

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	LOGITECH FAR EAST LTD.
Applicant Address	#2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.
FCC ID	JNZVR0002
Manufacturer's company	LOGITECH FAR EAST LTD.
Manufacturer Address	#2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.

Product Name	TV Cam HD
Brand Name	Logitech
Model Name	V-R0002
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2400 ~ 2483.5MHz
Received Date	Jun. 14, 2012
Final Test Date	Jul. 17, 2012
Submission Type	Original Equipment

Statement

Test result included is only for the IEEE 802.11n, IEEE 802.11b/g part of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009 and 47 CFR FCC Part 15 Subpart C. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CI	ERTIFICATE OF COMPLIANCE	1
2. SU	UMMARY OF THE TEST RESULT	2
3. GI	SENERAL INFORMATION	3
3.1		
3.2		
3.3	.3. Table for Filed Antenna	5
3.4	.4. Table for Carrier Frequencies	6
3.5	.5. Table for Test Modes	7
3.6	.6. Table for Testing Locations	7
3.7	.7. Table for Supporting Units	8
3.8	.8. Table for Parameters of Test Software Setting	9
3.9	.9. Test Configurations	10
4. TE	EST RESULT	12
4.	.1. AC Power Line Conducted Emissions Measurement	12
4.2	.2. Peak Output Power Measurement	16
4.3	.3. Average Output Power Measurement	19
4.4	.4. Power Spectral Density Measurement	22
4.5	.5. 6dB Spectrum Bandwidth Measurement	28
4.6	.6. Radiated Emissions Measurement	33
4.7		
4.8	.8. Antenna Requirements	55
5. LIS	ST OF MEASURING EQUIPMENTS	56
6. TE	EST LOCATION	58
7. TA	AF CERTIFICATE OF ACCREDITATION	59
APPE	ENDIX A. PHOTOGRAPHS OF EUT	A1 ~ A22
	ENDIX B. TEST PHOTOS	
	ENIDIA C. WWATIWI DEDWISSIBI E EADORIDE	C1 - C3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR261456	Rev. 01	Initial issue of report	Jul. 20, 2012

Certificate No.: CB10107091

1. CERTIFICATE OF COMPLIANCE

Product Name :

TV Cam HD

Brand Name :

Logitech

Model Name :

V-R0002

Applicant:

LOGITECH FAR EAST LTD.

Test Rule Part(s) :

47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jun. 14, 2012 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Jordan Hsiao

SPORTON INTERNATIONAL INC.

Page No.

: 1 of 59

Issued Date : Jul. 20, 2012

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C							
Part	Rule Section	Result	Under Limit				
4.1	15.207	AC Power Line Conducted Emissions	Complies	7.94 dB			
4.2	15.247(b)(3)	Peak Output Power	Complies	9.07 dB			
4.3	-	Average Output Power	-	-			
4.4	15.247(e)	Power Spectral Density	Complies	27.52 dB			
4.5	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-			
4.6	15.247(d)	Radiated Emissions	Complies	4.11 dB			
4.7	15.247(d)	Band Edge Emissions	Complies	0.45 dB			
4.8	15.203	Antenna Requirements	Complies	-			

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Peak Output Power	±0.8dB	Confidence levels of 95%
Power Spectral Density	±0.5dB	Confidence levels of 95%
6dB Spectrum Bandwidth	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

Report Format Version: 01 Page No. : 2 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description		
Product Type	WLAN (1TX, 1RX)		
Radio Type	Intentional Transceiver		
Power Type	From Adapter		
Modulation	see the below table for IEEE 802.11n		
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)		
Data Rate (Mbps)	see the below table for IEEE 802.11n		
Frequency Range	2400 ~ 2483.5MHz		
Channel Number	11 for 20MHz bandwidth		
Channel Band Width (99%)	MCS0 (20MHz): 18.08 MHz		
Peak Output Power	MCS0 (20MHz): 20.38 dBm		
Carrier Frequencies	Please refer to section 3.4		
Antenna	Please refer to section 3.3		

802.11b/g

802.11D/g	
Items	Description
Product Type	WLAN (1TX, 1RX)
Radio Type	Intentional Transceiver
Power Type	From Adapter
Modulation	DSSS for IEEE 802.11b; OFDM for IEEE 802.11g
Data Modulation	DSSS (BPSK / QPSK / CCK) ; OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11); OFDM (6/9/12/18/24/36/48/54)
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11b/g: 11
Channel Band Width (99%)	11b: 14.08 MHz ; 11g: 17.04 MHz
Peak Output Power	11b: 15.88 dBm ; 11g: 20.93 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Report Format Version: 01 Page No. : 3 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

Antenna & Band width

Antenna	Single (TX)					
Band width Mode	20 MHz	40 MHz				
IEEE 802.11b	V	X				
IEEE 802.11g	IEEE 802.11g V					
IEEE 802.11n	V	X				

IEEE 802.11n spec

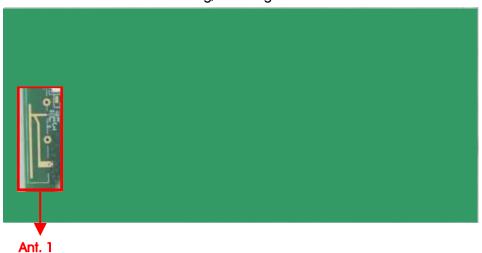
MCC					NCBPS NDBPS			Datara	te(Mbps)		
MCS Index	Nss	Modulation	R	NBPSC	NCBPS NDBPS 800nsGI		INDBPS		400	nsGl		
maex					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5	7.200	15
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0	14.400	30
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5	21.700	45
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0	28.900	60
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0	43.300	90
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0	57.800	120
6	1	64-QAM	3/4	6	312	648	234	486	58.5	121.5	65.000	135
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0	72.200	150
8	2	BPSK	1/2	1	104	216	52	108	13.0	27.0	14.444	30
9	2	QPSK	1/2	2	208	432	104	216	26.0	54.0	28.889	60
10	2	QPSK	3/4	2	208	432	156	324	39.0	81.0	43.333	90
11	2	16-QAM	1/2	4	416	864	208	432	52.0	108.0	57.778	120
12	2	16-QAM	3/4	4	416	864	312	648	78.0	162.0	86.667	180
13	2	64-QAM	2/3	6	624	1296	416	864	104.0	216.0	115.556	240
14	2	64-QAM	3/4	6	624	1296	468	972	117.0	243.0	130.000	270
15	2	64-QAM	5/6	6	624	1296	520	1080	130.0	270.0	144.444	300

