FCC Test Report (BT-LE)

Report No.: RF170419E14-1
FCC ID: JNZVR0007
Test Model: V-R0007
Received Date: Apr. 19, 2017
Test Date: May 05 to 11, 2017
Issued Date: May 17, 2017

Applicant: LOGITECH FAR EAST LTD.
Address: \#2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.

Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.

[^0] only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record 4
1 Certificate of Conformity 5
2 Summary of Test Results 6
2.1 Measurement Uncertainty 6
2.2 Modification Record 6
3 General Information 7
3.1 General Description of EUT 7
3.2 Description of Test Modes 8
3.2.1 Test Mode Applicability and Tested Channel Detail 9
3.3 Description of Support Units 11
3.3.1 Configuration of System under Test 11
3.4 Duty Cycle of Test Signal 12
3.5 General Description of Applied Standards 13
4 Test Types and Results 14
4.1 Radiated Emission and Bandedge Measurement. 14
4.1.1 Limits of Radiated Emission and Bandedge Measurement 14
4.1.2 Test Instruments 15
4.1.3 Test Procedures. 17
4.1.4 Deviation from Test Standard 18
4.1.5 Test Setup 18
4.1.6 EUT Operating Conditions 19
4.1.7 Test Results 20
4.2 Conducted Emission Measurement 24
4.2.1 Limits of Conducted Emission Measurement 24
4.2.2 Test Instruments 24
4.2.3 Test Procedures 25
4.2.4 Deviation from Test Standard 25
4.2.5 Test Setup 25
4.2.6 EUT Operating Conditions 25
4.2.7 Test Results 26
4.3 6dB Bandwidth Measurement 28
4.3.1 Limits of 6dB Bandwidth Measurement 28
4.3.2 Test Setup 28
4.3.3 Test Instruments 28
4.3.4 Test Procedure 28
4.3.5 Deviation from Test Standard 28
4.3.6 EUT Operating Conditions 28
4.3.7 Test Result 29
4.4 Conducted Output Power Measurement 30
4.4.1 Limits of Conducted Output Power Measurement 30
4.4.2 Test Setup 30
4.4.3 Test Instruments 30
4.4.4 Test Procedures 30
4.4.5 Deviation from Test Standard 30
4.4.6 EUT Operating Conditions 30
4.4.7 Test Results 31
4.5 Power Spectral Density Measurement 32
4.5.1 Limits of Power Spectral Density Measurement 32
4.5.2 Test Setup 32
4.5.3 Test Instruments 32
4.5.4 Test Procedure 32
4.5.5 Deviation from Test Standard 32
4.5.6 EUT Operating Condition 32
4.5.7 Test Results 33
4.6 Conducted Out of Band Emission Measurement 34
4.6.1 Limits of Conducted Out of Band Emission Measurement 34
4.6.2 Test Setup 34
4.6.3 Test Instruments 34
4.6.4 Test Procedure 34
4.6.5 Deviation from Test Standard 34
4.6.6 EUT Operating Condition 34
4.6.7 Test Results 35
5 Pictures of Test Arrangements 36
Appendix - Information on the Testing Laboratories 37

Release Control Record

Issue No.	Description	Date Issued
RF170419E14-1	Original release.	May 17, 2017

1 Certificate of Conformity

Product: Camera and Speakerphone unit
Brand: Logitech
Test Model: V-R0007
Sample Status: ENGINEERING SAMPLE
Applicant: LOGITECH FAR EAST LTD.
Test Date: May 05 to 11, 2017
Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)
ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)			
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -13.38 dB at 0.32188 MHz .
$\begin{gathered} 15.205 \& 209 \\ \& 15.247(\mathrm{~d}) \end{gathered}$	Radiated Emissions \& Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -3.7 dB at 475.13 MHz .
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.
15.247(b)	Conducted power	PASS	Meet the requirement of limit.
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty $(\mathrm{k}=2)(\pm)$
Conducted Emissions at mains ports	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	1.84 dB
Radiated Emissions up to 1 GHz	$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$	5.30 dB
	$1 \mathrm{GHz} \sim 6 \mathrm{GHz}$	5.16 dB
Radiated Emissions above 1 GHz	$6 \mathrm{GHz} \sim 18 \mathrm{GHz}$	4.91 dB
	$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$	5.30 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-LE)

