

FCC Test Report (BT-EDR)

Report No.: RF180327E08

FCC ID: JNZS00171

Test Model: S-00171

Received Date: Mar. 27, 2018

Test Date: Mar. 28 to Apr. 09, 2018

Issued Date: Apr. 19, 2018

Applicant: LOGITECH FAR EAST LTD.

Address: #2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.

 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.

Test Location : E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.

FCC Registration / 723255 / TW2022 Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record 4						
1	C	Certificate of Conformity	5				
2	S	Summary of Test Results	6				
	2.1	Measurement Uncertainty					
	2.2	Modification Record					
3	G	General Information	7				
	3.1	General Description of EUT (BT-EDR)	7				
	3.2	Description of Test Modes	9				
	3.2.1	Test Mode Applicability and Tested Channel Detail					
	3.3	Description of Support Units					
	3.3.1	Configuration of System under Test					
	3.4	General Description of Applied Standards					
4	Т	est Types and Results					
	4.1	Radiated Emission and Bandedge Measurement	16				
	4.1.1						
		Test Instruments					
		Test Procedures.					
		Deviation from Test Standard					
		Test Setup					
		EUT Operating Conditions					
		Test Results Conducted Emission Measurement					
	4.2	Limits of Conducted Emission Measurement					
		Test Instruments					
		Test Procedures					
		Deviation From Test Standard					
		Test Setup					
		EUT Operating Condition					
		Test Results (Mode 1)					
		Test Results (Mode 2)					
	4.2.9						
	4.3	Number of Hopping Frequency Used					
	4.3.1	Limits of Hopping Frequency Used Measurement					
	4.3.2	Test Setup	36				
	4.3.3	Test Instruments	36				
		Test Procedure					
		Deviation from Test Standard					
		Test Results					
	4.4	Dwell Time on Each Channel					
		Limits of Dwell Time on Each Channel Measurement					
		Test Setup					
		Test Instruments					
		Test Procedures.					
		Deviation from Test Standard					
	4.4.6 4.5	Test Results Channel Bandwidth					
		Limits of Channel Bandwidth Measurement					
		Test Setup					
		Test Instruments					
		Test Procedure					
		Deviation from Test Standard					
		EUT Operating Condition					
		Test Results					

A	ppend	lix – Information on the Testing Laboratories	53
5	Р	ictures of Test Arrangements	52
		Test Results	
		EUT Operating Condition	
	4.8.4	Deviation from Test Standard	49
	4.8.3	Test Procedure	49
	4.8.2	Test Instruments	
	4.8.1	Limits of Conducted Out of Band Emission Measurement	
	4.8	Conducted Out of Band Emission Measurement	
		Test Results	
		EUT Operating Condition	
		Deviation from Test Standard	
	-	Test Procedure	
		Test Instruments	
		Test Setup	
		Limits of Maximum Output Power Measurement	
	4.7	Maximum Output Power	
		Test Results	
		Deviation from Test Standard	
		Test Procedure	
		Test Instruments	
		Test Setup	
	4.6 4.6.1		
	4.6	Hopping Channel Separation	15

Release Control Record							
Issue No.	Description		Date Issued				
RF180327E08	Original release.		Apr. 19, 2018				

1	Certificate of Conformity					
	Product:	Bluetooth speaker				
	Brand:	ULTIMATE EARS				
	Test Model:	S-00171				
	Sample Status:	ENGINEERING SAMPLE				
	Applicant:	LOGITECH FAR EAST LTD.				
	Test Date:	Mar. 28 to Apr. 09, 2018				
	Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)				
		ANSI C63.10: 2013				

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Mary	Ko	, Date:	Apr. 19, 2018	
	Mary Ko / 🕏	pecialist			
Approved by :	\mathcal{N}		, Date:	Apr. 19, 2018	
	May Chen / M	Manager			

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)								
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -13.35dB at 0.19687MHz.					
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.					
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.					
15.247(a)(1) 15.247(a)(1) 15.247(a)(1) 15.247(a)(1) 11. Hopping Channel Separation 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System		PASS	Meet the requirement of limit.					
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.					
15.205 & 209 & Radiated Emissions & Band Edge Measurement 15.247(d)		PASS	Meet the requirement of limit. Minimum passing margin is -9.5dB at 62.98MHz.					
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.					
15.203	Antenna Requirement	PASS	No antenna connector is used.					

Note: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.84 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.53 dB
	1GHz ~ 6GHz	5.08 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.98 dB
	18GHz ~ 40GHz	5.19 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-EDR)

Product	Bluetooth speaker			
PMN	MEGABOOM 3			
Brand	ULTIMATE EARS			
Test Model	S-00171			
Status of EUT	ENGINEERING SAMPLE			
Power Supply Rating	DC 7.4V from battery DC 5V from USB interface			
Modulation Type	GFSK, π/4-DQPSK, 8DPSK			
Modulation Technology	FHSS			
Transfer Rate	Up to 3Mbps			
Operating Frequency	2402MHz ~ 2480MHz			
Number of Channel	79			
Output Power	8.65mW			
Antenna Type	Refer to Note			
Antenna Connector	Refer to Note			
Accessory Device	Charging Dock (option) x 1 Adapter x 1			
Data Cable Supplied	USB to Micro USB cable (Unshielded, 1.2m) x 1			

Note:

1. The EUT may have a lot of colors for marketing requirement.

2. The EUT could be supplied with 7.4V battery, power adapter or charging dock as the following table:

Battery						
Brand Name	Model No.	Spec.				
Logitech	533-000146 (2ICR19/66)	7.4 V 2850mAh, 21.4Wh				
Adapter						
Brand Name	Model No.	Spec.				
ULTIMATE EARS	AD2026M20	AC Input: 100-240Vac, 50/60Hz, 0.5A DC Output: 5V, 2A or 9V, 2A or 12V, 1.5A USB cable Unshielded, 1.2m				
Charging Dock (opti	on)					
Brand Name	Model No.	Spec.				
ULTIMATE EARS	S-00165	Input: 5.1V, 2A Output :5V, 2A				
3. For radiated emissions, the EUT was pre-tested under the following modes:						
Test Mode Description						
Mode A	Power from adapter					
	1					

Mode BPower from LaptopMode CPower from Charging Dock

Mode D Power from Battery

From the above modes, the worst case was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

4. The USB port of the EUT is only for charging the rechargeable battery. And the EUT has Bluetooth function under charging mode.

