

FCC Test Report Report No.: RFBDKG-WTW-P22060639 FCC ID: JNZMR0102 Test Model: MR0102 **Received Date: 2022/6/20** Test Date: 2022/6/22 ~ 2022/7/1 Issued Date: 2022/7/19 Applicant: Logitech Far East Ltd. Address: 7700 Gateway Boulevard Newark California United States Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan FCC Registration / 723255 / TW2022 **Designation Number:**

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report to notify.

Table of Contents

R	Release Control Record 4				
1	C	certificate of Conformity	5		
2	S	ummary of Test Results	6		
	2.1	Measurement Uncertainty			
	2.2	Modification Record	6		
3	G	General Information	7		
	3.1	General Description of EUT	. 7		
	3.2	Description of Test Modes			
	3.2.1	Test Mode Applicability and Tested Channel Detail	9		
	3.3	Duty Cycle of Test Signal	10		
	3.4	Description of Support Units			
	3.4.1	Configuration of System under Test			
	3.5	General Description of Applied Standards and References	12		
4	т	est Types and Results			
	4.1	Radiated Emission and Bandedge Measurement	13		
	4.1.1	Einite of Radiated Emeelen and Bandedge medeatement international			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup EUT Operating Conditions			
		Test Results			
	4.1.7	6dB Bandwidth Measurement			
		Limits of 6dB Bandwidth Measurement.			
		Test Setup.			
		Test Instruments			
		Test Procedure			
	4.2.5	Deviation from Test Standard	27		
	4.2.6	EUT Operating Conditions	27		
		Test Results			
	4.3	Conducted Output Power Measurement			
	4.3.1	Limits of Conducted Output Power Measurement			
		Test Setup			
		Test Instruments			
		Test Procedures Deviation from Test Standard			
		EUT Operating Conditions			
		Test Results			
	4.4	Power Spectral Density Measurement			
	4.4.1	Limits of Power Spectral Density Measurement			
		Test Setup			
		Test Instruments			
	4.4.4	Test Procedure			
	4.4.5				
		EUT Operating Condition			
		Test Results			
	4.5	Conducted Out of Band Emission Measurement			
	4.5.1				
		Test Setup			
		Test Instruments Test Procedure			
		Deviation from Test Standard			
		EUT Operating Condition			
	4.0.0		55		

4.5.7 Test Results	34
5 Pictures of Test Arrangements 3	35
Annex A - Band-Edge Measurement 3	36
Appendix – Information of the Testing Laboratories	37

Release Control Record Description Date Issued Issue No. RFBDKG-WTW-P22060639 Original release. 2022/7/19

1 Certificate of Conformity

Product:	Wireless Mouse
Brand:	Logitech
Test Model:	MR0102
Sample Status:	Engineering sample
Applicant:	Logitech Far East Ltd.
Test Date:	2022/6/22 ~ 2022/7/1
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Vivian Huang	, Date:	2022/7/19	
	Vivian Huang / Specialist			
Approved by:	May Chen / Manager	, Date:	2022/7/19	

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks				
15.207	15.207 AC Power Conducted Emission		Power supply is DC 1.5 V from battery				
15.205 / 15.209 / 15.247(d)	A Radiated Emissions and Band Edge Measurement		Meet the requirement of limit. Minimum passing margin is -7.9 dB at 2390.00 MHz.				
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.				
15.247(a)(2)	6dB bandwidth	Pass	Meet the requirement of limit.				
15.247(b)	Conducted power	Pass	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.				
15.203	Antenna Requirement	Pass	No antenna connector is used.				

Note:

1. For 2.4 GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted emissions	-	2.5 dB
Padiated Emissions up to 1 CHz	9kHz ~ 30MHz	3.1 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.4 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wireless Mouse
Brand	Logitech
Test Model	MR0102
Status of EUT	Engineering sample
Power Supply Rating	1.5 Vdc from battery
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	2 Mbps
Operating Frequency	2405 ~ 2474 MHz
Number of Channel	70
Output Power	3.236 mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Cable Supplied	NA

Note:

1. The EUT may have a lot of colors for marketing requirement.

2. The antenna provided to the EUT, please refer to the following table:

Antenna Net Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connector Type
3	2.4~2.4835	Printed Antenna	None

3. The EUT was pre-tested under the following modes:

For Radiated Emission test

Test Mode Description					
Mode A	Slient switch				
Mode B Non-slient switch					
Note: From the obaye modes, the below 10Hz weret ease were found in Mede P. Therefore only the test					

Note: From the above modes, the below 1GHz worst case were found in **Mode B.** Therefore only the test data of the mode was recorded in this report.