Product	Camera and Speakerphone unit
PMN	MeetUp
Brand	Logitech
Test Model	V-R0007
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	DC 12V from power adapter
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 1Mbps
Operating Frequency	$2402 \mathrm{MHz} \sim 2480 \mathrm{MHz}$
Number of Channel	40
Output Power	0.9247 mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
	Adapter $\times 1$ Microphone (Option) x 1 (Shielded, $6 m$ with one core) Remote x 1
Accessory Device	USB to Micro USB cable x 1 (Shielded, 5m with one core)
Data Cable Supplied	

Note:

1. The EUT may have a lot of colors for marketing requirement.
2. Simultaneously transmission condition.

Condition	Technology	
1	BT-EDR	BT-LE
Ne: The		

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.
3. The EUT could be supplied with a power adapter as the following table:

Brand	Model No.	Spec.
Logitech	DSA-18CB-12 FCA 120150	AC input: $100-240 \mathrm{~V}, 0.6 \mathrm{~A}, 50 / 60 \mathrm{~Hz}$
	DC output: DC 12V, 1.5A	

4. The antenna provided to the EUT, please refer to the following table:

For BT-EDR

Brand	Model	Antenna Gain (dBi)	Frequency range(GHz)	Antenna Type	Connecter Type	Cable Length	
YAGEO	ANTX130P001B24003	-3.75	$2.4-2.4835$	PCB	I-PEX	130 mm	
For BT-LE							
Brand	Model	Antenna Gain (dBi)	Frequency range(GHz)	Antenna Type	Connecter Type	Cable Length	
NA	NA	0.23	$2.4-2.4835$	Printing	NA	NA	

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

CHANNEL	FREQ. $(\mathbf{M H z})$						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3．2．1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE	APPLICABLE TO				
	RE $\geq 1 G$	RE＜1G	PLC	APCM	
-	$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$		-

Where
RE ≥ 1 G：Radiated Emission above 1 GHz
RE＜1G：Radiated Emission below 1 GHz
PLC：Power Line Conducted Emission
APCM：Antenna Port Conducted Measurement

Radiated Emission Test（Above 1GHz）：

Pre－Scan has been conducted to determine the worst－case mode from all possible combinations between available modulations，data rates and antenna ports（if EUT with antenna diversity architecture）．
区

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE（Mbps）
0 to 39	$0,19,39$	GFSK	1

Radiated Emission Test（Below 1GHz）：

Pre－Scan has been conducted to determine the worst－case mode from all possible combinations between available modulations，data rates and antenna ports（if EUT with antenna diversity architecture）．
区 Following channel（s）was（were）selected for the final test as listed below．

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE（Mbps）
0 to 39	0	GFSK	1

Power Line Conducted Emission Test：

Pre－Scan has been conducted to determine the worst－case mode from all possible combinations between available modulations，data rates and antenna ports（if EUT with antenna diversity architecture）．
\boxtimes Following channel（s）was（were）selected for the final test as listed below．

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE（Mbps）
0 to 39	0	GFSK	1

Antenna Port Conducted Measurement：

\boxtimes This item includes all test value of each mode，but only includes spectrum plot of worst value of each mode．
\boxtimes Pre－Scan has been conducted to determine the worst－case mode from all possible combinations between available modulations，data rates and antenna ports（if EUT with antenna diversity architecture）．
区
Following channel（s）was（were）selected for the final test as listed below．

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE（Mbps）
0 to 39	$0,19,39$	GFSK	1

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
$\mathbf{R E} \geq 1 G$	23deg. $\mathrm{C}, 66 \% \mathrm{RH}$	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Terry Huang
$\mathbf{R E}<1 \mathrm{G}$	22deg. $\mathrm{C}, 70 \% \mathrm{RH}$	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Weiwei Lo
PLC	26deg. $\mathrm{C}, 76 \% \mathrm{RH}$	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Eagle Chen
APCM	23deg. $\mathrm{C}, 65 \% \mathrm{RH}$	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Anderson Chen

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Descriptions	Qty.	Length (m)	Shielding $($ Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	5	Yes	1	Supplied by client
2.	DC Cable	1	3	No	1	Supplied by client
3.	Microphone Cable	1	6	Yes	1	Supplied by client
4.	Console Cable with Exchange board	1	0.2	No	0	Supplied by client(for RF Setup)
5.	Console Cable with Exchange board	1	0.12	No	0	Supplied by client(for RF Setup)

