BUREAU VERITAS

FCC Test Report (GFSK)

Report No.: RFBDKG-WTW-P20060123

FCC ID: JNZMR0086

Test Model: MR0086

Received Date: June 30, 2020

Test Date: July 03 to 07, 2020

Issued Date: July 29, 2020

Applicant: LOGITECH FAR EAST LTD.

- Address: #2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.
- **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
- Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
- **Test Location:** E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

FCC Registration / 723255 / TW2022 Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	Release Control Record 4				
1	Certificate of Conformity5				
2	S	ummary of Test Results	6		
	2.1 2.2	Measurement Uncertainty Modification Record			
3	G	eneral Information	. 7		
·	3.1	General Description of EUT (GFSK)			
	3.2	Description of Test Modes			
	3.2.1	Test Mode Applicability and Tested Channel Detail			
	3.3	Duty Cycle of Test Signal			
	3.4	Description of Support Units			
	3.4.1	Configuration of System under Test			
	3.5	General Description of Applied Standards and References	13		
4	т	est Types and Results	14		
	4.1	Radiated Emission and Bandedge Measurement			
		Limits of Radiated Emission and Bandedge Measurement			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup.			
		EUT Operating Conditions Test Results			
	4.1.7	Conducted Emission Measurement			
		Limits of Conducted Emission Measurement			
		Test Instruments			
		Test Procedures			
	4.2.4	Deviation from Test Standard	26		
	4.2.5	Test Setup	26		
		EUT Operating Conditions			
		Test Results			
	4.3	6dB Bandwidth Measurement			
		Limits of 6dB Bandwidth Measurement			
		Test Setup Test Instruments	29 29		
		Test Procedure			
		Deviation from Test Standard			
		EUT Operating Conditions			
		Test Results			
	4.4	Conducted Output Power Measurement	31		
		Limits of Conducted Output Power Measurement			
		Test Setup			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard EUT Operating Conditions			
		Test Results			
	4.5	Power Spectral Density Measurement			
	4.5.1	Limits of Power Spectral Density Measurement			
		Test Setup			
		Test Instruments			
		Test Procedure			
		Deviation from Test Standard			
	4.5.6	EUT Operating Condition	33		

4.5.7	Test Results	34
4.6	Conducted Out of Band Emission Measurement	35
4.6.1	Limits of Conducted Out of Band Emission Measurement	35
4.6.2	Test Setup	35
4.6.3	Test Instruments	35
4.6.4	Test Procedure	35
4.6.5	Deviation from Test Standard	35
4.6.6	EUT Operating Condition	35
4.6.7	Test Results	35
5 Pi	ctures of Test Arrangements	37
Annex A	- Band-Edge Measurement	38
Appendi	ix – Information of the Testing Laboratories	39

Release Control Record Description Date Issued Issue No. RFBDKG-WTW-P20060123 July 29, 2020 Original release.

Certificate of Conformity 1

Product:	Wireless mouse
Brand:	logitech G
Test Model:	MR0086
Sample Status:	ENGINEERING SAMPLE
Applicant:	LOGITECH FAR EAST LTD.
Test Date:	July 03 to 07, 2020
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : _______ Chur Chur, Date: ______ July 29, 2020 Cherrry Chur Specialist

Date: July 29, 2020

Approved by :

Clark Lin / Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission PASS Meet the requirement of lir 0.48203 MHz.					
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -3.0 dB at 2483.50 MHz.			
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.			
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.			
15.247(b)	Conducted power	PASS	Meet the requirement of limit.			
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.			
15.203	Antenna Requirement	PASS	No antenna connector is used.			

Note:

1. For 2.4 GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Conducted emissions	-	2.5 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
	30MHz ~ 1GHz	5.4 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
Radiated Emissions above 1 GHz	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (GFSK)

Product	Wireless mouse		
Brand	logitech G		
Test Model	MR0086		
Status of EUT	ENGINEERING SAMPLE		
Power Supply Rating	3.7Vdc from battery or 5Vdc from USB interface		
Modulation Type	GFSK		
Transfer Rate	Up to 2 Mbps		
Operating Frequency	2.403 ~ 2.481 GHz		
Number of Channel	79		
Output Power	5.023 mW		
Antenna Type	Refer to Note		
Antenna Connector	Refer to Note		
Accessory Device NA			
Cable Supplied USB cable x1 (Shielded with one core, 1.8m)			

Note:

