13
	4.1.2	Test Instruments	14
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
	4.1.7 4.2	Test Results 6dB Bandwidth Measurement	
	4.2 4.2.1	Limits of 6dB Bandwidth Measurement	
		Test Setup	
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
	4.2.6	EUT Operating Conditions	22
		Test Result	
	4.3	Conducted Output Power Measurement	
	4.3.1	Limits of Conducted Output Power Measurement	
		Test Setup	
		Test Instruments	
		Test Procedures Deviation from Test Standard	
		EUT Operating Conditions	
		Test Results	
	4.4	Power Spectral Density Measurement	
	4.4.1	Limits of Power Spectral Density Measurement	
	4.4.2	Test Setup	26
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Condition	
	4.4. <i>1</i> 4.5	Test Results Conducted Out of Band Emission Measurement	
	-	Limits of Conducted Out of Band Emission Measurement	
		Test Setup	
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Condition	

4	.5.7	Test Results	28
5	F	Pictures of Test Arrangements	30
Ap	pend	dix – Information on the Testing Laboratories	31

ssue No.	Description	Date Issued
F180115E03	Original release.	Jan. 26, 2018

1 Certificate of Conformity

Product:	Wireless Keyboard
Brand:	Logitech
Test Model:	Y-R0067
Sample Status:	ENGINEERING SAMPLE
Applicant:	LOGITECH FAR EAST LTD.
Test Date:	Jan. 16 to 18, 2018
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	C	,	Date:	Jan. 26, 2018
	Claire Kuan / Specialist			
Approved by :	May Chen / Manager	,	Date:	Jan. 26, 2018

2 Summary of Test Results

	47 CFR FCC Part 15, Sub	opart C (SEC	TION 15.247)
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	NA	Without AC power port of the EUT.
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -7.1dB at 2483.50MHz.
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.
15.247(b)	Conducted power	PASS	Meet the requirement of limit.
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.33 dB
	1GHz ~ 6GHz	5.10 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.85 dB
	18GHz ~ 40GHz	5.24 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (GFSK)

Product	Wireless Keyboard
PMN	MK320, MK330
Brand	Logitech
Test Model	Y-R0067
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	DC 3V from battery
Modulation Type	GFSK
Transfer Rate	2Mbps
Operating Frequency	2405MHz ~ 2474MHz
Number of Channel	12
Output Power	1.33mW
Antenna Type	Refer to Note
Antenna Connector	NA
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. The EUT may have a lot of colors for marketing requirement.

2. The antenna provided to the EUT, please refer to the following table:

Antenna Gain (dBi)	Frequency range(GHz)	Antenna Type	Connecter Type	Cable Length
1.40	2.4-2.4835	Printed Antenna	None	NA

3. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

12 channels are provided to this EUT:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2405	7	2441
2	2408	8	2444
3	2414	9	2462
4	2417	10	2465
5	2432	11	2471
6	2435	12	2474