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

5. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

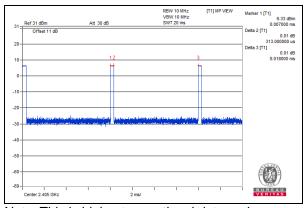
3.2 Description of Test Modes

70 channels are provided to this EUT:

Channel	Freq. (MHz)						
1	2405	21	2425	41	2445	61	2465
2	2406	22	2426	42	2446	62	2466
3	2407	23	2427	43	2447	63	2467
4	2408	24	2428	44	2448	64	2468
5	2409	25	2429	45	2449	65	2469
6	2410	26	2430	46	2450	66	2470
7	2411	27	2431	47	2451	67	2471
8	2412	28	2432	48	2452	68	2472
9	2413	29	2433	49	2453	69	2473
10	2414	30	2434	50	2454	70	2474
11	2415	31	2435	51	2455		
12	2416	32	2436	52	2456		
13	2417	33	2437	53	2457		
14	2418	34	2438	54	2458		
15	2419	35	2439	55	2459		
16	2420	36	2440	56	2460		
17	2421	37	2441	57	2461		
18	2422	38	2442	58	2462		
19	2423	39	2443	59	2463		
20	2424	40	2444	60	2464		

3.2.1 Test Mode Applicability and Tested Channel Detail

ONFIGURE		APPLICA	DECODIDITION			
ONFIGURE MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION	
-	\checkmark		-	\checkmark	-	
ere Bande PLC:	edge Measure Power Line C	Emission above 1GHz & ement Conducted Emission of Conducted Emission of	RE<1G: Radia	a Port Cond	lucted Measurement	
Pre-Scan	has been available n				rom all possible combinatio JT with antenna diversity	ns
architectu Following	,	s) was (were) select	ed for the final te	st as listed	below.	
AVAILABLE		TESTED CHANNEL	MODULATION TY	PE DATA	RATE (Mbps)	
1 to	70	1, 40, 70	GFSK		2	
 Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. 						ns
architectu	available n ıre).	nodulations, data ra	tes and antenna	oorts (if El	JT with antenna diversity	ns
architectu Following	available n ıre).	nodulations, data ra	tes and antenna	oorts (if El	JT with antenna diversity	ns
architectu Following	available n ıre). ı channel(s	nodulations, data ra	tes and antenna ed for the final te	oorts (if El	JT with antenna diversity	ns
architectu Following AVAILABLE 1 to Intenna Por This item mode. Pre-Scan between architectu	available n ire). channel(s CHANNEL 70 t Conduct includes a has been available n ire).	nodulations, data ra) was (were) selector TESTED CHANNEL 40 ted Measurement: Il test value of each conducted to deterre nodulations, data ra	tes and antenna ed for the final te MODULATION TY GFSK mode, but only i mine the worst-ca tes and antenna	oorts (if El t as listed PE DATA ncludes sp se mode to ports (if El	UT with antenna diversity below. RATE (Mbps) 2 bectrum plot of worst value of from all possible combinatio UT with antenna diversity	of each
architectu Following AVAILABLE 1 to Intenna Por This item mode. Pre-Scan between architectu	available n ire). channel(s CHANNEL 70 t Conduct includes a has been available n ire). channel(s	nodulations, data ra) was (were) selector TESTED CHANNEL 40 ted Measurement: Il test value of each conducted to deterr nodulations, data ra) was (were) selector	tes and antenna ed for the final te MODULATION TY GFSK mode, but only i mine the worst-ca tes and antenna ed for the final te	oorts (if El t as listed PE DATA ncludes sp se mode t ports (if El t as listed	UT with antenna diversity below. RATE (Mbps) 2 bectrum plot of worst value of from all possible combinatio UT with antenna diversity below.	of each
architectu Following AVAILABLE 1 to ntenna Por This item mode. Pre-Scan between a architectu Following AVAILABLE	available n ire). channel(s CHANNEL 70 t Conduct includes a has been available n ire). channel(s	nodulations, data ra) was (were) selector TESTED CHANNEL 40 ted Measurement: Il test value of each conducted to deterre nodulations, data ra	tes and antenna ed for the final te MODULATION TY GFSK mode, but only i mine the worst-ca tes and antenna	oorts (if El t as listed PE DATA ncludes sp se mode t ports (if El t as listed	UT with antenna diversity below. RATE (Mbps) 2 bectrum plot of worst value of from all possible combinatio UT with antenna diversity	of each