1. The EUT may have a lot of colors for marketing requirement.

2. The EUT power needs to be supplied from a battery, the information is as below table:

Brand	Model No.	Spec.	
SYNERGY	AHB521630PJT-04	3.7V, 240mAh, 0.9Wh	

3. The antenna provided to the EUT, please refer to the following table:

	Brand Model Logitech NA		Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connector Type		
			1.68	2.4~2.4835GHz Printed Antenna		None		
	4 For conducted emissions, the FLIT was pre-tested under the following modes:							

4. For conducted emissions, the EUT was pre-tested under the following modes:

Test Mode	Description			
Mode A Power from adapter				
Mode B	Power from Laptop			
From the above modes, the worst case was found in Mode A . Therefore only the test data of the mode				

From the above modes, the worst case was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

5. For radiated emissions, the EUT was pre-tested under the following modes:

Test Mode	Description		
Mode A	Power from adapter		
Mode B	Power from battery		

From the above modes, the worst spurious emission was found in **Mode A**. Therefore only the test data of the modes were recorded in this report.

6. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

7. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	79	2481
20	2422	40	2442	60	2462		

3.2.1 Test Mode Applicability and Tested Channel Detail EUT

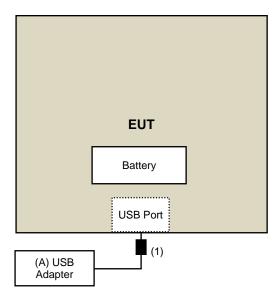
CONFIGURE MODE	EUT APPLICABLE TO DESCRIPTION					
-	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION	
	\checkmark			\checkmark	-	
horo	G: Radiated Emiss		& RE<1G: Ra	adiated Emission	below 1GHz	
	edge Measuremen Power Line Condu		APCM: An	tenna Port Condu	cted Measurement	
-			-			
Radiated Er	nission Test (A	bove 1GHz):				
🛛 Pre-Scar	has been cond	ducted to deter	mine the worst	-case mode fr	om all possible combinations	
		lations, data ra	ites and antenr	na ports (if EU	T with antenna diversity	
architect			ad for the final	test og listed l		
	g channel(s) wa Iable Channel	s (were) select	Tested Chan		DEIOW. Modulation Type	
Avai	1 to 79		1, 40, 79	nei	GFSK	
	11079		1, 40, 79		Gran	
	• • · · -	•••••				
ower Line	Conducted En	nission Test:				
Pre-Scar	has been con	ducted to deter	mine the worst	-case mode fr	om all possible combinations	
					T with antenna diversity	
architect						
		s (were) select	ed for the final	test as listed l	pelow.	
C Following	Following channel(s) was (were) selected for the final test as listed below.					
	g channel(s) wa BLE CHANNEL		TESTED CHAN	INEL	MODULATION TYPE	
AVAILA			TESTED CHAN	INEL	GFSK	
AVAILA Radiated E	BLE CHANNEL 1 to 79 mission Test (n has been cond available modu	Below 1GHz):	1 1 mine the worst	-case mode fr		
AVAILA Radiated E ☑ Pre-Scar between architect	BLE CHANNEL 1 to 79 mission Test (n has been cond available modu	Below 1GHz): ducted to deter lations, data ra	1 1 mine the worst	-case mode fr na ports (if EU	GFSK om all possible combinations T with antenna diversity	
AVAILA Radiated E Pre-Scar between architect Following	BLE CHANNEL 1 to 79 mission Test (n has been cond available modu ure).	Below 1GHz): ducted to deter lations, data ra	1 1 mine the worst	-case mode front front front front front for the second se	GFSK om all possible combinations T with antenna diversity	
AVAILA Radiated E Pre-Scar between architect Following	BLE CHANNEL 1 to 79 mission Test (n has been cond available modu ure). g channel(s) wa	Below 1GHz): ducted to deter lations, data ra	TESTED CHAN 1 mine the worst ates and antenr ted for the final	-case mode front front front front front for the second se	GFSK om all possible combinations T with antenna diversity pelow.	