Symbol	Explanation	
NSS	Number of spatial streams	
R	Code rate	
NBPSC	Number of coded bits per single carrier	
NCBPS	Number of coded bits per symbol	
NDBPS	Number of data bits per symbol	
Gl	guard interval	

3.2. Accessories

Power	Brand	Model	P/N	Rating		
Adapter 1	Logitech	AD835M27	534-000570	Input:100-240V~50/60Hz 0.3A		
Adapter	Logilecti	AD000NIZ7	334-000370	Output:5.15V-1.8A		
Adapter 2	Logitech	AD835327	534-000571	Input:100-240V~50/60Hz 0.3A		
Adapter 2	Logilecti	AD635327	554-000571	Output:5.15V-1.8A		
Adaptor 2	Logitoch	KSAS0100500150D5	534-000568	Input:100-240V~50/60Hz 0.4A		
Adapter 3	Logitech	K3A30100300130D3	334-000300	Output:5.0V-1.5A		
Adaptor 1	Logitoch	KSAS0100500150HU	534-000567	Input:100-240V~50/60Hz 0.4A		
Adapter 4	Logitech	K3A30100300130H0	334-000307	Output:5.0V-1.5A		
		O	thers			
Remote cont	troller					
USB Cable						
HDMI Cable						
FCC Plug						

Note 1: The difference between Adapter 1 & Adapter 2 is only different plug, there is only Adapter 1 tested and recorded in the report as a result.


Note 2: The difference between Adapter 3 & Adapter 4 is only different plug, there is only Adapter 4 tested and recorded in the report as a result.

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Elliott	Aachen Wireless Webcam	Printed Antenna	N/A	3

Note: For IEEE 802.11abgn mode (1TX/1RX)

Ant. 1 can be used as transmitting/receiving antenna.

 Report Format Version: 01
 Page No. : 5 of 59

 FCC ID: JNZVR0002
 Issued Date : Jul. 20, 2012

3.4. Table for Carrier Frequencies

For IEEE 802.11b/g, use Channel 1~Channel 11.

There are two bandwidth systems for IEEE 802.11n.

For both 20MHz bandwidth systems, use Channel 1~Channel 11.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400~2483.5MHz	3	2422 MHz	9	2452 MHz
2400~24o3.3MITZ	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
AC Power Line Conducted	CTX	Auto	-	-
Emissions				
Peak Output Power	MCS0/20MHz	6.5 Mbps	1/6/11	1
Average Output Power	11b/CCK	1 Mbps	1/6/11	1
Power Spectral Density	11g/BPSK	6 Mbps	1/6/11	1
6dB Spectrum Bandwidth	MCS0/20MHz	6.5 Mbps	1/6/11	1
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Radiated Emissions Below 1GHz	CTX	Auto	-	-
Radiated Emissions Above 1GHz	MCS0/20MHz	6.5 Mbps	1/6/11	1
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Band Edge Emissions	MCS0/20MHz	6.5 Mbps	1/11	1
	11b/CCK	1 Mbps	1/11	1
	11g/BPSK	6 Mbps	1/11	1

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. EUT CTX+adapter(KSAS0100500150HU)

Mode 2. EUT CTX+ adapter(AD835M27)

Mode 2 generated the worst test results, so it was recorded in the report.

For Radiated Emission test below 1GHz:

Mode 1: EUT CTX+adapter(KSAS0100500150HU)

Mode 2: EUT CTX+adapter(AD835M27)

Mode 1 generated the worst test results, so it was recorded in the report.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Report Format Version: 01 Page No. : 7 of 59 FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

Please refer section 6 for Test Site Address.

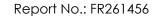
3.7. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	E2K4965AGNM
LCD Monitor	DELL	1704FPTt	DoC
Mouse	Logitech M90	M-U0026	DoC
Wireless AP	Planex	GW-AP54SGX	N/A
EARPHONES	E-books	E-EPC040	N/A
Notebook	DELL	M1330	E2K4965AGNM
Notebook	DELL	M1330	E2KWM3945ABG

3.8. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

For 2.4GHz Band


Power Parameters of IEEE 802.11n MCS0 20MHz

Test Software Version	Hardware			
Frequency	2412 MHz	2437 MHz	2462 MHz	
MCS0 20MHz	13.5	15	13.5	

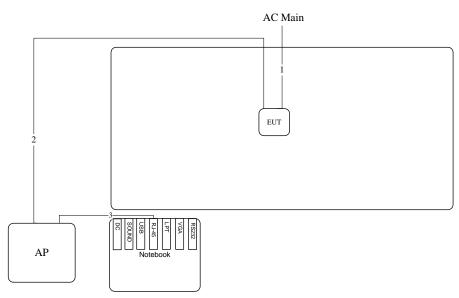
Power Parameters of IEEE 802.11b/g

Test Software Version	Hardware			
Frequency	2412 MHz	2437 MHz	2462 MHz	
IEEE 802.11b	15	15	15	
IEEE 802.11g	15	15	15	

During the test, "PuTTY Release" under WIN XP was executed the test program to control the EUT continuously transmit RF signal.

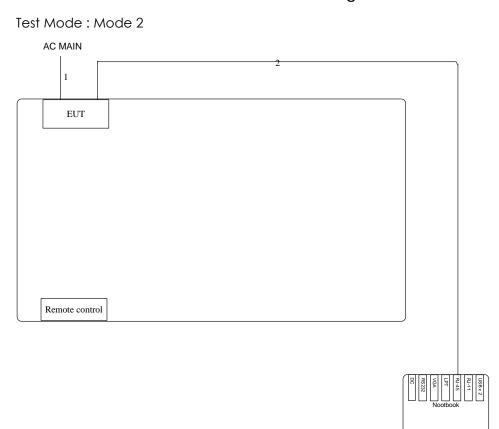
Page No.