5. The antenna provided to the EUT, please refer to the following table:

Antenna Gain (dBi)	Frequency range (GHz)	Antenna Type	Connector Type
0.27	2.4~2.4835	Folded Monopole	None

6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

79 channels are provided for BT-EDR mode:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE	APPLICABLE TO				DESCRIPTION
MODE	RE≥1G	RE<1G	PLC	APCM	
1	\checkmark	\checkmark	\checkmark	\checkmark	Powered from adapter
2	-	-	\checkmark	-	Powered from Laptop
3	-	-	\checkmark	-	Powered from charging dock
Where F	RE≥1G: Radiate	d Emission abo	ve 1GHz	RE<1G: R	adiated Emission below 1GHz
F	PLC: Power Line Conducted Emission			APCM: An	tenna Port Conducted Measurement

Note: 1. "-"means no effect.

2. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane.

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as lis
--

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	PACKET TYPE
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	
0 to 78	78	FHSS	GFSK	DH5

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	PACKET TYPE
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	
0 to 78	78	FHSS	GFSK	DH5

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

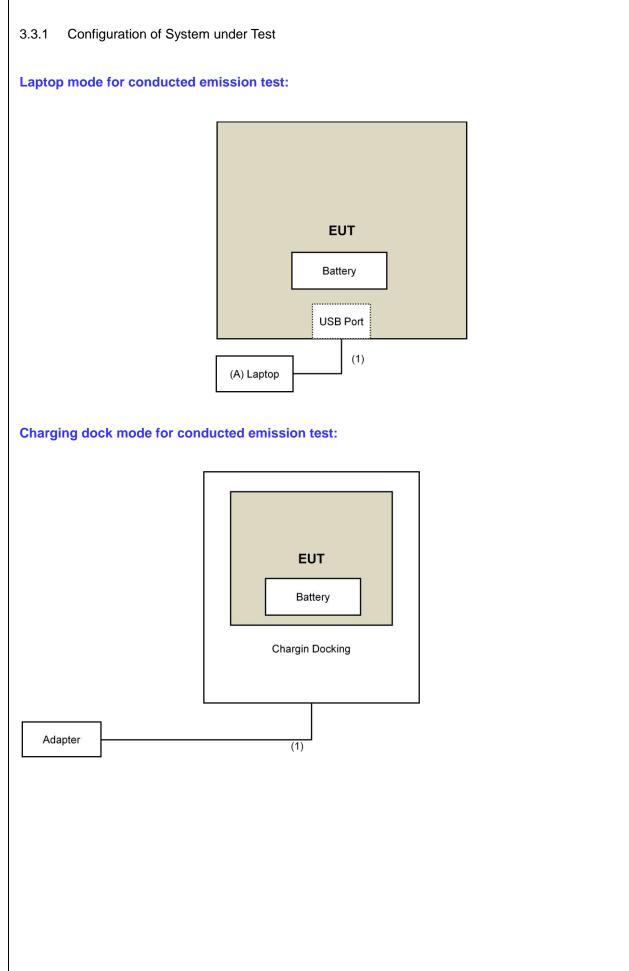
AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	21deg. C, 64%RH	120Vac, 60Hz	Eason Tseng
RE<1G	22deg. C, 65%RH	120Vac, 60Hz	Eason Tseng
PLC	25deg. C, 75%RH	120Vac, 60Hz	Andy Ho
APCM	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin

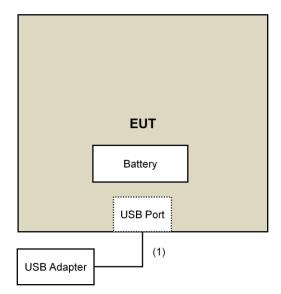
3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).


ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	1.2	No	0	Supplied by client

Adapter mode for conducted and radiated emission tests:

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER		SERIAL NO.	DATE	UNTIL
Test Receiver Agilent	N9038A	MY50010156	July 12, 2017	July 11, 2018
Pre-Amplifier EMCI	EMC001340	980142	Feb. 09, 2018	Feb. 08, 2019
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 15, 2018	Jan. 14, 2019
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	May 06, 2017	May 05, 2018
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 29, 2017	Nov. 28, 2018
RF Cable	8D	966-3-1 966-3-2 966-3-3	Mar. 20, 2018	Mar. 19, 2019
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Oct. 03, 2017	Oct. 02, 2018
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Dec. 12, 2017	Dec. 11, 2018
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 29, 2018	Jan. 28, 2019
RF Cable	EMC104-SM-SM-1200 EMC104-SM-SM-2000 EMC104-SM-SM-5000	160922 150317 150322	Jan. 29, 2018	Jan. 28, 2019
Spectrum Analyzer Keysight	N9030A	MY54490679	July 25, 2017	July 24, 2018
Pre-Amplifier EMCI	EMC184045SE	980386	Jan. 29, 2018	Jan. 28, 2019
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 14, 2017	Dec. 13, 2018
RF Cable	EMC102-KM-KM-1200	160924	Jan. 29, 2018	Jan. 28, 2019
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Spectrum Analyzer R&S	FSV40	100964	July 1, 2017	June 30, 2018
Power meter Anritsu	ML2495A	1014008	May 11, 2017	May 10, 2018
Power sensor Anritsu	MA2411B	0917122	May 11, 2017	May 10, 2018

