

FCC TEST REPORT

RECEIVED: TESTED:	
	LOGITECH FAR EAST LTD. #2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.
	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,
TEST LOCATION (1):	R.O.C. No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, Taiwan, R.O.C.
TEST LOCATION (2):	No.49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, Taiwan, R.O.C.

This test report consists of 43 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

RELEAS	E CONTROL RECORD	
1.	CERTIFICATION	
2.	SUMMARY OF TEST RESULTS	6
2.1.	ME ASUREMENT UNCERTAINTY	
3.	GENERAL INFORMATION	
3.1.	GENERAL DESCRIPTION OF EUT	
3.2.	DESCRIPTION OF TEST MODES	
3.3.	TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:	.10
3.4.	GENERAL DESCRIPTION OF APPLIED STANDARDS	
3.5.	DESCRIPTION OF SUPPORT UNITS	
3.6.	CONFIGURATION OF SYSTEM UNDER TEST	
4.	TEST PROCEDURES AND RESULTS	
4.1.	RADIATED EMISSION MEASUREMENT	
4.1.1.	LIMITS OF RADIATED EMISSION MEASUREMENT	.14
4.1.2.	TEST INSTRUMENTS	
4.1.3.	TEST PROCEDURES	
4.1.4.	DEVIATION FROM TEST STANDARD	.17
4.1.5.	TEST SETUP	.18
4.1.6.	EUT OPERATING CONDITIONS	.18
4.1.7.	TEST RESULTS	.19
4.2.	NUMBER OF HOPPING FREQUENCY USED	.23
4.2.1.	LIMIT OF HOPPING FREQUENCY USED	.23
4.2.2.	TEST INSTRUMENTS	.23
4.2.3.	TEST PROCEDURES	.23
4.2.4.	DEVIATION FROM TEST STANDARD	.23
4.2.5.	TEST SETUP	.24
4.2.6.	TEST RESULTS	.24
4.3.	DWELL TIME ON EACH CHANNEL	26
4.3.1.	LIMIT OF DWELL TIME USED	.26
4.3.2.	TEST INSTRUMENTS	.26
4.3.3.	TEST PROCEDURES	
4.3.4.	DEVIATION FROM TEST STANDARD	
4.3.5.	TEST SETUP	
4.3.6.	TEST RESULTS	
4.4.	CHANNEL BANDWIDTH	
4.4.1.	LIMITS OF CHANNEL BANDWIDTH	
4.4.2.	TEST INSTRUMENTS	
4.4.3.	TEST PROCEDURE	
4.4.4.	DEVIATION FROM TEST STANDARD	
4.4.5.	TEST SETUP	
4.4.6.	EUT OPERATING CONDITION	
1. 1.0.		01

		DT
4.4.7.	TEST RESULTS	
4.5.	HOPPING CHANNEL SEPARATION	33
4.5.1.	LIMIT OF HOPPING CHANNEL SEPARATION	33
4.5.2.	TEST INSTRUMENTS	33
4.5.3.	TEST PROCEDURES	33
4.5.4.	DEVIATION FROM TEST STANDARD	33
4.5.5.	TEST SETUP	33
4.5.6.	TEST RESULTS	34
4.6.	MAXIMUM PEAK OUTPUT POWER	35
4.6.1.	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	35
4.6.2.	INSTRUMENTS	35
4.6.3.	TEST PROCEDURES	
4.6.4.	DEVIATION FROM TEST STANDARD	35
4.6.5.	TEST SETUP	36
4.6.6.	EUT OPERATING CONDITION	36
4.6.7.	TEST RESULTS	37
4.7.	CONDUCTED OUT-BAND EMISSION MEASUREMENT	38
4.8.1	LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT	38
4.8.2	TEST INSTRUMENTS	38
4.8.3	TEST PROCEDURE	38
4.8.4	DEVIATION FROM TEST STANDARD	38
4.8.5	TEST SETUP	38
4.8.6	EUT OPERATING CONDITION	
4.8.7	TEST RESULTS	39
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	41
6.	INFORMATION ON THE TESTING LABORATORIES	42
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO EUT BY THE LAB	

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF120403E01	Original release	Apr. 16, 2012