: 10 of 59


Issued Date : Jul. 20, 2012

3.9. Test Configurations

3.9.1. Radiation Emissions Test Configuration


Test Mode: Mode 1

Item	Connection	Shield	Length
1	Power Cable	No	1.8M
2	RJ-45 Cable	No	10M
3	RJ-45 Cable	No	1.8M

3.9.2. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shield	Length
1	Power cable	No	1.8M
2	RJ-45 cable	No	10M

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

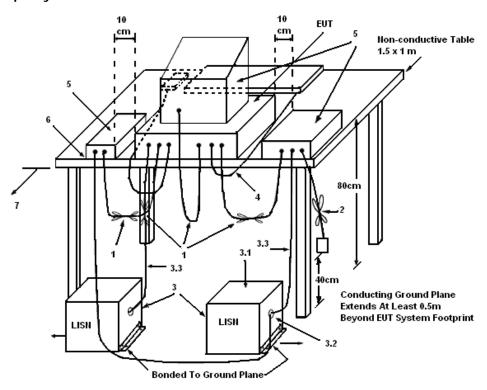
For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

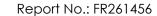
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz


4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: 01 Page No. : 12 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

4.1.4. Test Setup Layout

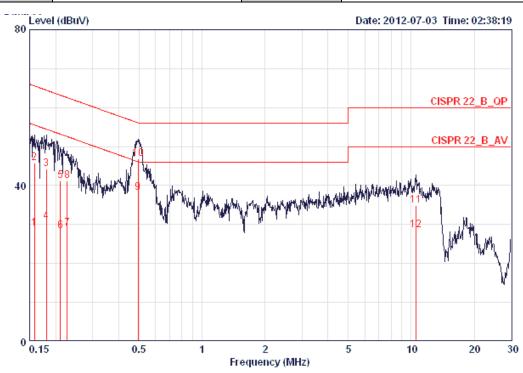

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 $\,\Omega$. LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

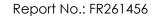
4.1.5. Test Deviation

There is no deviation with the original standard.

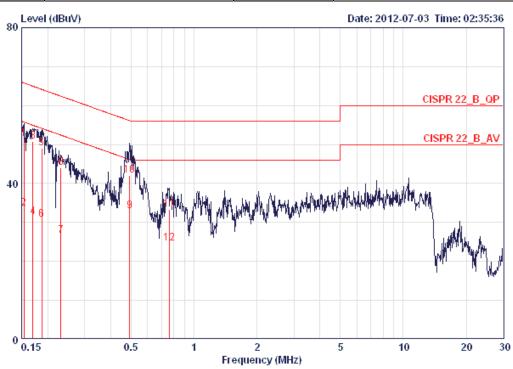
4.1.6. EUT Operation during Test



The EUT was placed on the test table and programmed in normal function.


4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	22°C	Humidity	57%
Test Engineer	Kane Liu	Phase	Line
Configuration	CTX	Test Mode	Mode 2


			0ver	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.15816	29.03	-26.53	55.56	28.77	0.06	0.20	AVERAGE
2	0.15816	45.87	-19.69	65.56	45.61	0.06	0.20	QP
3	0.18056	44.35	-20.11	64.46	44.10	0.05	0.20	QP
4	0.18056	30.79	-23.67	54.46	30.54	0.05	0.20	AVERAGE
5	0.21055	41.15	-22.04	63.18	40.90	0.05	0.20	QP
6	0.21055	28.37	-24.82	53.18	28.12	0.05	0.20	AVERAGE
7	0.22676	29.08	-23.48	52.57	28.84	0.04	0.20	AVERAGE
8	0.22676	41.11	-21.45	62.57	40.87	0.04	0.20	QP
9 @	0.49411	38.16	-7.94	46.10	37.96	0.02	0.18	AVERAGE
10 @	0.49411	46.90	-9.20	56.10	46.70	0.02	0.18	QP
11	10.508	34.87	-25.13	60.00	34.29	0.19	0.39	QP
12	10.508	28.53	-21.47	50.00	27.95	0.19	0.39	AVERAGE

Report Format Version: 01 Page No. : 14 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

Temperature	22°C	Humidity	57%
Test Engineer	Kane Liu	Phase	Neutral
Configuration	CTX	Test Mode	Mode 2

			0ver	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.15403	51.44	-14.34	65.78	51.18	0.06	0.20	QP
2	0.15403	33.50	-22.28	55.78	33.24	0.06	0.20	AVERAGE
3	0.16944	50.73	-14.26	64.99	50.47	0.06	0.20	QP
4	0.16944	31.42	-23.57	54.99	31.16	0.06	0.20	AVERAGE
5	0.18739	49.13	-15.02	64.15	48.88	0.05	0.20	QP
6	0.18739	30.73	-23.42	54.15	30.48	0.05	0.20	AVERAGE
7	0.23162	26.63	-25.76	52.39	26.38	0.05	0.20	AVERAGE
8	0.23162	44.00	-18.39	62.39	43.75	0.05	0.20	QP
9	0.49150	32.85	-13.29	46.14	32.67	0.05	0.13	AVERAGE
10	0.49150	42.18	-13.96	56.14	42.00	0.05	0.13	QP
11	0.75894	33.32	-22.68	56.00	33.06	0.06	0.20	QP
12	0.75894	24.73	-21.27	46.00	24.47	0.06	0.20	AVERAGE

Note:

Level = Read Level + LISN Factor + Cable Loss

4.2. Peak Output Power Measurement

4.2.1. Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the peak power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	Peak

4.2.3. Test Procedures

Spectrum Parameter Setting		ng		
RF Output Power		ANSI C/2 10 algues / 10 2 1 (g) payer mater mathed		
Method		ANSI C63.10 clause 6.10.2.1 (a) power meter method		
RF Output Power		ANSI C/2 10 algues / 10 2 1 /b) abgrapal integration mathed		
Method		ANSI C63.10 clause 6.10.2.1 (b) channel integration method		
RF Output Power		ANSI C63.10 clause 6.10.3.1 Method 1 - spectral trace		
Method		averaging		
RF Output Power		ANSI C63.10 clause 6.10.3.2 Method 2 - zero-span mode with		
Method		trace averaging		

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 16 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

4.2.7. Test Result of Peak Output Power

Temperature	25°C	Humidity	60%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n
Test Date	Jul. 12, 2012		

Configuration IEEE 802.11n MCS0 20MHz / Ant. 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	20.31	30.00	Complies
6	2437 MHz	20.38	30.00	Complies
11	2462 MHz	19.56	30.00	Complies

Report Format Version: 01 Page No. : 17 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

Temperature	25°C	Humidity	60%
Test Engineer	Robert Chang	Configurations	IEEE 802.11b/g
Test Date	Jul. 12, 2012		

Configuration IEEE 802.11b / Ant. 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	15.88	30.00	Complies
6	2437 MHz	15.63	30.00	Complies
11	2462 MHz	15.28	30.00	Complies

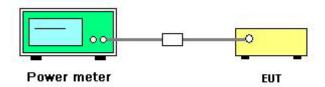
Configuration IEEE 802.11g / Ant. 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	20.93	30.00	Complies
6	2437 MHz	20.62	30.00	Complies
11	2462 MHz	20.31	30.00	Complies

Report Format Version: 01 Page No. : 18 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

4.3. Average Output Power Measurement

4.3.1. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	Average

4.3.2. Test Procedures

Spectrum Parameter	Setti	ing
RF Output Power Method	\boxtimes	ANSI C63.10 clause 6.10.2.1 (a) power meter method
RF Output Power Method		ANSI C63.10 clause 6.10.2.1 (b) channel integration method
RF Output Power Method		ANSI C63.10 clause 6.10.3.1 Method 1 - spectral trace
		averaging
RF Output Power Method		ANSI C63.10 clause 6.10.3.2 Method 2 - zero-span mode with
		trace averaging

4.3.3. Test Setup Layout

4.3.4. Test Deviation

There is no deviation with the original standard.