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 3.
- 4. Loop antenna was used for all emissions below 30 MHz.
- 5. The CANADA Site Registration No. is 20331-1
- 6. Tested Date: Mar. 28 to Apr. 09, 2018

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

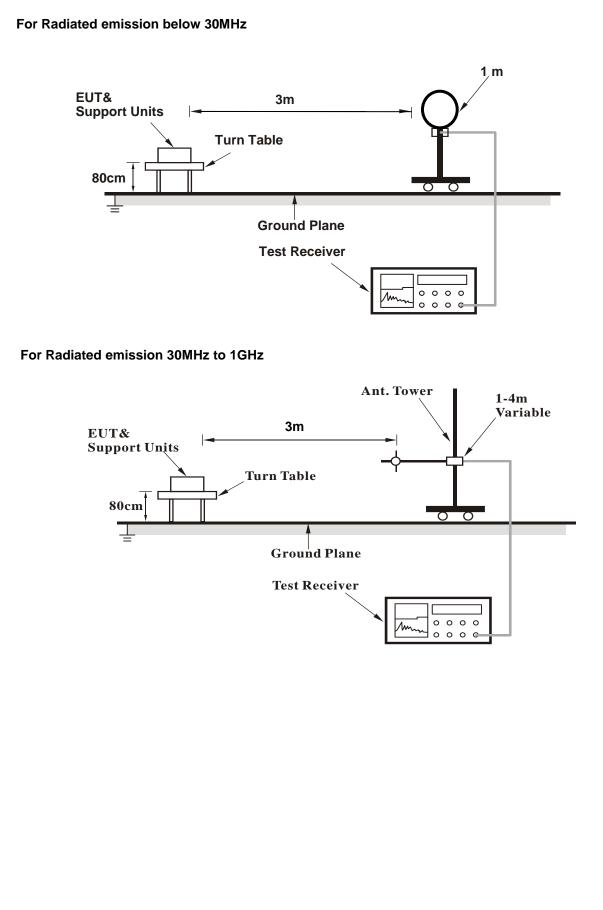
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

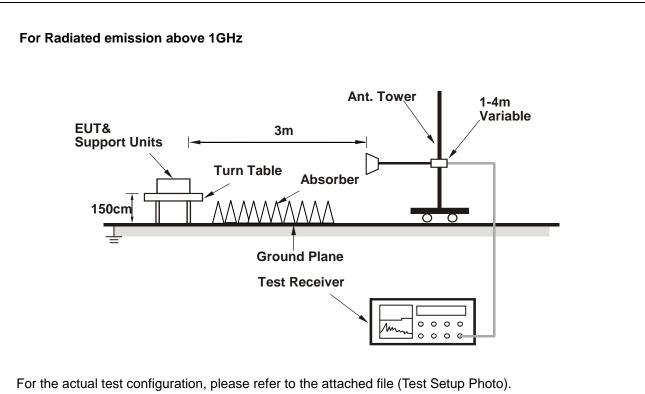
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Controlling software (BlueTest3 Ver2.6.8.1467.exe) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data:

BT_GFSK

(CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
I	FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	54.4 PK	74.0	-19.6	1.18 H	357	56.1	-1.7	
2	2390.00	42.8 AV	54.0	-11.2	1.18 H	357	44.5	-1.7	
3	*2402.00	101.8 PK			1.18 H	357	103.6	-1.8	
4	*2402.00	71.7 AV			1.18 H	357	73.5	-1.8	
5	4804.00	52.1 PK	74.0	-21.9	1.55 H	209	49.1	3.0	
6	4804.00	22.0 AV	54.0	-32.0	1.55 H	209	19.0	3.0	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	54.3 PK	74.0	-19.7	1.62 V	85	56.0	-1.7	
2	2390.00	42.1 AV	54.0	-11.9	1.62 V	85	43.8	-1.7	
3	*2402.00	100.9 PK			1.62 V	85	102.7	-1.8	
4	*2402.00	70.8 AV			1.62 V	85	72.6	-1.8	

REMARKS:

5

6

4804.00

4804.00

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-25.7

-35.8

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.49 V

1.49 V

236

236

45.3

15.2

3.0

3.0

3. The other emission levels were very low against the limit.

74.0

54.0

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

48.3 PK

18.2 AV

6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB

7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2441.00	102.1 PK			1.33 H	342	104.2	-2.1		
2	*2441.00	72.0 AV			1.33 H	342	74.1	-2.1		
3	4882.00	52.8 PK	74.0	-21.2	1.55 H	202	49.5	3.3		
4	4882.00	22.7 AV	54.0	-31.3	1.55 H	202	19.4	3.3		
5	7323.00	50.4 PK	74.0	-23.6	1.65 H	253	41.2	9.2		
6	7323.00	20.3 AV	54.0	-33.7	1.65 H	253	11.1	9.2		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
							-	0000000000		

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	100.3 PK			1.49 V	49	102.4	-2.1
2	*2441.00	70.2 AV			1.49 V	49	72.3	-2.1
3	4882.00	48.8 PK	74.0	-25.2	1.46 V	237	45.5	3.3
4	4882.00	18.7 AV	54.0	-35.3	1.46 V	237	15.4	3.3
5	7323.00	48.3 PK	74.0	-25.7	2.80 V	90	39.1	9.2
6	7323.00	18.2 AV	54.0	-35.8	2.80 V	90	9.0	9.2