1. CERTIFICATION

PRODUCT :	Bluetooth Keyboard
BRAND NAME :	Logitech
MODEL NO. :	Y-R0029
TEST SAMPLE :	R&D SAMPLE
APPLICANT :	LOGITECH FAR EAST LTD.
TESTED DATE :	Apr. 07 to 09, 2012
STANDARDS :	FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10-2009

The above equipment (Model: Y-R0029) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

DATE: Apr. 16, 2012 PREPARED BY And (Phoenix Huang, Specialist DATE: Apr. 16, 2012 APPROVED BY (May Chen, Deputy Manager)

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 15, Subpart C								
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK						
15.207	AC Power Conducted Emission	NA	Power supply is DC 2.4 V from batteries						
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.						
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.						
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS	Meet the requirement of limit.						
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.						
15.247(d)	Transmitter Radiated Emissions	PASS Meet the requirement of limit. PASS Minimum passing margin is -12.1dB at 940.67MHz.							
15.247(d)	Conducted Out-Band Emission Measurement	PASS	Meet the requirement of limit.						
15.203	Antenna Requirement	PASS	No antenna connector is used.						

NOTE: Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1. ME ASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

MEASUREMENT	FREQUENCY	UNCERTAINTY	
	30MHz ~1000MHz	3.89 dB	
Radiated emissions	1GHz ~ 18GHz	2.19 dB	
	18GHz ~ 40GHz	2.56 dB	

3. GENERAL INFORMATION

3.1. GENERAL DESCRIPTION OF EUT

PRODUCT	Bluetooth Keyboard
MODEL NO.	Y-R0029
POWER SUPPLY	DC 2.4V from batteries
MODULATION TYPE	GFSK
MODULATION TECHNOLOGY	FHSS
DATE RATE	1Mbps
FREQUENCY RANGE	2402MHz ~ 2480MHz
NUMBER OF CHANNEL	79
MAX. OUTPUT POWER	2.432mW
ANTENNA TYPE	PCB printed antenna with 2.38dBi antenna gain
DATA CABLE	NA
I/O PORTS	Refer to user's manual
ASSOCIATED DEVICES	Battery × 2

NOTE:

1. The EUT must be supplied with two identical batteries , please refer to the following table:

Brand	Model No.	Spec.	
SANYO	HR-4UTGA	DC: 1.2V, 750mAh	

2. The above EUT information was declared by the manufacturer and for more detailed feature descriptions, please refer to the manufacturer's specifications or User's Manual.

3.2. DESCRIPTION OF TEST MODES

79 channels are provided for Bluetooth.

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.3. TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:

EUT		APF	PLICABLE TO	0			
CONFIGURE MODE	PLC	RE < 1G	RE ³ 1G	APCM	ОВ	DESCRIPTION	
-	-	\checkmark	\checkmark	\checkmark	\checkmark	-	
Where PLC:	Where PLC: Power Line Conducted Emission RE < 1G: Radiated Emission below 1GHz						

APCM: Antenna Port Conducted Measurement

OB: Conducted Out-Band Emission Measurement

RE ³ **1G:** Radiated Emission above 1GHz

RADIATED EMISSION TEST (BELOW 1 GHz):

- \square Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- \boxtimes Following channel(s) was (were) selected for the final test as listed below.

Available	Tested	Modulation	Modulation	Packet Type
Channel	Channel	Technology	Type	
0 to 78	0	FHSS	GFSK	DH1

RADIATED EMISSION TEST (ABOVE 1 GHz):

- \square Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- \square Following channel(s) was (were) selected for the final test as listed below.

Available	Tested	Modulation	Modulation	Packet Type	
Channel	Channel	Technology	Type		
0 to 78	0, 39, 78	FHSS	GFSK	DH1	

ANTENNA PORT CONDUCTED MEASUREMENT:

- \boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type	
0 to 78	0, 39, 78	FHSS	GFSK	DH1	

CONDUCTED OUT-BAND EMISSION MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Available Channel		Modulation Technology	Modulation Type	Packet Type	
0 to 78	0, 78	FHSS	GFSK	DH1	

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY	
RE<1G	23deg. C, 70%RH	DC 2.4V	Evan Huang	
RE ³ 1G	22deg. C, 72%RH	DC 2.4V	Evan Huang	
APCM	25deg. C, 60%RH	DC 2.4V	Kent Liu	
ОВ	25deg. C, 60%RH	DC 2.4V	Kent Liu	

3.4. GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247) ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

3.5. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit.