4.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Note: Average output power is only for Maximum Permissible Exposure use.

 Report Format Version: 01
 Page No. : 19 of 59

 FCC ID: JNZVR0002
 Issued Date : Jul. 20, 2012

4.3.6. Test Result of Average Output Power

Temperature	25°C	Humidity	60%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n
Test Date	Jul. 12, 2012		

Configuration IEEE 802.11n MCS0 20MHz / Ant. 1

Channel	Frequency	Average Conducted Power (dBm)
1	2412 MHz	12.4
6	2437 MHz	12.52
11	2462 MHz	11.65

Temperature	25°C	Humidity	60%
Test Engineer	Robert Chang	Configurations	IEEE 802.11b/g
Test Date	Jul. 12, 2012		

Configuration IEEE 802.11b / Ant. 1

Channel	Frequency	Average Conducted Power (dBm)
1	2412 MHz	13.68
6	2437 MHz	13.44
11	2462 MHz	13.08

Configuration IEEE 802.11g / Ant. 1

Channel	Frequency	Average Conducted Power (dBm)
1	2412 MHz	12.87
6	2437 MHz	12.54
11	2462 MHz	12.24

Report Format Version: 01 Page No. : 21 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

4.4. Power Spectral Density Measurement

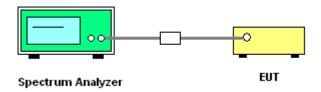
4.4.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the analyzer span to 5-30% greater than the EBW.
RB	100 kHz
VB	300 kHz
Detector	RMS
Trace	Single Sweep
Sura an Tina a	≥ 10 x (number of measurement points in sweep) x (transmission symbol
Sweep Time	period).


4.4.3. Test Procedures

- 1. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 2. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$ (use of a greater number of measurement points than this minimum requirement is recommended).
- 3. Use the peak marker function to determine the maximum level in any 100 kHz band segment within the fundamental EBW.
- 4. Scale the observed power level to an equivalent level in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where: BWCF = 10log (3 kHz/100 kHz = -15.2 dB).
- 5. The resulting PSD level must be ≤ 8 dBm.

Report Format Version: 01 Page No. : 22 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Power Spectral Density

Temperature	25°C	Humidity	60%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n

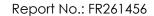
Configuration IEEE 802.11n MCS0 20MHz / Ant. 1

Channel	Frequency	Power Density (dBm/100kHz)	BWCF factor (100KHz to 3KHz	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
1	2412 MHz	-8.02	-15.23	-23.25	8.00	Complies
6	2437 MHz	-7.92	-15.23	-23.15	8.00	Complies
11	2462 MHz	-8.86	-15.23	-24.09	8.00	Complies

Temperature	25°C	Humidity	60%
Test Engineer	Robert Chang	Configurations	IEEE 802.11b/g

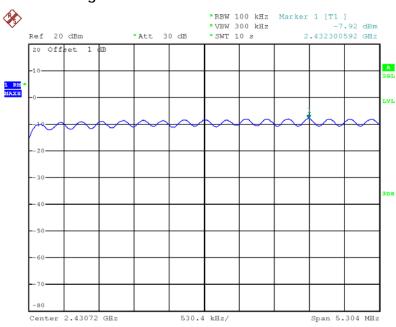
Configuration IEEE 802.11b / Ant. 1

	Channel	Frequency	Power Density (dBm/100kHz)	BWCF factor (100KHz to 3KHz	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
	1	2412 MHz	-4.29	-15.23	-19.52	8.00	Complies
Ī	6	2437 MHz	-4.59	-15.23	-19.82	8.00	Complies
Ī	11	2462 MHz	-5.04	-15.23	-20.27	8.00	Complies

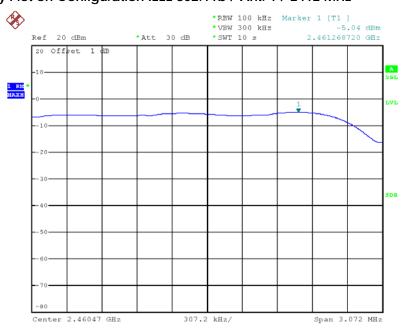

Configuration IEEE 802.11g / Ant. 1

Channel	Frequency	Power Density (dBm/100kHz)	BWCF factor (100KHz to 3KHz	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Result
1	2412 MHz	-7.35	-15.23	-22.58	8.00	Complies
6	2437 MHz	-7.72	-15.23	-22.95	8.00	Complies
11	2462 MHz	-8.21	-15.23	-23.44	8.00	Complies

Note: All the test values were listed in the report.

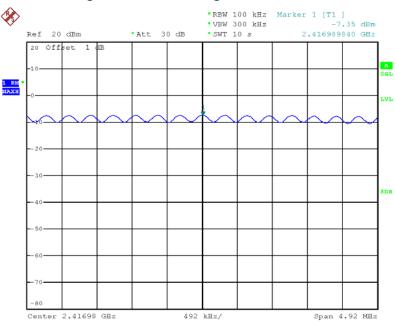

For plots, only the channel with maximum results was shown.

Page No.



Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 / 2437 MHz

Date: 12.JUL.2012 18:09:07


Power Density Plot on Configuration IEEE 802.11b / Ant. 1 / 2412 MHz

Date: 12.JUL.2012 18:16:35

Power Density Plot on Configuration IEEE 802.11g / Ant. 1 / 2412 MHz

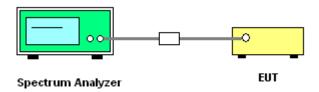
Date: 12.JUL.2012 18:10:56

4.5. 6dB Spectrum Bandwidth Measurement

4.5.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.5.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RB	100 kHz
VB	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.5.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

4.5.4. Test Setup Layout

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 28 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

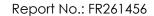
4.5.7. Test Result of 6dB Spectrum Bandwidth

Temperature	25°C	Humidity	60%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n