Test Condition:

APPLICABLE TO	APPLICABLE TO ENVIRONMENTAL CONDITIONS		TESTED BY
RE≥1G	RE≥1G 20deg. C, 70%RH		Nelson Teng
RE<1G	25deg. C, 65%RH	1.5 Vdc	Nelson Teng
APCM	25deg. C, 60%RH	1.5 Vdc	Waydi Tuan

3.3 Duty Cycle of Test Signal

Duty cycle = 0.313/8.018 = 0.039

Note: This is highest operational duty cycle.

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Battery	Energizer	AA	NA	NA	Provided by Lab

3.4.1 Configuration of System under Test

EUT	
(A) Batter	y

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard: FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

For Radiated Emission & Bandedge test:

	For Radiated Emission & Bandedge test:							
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL				
MXE EMI Receiver(20 Hz								
to 44 GHz)	N9038A	MY54450088	2021/7/6	2022/7/5				
Keysight								
Software	ADT_Radiated_V8.7.08	NA	NA	NA				
Antenna Tower & Turn								
Table	MF-7802	MF780208406	NA	NA				
Max-Full	1011 - 7 002	WII 700200400						
Pre_Amplifier	8447D	2944A10636	2022/3/19	2023/3/18				
Agilent								
LÕOP ANTENNA	EM-6879	264	2022/3/18	2023/3/17				
Electro-Metrics	EM 0073	204	2022/3/10	2020/0/11				
RF Coaxial Cable			0000/4/0	0000/4/5				
JYEBO	5D-FB	LOOPCAB-001	2022/1/6	2023/1/5				
RF Coaxial Cable								
JYEBO	5D-FB	LOOPCAB-002	2022/1/6	2023/1/5				
Pre_Amplifier	ZFL-1000VH2	QA0838008	2021/10/19	2022/10/18				
Mini-Circuits				/				
Trilog Broadband Antenna	VULB 9168	9168-361	2021/10/26	2022/10/25				
Schwarzbeck	VOLD 9108	9100-301	2021/10/20	2022/10/23				
RF Coaxial Cable		000 4 4	0000/0/0	0000/0/7				
COMMATE/PEWC	8D	966-4-1	2022/3/8	2023/3/7				
RF Coaxial Cable								
	8D	966-3-2	2022/2/26	2023/2/25				
COMMATE/PEWC								
RF Coaxial Cable	8D	966-3-3	2022/2/26	2023/2/25				
COMMATE/PEWC	02		2022,2,20	2020/2/20				
Fixed attenuator	UNAT-5+	PAD-3m-3-01	2021/9/23	2022/9/22				
Mini-Circuits	UNAT-5+	FAD-SIII-S-01	2021/9/23	2022/9/22				
Horn Antenna		0400B 400	00001/11/11	0000/44/40				
Schwarzbeck	BBHA9120-D	9120D-406	2021/11/14	2022/11/13				
Pre_Amplifier								
EMCI	EMC12630SE	980384	2022/1/10	2023/1/9				
RF Coaxial Cable	EMC104-SM-SM-1500	180504	2022/4/25	2023/4/24				
EMCI								
RF Coaxial Cable	EMC104-SM-SM-2000	180601	2022/6/6	2023/6/5				
EMCI	LINC 104-310-310-2000	100001	2022/0/0	2023/0/3				
RF Cable		040004	0000/5/40	0000/5/0				
EMCI	EMC104-SM-SM-6000	210201	2022/5/10	2023/5/9				
Fix tool for Boresight								
antenna tower	FBA-01	FBA_SIP01	NA	NA				
	FBA-01	FDA_SIFUT	INA	IN/A				
BV								
Spectrum Analyzer	N9030A	MY54490679	2021/7/9	2022/7/8				
Keysight								
Pre_Amplifier		090297	2022/1/10	2022/1/0				
EMCI	EMC184045SE	980387	2022/1/10	2023/1/9				
Horn Antenna								
Schwarzbeck	BBHA 9170	9170-739	2021/11/14	2022/11/13				
RF Cable-Frequency		+	+	+				
		100004	2022/4/42	0000/4/0				
range: 1-40GHz	EMC102-KM-KM-1200	160924	2022/1/10	2023/1/9				
EMCI								
RF Coaxial Cable	EMC-KM-KM-4000	200214	2022/3/8	2023/3/7				
EMCI		200214	2022/0/0	2020/0/1				
Note:								