3.6. CONFIGURATION OF SYSTEM UNDER TEST

	EUT	
TEST TABLE		

4. TEST PROCEDURES AND RESULTS

4.1. RADIATED EMISSION MEASUREMENT

4.1.1. LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2. TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED
Agilent Spectrum Analyzer	E4446A	MY48250253	Aug. 29, 2011	Aug. 28, 2012
Agilent Pre-Selector	N9039A	MY46520310	Aug. 29, 2011	Aug. 28, 2012
Agilent Signal Generator	N5181A	MY49060347	July 25, 2011	July 24, 2012
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-04	Nov. 15, 2011	Nov. 14, 2012
Agilent Pre-Amplifier	8449B	3008A02465	Feb. 27, 2012	Feb. 26, 2013
SPACEK LABS	SLKKa-48-6	9K16	Nov. 15, 2011	Nov. 14, 2012
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-361	Apr. 14, 2011	Apr. 13, 2012
AISI Horn_Antenna	AIH.8018	000022009111 0	Nov. 23, 2011	Nov. 22, 2012
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 07, 2011	Oct. 06, 2012
RF CABLE	NA	RF104-205 RF104-207 RF104-202	Dec. 27, 2011	Dec. 26, 2012
RF Cable	NA	CHHCAB_001	Oct. 08, 2011	Oct. 07, 2012
Software	ADT_Radiated_ V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

For Above 1GHz:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250254	July 12, 2011	July 11, 2012
Agilent Pre-Selector	N9039A	MY46520311	July 12, 2011	July 11, 2012
Agilent Signal Generator	N5181A	MY49060517	July 12, 2011	July 11, 2012
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-03	Nov. 15, 2011	Nov. 14, 2012
Agilent Pre-Amplifier	8449B	3008A02578	July 04, 2011	July 03, 2012
SPACEK LABS	SLKKa-48-6	9K16	Nov. 15, 2011	Nov. 14, 2012
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-360	Apr. 14, 2011	Apr. 13, 2012
AISI Horn_Antenna	AIH.8018	0000320091110	Nov. 14, 2011	Nov. 13, 2012
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 07, 2011	Oct. 06, 2012
RF CABLE	NA	RF104-201 RF104-203 RF104-204	Dec. 26, 2011	Dec. 25, 2012
RF Cable	NA	CHGCAB_001	Oct. 07, 2011	Oct. 06, 2012
Software	ADT_Radiated_ V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

 Iurn Table
 Iurn Table

 Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

 2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

 3. The test was performed in 966 Chamber No. G.

 4. The FCC Site Registration No. is 966073.

 5. The VCCI Site Registration No. is G-137.

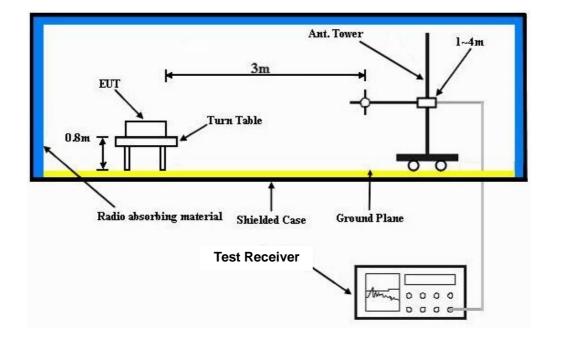
 6. The CANADA Site Registration No. is IC 7450H-2.

 7. Tested Date: Apr. 07, 2012

4.1.3. TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.

4.1.4. DEVIATION FROM TEST STANDARD

No deviation

4.1.5. TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6. EUT OPERATING CONDITIONS

Set the EUT under transmission / receiver condition continuously at specific channel frequency.