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE				APPLIC	ABLE	10			DESCRIPTION
	MODE	RE≥10	à	RE<1G		PLC	APCM		
	-	\checkmark		\checkmark		-	\checkmark	-	
her	e RE≥1	G: Radiate	d Em	ission above 10	GHz	RE	<1G: Radiated	Emission below 1G	ìHz
	PLC:	Power Line	e Cor	ducted Emissio	n	APO	CM: Antenna P	ort Conducted Mea	surement
DTE	1. No nee	d to concer	n of (Conducted Emis	ssion d	ue to the E	EUT is powered	d by battery.	
Ra	diated En	nission 7	<u>lest</u>	(Above 1GF	<u>lz):</u>				
<u> </u>									ossible combinations
	architect		mo	uulalions, ua	lla ra	es anu a	antenna por		antenna diversity
$\overline{\mathbf{X}}$,	l(s) 1	was (were) s	electi	d for the	e final test a	s listed below.	
		-		· · ·					
	AVAILABL	E CHANNE	L 1	ESTED CHAN	NEL	MODUL	ATION TYPE		
	1 t	o 12		1, 8, 12		(GFSK		
\bowtie	between	available							oossible combinations antenna diversity
	between architect	available ure).	mo	dulations, da	ita rat	es and a	antenna por		
	between architect	available ure). g channe	mo ا(s) ۱	dulations, da	ita rat	es and a	antenna por	ts (if EUT with a	
	between architectu Following AVAILABL	available ure). g channe	mo ا(s) ۱	dulations, da was (were) s	ita rat	es and a ed for the MODUL	antenna por e final test a	ts (if EUT with a	
	between architectu Following AVAILABL	available ure). g channe E CHANNE	mo ا(s) ۱	dulations, da was (were) s rESTED CHAN	ita rat	es and a ed for the MODUL	antenna por e final test a ATION TYPE	ts (if EUT with a	
	between architectu Following AVAILABL	available ure). g channe E CHANNE o 12	: mo l(s) \ L 1	dulations, da was (were) s r ESTED CHAN 1	ita rat electe NEL	es and a ed for the MODUL	antenna por e final test a ATION TYPE	ts (if EUT with a	
	between architectu Following AVAILABL	available ure). g channe E CHANNE o 12	: mo l(s) \ L 1	dulations, da was (were) s rESTED CHAN	ita rat electe NEL	es and a ed for the MODUL	antenna por e final test a ATION TYPE	ts (if EUT with a	
Ani	between architectu Following AVAILABLI 1 t	available ure). g channe E CHANNE o 12 rt Condu	: mo I(s) \ iL 1 Icted	dulations, da was (were) s rESTED CHAN 1 d Measurem	ita rat electo NEL	ed for the MODUL	antenna por e final test a ATION TYPE GFSK	ts (if EUT with a s listed below.	antenna diversity
An:	between architectu Following AVAILABLI 1 t tenna Po This item mode.	available ure). g channe E CHANNE o 12 rt Condu	in mo i(s) \ iL 1 icted all t	dulations, da was (were) s rESTED CHAN 1 d Measurem test value of	ita rat electe NEL	tes and a ed for the MODUL C mode, b	antenna por e final test a ATION TYPE GFSK Dut only inclu	ts (if EUT with a s listed below.	antenna diversity blot of worst value of each
An:	between architectu Following AVAILABLI 1 t tenna Po This item mode. Pre-Scar	available ure). g channe E CHANNE o 12 rt Condu i includes n has bee	e mo I(s) \ IL 1 ICted all t en cc	dulations, da was (were) s rESTED CHAN 1 d Measurem test value of onducted to c	ita rat electo NEL eent: each	tes and a ed for the MODUL C mode, b nine the	antenna por e final test a ATION TYPE GFSK but only inclu worst-case	ts (if EUT with a s listed below. des spectrum p mode from all p	antenna diversity plot of worst value of each possible combinations
An:	between architectu Following AVAILABLI 1 t tenna Po This item mode. Pre-Scar between	available ure). g channe E CHANNE o 12 rt Condu n includes n has bee available	e mo I(s) \ IL 1 ICted all t en cc	dulations, da was (were) s rESTED CHAN 1 d Measurem test value of onducted to c	ita rat electo NEL eent: each	tes and a ed for the MODUL C mode, b nine the	antenna por e final test a ATION TYPE GFSK but only inclu worst-case	ts (if EUT with a s listed below. des spectrum p mode from all p	antenna diversity blot of worst value of each
Ani X	between architectu Following AVAILABLI 1 t tenna Po This item mode. Pre-Scar between architectu	available ure). g channe E CHANNE o 12 rt Condu n includes n has bee available ure).	+ mo (s) \ (L 1 + acted + all 1 + mo	dulations, da was (were) s rESTED CHAN 1 d Measurem test value of onducted to c dulations, da	electe NEL Nent: each deterr	mode, b nine the tes and a	antenna por <u>e final test a</u> ATION TYPE GFSK but only inclu worst-case antenna por	ts (if EUT with a s listed below. udes spectrum p mode from all p ts (if EUT with a	antenna diversity plot of worst value of each possible combinations
Ani X	between architectu Following AVAILABLI 1 t tenna Po This item mode. Pre-Scar between architectu	available ure). g channe E CHANNE o 12 rt Condu n includes n has bee available ure).	+ mo (s) \ (L 1 + acted + all 1 + mo	dulations, da was (were) s rESTED CHAN 1 d Measurem test value of onducted to c dulations, da	electe NEL Nent: each deterr	mode, b nine the tes and a	antenna por <u>e final test a</u> ATION TYPE GFSK but only inclu worst-case antenna por	ts (if EUT with a s listed below. des spectrum p mode from all p	antenna diversity plot of worst value of each possible combinations