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	102.5 PK			1.23 H	356	104.5	-2.0	
2	*2480.00	72.4 AV			1.23 H	356	74.4	-2.0	
3	2483.50	55.4 PK	74.0	-18.6	1.23 H	356	57.4	-2.0	
4	2483.50	25.3 AV	54.0	-28.7	1.23 H	356	27.3	-2.0	
5	4960.00	52.4 PK	74.0	-21.6	1.51 H	213	49.1	3.3	
6	4960.00	22.3 AV	54.0	-31.7	1.51 H	213	19.0	3.3	
7	7440.00	50.1 PK	74.0	-23.9	1.67 H	261	40.7	9.4	
8	7440.00	20.0 AV	54.0	-34.0	1.67 H	261	10.6	9.4	
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	100.5 PK			1.44 V	95	102.5	-2.0	
2	*2480.00	70.4 AV			1.44 V	95	72.4	-2.0	
3	2483.50	54.2 PK	74.0	-19.8	1.44 V	95	56.2	-2.0	
4	2483.50	24.1 AV	54.0	-29.9	1.44 V	95	26.1	-2.0	
5	4960.00	48.4 PK	74.0	-25.6	1.51 V	245	45.1	3.3	
6	4960.00	18.3 AV	54.0	-35.7	1.51 V	245	15.0	3.3	
7	7440.00	47.9 PK	74.0	-26.1	2.78 V	74	38.5	9.4	
8	7440.00	17.8 AV	54.0	-36.2	2.78 V	74	8.4	9.4	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB

7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

BT_8DPSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	56.9 PK	74.0	-17.1	1.10 H	356	58.6	-1.7	
2	2390.00	44.2 AV	54.0	-9.8	1.10 H	356	45.9	-1.7	
3	*2402.00	102.3 PK			1.10 H	356	104.1	-1.8	
4	*2402.00	72.2 AV			1.10 H	356	74.0	-1.8	
5	4804.00	51.2 PK	74.0	-22.8	1.41 H	211	48.2	3.0	
6	4804.00	21.1 AV	54.0	-32.9	1.41 H	211	18.1	3.0	
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	55.6 PK	74.0	-18.4	2.06 V	95	57.3	-1.7	
2	2390.00	43.1 AV	54.0	-10.9	2.06 V	95	44.8	-1.7	
3	*2402.00	100.8 PK			2.06 V	95	102.6	-1.8	
4	*2402.00	70.7 AV			2.06 V	95	72.5	-1.8	
5	4804.00	49.0 PK	74.0	-25.0	2.41 V	263	46.0	3.0	
6	4804.00	18.9 AV	54.0	-35.1	2.41 V	263	15.9	3.0	
	VBK6.								

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2441.00	102.4 PK			1.17 H	339	104.5	-2.1		
2	*2441.00	72.3 AV			1.17 H	339	74.4	-2.1		
3	4882.00	51.6 PK	74.0	-22.4	1.36 H	218	48.3	3.3		
4	4882.00	21.5 AV	54.0	-32.5	1.36 H	218	18.2	3.3		
5	7323.00	49.6 PK	74.0	-24.4	1.65 H	332	40.4	9.2		
6	7323.00	19.5 AV	54.0	-34.5	1.65 H	332	10.3	9.2		
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
		THICCION						CORRECTION		

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	101.1 PK			2.24 V	82	103.2	-2.1
2	*2441.00	71.0 AV			2.24 V	82	73.1	-2.1
3	4882.00	49.4 PK	74.0	-24.6	2.33 V	254	46.1	3.3
4	4882.00	19.3 AV	54.0	-34.7	2.33 V	254	16.0	3.3
5	7323.00	44.9 PK	74.0	-29.1	1.76 V	134	35.7	9.2
6	7323.00	14.8 AV	54.0	-39.2	1.76 V	134	5.6	9.2

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	102.7 PK			1.24 H	342	104.7	-2.0
2	*2480.00	72.6 AV			1.24 H	342	74.6	-2.0
3	2483.50	59.2 PK	74.0	-14.8	1.24 H	342	61.2	-2.0
4	2483.50	29.1 AV	54.0	-24.9	1.24 H	342	31.1	-2.0
5	4960.00	51.5 PK	74.0	-22.5	1.38 H	216	48.2	3.3
6	4960.00	21.4 AV	54.0	-32.6	1.38 H	216	18.1	3.3
7	7440.00	50.4 PK	74.0	-23.6	1.66 H	342	41.0	9.4
8	7440.00	20.3 AV	54.0	-33.7	1.66 H	342	10.9	9.4
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	101.3 PK			2.03 V	75	103.3	-2.0
2	*2480.00	71.2 AV			2.03 V	75	73.2	-2.0
3	2483.50	58.7 PK	74.0	-15.3	2.02 V	75	60.7	-2.0
4	2483.50	28.6 AV	54.0	-25.4	2.02 V	75	30.6	-2.0
5	4960.00	49.2 PK	74.0	-24.8	2.37 V	248	45.9	3.3
6	4960.00	19.1 AV	54.0	-34.9	2.37 V	248	15.8	3.3
7	7440.00	45.2 PK	74.0	-28.8	1.79 V	141	35.8	9.4
8	7440.00	15.1 AV	54.0	-38.9	1.79 V	141	5.7	9.4