4.1.7. TEST RESULTS

BELOW 1GHz WORST-CASE DATA

BT_GFSK

CHANNEL	TX Channel 0	DETECTOR	Quasi-Peak (QP)
FREQUENCY RANGE	Below 1GHz	FUNCTION	Quasi-reak (Qr)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	31.30	19.6 QP	40.0	-20.4	1.00 H	273	-1.31	20.91
2	315.04	17.7 QP	46.0	-28.3	1.50 H	360	2.60	15.10
3	360.04	19.4 QP	46.0	-26.6	1.00 H	2	2.78	16.64
4	576.05	22.4 QP	46.0	-23.6	1.50 H	124	0.57	21.87
5	877.08	25.5 QP	46.0	-20.5	1.50 H	205	-1.33	26.80
6	940.55	28.2 QP	46.0	-17.9	1.75 H	343	0.33	27.82
		ANTENNA		(& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	31.07	19.4 QP	40.0	-20.6	1.25 V	145	-1.60	21.01
2	256.66	24.8 QP	46.0	-21.2	1.50 V	247	10.63	14.21
3	293.73	23.0 QP	46.0	-23.1	2.00 V	7	8.41	14.54
4	320.25	20.8 QP	46.0	-25.2	2.00 V	4	5.57	15.27
5	362.06	23.4 QP	46.0	-22.6	2.00 V	7	6.69	16.71
6	940.67	33.9 QP	46.0	-12.1	1.25 V	360	6.06	27.82

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

ABOVE 1GHz DATA

BT_GFSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	reak (rn)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	57.2 PK	74.0	-16.8	1.00 H	71	25.54	31.66
2	2390.00	13.1 AV	54.0	-40.9	1.00 H	71	-18.56	31.66
3	*2402.00	101.7 PK			1.00 H	71	70.00	31.70
4	*2402.00	57.6 AV			1.00 H	71	25.90	31.70
5	4804.00	56.4 PK	74.0	-17.6	1.00 H	289	17.50	38.90
6	4804.00	12.3 AV	54.0	-41.7	1.00 H	289	-26.60	38.90
		ANTENNA		(& TEST D	ISTANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	57.3 PK	74.0	-16.7	1.40 V	220	25.64	31.66
2	2390.00	13.2 AV	54.0	-40.8	1.40 V	220	-18.46	31.66
3	*2402.00	92.7 PK			1.40 V	220	61.00	31.70
4	*2402.00	48.6 AV			1.40 V	220	16.90	31.70
5	4804.00	54.8 PK	74.0	-19.2	1.06 V	263	15.90	38.90
6	4804.00	10.7 AV	54.0	-43.3	1.06 V	263	-28.20	38.90

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. The DH1 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 1 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(0.625 / 100)= -44.1 dB.
- 7. Average value = peak reading + 20log(duty cycle).

CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Peak (PK)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	101.1 PK			1.00 H	72	69.27	31.83
2	*2441.00	57.0 AV			1.00 H	72	25.17	31.83
3	4882.00	55.3 PK	74.0	-18.7	1.00 H	303	16.13	39.17
4	4882.00	11.2 AV	54.0	-42.8	1.00 H	303	-27.97	39.17
5	7323.00	54.3 PK	74.0	-19.7	1.37 H	267	7.67	46.63
6	7323.00	10.2 AV	54.0	-43.8	1.37 H	267	-36.43	46.63
		ANTENNA		(& TEST D	ISTANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	92.3 PK			1.40 V	220	60.47	31.83
2	*2441.00	48.2 AV			1.40 V	220	16.37	31.83
3	4882.00	56.1 PK	74.0	-17.9	1.06 V	272	16.93	39.17
4	4882.00	12.0 AV	54.0	-42.0	1.06 V	272	-27.17	39.17
5	7323.00	56.3 PK	74.0	-17.7	1.56 V	27	9.67	46.63
6	7323.00	12.2 AV	54.0	-41.8	1.56 V	27	-34.43	46.63

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. " * ": Fundamental frequency.