	between architectu Following AVAILABLI 1 t tenna Po This item mode. Pre-Scar between architectu	available ure). g channe E CHANNE o 12 rt Condu i includes n has bee available ure). g channe	I(s) \ I(s) \ IL 1 Icted acted	dulations, da was (were) s rESTED CHAN 1 d Measurem test value of onducted to c dulations, da	electo NEL each deterr ta rat	mode, b mine the ad for the mode the ad for the	antenna por <u>e final test a</u> ATION TYPE GFSK but only inclu worst-case antenna por	ts (if EUT with a s listed below. udes spectrum p mode from all p ts (if EUT with a	antenna diversity plot of worst value of each possible combinations
	between architectu Following AVAILABLI 1 t tenna Po This item mode. Pre-Scar between architectu Following AVAILABLI	available ure). g channe E CHANNE o 12 rt Condu i includes n has bee available ure). g channe	I(s) \ I(s) \ IL 1 Icted acted	dulations, da was (were) s rESTED CHAN 1 d Measurem test value of onducted to c dulations, da was (were) s	electo NEL each deterr ta rat	mode, b mode, b mode, b mine the ses and a ed for the MODUL	antenna por e final test a ATION TYPE GFSK out only inclu worst-case antenna por e final test a	ts (if EUT with a s listed below. udes spectrum p mode from all p ts (if EUT with a	antenna diversity plot of worst value of each possible combinations
	between architectu Following AVAILABLI 1 t tenna Po This item mode. Pre-Scar between architectu Following AVAILABLI	available ure). g channe E CHANNE o 12 rt Condu i includes n has bee available ure). g channe E CHANNE	I(s) \ I(s) \ IL 1 Icted acted	dulations, da was (were) s rESTED CHAN 1 d Measurem test value of onducted to c dulations, da was (were) s rESTED CHAN	electo NEL each deterr ta rat	mode, b mode, b mode, b mine the ses and a ed for the MODUL	antenna por e final test a ATION TYPE GFSK out only inclu worst-case antenna por e final test a ATION TYPE	ts (if EUT with a s listed below. udes spectrum p mode from all p ts (if EUT with a	antenna diversity plot of worst value of each possible combinations
	between architectu Following AVAILABLI 1 t tenna Po This item mode. Pre-Scar between architectu Following AVAILABLI	available ure). g channe E CHANNE o 12 rt Condu i includes n has bee available ure). g channe E CHANNE o 12	I(s) \ I(s) \ IL 1 Icted acted	dulations, da was (were) s rESTED CHAN 1 d Measurem test value of onducted to c dulations, da was (were) s rESTED CHAN	electo NEL each deterr ta rat	mode, b mode, b mode, b mine the ses and a ed for the MODUL	antenna por e final test a ATION TYPE GFSK out only inclu worst-case antenna por e final test a ATION TYPE	ts (if EUT with a s listed below. udes spectrum p mode from all p ts (if EUT with a	antenna diversity plot of worst value of each possible combinations
	between architectu Following AVAILABLI 1 t tenna Po This item mode. Pre-Scar between architectu Following AVAILABLI 1 t	available ure). g channe E CHANNE o 12 rt Condu i includes n has bee available ure). g channe E CHANNE o 12	<pre>immodel(s) \\ iL 1 immodel(s) \\ immode</pre>	dulations, da was (were) s ESTED CHANN 1 d Measurem test value of binducted to c dulations, da was (were) s ESTED CHANN 1, 8, 12	electe NEL each deterr ta rat electe	mode, b mode, b mode, b mine the ed for the MODUL	antenna por e final test a ATION TYPE GFSK out only inclu worst-case antenna por e final test a ATION TYPE GFSK	ts (if EUT with a s listed below. udes spectrum p mode from all p ts (if EUT with a s listed below.	antenna diversity plot of worst value of each possible combinations antenna diversity
	between architectu Following AVAILABLI 1 t tenna Po This item mode. Pre-Scar between architectu Following AVAILABLI 1 t t Conditi	available ure). g channe E CHANNE o 12 rt Condu i includes n has bee available ure). g channe E CHANNE o 12 012 BLE TO	<pre>immodel(s) \\ iL 1 immodel(s) \\ immode</pre>	dulations, da was (were) s rESTED CHAN 1 d Measurem test value of onducted to c dulations, da was (were) s rESTED CHAN 1, 8, 12	electe NEL each deterr ita rat electe NEL	mode, b mode, b mode, b mine the ses and a ed for the MODUL	antenna por e final test a ATION TYPE GFSK out only inclu worst-case antenna por e final test a ATION TYPE GFSK	ts (if EUT with a s listed below. des spectrum p mode from all p ts (if EUT with a s listed below.	antenna diversity olot of worst value of each possible combinations antenna diversity TESTED BY
Ani	between architectu Following AVAILABLI 1 tr tenna Po This item mode. Pre-Scar between architectu Following AVAILABLI 1 tr	available ure). g channe E CHANNE o 12 rt Condu i includes n has bee available ure). g channe E CHANNE o 12 012 012	<pre>immodel(s) \\ iL 1 immodel(s) \\ immode</pre>	dulations, da was (were) s ESTED CHANN 1 d Measurem test value of binducted to c dulations, da was (were) s ESTED CHANN 1, 8, 12	electo NEL each deterr ta rat electo NEL	mode, b mode, b mine the ed for the mode, b mine the ed for the modul MODUL	antenna por e final test a ATION TYPE GFSK out only inclu worst-case antenna por e final test a ATION TYPE GFSK	ts (if EUT with a s listed below. udes spectrum p mode from all p ts (if EUT with a s listed below.	antenna diversity plot of worst value of each possible combinations antenna diversity