AVAILA Radiated E Pre-Scar between architectr Following Avai	BLE CHANNEL 1 to 79 mission Test (n has been cond available modu ure). g channel(s) wa lable Channel	Below 1GHz): ducted to deter lations, data ra s (were) select	TESTED CHAN 1 mine the worst ites and antenr ted for the final Tested Chan	-case mode front front front front front for the second se	GFSK om all possible combinations T with antenna diversity pelow. Modulation Type	
AVAILA Radiated E Pre-Scar between architect Following Avai Antenna Po	BLE CHANNEL 1 to 79 mission Test (n has been cond available modu ure). g channel(s) wa lable Channel 1 to 79 port Conducted	Below 1GHz): ducted to deter lations, data ra s (were) select	TESTED CHAN 1 mine the worst ites and antenr ited for the final Tested Chan 1	-case mode fro na ports (if EU test as listed l nel	GFSK om all possible combinations T with antenna diversity pelow. Modulation Type	
AVAILA Radiated E Pre-Scar between architectr Following Avai Antenna Po This item mode. Pre-Scar between	BLE CHANNEL 1 to 79 imission Test (h has been cond available modu ure). g channel(s) wa ble Channel 1 to 79 crt Conducted h includes all test h has been cond available modu	Below 1GHz): ducted to deter lations, data ra s (were) select Measurement st value of each ducted to deter	TESTED CHAN 1 mine the worst ates and antenr ted for the final Tested Chan 1	-case mode from a ports (if EU) test as listed linel	GFSK om all possible combinations T with antenna diversity pelow. Modulation Type GFSK	
AVAILA Radiated E Pre-Scar between architect Following Avai Antenna Po This item mode. Pre-Scar between architect	BLE CHANNEL 1 to 79 mission Test (n has been cond available modu ure). g channel(s) wa been cond to 79 crt Conducted n includes all test n has been cond available modu ure).	Below 1GHz): ducted to deter lations, data ra s (were) select Measurement st value of each ducted to deter lations, data ra	TESTED CHAN 1 1 mine the worst ites and antenr ited for the final Tested Chan 1 1 ited for the final 1 1 ited for the final 1 1 ited for the final ited for the final 1 ited for the final ited for the fina	-case mode front ports (if EU test as listed l nel	GFSK Om all possible combinations T with antenna diversity Delow. GFSK ectrum plot of worst value of each om all possible combinations T with antenna diversity	
AVAILA Radiated E Pre-Scar between architect Following Avai Antenna Pc This item mode. Pre-Scar between architect Following	BLE CHANNEL 1 to 79 mission Test (has been cond available modu ure). g channel(s) wa lable Channel 1 to 79 to TC Conducted h includes all test has been cond available modu ure). g channel(s) wa	Below 1GHz): ducted to deter lations, data ra s (were) select Measurement st value of each ducted to deter lations, data ra	TESTED CHAN 1 1 mine the worst ates and antenr ted for the final Tested Chan 1 1 i n mode, but onl mine the worst ates and antenr tes and antenr ted for the final	-case mode from ports (if EU test as listed l nel	GFSK om all possible combinations T with antenna diversity below. GFSK ectrum plot of worst value of each om all possible combinations T with antenna diversity below.	
AVAILA Radiated E Pre-Scar between architect Following Avai Avai Antenna Pc This item mode. Pre-Scar between architect Following	BLE CHANNEL 1 to 79 mission Test (n has been cond available modu ure). g channel(s) wa been cond to 79 crt Conducted n includes all test n has been cond available modu ure).	Below 1GHz): ducted to deter lations, data ra s (were) select Measurement st value of each ducted to deter lations, data ra	TESTED CHAN 1 1 mine the worst ites and antenr ited for the final Tested Chan 1 1 ited for the final 1 1 ited for the final 1 1 ited for the final ited for the final 1 ited for the final ited for the fina	-case mode from ports (if EU test as listed l nel	GFSK Om all possible combinations T with antenna diversity Delow. GFSK ectrum plot of worst value of each om all possible combinations T with antenna diversity	