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

Below 1GHz Worst-Case Data

BT_GFSK

CHANNEL	TX Channel 78	DETECTOR	Overi Beek (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	63.95	25.2 QP	40.0	-14.8	1.04 H	221	34.4	-9.2
2	143.49	25.6 QP	43.5	-17.9	1.49 H	255	33.8	-8.2
3	384.05	28.8 QP	46.0	-17.2	2.05 H	31	34.1	-5.3
4	404.42	29.9 QP	46.0	-16.1	1.09 H	346	34.8	-4.9
5	789.51	33.0 QP	46.0	-13.0	2.50 H	139	29.9	3.1
6	861.29	33.7 QP	46.0	-12.3	1.87 H	20	30.0	3.7
		ANTENNA		& TEST D	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	62.98	30.5 QP	40.0	-9.5	1.02 V	360	39.6	-9.1
2	109.54	28.6 QP	43.5	-14.9	1.41 V	257	39.6	-11.0
3	408.30	31.8 QP	46.0	-14.2	2.00 V	201	36.5	-4.7
4	755.56	32.4 QP	46.0	-13.6	1.94 V	213	29.7	2.7
5	832.19	33.6 QP	46.0	-12.4	1.84 V	201	30.0	3.6
6	919.49	34.5 QP	46.0	-11.5	1.05 V	32	29.7	4.8
	ADKC.	•			•	•	-	•

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)						
Frequency (MHz)	Quasi-peak	Average					
0.15 - 0.5	66 - 56	56 - 46					
0.50 - 5.0	56	46					
5.0 - 30.0	60	50					

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

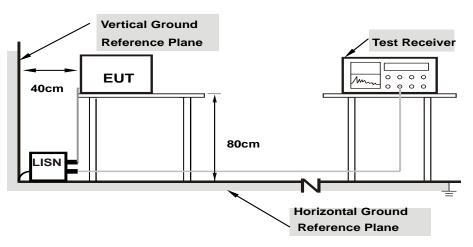
DESCRIPTION &			CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver	ESCS 30	847124/029	Nov. 01, 2017	Oct. 31, 2018
R&S	2000 00	011121/020	1101.01,2017	000.01,2010
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Nov. 15, 2017	Nov. 14, 2018
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 03, 2017	June 02, 2018
50 ohms Terminator	N/A	EMC-02	Sep. 22, 2017	Sep. 21, 2018
RF Cable	5D-FB	COCCAB-001	Sep. 29, 2017	Sep. 28, 2018
Fixed attenuator EMEC	STI02-2200-10	003	Mar. 16, 2018	Mar. 15, 2019
Software	BVADT_Cond_	NA	NA	NA
BVADT	V7.3.7.4			

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 1.

3. Tested Date: Mar. 29, 2018


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation From Test Standard

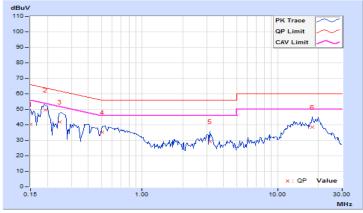
No deviation.

4.2.5 Test Setup

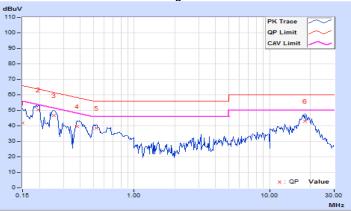
Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition


Same as 4.1.6.

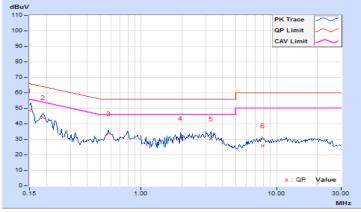
Phase)	Lin	e (L)		D	etector Fu	nction Quasi-Peak (QP) / Average (AV)			
	_	Corr.	Readin	g Value	Emissi	Emission Level		nit	Margin	
No	Freq.	Factor	[dB (uV)]		[dB	(uV)]	[dB ((uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.05	30.47	6.24	40.52	16.29	66.00	56.00	-25.48	-39.71
2	0.19297	10.07	39.55	28.45	49.62	38.52	63.91	53.91	-14.29	-15.39
3	0.24766	10.08	31.82	15.38	41.90	25.46	61.84	51.84	-19.94	-26.38
4	0.50547	10.13	25.16	13.86	35.29	23.99	56.00	46.00	-20.71	-22.01
5	3.15625	10.29	18.83	6.27	29.12	16.56	56.00	46.00	-26.88	-29.44
6	18.11328	11.27	27.07	20.02	38.34	31.29	60.00	50.00	-21.66	-18.71


4.2.7 Test Results (Mode 1)

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	9	Ne	eutral (N)			Detector Fu	nction		i-Peak (QP) / age (AV)			
Erog Co		Corr.	r. Reading Value			sion Level	Lir	nit	Margin			
No	No Freq. Factor		[dB (uV)]		[dl	B (uV)]	[dB (uV)]	(dB)			
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15000	9.95	31.83	7.21	41.78	17.16	66.00	56.00	-24.22	-38.84		
2	0.19687	9.97	40.42	28.28	50.39	38.25	63.74	53.74	-13.35	-15.49		
3	0.25547	9.98	36.77	25.23	46.75	35.21	61.58	51.58	-14.83	-16.37		
4	0.38047	10.02	29.62	20.46	39.64	30.48	58.27	48.27	-18.63	-17.79		
5	0.52891	10.02	28.37	18.03	38.39	28.05	56.00	46.00	-17.61	-17.95		
6	18.24609	11.06	31.73	24.40	42.79	35.46	60.00	50.00	-17.21	-14.54		