APCM

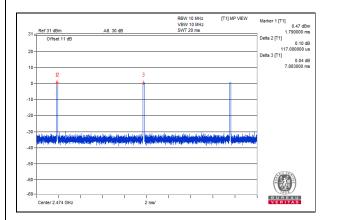
DC 3V

25deg. C, 60%RH

Robert Cheng

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Battery*2	Duracell	AAA	NA	NA	Provided by Lab

3.3.1 Configuration of System under Test

EUT	
(A)Battery	

3.4 Duty Cycle of Test Signal

Duty cycle = 0.117 ms / 7.883 ms = 0.015 * 100 % = 1.5 %

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v04 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

4.1.2 Test Instruments DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SENIAL NO.	DATE	UNTIL
Test Receiver Keysight	N9038A	MY54450088	July 08, 2017	July 07, 2018
Loop Antenna ^(*) TESEQ	HLA 6121	45745	May 19, 2017	May 18, 2018
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Nov. 09, 2017	Nov. 08, 2018
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Nov. 29, 2017	Nov. 28, 2018
RF Cable	8D	966-4-1 966-4-2 966-4-3	Apr. 01, 2017	Mar. 31, 2018
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Oct. 03, 2017	Oct. 02, 2018
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Dec. 12, 2017	Dec. 11, 2018
Pre-Amplifier EMCI	EMC12630SE	980385	Feb. 02, 2017	Feb. 01, 2018
RF Cable	EMC104-SM-SM-1200 EMC104-SM-SM-2000 EMC104-SM-SM-5000	160923 150318 150321	Feb. 02, 2017 Mar. 29, 2017 Mar. 29, 2017	Feb. 01, 2018 Mar. 28, 2018 Mar. 28, 2018
Pre-Amplifier EMCI	EMC184045SE	980387	Feb. 02, 2017	Feb. 01, 2018
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 14, 2017	Dec. 13, 2018
RF Cable	SUCOFLEX 102	36432/2 36433/2	Jan. 11, 2018	Jan. 10, 2019
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208410	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP02	NA	NA
Spectrum Analyzer R&S	FSV40	100964	July 1, 2017	June 30, 2018
Power meter Anritsu	ML2495A	1014008	May 11, 2017	May 10, 2018
Power sensor Anritsu	MA2411B	0917122	May 11, 2017	May 10, 2018

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. The test was performed in 966 Chamber No. 4.

4. The CANADA Site Registration No. is 20331-2

- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: Jan. 16 to 18, 2018

4.1.3 Test Procedures

For Radiated emission below 30MHz

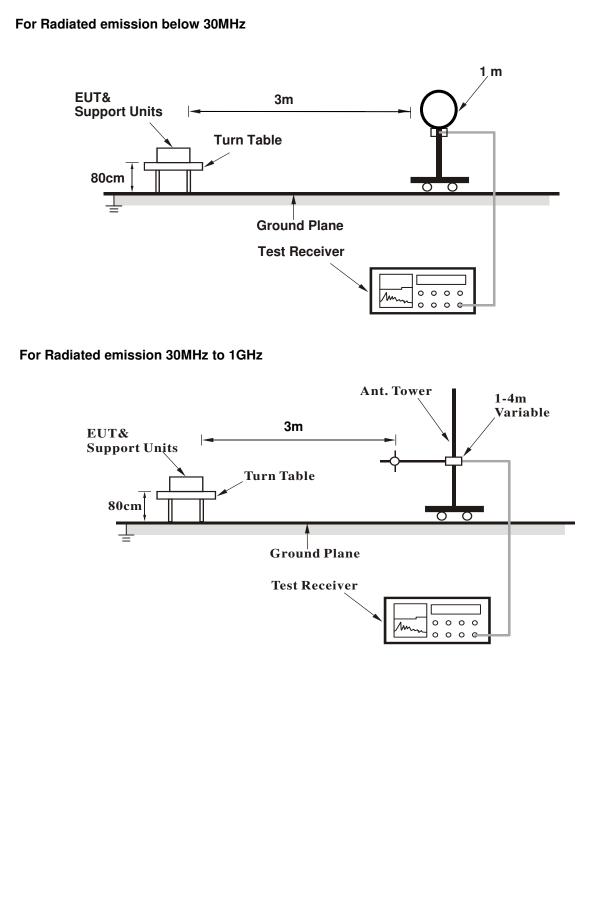
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