6. The DH1 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 1 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: $20\log(0.625 / 100)= -44.1 \text{ dB}.$

7. Average value = peak reading + 20log(duty cycle).

CHANNEL	TX Channel 78	DETECTOR	Dook (DK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Peak (PK)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	100.9 PK			1.00 H	72	68.95	31.95
2	*2480.00	56.8 AV			1.00 H	72	24.85	31.95
3	2483.50	56.9 PK	74.0	-17.1	1.00 H	70	24.93	31.97
4	2483.50	12.8 AV	54.0	-41.2	1.00 H	70	-19.17	31.97
5	4960.00	55.7 PK	74.0	-18.3	1.00 H	303	16.28	39.42
6	4960.00	11.6 AV	54.0	-42.4	1.00 H	303	-27.82	39.42
7	7440.00	55.2 PK	74.0	-18.8	1.38 H	270	8.64	46.56
8	7440.00	11.1 AV	54.0	-42.9	1.38 H	270	-35.46	46.56
		ANTENNA		(& TEST D	ISTANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	92.7 PK			1.35 V	223	60.75	31.95
2	*2480.00	48.6 AV			1.35 V	223	16.65	31.95
3	2483.50	57.8 PK	74.0	-16.2	1.35 V	224	25.83	31.97
4	2483.50	13.7 AV	54.0	-40.3	1.35 V	224	-18.27	31.97
5	4960.00	56.8 PK	74.0	-17.2	1.06 V	273	17.38	39.42
6	4960.00	12.7 AV	54.0	-41.3	1.06 V	273	-26.72	39.42
7	7440.00	55.2 PK	74.0	-18.8	1.56 V	30	8.64	46.56
8	7440.00	11.1 AV	54.0	-42.9	1.56 V	30	-35.46	46.56

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. The DH1 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 1 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: $20\log(0.625 / 100) = -44.1 \text{ dB}$.
- 7. Average value = peak reading + 20log(duty cycle).

4.2. NUMBER OF HOPPING FREQUENCY USED

4.2.1. LIMIT OF HOPPING FREQUENCY USED

At least 15 hopping frequencies, and should be equally spaced.

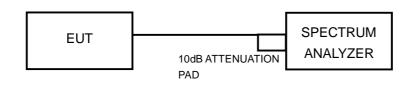
4.2.2. TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP 40	100036	Dec 14, 2011	Dec 13, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

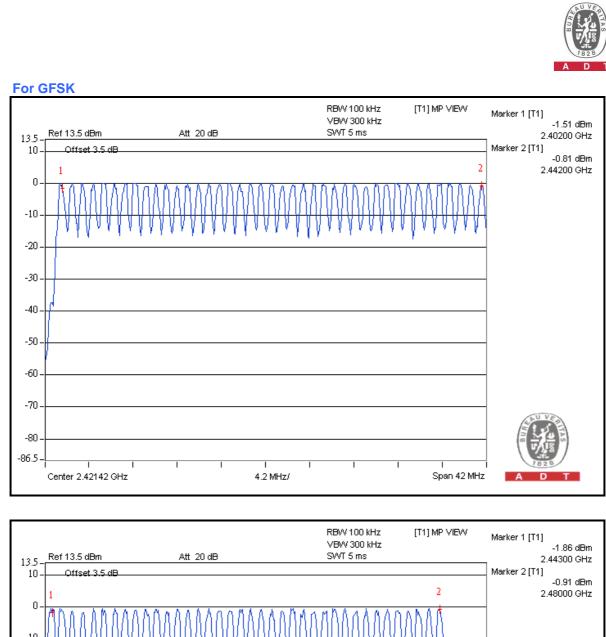
2. Tested date: Apr. 09, 2012

4.2.3. TEST PROCEDURES


- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.2.4. DEVIATION FROM TEST STANDARD

No deviation



4.2.5. TEST SETUP

4.2.6. TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.3. DWELL TIME ON EACH CHANNEL

4.3.1. LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

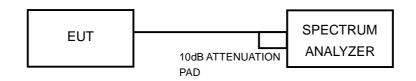
4.3.2. TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP 40	100036	Dec 14, 2011	Dec 13, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date: Apr. 09, 2012