3.3.1 Configuration of System under Test

3.4 Duty Cycle of Test Signal

Duty cycle of test signal is $<98 \%$, duty factor shall be considered.
Duty cycle $=0.1 \mathrm{~ms} / 0.627 \mathrm{~ms}=0.159$ * $100 \%=15.9 \%$
Duty factor $=10^{*} \log (1 /$ duty cycle $)=10 * \log (1 /(0.1 / 0.627))=7.97 \mathrm{~dB}$

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level $(\mathrm{dBuV} / \mathrm{m})=20 \log$ Emission level $(\mathrm{uV} / \mathrm{m})$.
3. For frequencies above 1000 MHz , the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.
4.1.2 Test Instruments

DESCRIPTION \& MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Keysight	N9038A	MY54450088	July 20, 2016	July 19, 2017
Pre-Amplifier ${ }^{(*)}$ EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018
Loop Antenna ${ }^{(\text {C }}$ Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018
RF Cable	NA	$\begin{aligned} & \text { LOOPCAB-001 } \\ & \text { LOOPCAB-002 } \end{aligned}$	Jan. 17, 2017	Jan. 16, 2018
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Nov. 10, 2016	Nov. 09, 2017
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Dec. 13, 2016	Dec. 12, 2017
RF Cable	8D	$\begin{aligned} & \hline 966-4-1 \\ & 966-4-2 \\ & 966-4-3 \end{aligned}$	Apr. 01, 2017	Mar. 31, 2018
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Oct. 05, 2016	Oct. 04, 2017
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Dec. 27, 2016	Dec. 26, 2017
Pre-Amplifier EMCI	EMC12630SE	980385	Feb. 02, 2017	Feb. 01, 2018
RF Cable	$\begin{aligned} & \hline \text { EMC104-SM-SM-1200 } \\ & \text { EMC104-SM-SM-2000 } \\ & \text { EMC104-SM-SM-5000 } \\ & \hline \end{aligned}$	160923 150318 150323	$\begin{aligned} & \hline \text { Feb. 02, } 2017 \\ & \text { Mar. 29, } 2017 \\ & \text { Mar. 29, } 2017 \\ & \hline \end{aligned}$	Feb. 01, 2018 Mar. 28, 2018 Mar. 28, 2018
Pre-Amplifier EMCI	EMC184045SE	980387	Feb. 02, 2017	Feb. 01, 2018
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 15, 2016	Dec. 14, 2017
RF Cable	SUCOFLEX 102	$\begin{aligned} & 36432 / 2 \\ & 36433 / 2 \end{aligned}$	Jan. 15, 2017	Jan. 14, 2018
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower \& Turn Table Max-Full	MF-7802	MF780208410	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP02	NA	NA
Spectrum Analyzer R\&S	FSv40	100964	June 28, 2016	June 27, 2017
Power meter Anritsu	ML2495A	0824006	May 26, 2016	May 25, 2017
Power sensor Anritsu	MA2411B	0738172	May 26, 2016	May 25, 2017

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
3. The test was performed in 966 Chamber No. 4.
4. The FCC Site Registration No. is 292998
5. The CANADA Site Registration No. is 20331-2

6 Loop antenna was used for all emissions below 30 MHz .
7. Tested Date: May 05 to 11, 2017

4.1.3 Test Procedures

For Radiated emission below 30MHz

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. Both X and Y axes of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz .

For Radiated emission above 30 MHz

a. The EUT was placed on the top of a rotating table 0.8 meters (for $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz .
f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz . If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz .
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz .
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1 GHz . If duty cycle of test signal is $<98 \%$, the duty factor need added to measured value.
4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission 30 MHz to 1 GHz

For Radiated emission above 1 GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

a. Placed the EUT on the testing table.
b. Contorlling software (nRFgoStudio.exe V1.14.1.2369) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data :

CHANNEL	TX Channel 0	DETECTOR	Peak (PK) Average (AV)
FREQUENCY RANGE	$1 \mathrm{GHz} \sim 25 \mathrm{GHz}$	FUNCTION	Average