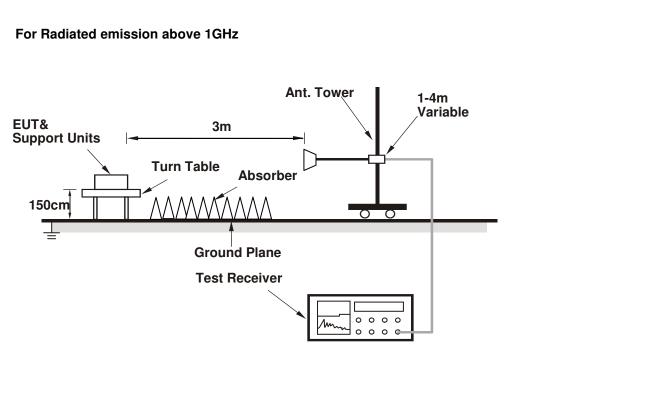
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.


Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (RF Sample with Receiver C-U0010 [Number Lock]) has been activated to set the EUT under transmission/receiving condition continuously.

4.1.7 Test Results

Above 1GHz Data:

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	2390.00	60.1 PK	74.0	-13.9	1.45 H	144	61.1	-1.0			
2	2390.00	43.1 AV	54.0	-10.9	1.45 H	144	44.1	-1.0			
3	*2405.00	100.3 PK			1.45 H	144	101.3	-1.0			
4	*2405.00	63.7 AV			1.45 H	144	64.7	-1.0			
5	4810.00	47.7 PK	74.0	-26.3	1.00 H	260	44.6	3.1			
6	4810.00	11.1 AV	54.0	-42.9	1.00 H	260	8.0	3.1			
7	#7215.00	58.6 PK	74.0	-15.4	1.56 H	187	48.9	9.7			
8	#7215.00	22.0 AV	54.0	-32.0	1.56 H	187	12.3	9.7			
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	2390.00	54.7 PK	74.0	-19.3	3.60 V	290	55.7	-1.0			
2	2390.00	42.1 AV	54.0	-11.9	3.60 V	290	43.1	-1.0			
3	*2405.00	91.8 PK			3.60 V	290	92.8	-1.0			
4	*2405.00	55.2 AV			3.60 V	290	56.2	-1.0			
5	4810.00	48.8 PK	74.0	-25.2	1.56 V	63	45.7	3.1			
6	4810.00	12.2 AV	54.0	-41.8	1.56 V	63	9.1	3.1			
-											
7	#7215.00	55.7 PK	74.0	-18.3	2.40 V	68	46.0	9.7			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log(Duty cycle) = 20 log(0.117 ms / 7.883 ms) = -36.6 dB

CHANNEL T		ΤX	Channel 8			DETECTOR		Peak (PK)		
FRE		ANGE	1GI	Hz ~ 25GHz		FU	INCTION		Average (A	V)
		ANTEN			& TEST D	IST	ANCE: HO	RIZONTAL	. AT 3 M	
NO.	FREQ. (MHz)	EMISSI LEVE	ON L	LIMIT (dBuV/m)	MARGIN (dB)		ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	55.2 P	К	74.0	-18.8		1.44 H	141	56.2	-1.0
2	2390.00	18.6 A	V	54.0	-35.4		1.44 H	141	19.6	-1.0
3	*2444.00	100.4 F	٧K				1.44 H	141	101.8	-1.4
4	*2444.00	63.8 A	V				1.44 H	141	65.2	-1.4
5	2483.50	57.2 P	K	74.0	-16.8		1.44 H	141	58.4	-1.2
6	2483.50	20.6 A	V	54.0	-33.4		1.44 H	141	21.8	-1.2
7	4888.00	47.6 P	K	74.0	-26.4		1.07 H	270	44.2	3.4
8	4888.00	11.0 A	V	54.0	-43.0		1.07 H	270	7.6	3.4
9	7332.00	59.2 P	K	74.0	-14.8		1.49 H	190	49.1	10.1
10	7332.00	22.6 A	V	54.0	-31.4		1.49 H	190	12.5	10.1
		ANTE	NNA	POLARITY	' & TEST	DIS	STANCE: V	ERTICAL /	AT 3 M	
NO.	FREQ. (MHz)	EMISSI LEVE	L	LIMIT (dBuV/m)	MARGIN (dB)	1	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	48.9 P	K	74.0	-25.1		3.83 V	305	49.9	-1.0
2	2390.00	12.3 A	V	54.0	-41.7		3.83 V	305	13.3	-1.0
3	*2444.00	92.1 P	К				3.83 V	305	93.5	-1.4
4	*2444.00	55.5 A	V				3.83 V	305	56.9	-1.4
5	2483.50	52.3 P	К	74.0	-21.7		3.83 V	305	53.5	-1.2
6	2483.50	15.7 A	V	54.0	-38.3		3.83 V	305	16.9	-1.2
7	4888.00	48.6 P	К	74.0	-25.4		1.44 V	69	45.2	3.4
8	4888.00	12.0 A	V	54.0	-42.0		1.44 V	69	8.6	3.4
9	7332.00	55.8 P	К	74.0	-18.2		2.48 V	80	45.7	10.1
10	7332.00	19.2 A	V	54.0	-34.8		2.48 V	80	9.1	10.1