4.3.3. TEST PROCEDURES

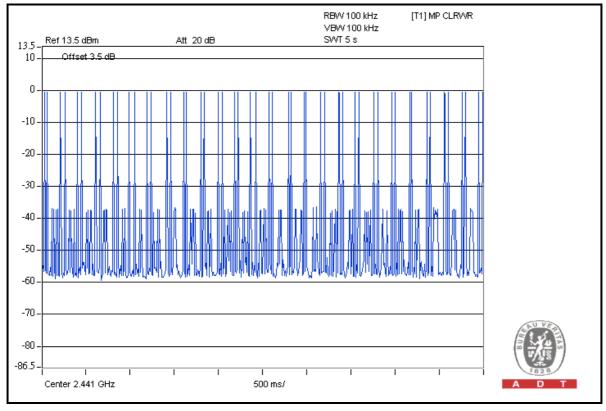

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

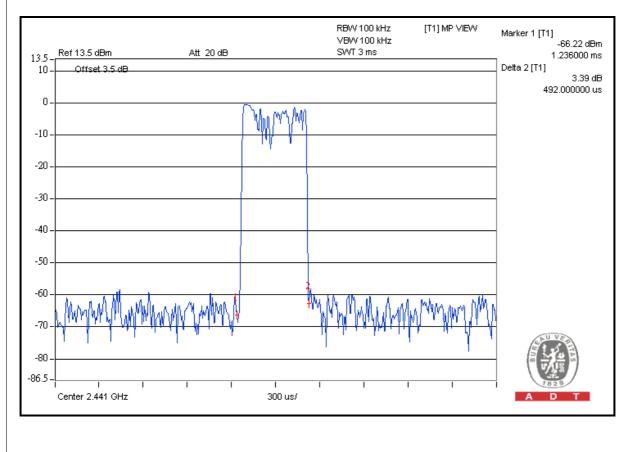
4.3.4. DEVIATION FROM TEST STANDARD

No deviation

4.3.5. TEST SETUP

4.3.6. TEST RESULTS


For GFSK:


Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	51 (times / 5 sec) *6.32=322.32 times	0.492	158.58	400

NOTE: Test plots of the transmitting time slot are shown on next page.

DH1

4.4. CHANNEL BANDWIDTH

4.4.1. LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

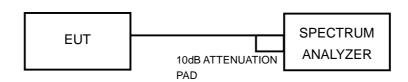
4.4.2. TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP 40	100036	Dec. 14, 2011	Dec. 13, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested: Apr. 09, 2012

4.4.3. TEST PROCEDURE


- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

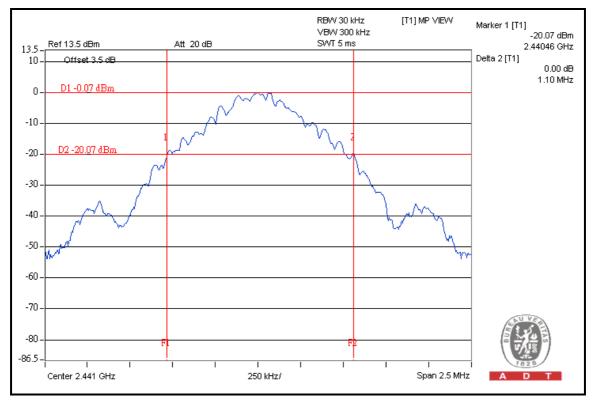
4.4.4. DEVIATION FROM TEST STANDARD

No deviation

4.4.5. TEST SETUP

4.4.6. EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.



4.4.7. TEST RESULTS

For GFSK:

CHANNEL	FREQUENCY (MHz)	20dB BANDWIDTH (MHz)
0	2402	1.04
39	2441	1.10
78	2480	1.04

CH 39

4.5. HOPPING CHANNEL SEPARATION

4.5.1. LIMIT OF HOPPING CHANNEL SEPARATION

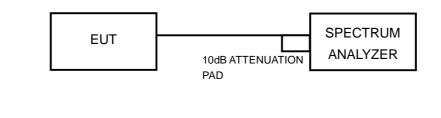
At least 25 kHz or two-thirds of 20dB hopping channel bandwidth (whichever is greater).

4.5.2. TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP 40	100036	Dec. 14, 2011	Dec. 13, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date: Apr. 09, 2012

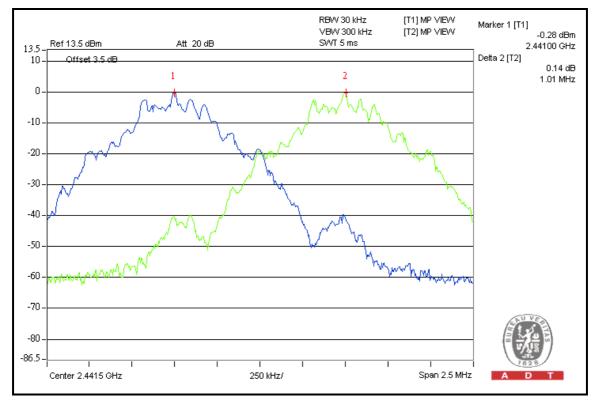

4.5.3. TEST PROCEDURES

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.5.4. DEVIATION FROM TEST STANDARD

No deviation

4.5.5. TEST SETUP



4.5.6. TEST RESULTS For GFSK

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	1.00	0.69	PASS
39	2441	1.01	0.73	PASS
78	2480	1.00	0.69	PASS

NOTE: The minimum limit is two-third 20dB bandwidth.