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. 3.

3. Tested Date: 2022/6/22 ~ 2022/7/1

For other test items:							
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL			
Spectrum Analyzer R&S	FSV40	101516	2022/3/7	2023/3/6			
Power Meter Anritsu	ML2495A	1529002	2022/6/22	2023/6/21			
Pulse Power Sensor Anritsu	MA2411B	1726434	2022/6/22	2023/6/21			
Attenuator WOKEN	MDCS18N-10	MDCS18N-10-01	2022/4/5	2023/4/4			
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA			

NOTE: 1. The test was performed in Oven room 2.2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/6/24

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

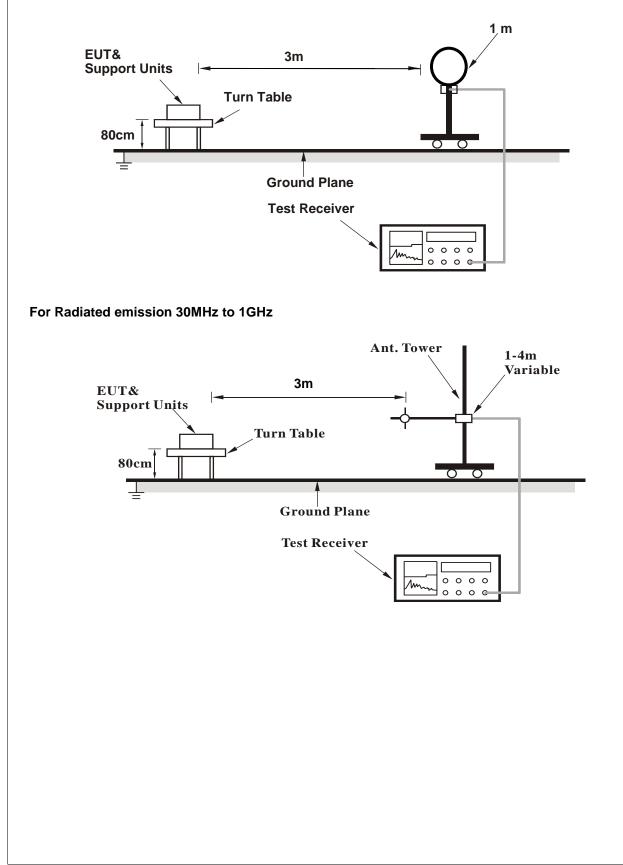
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

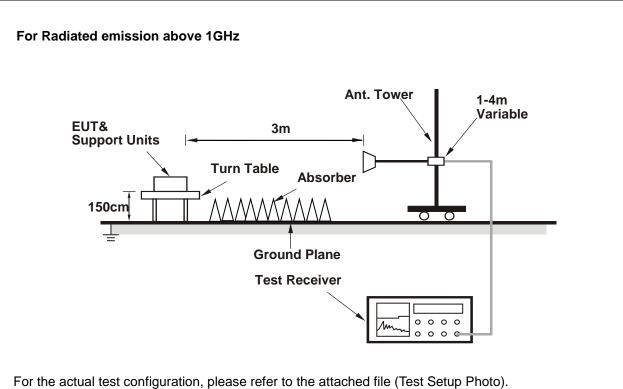
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



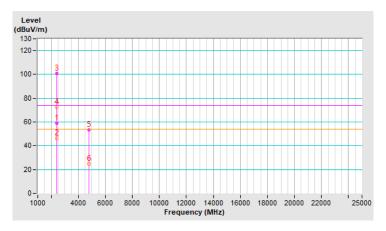
4.1.5 Test Setup

For Radiated emission below 30MHz

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Controlling software (RF sample click button) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