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



	Lir									
Phase				C	etector Fu	nction		Quasi-Peak (QP) / Average (AV)		
	Corr.	Readin	g Value	Emiss	ion Level	Lir	nit	Mar	gin	
eq.	Factor	[dB (uV)]		[dB	(uV)]	[dB (uV)]	(dl	3)	
Hz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
5000	10.03	38.46	20.57	48.49	30.60	66.00	56.00	-17.51	-25.40	
8906	10.05	33.92	23.31	43.97	33.36	64.08	54.08	-20.11	-20.72	
7578	10.12	23.57	14.88	33.69	25.00	56.00	46.00	-22.31	-21.00	
5313	10.19	20.61	11.64	30.80	21.83	56.00	46.00	-25.20	-24.17	
8125	10.24	20.12	12.78	30.36	23.02	56.00	46.00	-25.64	-22.98	
1797	10.45	15.32	9.22	25.77	19.67	60.00	50.00	-34.23	-30.33	
	5000 3906 7578 5313 3125	Eq. Factor Hz] (dB) 5000 10.03 3906 10.05 7578 10.12 5313 10.19 3125 10.24	Factor [dB (Hz] (dB) Q.P. 5000 10.03 38.46 3906 10.05 33.92 7578 10.12 23.57 5313 10.19 20.61 3125 10.24 20.12	Factor [dB (uV)] Hz] (dB) Q.P. AV. 5000 10.03 38.46 20.57 3906 10.05 33.92 23.31 7578 10.12 23.57 14.88 5313 10.19 20.61 11.64 3125 10.24 20.12 12.78	Factor [dB (uV)] [dB Hz] (dB) Q.P. AV. Q.P. 5000 10.03 38.46 20.57 48.49 3906 10.05 33.92 23.31 43.97 7578 10.12 23.57 14.88 33.69 5313 10.19 20.61 11.64 30.80 3125 10.24 20.12 12.78 30.36	Factor [dB (uV)] [dB (uV)] Hz] (dB) Q.P. AV. Q.P. AV. 5000 10.03 38.46 20.57 48.49 30.60 3906 10.05 33.92 23.31 43.97 33.36 7578 10.12 23.57 14.88 33.69 25.00 5313 10.19 20.61 11.64 30.80 21.83 3125 10.24 20.12 12.78 30.36 23.02	eq. Factor [dB (uV)] [dB (uV	eq. Factor [dB (uV)] [dB (uV)] [dB (uV)] [dB (uV)] Hz] (dB) Q.P. AV. Q.P. AV. Q.P. AV. 5000 10.03 38.46 20.57 48.49 30.60 66.00 56.00 3906 10.05 33.92 23.31 43.97 33.36 64.08 54.08 7578 10.12 23.57 14.88 33.69 25.00 56.00 46.00 5313 10.19 20.61 11.64 30.80 21.83 56.00 46.00 3125 10.24 20.12 12.78 30.36 23.02 56.00 46.00	eq.Factor $[dB (uV)]$ $[dB (uV)]$ $[dB (uV)]$ $[dB (uV)]$ $(dB (uV)]$ $($	

4.2.8 Test Results (Mode 2)

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase)	Ne	Neutral (N)			Detector Fu	inction		asi-Peak (QP) / rage (AV)			
Frog		Corr.	rr. Reading Value		Emis	Emission Level		nit	Mar	gin		
No	No Freq. Fac		[dB	[dB (uV)]		B (uV)]	[dB ([uV)]	(d	B)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15000	9.94	40.26	20.37	50.20) 30.31	66.00	56.00	-15.80	-25.69		
2	0.20469	9.96	28.26	16.35	38.22	2 26.31	63.42	53.42	-25.20	-27.11		
3	0.94297	10.03	19.48	10.01	29.51	20.04	56.00	46.00	-26.49	-25.96		
4	1.93750	10.07	19.23	11.59	29.30	21.66	56.00	46.00	-26.70	-24.34		
5	3.34766	10.12	20.22	13.37	30.34	23.49	56.00	46.00	-25.66	-22.51		
6	13.19141	10.56	14.53	8.65	25.09) 19.21	60.00	50.00	-34.91	-30.79		

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase)	L	ine (L)		C	etector Fu	nction		Quasi-Peak (QP) / Average (AV)		
	Frog	Corr.	Readin	g Value	Emiss	ion Level	Lir	nit	Mar	gin	
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB (uV)]	(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15781	10.05	28.30	5.51	38.35	15.56	65.58	55.58	-27.23	-40.02	
2	0.19028	10.07	37.73	24.58	47.80	34.65	64.02	54.02	-16.22	-19.37	
3	0.25606	10.08	32.67	22.66	42.75	32.74	61.56	51.56	-18.81	-18.82	
4	0.40781	10.12	25.13	12.09	35.25	22.21	57.69	47.69	-22.44	-25.48	
5	14.44531	11.02	25.46	15.49	36.48	26.51	60.00	50.00	-23.52	-23.49	
6	19.82422	11.38	27.51	20.01	38.89	31.39	60.00	50.00	-21.11	-18.61	

4.2.9 Test Results (Mode 3)

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase)	Ne	eutral (N)		De	etector Fu	nction		si-Peak (QP) / age (AV)		
	Erog		Readin	g Value	Emissio	on Level	Lir	nit	Mar	gin	
No	Freq. Factor		[dB	[dB (uV)]		(uV)]	[dB (uV)]	(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	9.95	28.83	3.41	38.78	13.36	66.00	56.00	-27.22	-42.64	
2	0.20078	9.97	37.49	23.69	47.46	33.66	63.58	53.58	-16.12	-19.92	
3	0.25938	9.98	34.89	25.02	44.87	35.00	61.45	51.45	-16.58	-16.45	
4	0.38047	10.02	29.93	20.12	39.95	30.14	58.27	48.27	-18.32	-18.13	
5	0.53672	10.02	28.47	16.72	38.49	26.74	56.00	46.00	-17.51	-19.26	
6	17.92969	11.04	31.94	24.94	42.98	35.98	60.00	50.00	-17.02	-14.02	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