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log(Duty cycle) = 20 log(0.117 ms / 7.883 ms) = -36.6 dB

CHANNEL	TX Channel 12	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2474.00	100.0 PK			1.45 H	115	101.3	-1.3			
2	*2474.00	63.4 AV			1.45 H	115	64.7	-1.3			
3	2483.50	63.9 PK	74.0	-10.1	1.45 H	115	65.1	-1.2			
4	2483.50	46.9 AV	54.0	-7.1	1.45 H	115	48.1	-1.2			
5	4948.00	48.1 PK	74.0	-25.9	1.04 H	273	44.6	3.5			
6	4948.00	11.5 AV	54.0	-42.5	1.04 H	273	8.0	3.5			
7	7422.00	59.0 PK	74.0	-15.0	1.50 H	200	49.0	10.0			
8	7422.00	22.4 AV	54.0	-31.6	1.50 H	200	12.4	10.0			
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2474.00	92.2 PK			4.00 V	312	93.5	-1.3			
2	*2474.00	55.6 AV			4.00 V	312	56.9	-1.3			
3	2483.50	57.0 PK	74.0	-17.0	4.00 V	312	58.2	-1.2			
4	2483.50	44.4 AV	54.0	-9.6	4.00 V	312	45.6	-1.2			
5	4948.00	48.0 PK	74.0	-26.0	1.50 V	67	44.5	3.5			
6	4948.00	11.4 AV	54.0	-42.6	1.50 V	67	7.9	3.5			
7	7422.00	55.9 PK	74.0	-18.1	2.45 V	68	45.9	10.0			
8	7422.00	19.3 AV	54.0	-34.7	2.45 V	68	9.3	10.0			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log(Duty cycle) = 20 log(0.117 ms / 7.883 ms) = -36.6 dB

Below 1GHz Data:

CHANNEL	TX Channel 1	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

REQ. (MHz)	EMISSION						ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
	LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)										
54.93	19.5 QP	40.0	-20.5	2.00 H	52	27.5	-8.0										
155.64	20.1 QP	43.5	-23.4	1.50 H	125	27.7	-7.6										
432.02	29.8 QP	46.0	-16.2	2.00 H	207	33.2	-3.4										
602.08	27.8 QP	46.0	-18.2	1.50 H	224	27.5	0.3										
732.28	29.2 QP	46.0	-16.8	1.50 H	1	27.3	1.9										
891.94	32.5 QP	46.0	-13.5	1.50 H	295	28.2	4.3										
	ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М											
REQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)										
159.52	19.6 QP	43.5	-23.9	2.00 V	0	27.3	-7.7										
298.59	19.9 QP	46.0	-26.1	2.00 V	360	27.2	-7.3										
367.51	22.2 QP	46.0	-23.8	2.00 V	255	27.5	-5.3										
594.93	27.9 QP	46.0	-18.1	1.50 V	216	27.8	0.1										
763.34	31.1 QP	46.0	-14.9	1.00 V	195	28.4	2.7										
995.08	34.0 QP	54.0	-20.0	1.50 V	263	28.3	5.7										
	155.64 432.02 602.08 732.28 891.94 REQ. (MHz) 159.52 298.59 367.51 594.93 763.34	155.64 20.1 QP 432.02 29.8 QP 602.08 27.8 QP 732.28 29.2 QP 891.94 32.5 QP ANTENNA EMISSION LEVEL (dBuV/m) 159.52 19.6 QP 298.59 19.9 QP 367.51 22.2 QP 594.93 27.9 QP 763.34 31.1 QP 995.08 34.0 QP	155.64 20.1 QP 43.5 432.02 29.8 QP 46.0 602.08 27.8 QP 46.0 732.28 29.2 QP 46.0 891.94 32.5 QP 46.0 ANTENNA POLARITY REQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 159.52 19.6 QP 43.5 298.59 19.9 QP 46.0 367.51 22.2 QP 46.0 594.93 27.9 QP 46.0 763.34 31.1 QP 46.0 995.08 34.0 QP 54.0	155.64 20.1 QP 43.5 -23.4 432.02 29.8 QP 46.0 -16.2 602.08 27.8 QP 46.0 -18.2 732.28 29.2 QP 46.0 -16.8 891.94 32.5 QP 46.0 -13.5 ANTENNA POLARITY & TEST DI REQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 159.52 19.6 QP 43.5 -23.9 298.59 19.9 QP 46.0 -26.1 367.51 22.2 QP 46.0 -18.1 763.34 31.1 QP 46.0 -14.9 995.08 34.0 QP 54.0 -20.0	155.64 20.1 QP 43.5 -23.4 1.50 H 432.02 29.8 QP 46.0 -16.2 2.00 H 602.08 27.8 QP 46.0 -18.2 1.50 H 732.28 29.2 QP 46.0 -16.8 1.50 H 891.94 32.5 QP 46.0 -13.5 1.50 H ANTENNA POLARITY & TEST DISTANCE: V ANTENNA POLARITY & TEST DISTANCE: V ANTENNA POLARITY & TEST DISTANCE: V REQ. (MHz) ANTENNA LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (dBuV/m) 159.52 19.6 QP 43.5 -23.9 2.00 V 298.59 19.9 QP 46.0 -26.1 2.00 V 367.51 22.2 QP 46.0 -23.8 2.00 V 594.93 27.9 QP 46.0 -18.1 1.50 V 763.34 31.1 QP 46.0 -14.9 1.00 V 995.08 34.0 QP 54.0 -20.0 1.50 V	155.64 20.1 QP 43.5 -23.4 1.50 H 125 432.02 29.8 QP 46.0 -16.2 2.00 H 207 602.08 27.8 QP 46.0 -18.2 1.50 H 224 732.28 29.2 QP 46.0 -16.8 1.50 H 1 891.94 32.5 QP 46.0 -13.5 1.50 H 295 ANTENNA POLARITY & TEST DISTANCE: VERTICAL A REQ. (MHz) EMISSION LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 159.52 19.6 QP 43.5 -23.9 2.00 V 0 298.59 19.9 QP 46.0 -26.1 2.00 V 0 298.59 19.9 QP 46.0 -28.8 2.00 V 255 594.93 27.9 QP 46.0 -18.1 1.50 V 216 763.34 31.1 QP 46.0 -14.9 1.00 V 195 995.08 34.0 QP 54.0 -20.0 1.50 V 263	155.64 20.1 QP 43.5 -23.4 1.50 H 125 27.7 432.02 29.8 QP 46.0 -16.2 2.00 H 207 33.2 602.08 27.8 QP 46.0 -18.2 1.50 H 224 27.5 732.28 29.2 QP 46.0 -16.8 1.50 H 1 27.3 891.94 32.5 QP 46.0 -13.5 1.50 H 295 28.2 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M REQ. (MHz) EMISSION LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE (Degree) RAW VALUE (dBuV) 159.52 19.6 QP 43.5 -23.9 2.00 V 0 27.3 298.59 19.9 QP 46.0 -26.1 2.00 V 0 27.2 367.51 22.2 QP 46.0 -23.8 2.00 V 255 27.5 594.93 27.9 QP 46.0 -18.1 1.50 V 216 27.8 763.34 31.1 QP 46.0 <										

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

4.2 6dB Bandwidth Measurement

4.2.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.2.2 Test Setup

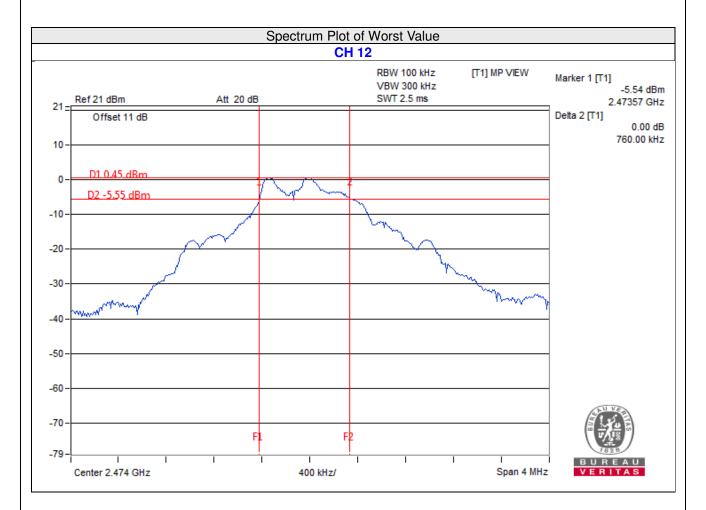
4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.2.5 Deviation from Test Standard

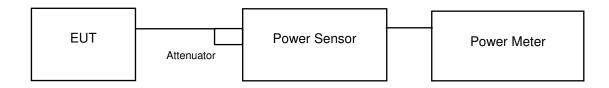
No deviation.