CH 39

4.6. MAXIMUM PEAK OUTPUT POWER

4.6.1. LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Limit is 125mW.

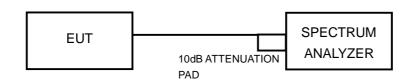
4.6.2. INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP 40	100036	Dec. 14, 2011	Dec. 13, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date: Apr. 09, 2012

4.6.3. TEST PROCEDURES


- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.6.4. DEVIATION FROM TEST STANDARD

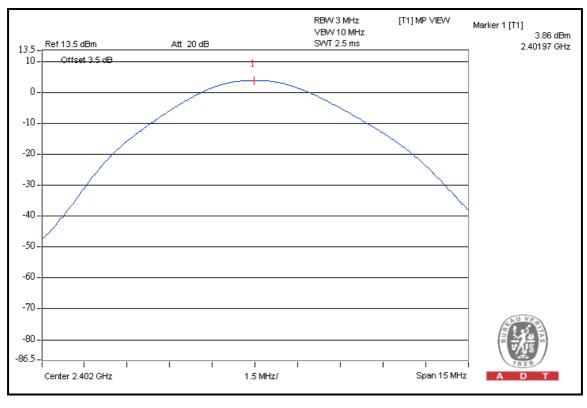
No deviation

4.6.5. TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.6.6. EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.



4.6.7. TEST RESULTS

GFSK

CHANNEL	CHANNEL FREQUENCY (MHz)	POWER OUTPUT (mW)	POWER OUTPUT (dBm)	POWER LIMIT (mW)	PASS/FAIL
0	2402	2.432	3.86	125	PASS
39	2441	2.203	3.43	125	PASS
78	2480	2.037	3.09	125	PASS

CH 0

4.7. CONDUCTED OUT-BAND EMISSION MEASUREMENT

4.8.1 LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT

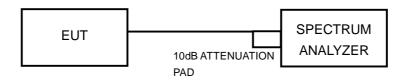
Below –20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP 40	100036	Dec. 14, 2011	Dec. 13, 2012

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date: Apr. 09, 2012


4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set RBW a of spectrum analyzer to 100 kHz and VBW of spectrum analyzer to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 DEVIATION FROM TEST STANDARD

No deviation

4.8.5 TEST SETUP

4.8.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.7 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