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL $(\mathbf{d B u V} / \mathbf{m})$	LIMIT $(\mathbf{d B u V} / \mathbf{m})$	MARGIN $(\mathbf{d B})$	ANTENNA HEIGHT (\mathbf{m})	TABLE ANGLE $($ Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR $(\mathbf{d B} / \mathbf{m})$
1	2390.00	56.1 PK	74.0	-17.9	1.45 H	234	57.4	-1.3
2	2390.00	44.2 AV	54.0	-9.8	1.45 H	234	45.5	-1.3
3	${ }^{*} 2402.00$	94.5 PK			1.45 H	234	95.6	-1.1
4	${ }^{*} 2402.00$	92.8 AV			1.45 H	234	93.9	-1.1
5	4804.00	47.8 PK	74.0	-26.2	3.64 H	221	44.6	3.2
6	4804.00	43.8 AV	54.0	-10.2	3.64 H	221	40.6	3.2

ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M

NO.	FREQ. $\mathbf{(M H z)}$	EMISSION LEVEL $(\mathbf{d B u V} / \mathbf{m})$	LIMIT $(\mathbf{d B u V} / \mathbf{m})$	MARGIN $(\mathbf{d B})$	ANTENNA HEIGHT (\mathbf{m})	TABLE ANGLE (Degree)	RAW VALUE $(\mathbf{d B u V})$	CORRECTION FACTOR $(\mathbf{d B} / \mathbf{m})$
1	2390.00	55.8 PK	74.0	-18.2	2.09 V	135	57.1	-1.3
2	2390.00	43.8 AV	54.0	-10.2	2.09 V	135	45.1	-1.3
3	${ }^{*} 2402.00$	92.6 PK			2.09 V	135	93.7	-1.1
4	$* 2402.00$	90.5 AV			2.09 V	135	91.6	-1.1
5	4804.00	46.3 PK	74.0	-27.7	1.93 V	216	43.1	3.2
6	4804.00	42.3 AV	54.0	-11.7	1.93 V	216	39.1	3.2

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor $(\mathrm{dB})-$ Pre-Amplifier Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission Level - Limit value
5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
Average (AV)			
FREQUENCY RANGE	$1 \mathrm{GHz} \sim 25 \mathrm{GHz}$	FUNCTION	Aver

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)		RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	93.8 PK			1.43 H	250	95.0	-1.2
2	*2440.00	91.5 AV			1.43 H	250	92.7	-1.2
3	4880.00	47.2 PK	74.0	-26.8	3.66 H	213	43.8	3.4
4	4880.00	43.4 AV	54.0	-10.6	3.66 H	213	40.0	3.4
5	7320.00	45.4 PK	74.0	-28.6	1.63 H	288	35.6	9.8
6	7320.00	33.4 AV	54.0	-20.6	1.63 H	288	23.6	9.8
ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)			CORRECTION FACTOR (dB/m)
1	*2440.00	91.7 PK			2.08 V	133	92.9	-1.2
2	*2440.00	89.6 AV			2.08 V	133	90.8	-1.2
3	4880.00	45.9 PK	74.0	-28.1	1.94 V	204	42.5	3.4
4	4880.00	42.2 AV	54.0	-11.8	1.94 V	204	38.8	3.4
5	7320.00	44.8 PK	74.0	-29.2	1.85 V	97	35.0	9.8
6	7320.00	33.0 AV	54.0	-21.0	1.85 V	97	23.2	9.8

REMARKS:

1. Emission Level(dBuV/m) = Raw Value $(\mathrm{dBuV})+$ Correction Factor $(\mathrm{dB} / \mathrm{m})$
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor (dB) - Pre-Amplifier Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission Level - Limit value
5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	$1 \mathrm{GHz} \sim 25 \mathrm{GHz}$	FUNCTION	Average (AV)