4.2.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.7 Test Result

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2405	0.77	0.5	PASS
8	2444	0.78	0.5	PASS
12	2474	0.76	0.5	PASS



4.3 Conducted Output Power Measurement

4.3.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.2.6.

4.3.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2405	1.33	1.24	30	Pass
8	2444	1.297	1.13	30	Pass
12	2474	1.197	0.78	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2405	1.315	1.19
8	2444	1.279	1.07
12	2474	1.18	0.72



4.4 Power Spectral Density Measurement

4.4.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3kHz.

4.4.2 Test Setup

4.4.3 Test Instruments

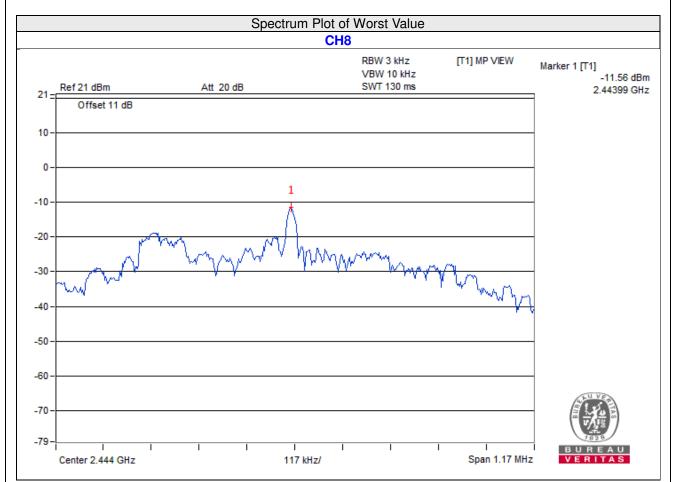
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW ≥ $3 \times RBW$.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.4.5 Deviation from Test Standard

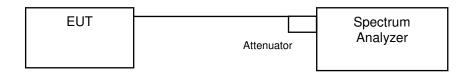
No deviation.


4.4.6 EUT Operating Condition

Same as Item 4.2.6

4.4.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2405	-11.75	8	Pass
8	2444	-11.56	8	Pass
12	2474	-11.87	8	Pass



4.5 Conducted Out of Band Emission Measurement

4.5.1 Limits of Conducted Out of Band Emission Measurement

Below 20dBc of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

MEASUREMENT PROCEDURE REF

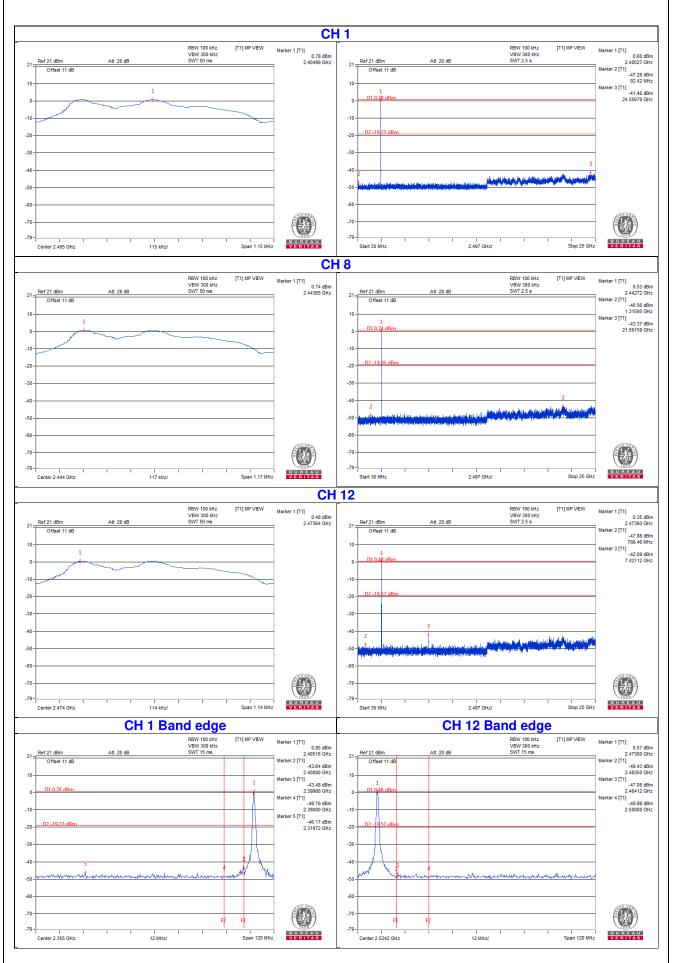
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.2.6

4.5.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---