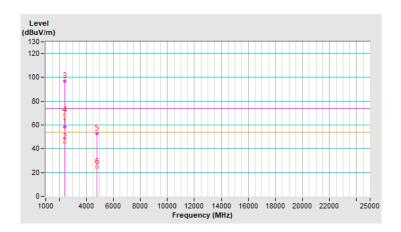

RF Mode	TX GFSK	Channel	CH 1:2405 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz
Input Power	1.5 Vdc	Environmental Conditions	20°C, 70% RH
Tested By	Nelson Teng		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	59.1 PK	74.0	-14.9	1.02 H	266	60.1	-1.0	
2	2390.00	46.1 AV	54.0	-7.9	1.02 H	266	47.1	-1.0	
3	*2405.00	100.9 PK			1.02 H	266	102.0	-1.1	
4	*2405.00	72.7 AV			1.02 H	266	73.8	-1.1	
5	4810.00	53.2 PK	74.0	-20.8	1.28 H	245	49.5	3.7	
6	4810.00	25.0 AV	54.0	-29.0	1.28 H	245	21.3	3.7	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(0.313 ms / 8.018 ms) = -28.2 dB

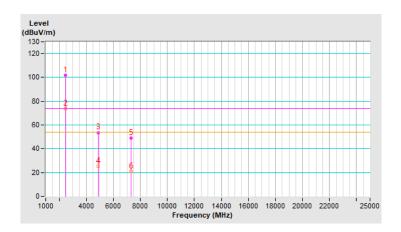
20 log(Duty cycle) = 20 log(0.313 ms / 8.018 ms) = -28.2 dB



RF Mode	TX GFSK	Channel	CH 1:2405 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz
Input Power	1.5 Vdc	Environmental Conditions	20°C, 70% RH
Tested By	Nelson Teng		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	58.6 PK	74.0	-15.4	3.40 V	312	59.6	-1.0	
2	2390.00	45.7 AV	54.0	-8.3	3.40 V	312	46.7	-1.0	
3	*2405.00	96.7 PK			3.40 V	312	97.8	-1.1	
4	*2405.00	68.5 AV			3.40 V	312	69.6	-1.1	
5	4810.00	53.1 PK	74.0	-20.9	1.10 V	237	49.4	3.7	
6	4810.00	24.9 AV	54.0	-29.1	1.10 V	237	21.2	3.7	

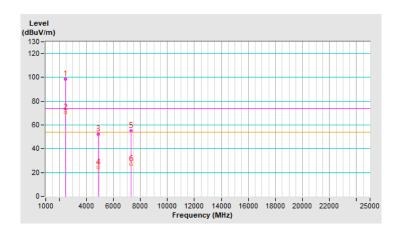
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
- The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(0.313 ms / 8.018 ms) = -28.2 dB



RF Mode	TX GFSK	Channel	CH 40:2444 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz
Input Power	1.5 Vdc	Environmental Conditions	20°C, 70% RH
Tested By	Nelson Teng		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2444.00	102.1 PK			1.08 H	256	103.3	-1.2	
2	*2444.00	73.9 AV			1.08 H	256	75.1	-1.2	
3	4888.00	53.7 PK	74.0	-20.3	1.23 H	250	50.0	3.7	
4	4888.00	25.5 AV	54.0	-28.5	1.23 H	250	21.8	3.7	
5	7332.00	49.0 PK	74.0	-25.0	1.26 H	332	39.3	9.7	
6	7332.00	20.8 AV	54.0	-33.2	1.26 H	332	11.1	9.7	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
- The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(0.313 ms / 8.018 ms) = -28.2 dB



RF Mode	TX GFSK	Channel	CH 40:2444 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz
Input Power	1.5 Vdc	Environmental Conditions	20°C, 70% RH
Tested By	Nelson Teng		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2444.00	98.5 PK			3.44 V	305	99.7	-1.2	
2	*2444.00	70.3 AV			3.44 V	305	71.5	-1.2	
3	4888.00	52.3 PK	74.0	-21.7	1.07 V	225	48.6	3.7	
4	4888.00	24.1 AV	54.0	-29.9	1.07 V	225	20.4	3.7	
5	7332.00	55.1 PK	74.0	-18.9	3.86 V	5	45.4	9.7	
6	7332.00	26.9 AV	54.0	-27.1	3.86 V	5	17.2	9.7	