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)		CORRECTION FACTOR (dB / m)
1	*2480.00	93.4 PK			1.47 H	251	94.4	-1.0
2	*2480.00	92.4 AV			1.47 H	251	93.4	-1.0
3	2483.50	58.5 PK	74.0	-15.5	1.47 H	251	59.5	-1.0
4	2483.50	45.1 AV	54.0	-8.9	1.47 H	251	46.1	-1.0
5	4960.00	47.4 PK	74.0	-26.6	3.60 H	218	43.8	3.6
6	4960.00	43.4 AV	54.0	-10.6	3.60 H	218	39.8	3.6
7	7440.00	45.5 PK	74.0	-28.5	1.59 H	290	35.4	10.1
8	7440.00	33.7 AV	54.0	-20.3	1.59 H	290	23.6	10.1
ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)		CORRECTION FACTOR (dB/m)
1	*2480.00	92.9 PK			2.05 V	132	93.9	-1.0
2	*2480.00	90.4 AV			2.05 V	132	91.4	-1.0
3	2483.50	57.4 PK	74.0	-16.6	2.05 V	132	58.4	-1.0
4	2483.50	44.9 AV	54.0	-9.1	2.05 V	132	45.9	-1.0
5	4960.00	46.3 PK	74.0	-27.7	1.98 V	201	42.7	3.6
6	4960.00	42.5 AV	54.0	-11.5	1.98 V	201	38.9	3.6
7	7440.00	45.1 PK	74.0	-28.9	1.82 V	105	35.0	10.1
8	7440.00	33.4 AV	54.0	-20.6	1.82 V	105	23.3	10.1

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor $(\mathrm{dB})-$ Pre-Amplifier Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission Level - Limit value
5. " * ": Fundamental frequency.

Below 1GHz Data:

CHANNEL	TX Channel 0	DETECTOR	Quasi-Peak (QP)
FREQUENCY RANGE	$9 \mathrm{kHz} \sim 1 \mathrm{GHz}$	FUNCTION	

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)		RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	114.71	38.4 QP	43.5	-5.1	1.50 H	4	48.8	-10.4
2	147.47	35.3 QP	43.5	-8.2	2.00 H	172	43.4	-8.1
3	245.75	38.4 QP	46.0	-7.6	1.00 H	0	48.0	-9.6
4	409.61	36.8 QP	46.0	-9.2	1.00 H	177	41.8	-5.0
5	507.89	41.5 QP	46.0	-4.5	1.50 H	28	44.0	-2.5
6	638.99	41.6 QP	46.0	-4.4	1.50 H	149	41.6	0.0
ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	212.99	31.9 QP	43.5	-11.6	1.50 V	315	43.4	-11.5
2	442.37	39.7 QP	46.0	-6.3	1.00 V	283	43.5	-3.8
3	475.13	42.3 QP	46.0	-3.7	1.00 V	66	45.5	-3.2
4	507.92	39.4 QP	46.0	-6.6	1.00 V	176	41.9	-2.5
5	540.68	38.6 QP	46.0	-7.4	1.00 V	63	40.7	-2.1
6	832.00	37.5 QP	46.0	-8.5	1.50 V	240	34.5	3.0

REMARKS:

1. Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ Raw Value $(\mathrm{dBuV})+$ Correction Factor $(\mathrm{dB} / \mathrm{m})$
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor $(\mathrm{dB})-$ Pre-Amplifier Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission Level - Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
$0.15-0.5$	$66-56$	$56-46$
$0.50-5.0$	56	46
$5.0-30.0$	60	50

Note: 1. The lower limit shall apply at the transition frequencies.
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz .
4.2.2 Test Instruments

 MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R\&S	ESCS 30	100375	May. 09, 2017	May. 08, 2018
Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK-8127	$8127-522$	Aug. 31, 2016	Aug. 30, 2017
Line-Impedance Stabilization Network (for Peripheral) R\&S	ENV216	100072	June 13, 2016	June 12, 2017
RF Cable	5D-FB	COACAB-002	Mar. 03, 2017	Mar. 02, 2018
10 dB PAD Mini-Circuits	HAT-10+	CONATT-003	Sep. 13, 2016	Sep. 12, 2017
50 ohms Terminator	N/A	EMC-03	Sep. 29, 2016	Sep. 28, 2017
50 ohms Terminator	N/A	EMC-02	Sep. 29, 2016	Sep. 28, 2017
Software BVADT	BVADT_Cond_- V7.3.7.4	NA	NA	NA

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in Shielded Room No. C.

3 The VCCI Con C Registration No. is C-3611.
4 Tested Date: May 09, 2017

4.2.3 Test Procedures

a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide $50 \mathrm{ohm} / 50 \mathrm{uH}$ of coupling impedance for the measuring instrument.
b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit -20 dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency $0.15 \mathrm{MHz}-30 \mathrm{MHz}$.