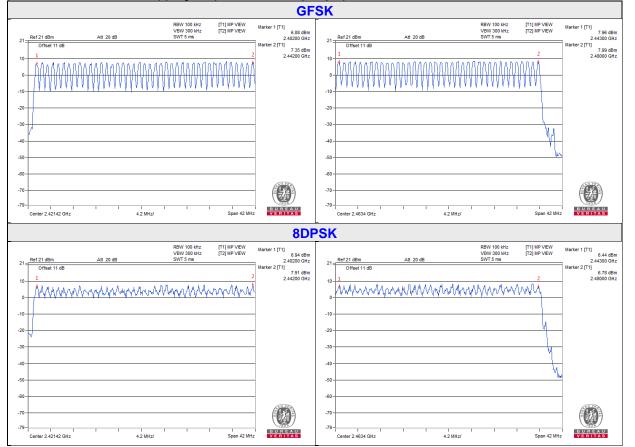
At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure


- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.
- 4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

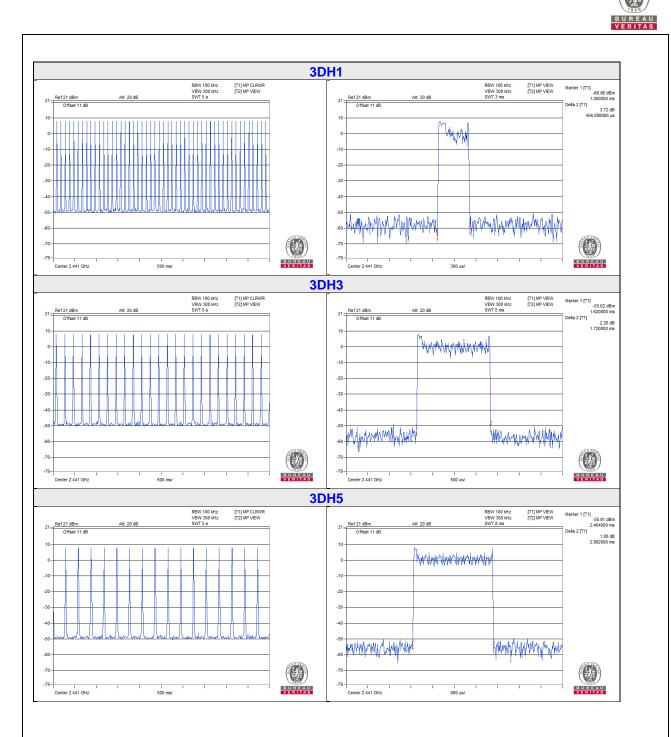
No deviation.

4.4.6 Test Results

GFSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	51 (times / 5 sec) * 6.32 = 322.32 times	0.48	154.71	400
DH3	25 (times / 5 sec) * 6.32 = 158 times	1.79	282.82	400
DH5	17 (times / 5 sec) * 6.32 = 107.44 times	3.024	324.9	400

Note: Test plots of the transmitting time slot are shown on next page.



8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
3DH1	50 (times / 5 sec) * 6.32 = 316 times	0.456	144.1	400
3DH3	25 (times / 5 sec) * 6.32 = 158 times	1.72	271.76	400
3DH5	16 (times / 5 sec) * 6.32 = 101.12 times	2.992	302.55	400

Note: Test plots of the transmitting time slot are shown on next page.

4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

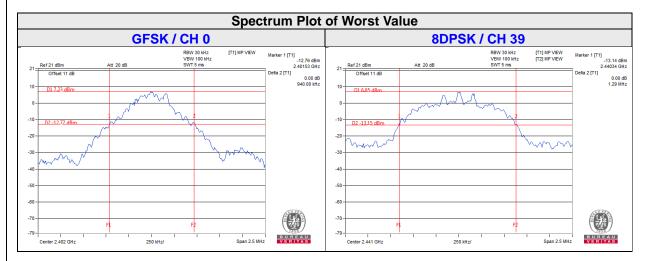
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Detector = peak.
- e. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)			
onamici		GFSK	8DPSK		
0	2402	0.94	1.27		
39	2441	0.94	1.29		
78	2480	0.94	1.29		

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

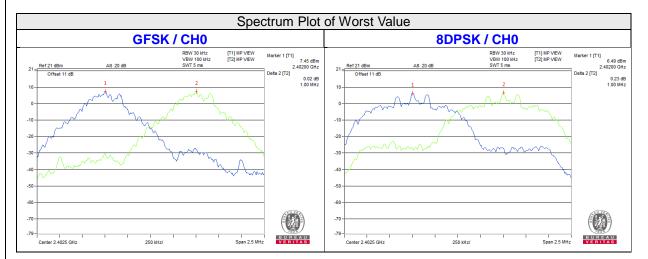
4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.
- 4.6.5 Deviation from Test Standard


No deviation.

4.6.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)		20dB Bandwidth (MHz)		Minimum Limit (MHz)		Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	0.94	1.27	0.63	0.85	Pass
39	2441	1.00	1.00	0.94	1.29	0.63	0.86	Pass
78	2480	1.00	1.00	0.94	1.29	0.63	0.86	Pass

Note: The minimum limit is two-third 20dB bandwidth.