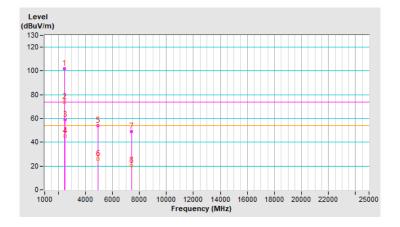
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
 20 log(Duty cycle) = 20 log(0.313 ms / 8.018 ms) = -28.2 dB

RF Mode	TX GFSK	Channel	CH 70:2474 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz
Input Power	1.5 Vdc	Environmental Conditions	20°C, 70% RH
Tested By	Nelson Teng		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2474.00	102.0 PK			1.00 H	272	103.2	-1.2	
2	*2474.00	73.8 AV			1.00 H	272	75.0	-1.2	
3	2483.50	59.0 PK	74.0	-15.0	1.00 H	272	60.3	-1.3	
4	2483.50	45.3 AV	54.0	-8.7	1.00 H	272	46.6	-1.3	
5	4948.00	54.0 PK	74.0	-20.0	1.17 H	248	50.2	3.8	
6	4948.00	25.8 AV	54.0	-28.2	1.17 H	248	22.0	3.8	
7	7422.00	48.8 PK	74.0	-25.2	1.27 H	346	38.7	10.1	
8	7422.00	20.6 AV	54.0	-33.4	1.27 H	346	10.5	10.1	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)


3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:

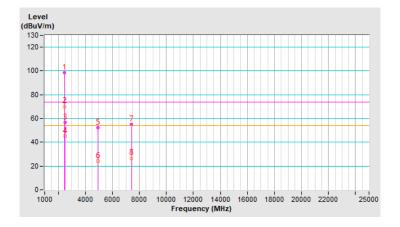
20 log(Duty cycle) = 20 log(0.313 ms / 8.018 ms) = -28.2 dB

RF Mode	TX GFSK	Channel	CH 70:2474 MHz
Frequency Range	1 (iH7 ~ 25 (iH7	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 MHz
Input Power	15Vdc	Environmental Conditions	20°C, 70% RH
Tested By	Nelson Teng		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2474.00	98.4 PK			3.96 V	300	99.6	-1.2	
2	*2474.00	70.2 AV			3.96 V	300	71.4	-1.2	
3	2483.50	56.8 PK	74.0	-17.2	3.96 V	300	58.1	-1.3	
4	2483.50	45.0 AV	54.0	-9.0	3.96 V	300	46.3	-1.3	
5	4948.00	52.4 PK	74.0	-21.6	1.03 V	231	48.6	3.8	
6	4948.00	24.2 AV	54.0	-29.8	1.03 V	231	20.4	3.8	
7	7422.00	54.9 PK	74.0	-19.1	3.84 V	8	44.8	10.1	
8	7422.00	26.7 AV	54.0	-27.3	3.84 V	8	16.6	10.1	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

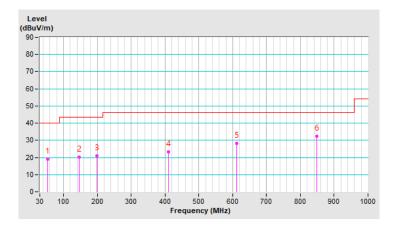

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:

20 log(Duty cycle) = 20 log(0.313 ms / 8.018 ms) = -28.2 dB

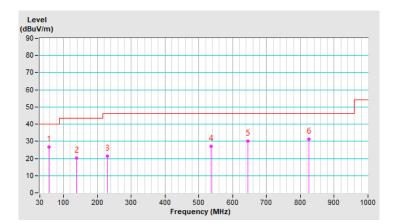


Below 1GHz Data:

RF Mode	TX GFSK	Channel	CH 1:2405 MHz			
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz			
Input Power	1.5 Vdc	Environmental Conditions	25°C, 65% RH			
Tested By	Nelson Teng					