Configuration IEEE 802.11n MCS0 20MHz / Ant. 1

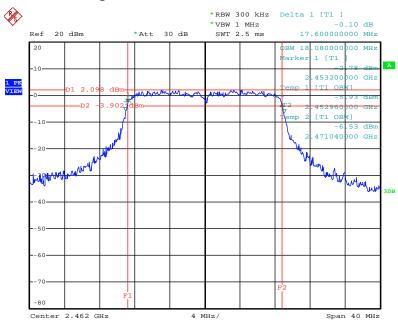
Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	17.68	18.08	500	Complies
6	2437 MHz	17.68	18.08	500	Complies
11	2462 MHz	17.60	18.08	500	Complies

Report Format Version: 01 Page No. : 29 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

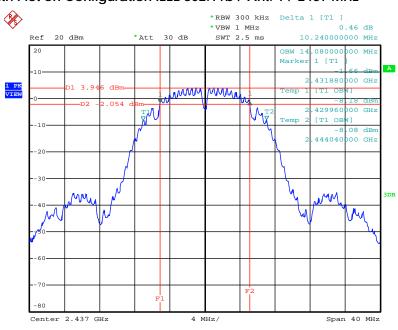

Temperature	25°C	Humidity	60%
Test Engineer	Robert Chang	Configurations	IEEE 802.11b/g

Configuration IEEE 802.11b / Ant. 1

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	10.24	14.00	500	Complies
6	2437 MHz	10.24	14.08	500	Complies
11	2462 MHz	10.24	14.00	500	Complies


Configuration IEEE 802.11g / Ant. 1

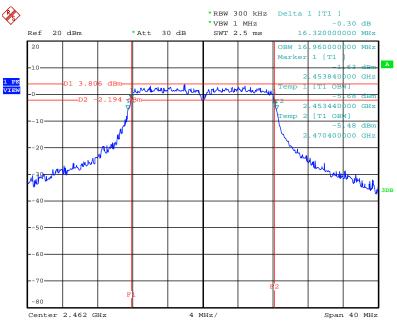
Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	16.40	16.96	500	Complies
6	2437 MHz	16.40	17.04	500	Complies
11	2462 MHz	16.32	16.96	500	Complies



6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 / 2462 MHz

Date: 12.JUL.2012 17:58:43

6 dB Bandwidth Plot on Configuration IEEE 802.11b / Ant. 1 / 2437 MHz



Date: 12.JUL.2012 17:53:05

Report Format Version: 01 Page No. : 31 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

6 dB Bandwidth Plot on Configuration IEEE 802.11g / Ant. 1 / 2462 MHz

Date: 12.JUL.2012 17:54:44

Page No.

4.6. Radiated Emissions Measurement

4.6.1. Limit

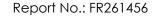
20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

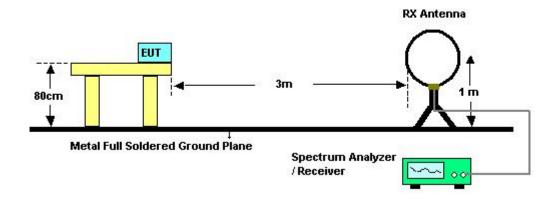
Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average	
RB / VB (Emission in non-restricted	1MHz / 3MHz for peak	
band)		

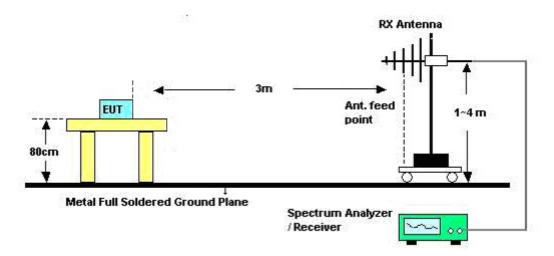

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Report Format Version: 01 Page No. : 33 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

4.6.3. Test Procedures

1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.


- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



4.6.4. Test Setup Layout

For radiated emissions below 1GHz

For radiated emissions above 1GHz

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 35 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	21℃	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	Normal Link
Test Date	Jul. 17, 2012		

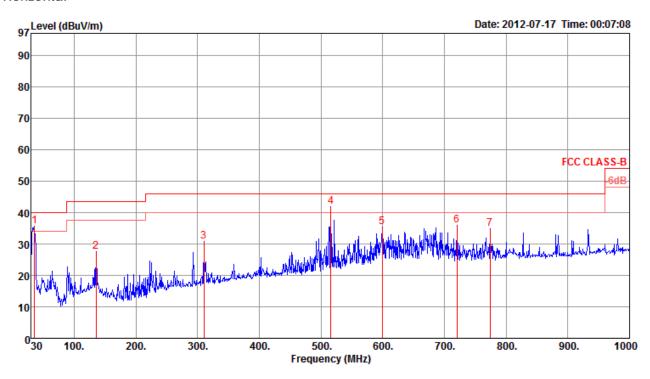
Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


Report Format Version: 01 Page No. : 36 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

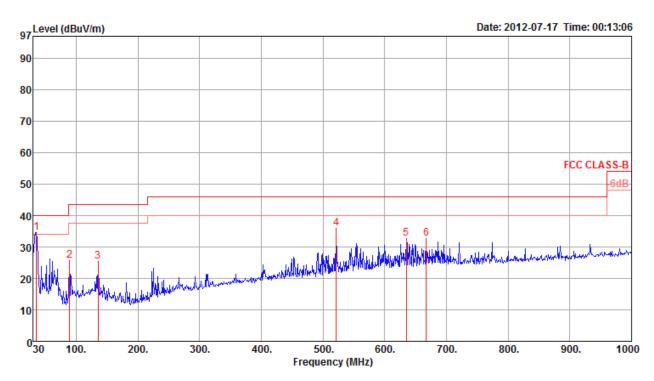
4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	21℃	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	Normal Link
Test Mode	Mode 1		

Horizontal

	Freq	Level	Limi t Line	Over Limit			PreampA Factor		Remark	Pol/Phase	A/Pos	T/Pos	
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	d B	——dB	dB/m			Cm	deg	
1 2 3	! 35.82 135.73 310.33	27.62		-4.32 -15.88 -15.12	46.49 41.14 41.06	0.93 1.69 2.57	27.59	16.26 12.38 14.12	Peak	HORIZONTAL HORIZONTAL HORIZONTAL	400 400 400	0 0 0	
4	р 515.97	41.89	46.00	-4.11	48.26	3.43	27.91	18.11	Peak	HORIZONTAL	400	0	┚
5	599.39		46.00	-10.63	39.96	3.73	27.61	19.29		HORIZONTAL	400	0	
6	720.64	35.95	46.00	-10.05	38.79	4.18	27.10	20.08		HORIZONTAL	400	0	
7	773.99	34.85	46.00	-11.15	37.09	4.28	27.01	20.49	Peak	HORIZONTAL	400	0	

Report Format Version: 01 Page No. : 37 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012


: 38 of 59

Issued Date : Jul. 20, 2012

Page No.