4.2.4 Deviation from Test Standard

No deviation.
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)

No	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
		Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15781	10.13	30.23	18.47	40.36	28.60	65.58	55.58	-25.22	-26.98
2	0.20859	10.12	22.50	10.58	32.62	20.70	63.26	53.26	-30.64	-32.56
3	0.24375	10.12	24.47	19.71	34.59	29.83	61.97	51.97	-27.38	-22.14
4	0.31406	10.12	25.21	21.99	35.33	32.11	59.86	49.86	-24.53	-17.75
5	8.66016	10.41	19.80	15.05	30.21	25.46	60.00	50.00	-29.79	-24.54
6	16.50000	10.68	16.60	12.27	27.28	22.95	60.00	50.00	-32.72	-27.05

REMARKS:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value $=$ Emission level - Limit value
4. Correction factor $=$ Insertion loss + Cable loss
5. Emission Level $=$ Correction Factor + Reading Value.

\square

No	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
		Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16172	10.16	38.21	22.67	48.37	32.83	65.38	55.38	-17.01	-22.55
2	0.19297	10.09	32.82	18.32	42.91	28.41	63.91	53.91	-21.00	-25.50
3	0.23594	10.08	26.91	12.91	36.99	22.99	62.24	52.24	-25.25	-29.25
4	0.32188	10.09	32.76	26.19	42.85	36.28	59.66	49.66	-16.81	-13.38
5	6.30859	10.39	19.44	13.37	29.83	23.76	60.00	50.00	-30.17	-26.24
6	12.82031	10.59	14.27	9.79	24.86	20.38	60.00	50.00	-35.14	-29.62

REMARKS:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor $=$ Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6 dB Bandwidth Measurement

The minimum of 6 dB Bandwidth Measurement is 0.5 MHz .
4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

a. Set resolution bandwidth $($ RBW $)=100 \mathrm{kHz}$
b. Set the video bandwidth $($ VBW $) \geq 3 \times$ RBW, Detector $=$ Peak.
c. Trace mode = max hold.
d. Sweep = auto couple.
e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.70	0.5	Pass
19	2440	0.70	0.5	Pass
39	2480	0.69	0.5	Pass

4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the $2400-2483.5 \mathrm{MHz}$ bands: 1 Watt (30dBm)
4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	0.9247	-0.34	30	Pass
19	2440	0.8954	-0.48	30	Pass
39	2480	0.857	-0.67	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	0.7586	-1.20
19	2440	0.7345	-1.34
39	2480	0.7047	-1.52

4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8 dBm .

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

a. Set analyzer center frequency to DTS channel center frequency.
b. Set the span to 1.5 times the DTS bandwidth.
c. Set the RBW to: $3 \mathrm{kHz} \leq \mathrm{RBW} \leq 100 \mathrm{kHz}$.
d. Set the VBW $\geq 3 \times$ RBW.
e. Detector $=$ peak.
f. Sweep time = auto couple.
g. Trace mode = max hold.
h. Allow trace to fully stabilize.
i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition

Same as Item 4.3.6

4.5.7 Test Results

Channel	Freq. (MHz)	PSD $(\mathrm{dBm} / 3 \mathrm{kHz})$	Limit $(\mathrm{dBm} / 3 \mathrm{kHz})$	Pass $/$ Fail
0	2402	-19.73	8	Pass
19	2440	-19.86	8	Pass
39	2480	-19.89	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below -20dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

1. Set the RBW $=100 \mathrm{kHz}$.
2. Set the VBW $\geq 300 \mathrm{kHz}$.
3. Detector $=$ peak .
4. Sweep time = auto couple.
5. Trace mode $=$ max hold.
6. Allow trace to fully stabilize.
7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

1. Set RBW $=100 \mathrm{kHz}$.
2. Set VBW $\geq 300 \mathrm{kHz}$.
3. Detector = peak.
4. Sweep = auto couple.
5. Trace Mode = max hold.
6. Allow trace to fully stabilize.
7. Use the peak marker function to determine the maximum amplitude level.
4.6.5 Deviation from Test Standard No deviation.

4.6.6 EUT Operating Condition

Same as Item 4.3.6
$\frac{\text { Bureav }}{\text { VERITAS }}$
4.6.7 Test Results

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com
The address and road map of all our labs can be found in our web site also.

[^0]: This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted