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	52.77	19.0 QP	40.0	-21.0	1.00 H	71	27.3	-8.3	
2	147.27	20.2 QP	43.5	-23.3	2.50 H	282	28.2	-8.0	
3	199.65	20.8 QP	43.5	-22.7	1.00 H	127	32.0	-11.2	
4	410.12	23.3 QP	46.0	-22.7	1.00 H	360	28.4	-5.1	
5	611.18	28.3 QP	46.0	-17.7	2.50 H	100	28.3	0.0	
6	849.07	32.3 QP	46.0	-13.7	3.00 H	360	28.9	3.4	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX GFSK	Channel	CH 1:2405 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	1.5 Vdc	Environmental Conditions	25°C, 65% RH
Tested By	Nelson Teng		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	57.94	26.6 QP	40.0	-13.4	1.50 V	0	35.5	-8.9	
2	137.86	20.3 QP	43.5	-23.2	2.50 V	312	28.9	-8.6	
3	229.12	21.2 QP	46.0	-24.8	2.50 V	0	32.1	-10.9	
4	536.85	27.0 QP	46.0	-19.0	1.00 V	211	29.2	-2.2	
5	644.37	30.2 QP	46.0	-15.8	3.00 V	360	30.1	0.1	
6	826.13	31.2 QP	46.0	-14.8	2.00 V	288	28.1	3.1	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 6dB Bandwidth Measurement

4.2.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.2.2 Test Setup

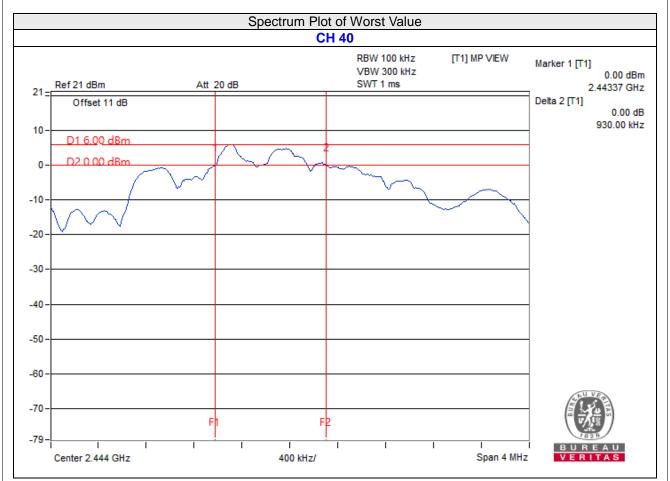
4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.2.5 Deviation from Test Standard

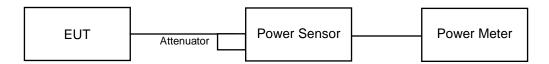
No deviation.


4.2.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.7 Test Results

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2405	1.41	0.5	Pass
40	2444	0.93	0.5	Pass
70	2474	0.94	0.5	Pass



4.3 Conducted Output Power Measurement

4.3.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2405	3.236	5.10	30	Pass
40	2444	3.155	4.99	30	Pass
70	2474	3.041	4.83	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2405	3.17	5.01
40	2444	3.083	4.89
70	2474	2.965	4.72

4.4 **Power Spectral Density Measurement**

4.4.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.4.2 Test Setup

4.4.3 Test Instruments

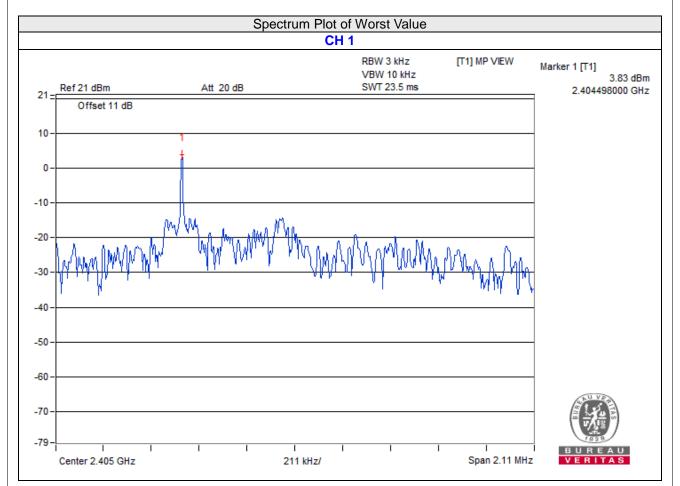
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.4.5 Deviation from Test Standard

No deviation.


4.4.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.4.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2405	3.83	8	Pass
40	2444	3.67	8	Pass
70	2474	3.57	8	Pass

4.5 Conducted Out of Band Emission Measurement

4.5.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

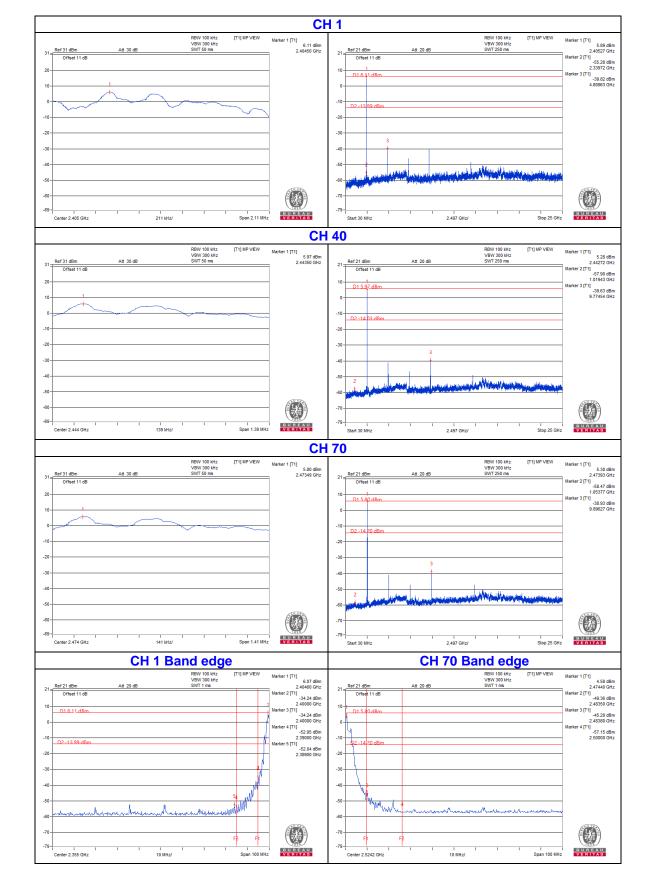
MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.
- 4.5.5 Deviation from Test Standard

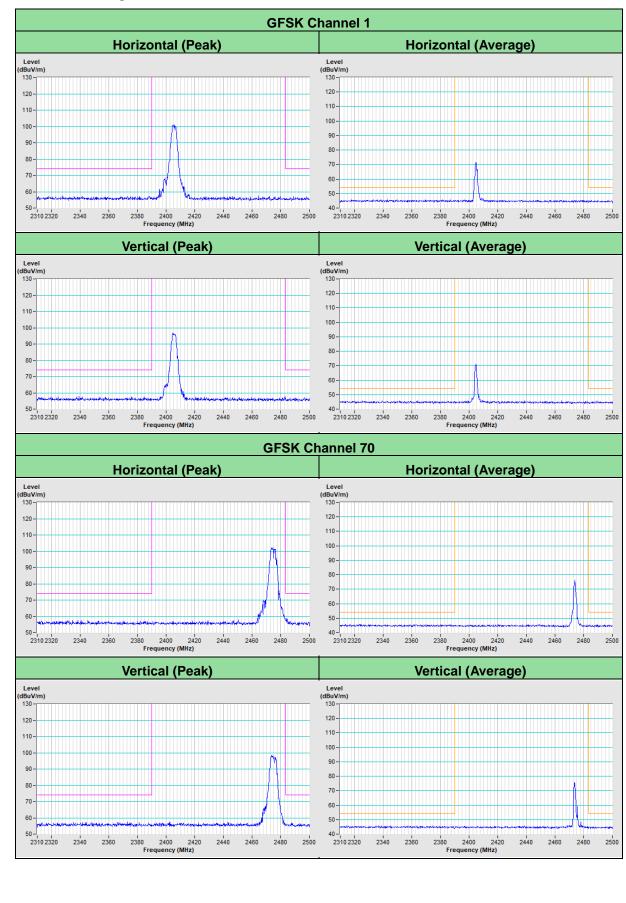
No deviation.


4.5.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.



5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Annex A - Band-Edge Measurement

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---