Vertical

	Freq	Level	Limit Line						Remark	Pol/Phase	A/Pos	T/Pos
_	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB	dB/m			Cm	deg
1 p 2 3 4 5 6	89.17 135.73 521.79 635.28	25.77 25.31 35.86 32.76	40.00 43.50 43.50 46.00 46.00 46.00	-17.73 -18.19 -10.14 -13.24	43.12 38.83 42.09 36.97	1.40 1.69 3.45 3.85	28.00 27.87 27.59 27.91 27.57 27.39	9.12 12.38 18.23 19.51	Peak Peak Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL	100 100 100 100 100 100	0 0 0 0 0

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log \text{Emission level (uV/m)}$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	21°C	Humidity	56.4%
Test	Pansan Dang	Configurations	IEEE 802.11n MC\$0 20MHz Ch 1 /
Engineer	Benson Peng	Configurations	Ant. 1
Test Date	Jul. 12, 2012		

Horizontal

	Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	dB	dB/m			Cm	deg
1 p 2 a	4821.96 4831.12	43.44 30.63	74.00 54.00	-30.56 -23.37	41.36 28.55	4.21 4.21	34.69 34.69	32.56 32.56	Peak Average	HORIZONTAL HORIZONTAL	100 100	255 255

Vertical

Freq	Level							Remark	Pol/Phase	A/Pos	T/Pos
MHz	dBuV/m	$\overline{\text{dBuV/m}}$	— dB	dBuV	dB	——dB	dB/m			Cm	deg
4823.52 4824.48									VERTICAL VERTICAL	100 100	83 83

Page No.

: 39 of 59

Issued Date : Jul. 20, 2012

Temperature	21°C	Humidity	56.4%
Tost Engineer	est Engineer Benson Peng Configurations		IEEE 802.11n MCS0 20MHz Ch 6 /
rest Engineer			Ant. 1

Test Date Horizontal

Jul. 12, 2012

	Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	——dB	dBuV	dB	dB	dB/m			Cm	deg
1 p 2 a	4864.08 4878.08	43.68 30.35	74.00 54.00	-30.32 -23.65	41.52 28.14	4.21 4.22	34.67 34.67	32.62 32.66	Peak Average	HORIZONTAL HORIZONTAL	100 100	238 238

	Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	dB	dB/m			Cm	deg
1 p 2 a	4865.96 4874.16	44.49 30.89	74.00 54.00	-29.51 -23.11	42.33 28.68	4.21 4.22	34.67 34.67	32.62 32.66	Peak Average	VERTICAL VERTICAL	100 100	5 5

Temperature	21°C	Humidity	56.4%
Test Engineer	Ronson Pong	Configurations	IEEE 802.11n MCS0 20MHz Ch11 /
rest Engineer	Benson Peng	Configurations	Ant. 1
Test Date	Jul. 12, 2012		

Horizontal

	Freq	Level			Read Level				Remark	Pol/Phase	A/Pos	T/Pos
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	d B	dBuV	dB	dB	dB/m			Cm	deg
1 p 2 a	4869.20 4872.16	43.53 30.34	74.00 54.00	-30.47 -23.66	41.32 28.13	4.22 4.22	34.67 34.67	32.66 32.66	Peak Average	HORIZONTAL HORIZONTAL	100 100	218 218

	Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	d B	dBuV	dB	dB	dB/m			Cm	deg
1 p 2 a	4867.84 4873.36	43.19 30.56	74.00 54.00	-30.81 -23.44	40.98 28.35	4.22 4.22	34.67 34.67	32.66 32.66	Peak Average	VERTICAL VERTICAL	104 104	17 17

Temperature	21℃	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	IEEE 802.11b CH 1 / Ant. 1
Test Date	Jul. 11, 2012		

Horizontal

	Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	——dB	dB/m			Cm	deg
1 p 2 a	4823.50 4823.67	43.62 30.06	74.00 54.00	-30.38 -23.94	41.54 27.98	4.21 4.21	34.69 34.69	32.56 32.56	Peak Average	HORIZONTAL HORIZONTAL	100 100	228 228

Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
MHz	dBuV/m	$\overline{\text{dBuV/m}}$	——dB	dBuV	dB	dB	dB/m			Cm	deg
4824.06 4824.10									VERTICAL VERTICAL	102 102	80 80

Temperature	21°C	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	IEEE 802.11b CH 6 / Ant. 1
Test Date	Jul. 11, 2012		

Horizontal

Freq	Level	Limit Line	Over Limit					Pol/Phase	A/Pos	T/Pos
MHz	dBuV/m	$\overline{\text{dBuV/m}}$	<u>dB</u>	dBuV	dB	dB	dB/m		Cm	deg
4871.50 4873.97								HORIZONTAL HORIZONTAL	100 100	33 33

	Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
)MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	dB	dB/m			Cm	deg
1 p 2 a	4873.72 4873.97	45.15 35.16	74.00 54.00	-28.85 -18.84	42.94 32.95	4.22 4.22	34.67 34.67	32.66 32.66	Peak Average	VERTICAL VERTICAL	103 103	90 90

Temperature	21°C	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	IEEE 802.11b CH 11 / Ant. 1
Test Date	Jul. 11, 2012		

Horizontal

	Freq	Level			Read Level				Remark	Pol/Phase	A/Pos	T/Pos
,	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	dB	dB/m		- ——	Cm	deg
	4923.59 4924.69									HORIZONTAL HORIZONTAL		17 17

	Freq	Level	Limit Line		Read Level				Remark	Pol/Phase	A/Pos	T/Pos
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	dB	dB/m			Cm	deg
1 p 2 a	4920.60 4924.72	44.26 31.27	74.00 54.00	-29.74 -22.73	41.92 28.93	4.23 4.23	34.65 34.65	32.76 32.76	Peak Average	VERTICAL VERTICAL	100 100	312 312

Temperature	21°C	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	IEEE 802.11g CH 1 / Ant. 1
Test Date	Jul. 11, 2012		

Horizontal

	Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
,	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	——dB	dBuV	dB	dB	dB/m			Cm	deg
	4822.64 4823.21									HORIZONTAL HORIZONTAL	100 100	211 211

Freq	Level		Over Limit					Pol/Phase	A/Pos	T/Pos
MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	——dB	dB/m		Cm	deg
4824.20 4831.20								VERTICAL VERTICAL	100 100	52 52

Temperature	21℃	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	IEEE 802.11g CH 6 / Ant. 1
Test Date	Jul. 11, 2012		