4.7.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125mW.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

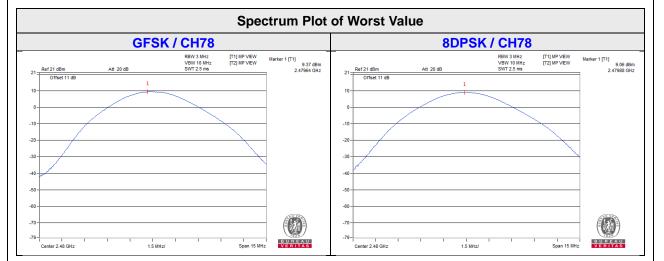
4.7.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Detector = peak.
- e. Measure the captured power within the band and recording the plot.
- f. Repeat above procedures until all frequencies required were complete.
- 4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.7.7 Test Results

FOR PEAK POWER

Channel Frequency (MHZ)			Peak Power (mW)		Peak Power (dBm)		Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK		
0	2402	7.244	6.427	8.60	8.08	125	Pass
39	2441	7.834	7.244	8.94	8.60	125	Pass
78	2480	8.65	8.054	9.37	9.06	125	Pass

FOR AVERAGE POWER

Channel	Frequency (MHZ)	Avg. F (m	Power W)	Avg. Power (dBm)	
		GFSK	8DPSK	GFSK	8DPSK
0	2402	6.397	4.188	8.06	6.22
39	2441	6.934	5.023	8.41	7.01
78	2480	7.674	5.559	8.85	7.45

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 Test Instruments

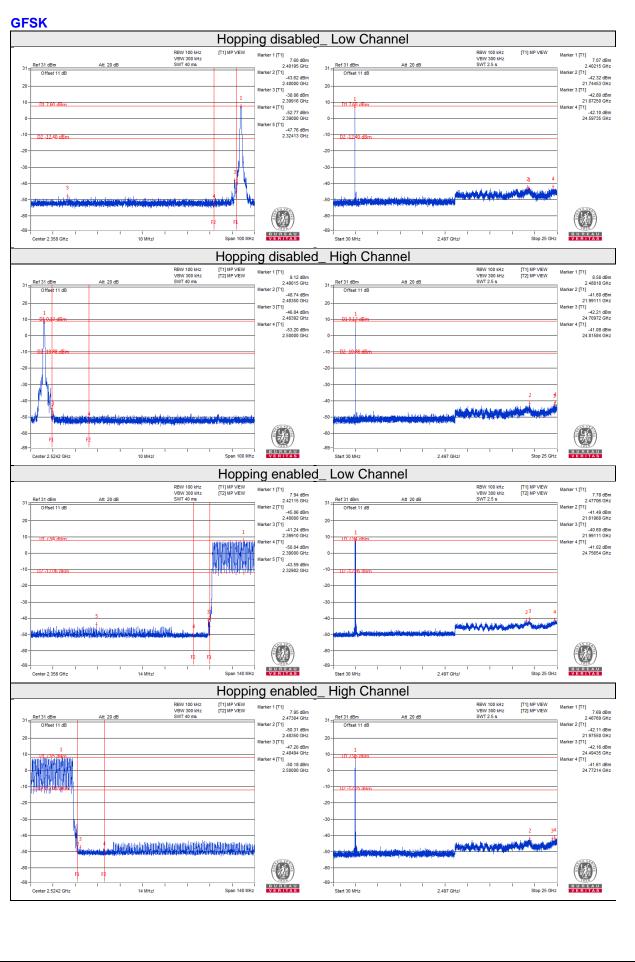
Refer to section 4.1.2 to get information of above instrument.

4.8.3 Test Procedure

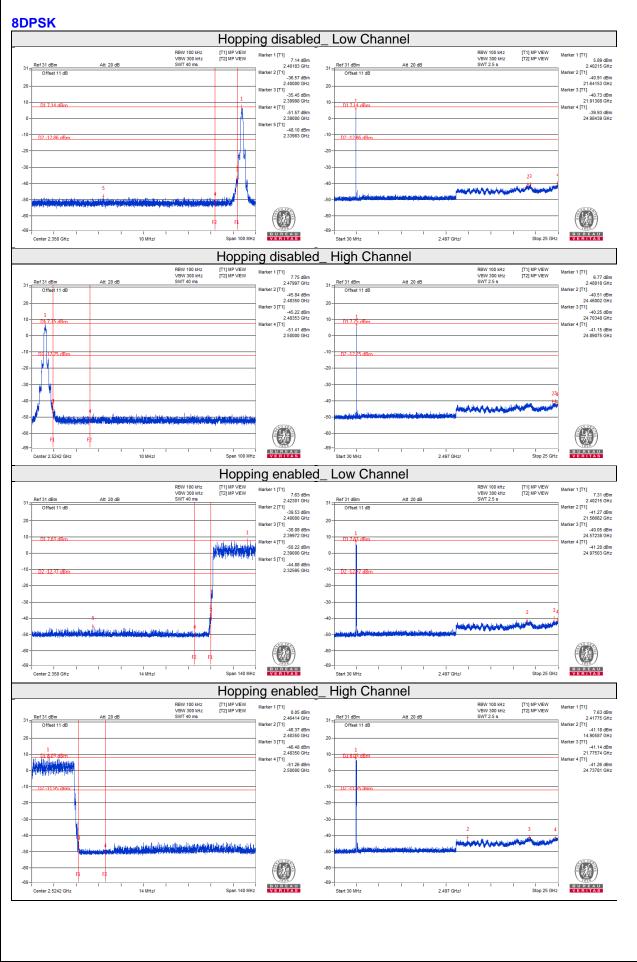
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

No deviation.


4.8.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---