GFSK Hopping disabled_ Low Channel RBW 100 kHz VBW 300 kHz SWT 2.5 s RBW 100 kHz VBW 300 kHz SWT 20 ms [T1] MP VIEW Marker 1 [11] 2.33 dBm 2.40215 GHz 449.33 dBm 4.80551 GHz 4.80551 GHz 4.80551 GHz 4.984 dBm 24.76903 GHz Marker 4 [11] 5.50.09 dBm 21.63529 GHz Marker 1 [T1] rker 1 [T1] ker 1 [T1] 2.88 dBm 2.40220 GHz ker 2 [T1] 2.4000 GHz ker 3 [T1] -53.91 dBm 2.39997 GHz ker 4 [T1] 23.5 _____ Ref 23.5 dBm 23.5 - Ref 23.5 dBm Att 20 dB Att 20 dB Offset 3.5 dB -at 3.5 dt 1 D1 2.88 dBm D1 2.88 dBm 2.39997 GHz larker 4 [T1] -59.16 dBm 2.39000 GHz larker 5 [T1] -55.41 dBm -10 -10 1] -55.41 dBm 2.35608 GHz D2 -17.12 dBm D2-17.12 dB -20 -20 -30 -30 -40 -40 -50 -50 MARCHINE MARCHINE -60 -60 -X -70 -70 -76.5 --76.5 -Т Т l 2.497 GHz/ I Stop 25 GH - 1 = 2.358 GHz 10 MHz Start 30 MHz Hopping disabled_ High Channel Marker 1 [T1] 2.11 dBm 2.48002 OHz Marker 2 [T1] -59.45 dBm 2.48350 OHz Marker 3 [T1] -53.95 dBm 2.48572 OHz Marker 4 [T1] -59.46 dBm Marker 1 [T1] 1.34 dBm 2.47706 GHz Marker 2 [T1] -49.87 dBm 24.97503 GHz Marker 3 [T1] -49.91 dBm 24.67539 GHz Marker 4 [T1] -50.09 dBm RBW 100 kHz VBW 300 kHz SWT 20 ms [T1] MP VIEW RBW 100 kHz VBW 300 kHz SWT 2.5 s [T1] MP VIEW Ref 23.5 dBr Ref 23.5 dBm Att 20 dB Att 20 dE 23.5 -20 -23.5 -20 -10 10 D1 2.11 dB D1 2.11 dBm 0. 0 -58.46 dBm 2.50000 GHz (T1) -50.09 dBm 21.51668 GHz -10 -10 D2 -17 89 dBa D2 -17,89 dBr -20--20 -30 -31 Ц -40 -50 -50 Mill Anite Mary States and the Mary Mary ¥ 1 -60 --60 -70 -70 -76.5 --76.5 -I Span 100 MH I Stop 25 GHz l 2.497 GHz/ 1 10 MHz/ Start 30 MHz Center 2.5242 GHz Hopping enabled_ Low Channel Marker 1 [T1] 2.33 dBm 240215 GHz -49.33 dBm 49.33 dBm 49.0551 GHz Marker 3 [T1] -49.84 dBm 24.76903 GHz Marker 4 [T1] -50.09 dBm 21.63529 GHz RBW 100 kHz VBW 300 kHz SWT 20 ms . [11] 0.02 dBm 2.42600 GHz r 2 [T1] RBW 100 kHz VBW 300 kHz SWT 2.5 s IT11 MP VIEW IT11 MP VIEW Marker 1 [T1] Ref 23.5 dBm Ref 23.5 dBr 23.5 23.5 -1] -55.70 dBm 2.40000 GHz . 5 (11) -50.38 dBm 2.39895 GHz 4 (T1) 10 10 D1 2.8 D1 0.02 dBn 0 0 1] -56.64 dBm 2.39000 GHz -10 -10 5 [T1] -53.70 dBm 2.38548 GHz D2 -17 12 dBm D2 -19.98 dBm -20 --20 -30 -30 -40 -40 4 -50 -50 -60 .60 -70 -71 -76.5 --76.5 -I Span 140 M I Stop 25 GHz I Center 2.358 GHz 14 MHz/ l 2.497 GHz/ Start 30 MHz Hopping enabled_ High Channel RBW 100 kHz VBW 300 kHz SWT 20 ms RBW 100 kHz VBW 300 kHz SWT 2.5 s IT11 MP VIEW IT11 MP VIEW Marker 1 [T1] rker 1 [T1] -0.08 dBm 2.46498 GHz 55.20 dBm 2.46350 GHz rker 3 [T1] -55.96 dBm 2.49595 GHz rker 4 [T1] -56.57 dBm 2.50000 GHz Marker 1 [T1] Atarker 1 (T1) 1.34 dBm 2.47706 OHz 4rarker 2 (T1) .49.97 dBm 24.97503 OHz 49.91 dBm 24.67539 OHz 4rarker 4 (T1) .50.09 dBm 21.51668 OHz 23.5 - Ref 23.5 dBm 20 - Offset 3 4 Ref 23.5 dB 23.5 20 Offset 3.5 10 10 1 D1 2.11 dBm n 0 -10 -10 D2 201 Marke D2 -17,89 dB -20 -2 -30 -30 -40 -40 -50 -50 المتليب المشارك المحمد المحمد -60 -60 -70 --70 N. -76.5 -76.5 -I Stop 25 GHz I Span 140 MHz 1 2.497 GHz/ Center 2.5242 GHz 14 MHz/ A Start 30 MHz A

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5.phtml</u>.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3- 3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.

---- END ----