Horizontal

Freq	Level			Read Level				Remark	Pol/Phase	A/Pos	T/Pos
MHz	dBuV/m	$\overline{\text{dBuV/m}}$	d B	dBuV	dB	dB	dB/m			Cm	deg
4868.48 4872.00									HORIZONTAL HORIZONTAL	100 100	263 263

Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
MHz	dBuV/m	$\overline{\text{dBuV/m}}$	— dB	dBuV	dB	dB	dB/m			Cm	deg
4865.92 4873.96									VERTICAL VERTICAL	100 100	45 45

Temperature	21°C	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	IEEE 802.11g CH 11 / Ant. 1
Test Date	Jul. 12, 2012		

Horizontal

	Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
-	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB	dB/m			Cm	deg
1 р 2 а	4922.35 4926.84	43.96 30.64	74.00 54.00	-30.04 -23.36	41.62 28.30	4.23 4.23	34.65 34.65	32.76 32.76	Peak Average	HORIZONTAL HORIZONTAL	7.5.5	280 280

Vertical

	Freq	Level		Over Limit					Remark	Pol/Phase	A/Pos	T/Pos
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	dB	dB/m			Cm	deg
1 p 2 a	4922.76 4923.88	44.23 32.08	74.00 54.00	-29.77 -21.92	41.89 29.74	4.23 4.23	34.65 34.65	32.76 32.76	Peak Average	VERTICAL VERTICAL	100 100	182 182

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log \text{Emission level (uV/m)}$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: 01 Page No. : 47 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

4.7. Band Edge Emissions Measurement

4.7.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	100 KHz /300 KHz for Peak

4.7.3. Test Procedures

1. The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around bandedges.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 48 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	21°C	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	IEEE 802.11n MCS0 20MHz Ch 1, 6, 11 / Ant. 1
Test Date	Jul. 11, 2012		

Channel 1

	Freq	Level	Limit Line	Over Limit						Pol/Phase	A/Pos	T/Pos
-	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	——dB	dB/m			Cm	deg
1 !	2389.40	72.40	74.00	-1.60	41.62	2.91	0.00	27.87	Peak Average	HORIZONTAL HORIZONTAL	100 100	13 13
3 p 4 a	2405.60 2406.40		J4.00	-0.43	22.11	2.92	0.00	27.84		HORIZONTAL HORIZONTAL	100 100	13 13

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit	Read Level		Preamp. Factor			Pol/Phase	A/Pos	T/Pos
-	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB	dB/m			Cm	deg
1 2 3 a 4 p	2387.90 2390.00 2431.60 2432.20	43.23 92.50 103.42	54.00	-10.77		2.91 2.91 2.93 2.93	0.00	27.81 27.81	Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL	100 100 100 100	10 10 10 10
6	2483.50 2484.70	43.06 54.13		-10.94 -19.87	12.37 23.44	2.96 2.96		27.73	Average Peak	HORIZONTAL HORIZONTAL	100 100	10 10

Item 3, 4 are the fundamental frequency at 2437MHz.

Channel 11

	Freq	Level	Limit Line		Read Level					Pol/Phase	A/Pos	T/Pos
_	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	dB	dBu∀	dB	——dB	dB/m			Cm	deg
	2456.60 2457.20 2483.50 2484.10	102.74 52.78	54.00	-1.22 -4.46	22.09 38.85	2.95 2.95 2.96 2.96	0.00 0.00	27.76	Average	VERTICAL VERTICAL VERTICAL VERTICAL	106 106 106 106	82 82 82 82

Item 1, 2 are the fundamental frequency at 2462 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: 01 Page No. : 49 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

Temperature	21°C	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	IEEE 802.11b CH 1, 6, 11 / Ant. 1
Test Date	Jul. 11, 2012		

Channel 1

	Freq	Level	Limit Line		Read Level				Remark	Pol/Phase	A/Pos	T/Pos
-	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBuV	dB	dB	dB/m			Cm	deg
1 2 3 a 4 p	2387.80 2390.00 2410.20 2411.00	43.58 99.10					0.00		Average Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL	100 100 100 100	11 11 11 11

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit			Preamp. Factor	Antenna Factor	Remark	Pol/Phase	A/Pos	T/Pos
_	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBuV	dB	dB	dB/m			Cm	deg
1 2 3 p 4 a 5	2387.90 2390.00 2437.90 2438.80 2483.50 2485.00	43.11	54.00	-19.41 -10.89 -10.95 -19.50	23.81 12.33 12.36 23.81	2.91 2.91 2.94 2.94 2.96 2.96		27.78 27.78	Average Peak Average Average	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL	100 100 100 100 100 100	279 279 279 279 279 279

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line		Read Level					Pol/Phase	A/Pos	T/Pos
_	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB	dB/m			Cm	deg
1 a 2 p 3	2460.20 2461.20 2483.50 2485.10	101.11 43.23	54.00	-10.77 -19.02			0.00 0.00	27.76	Average	VERTICAL VERTICAL VERTICAL VERTICAL	100 100 100 100	261 261 261 261

Item 1, 2 are the fundamental frequency at 2462 MHz.

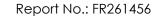
Temperature	21°C	Humidity	56.4%
Test Engineer	Benson Peng	Configurations	IEEE 802.11g CH 1, 6, 11 /
Test Date	Jul. 11, 2012		7411. 1

Channel 1

	Freq	Level	Limit Line		Read Level					Pol/Phase	A/Pos	T/Pos
-	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	dB	dB	dB/m			Cm	deg
3 a	2389.80 2390.00 2405.20 2405.40	52.33 94.13	54.00				0.00		Average Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL	100 100 100 100	12 12 12 12

Item 3, 4 are the fundamental frequency at 2412 MHz.

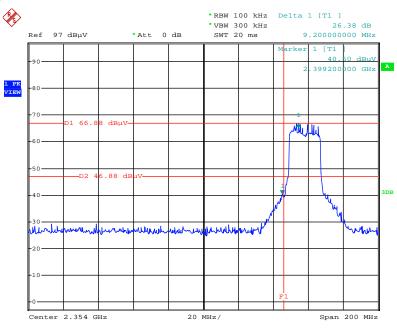
Channel 6

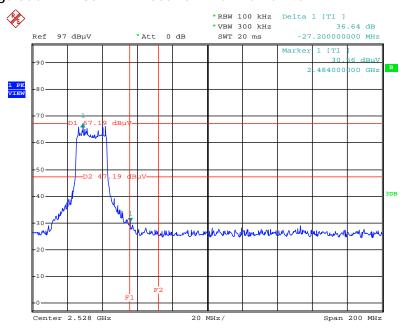

F	req Le	Limit vel Line		Read Level		Preamp. Factor		Remark	Pol/Phase	A/Pos	T/Pos
	MHz dBu	V/m dBuV/m	dB	dBu∀	d B	dB	dB/m		_	Cm	deg
1 2387 2 2390 3 p 2430 4 a 2431 5 2483 6 2484	1,00 43 1,40 104 ,90 93	.22 54.00 .27 .41 .06 54.00	-10.78	24.97 12.44 12.37 24.82	2.91 2.91 2.93 2.93 2.96 2.96	0.00	27.87 27.81 27.81 27.73	Average Peak Average Average	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL	100 100 100 100 100 100	280 280 280 280 280 280

Item 3, 4 are the fundamental frequency at 2437 MHz.

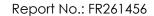
Channel 11

	Freq	Level	Limit Line		Read Level					Pol/Phase	A/Pos	T/Pos
_	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBuV	dB	dB	dB/m			Cm	deg
2 a 3	2458.00 2459.40 2483.50 2483.50	91.02 64.13	74.00			2.95 2.95 2.96 2.96	0.00	27.76 27.73	Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL	100 100 100 100	260 260 260 260

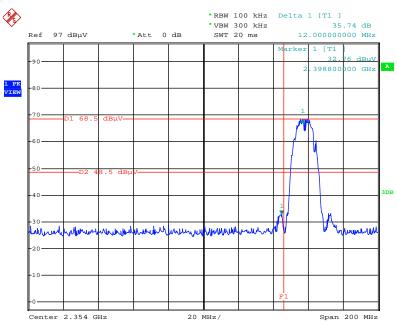

Item 1, 2 are the fundamental frequency at 2462 MHz.


For Emission not in Restricted Band

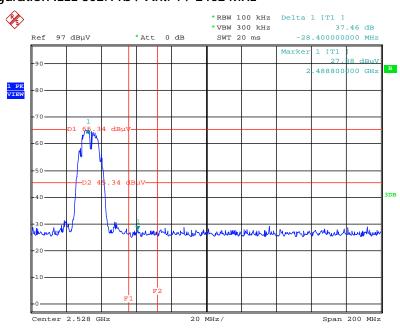
Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 / 2412 MHz


Date: 12.JUL.2012 02:47:27

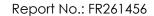
Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 / 2462 MHz


Date: 12.JUL.2012 02:49:39

Report Format Version: 01 Page No. : 52 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

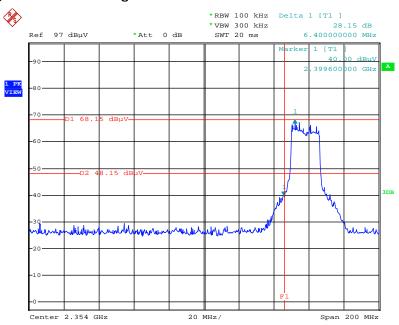


Plot on Configuration IEEE 802.11b / Ant. 1 / 2412 MHz

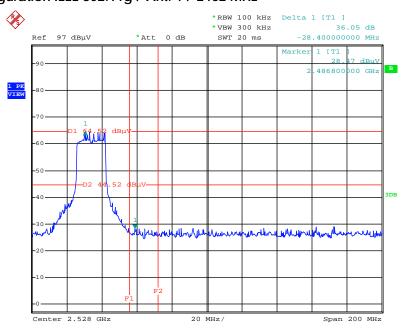


Date: 12.JUL.2012 02:45:15

Plot on Configuration IEEE 802.11b / Ant. 1 / 2462 MHz



Date: 12.JUL.2012 02:37:40



Plot on Configuration IEEE 802.11g / Ant. 1 / 2412 MHz

Date: 12.JUL.2012 02:43:33

Plot on Configuration IEEE 802.11g / Ant. 1 / 2462 MHz

Date: 12.JUL.2012 02:40:17

Report Format Version: 01 Page No. : 54 of 59
FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012

4.8. Antenna Requirements

4.8.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.8.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Sep. 14, 2011	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 14, 2011	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9K ~ 30MHz	Nov. 30, 2011	Conduction (CO01-CB)
PULSE LIMITER	R&S	ESH3-Z2	100430	9K~30MHz	Feb. 03, 2012	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 4, 2011	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Jan. 11, 2012	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 25, 2011	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 22, 2011	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 29, 2011	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9KHz~40GHz	Nov. 03, 2011	Radiation (05CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ~ 2.75GHz	Mar. 20, 2012	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Sep. 09, 2010*	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N/A	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N/A	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2011	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Sep. 26, 2011	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	May 20, 2012	Conducted (TH01-CB)
Thermo-Hygro Meter	N/A	HC 520	#1	15~70 degree	Nov. 02, 2011	Conducted (TH01-CB)
Signal Generator	R&S	SMR40	100302	10MHz-40GHz	Nov. 22, 2011	Conducted (TH01-CB)
RF Power Divider	HP	11636A	00306	2GHz ~ 18GHz	N/A	Conducted (TH01-CB)
RF Power Splitter	Anaren	44100	1839	2GHz ~ 18GHz	N/A	Conducted (TH01-CB)

Page No. : 56 of 59

Issued Date : Jul. 20, 2012

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Power Splitter	Anaren	42100	17930	2GHz ~ 18GHz	N/A	Conducted (TH01-CB)
Signal generator	R&S	SMU200A	102782	10MHz-40GHz	Jun. 07, 2012	Conducted (TH01-CB)
Horn Antenna	COM-POWER	AH-118	071187	1GHz – 18GHz	Mar. 18, 2012	Conducted (TH01-CB)
Horn Antenna	COM-POWER	AH-118	071042	1GHz – 18GHz	Nov. 01, 2011	Radiation (05CH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-12	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-13	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 01, 2011	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 01, 2011	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

Note: "*" Calibration Interval of instruments listed above is two years.

Page No. : 57 of 59 Issued Date : Jul. 20, 2012

6. TEST LOCATION

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

Page No. : 58 of 59

Issued Date : Jul. 20, 2012

7. TAF CERTIFICATE OF ACCREDITATION

Certificate No.: L1190-110702

Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Road, Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO/IEC 17025:2005

Accreditation Number : 1190

Originally Accredited : December 15, 2003

: January 10, 2010 to January 09, 2013 **Effective Period**

Accredited Scope : Testing Field, see described in the Appendix

Specific Accreditation : Accreditation Program for Designated Testing Laboratory

Program for Commodities Inspection

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

Jay-San Chen

President, Taiwan Accreditation Foundation

Date: July 02, 2011

P1, total 22 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix

Report Format Version: 01 Page No. : 59 of 59 FCC ID: JNZVR0002 Issued Date : Jul. 20, 2012