Test Condition:

Applicable To	plicable To Environmental Conditions (System)		Tested by
RE≥1G	RE≥1G 25deg. C, 75%RH		Kevin Ko
RE<1G	28deg. C, 73%RH	120Vac, 60Hz	Kevin Ko
PLC 25deg. C, 60%RH		120Vac, 60Hz	Jyunchun Lin
APCM	25deg. C, 75%RH	120Vac, 60Hz	Kevin Ko

3.3 Duty Cycle of Test Signal

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
А	USB Adapter	ASUS	EXA1205UA	NA	NA	Provided by Lab

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	1	Yes	1	Supplied by client

Note: The core is originally attached to the cable.

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard: FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

For Radiated emission & BandEdge test:

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver Keysight	N9038A	MY51210202	Dec. 13, 2019	Dec. 12, 2020
Pre-Amplifier EMCI	EMC001340	980142	May 25, 2020	May 24, 2021
Loop Antenna Electro-Metrics	EM-6879	264	Feb. 18, 2020	Feb. 17, 2021
RF Cable	NA	LOOPCAB-001	Jan. 08, 2020	Jan. 07, 2021
RF Cable	NA	LOOPCAB-002	Jan. 08, 2020	Jan. 07, 2021
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 28, 2020	Apr. 27, 2021
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 11, 2019	Nov. 10, 2020
RF Cable	8D	966-3-1	Mar. 17, 2020	Mar. 16, 2021
RF Cable	8D	966-3-2	Mar. 17, 2020	Mar. 16, 2021
RF Cable	8D	966-3-3	Mar. 17, 2020	Mar. 16, 2021
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 26, 2019	Sep. 25, 2020
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 24, 2019	Nov. 23, 2020
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-1200	160922	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-2000	180601	June 09, 2020	June 08, 2021
RF Cable	EMC104-SM-SM-6000	180602	June 09, 2020	June 08, 2021
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 15, 2020	Jan. 14, 2021
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 24, 2019	Nov. 23, 2020
RF Cable	EMC102-KM-KM-1200	160924	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC-KM-KM-4000	200214	Mar. 11, 2020	Mar. 10, 2021
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. 3.

3. Tested Date: July 03 to 07, 2020

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSV40	100964	May 29, 2020	May 28, 2021
Power meter Anritsu	ML2495A	1529002	July 26, 2019	July 25, 2020
Power sensor Anritsu	MA2411B	1339443	July 26, 2019	July 25, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 14, 2020	Apr. 13, 2021
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

NOTE: 1. The test was performed in Oven room 2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: July 07, 2020

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

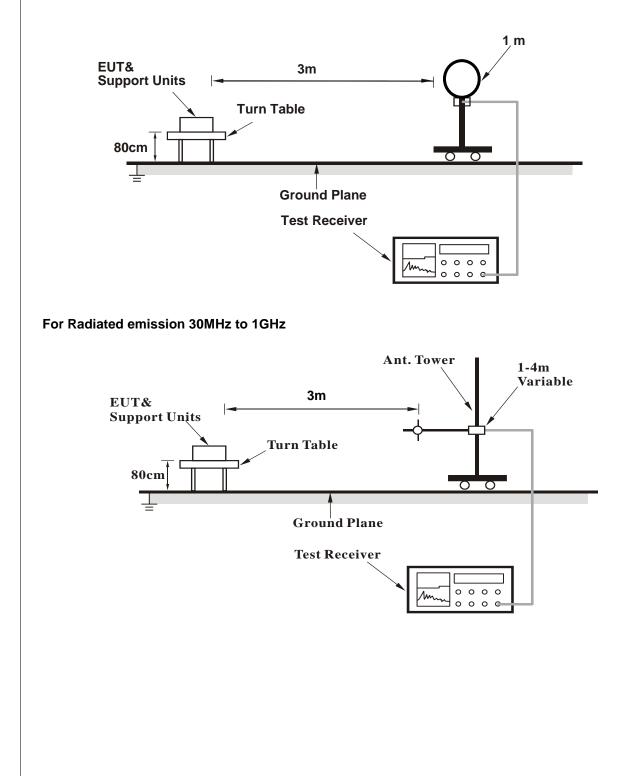
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

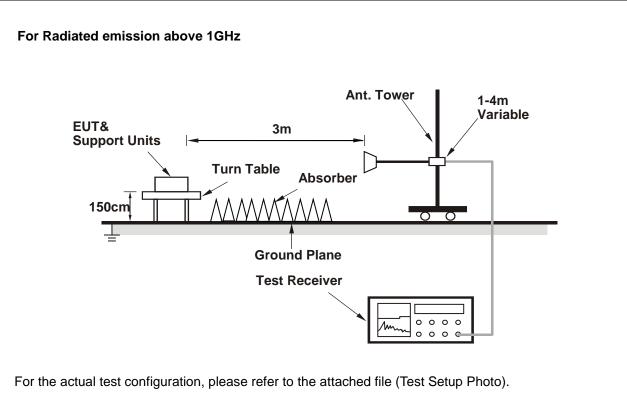
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Controlling software (Number lock) has been activated to set the EUT under transmission condition continuously.
- LS2 TX Modulated low duty cycle 2403MHz
- LS2 TX Modulated low duty cycle 2442MHz
- LS2 TX Modulated low duty cycle 2481MHz

4.1.7 Test Results

Above 1GHz Data:

Channel	TX Channel 1	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2387.50	47.6 PK	74.0	-26.4	1.55 H	359	49.5	-1.9		
2	2387.50	42.1 AV	54.0	-11.9	1.55 H	359	44.0	-1.9		
3	*2403.00	102.6 PK			1.55 H	359	104.5	-1.9		
4	*2403.00	88.0 AV			1.55 H	359	89.9	-1.9		
5	4806.00	41.2 PK	74.0	-32.8	3.18 H	68	38.3	2.9		
6	4806.00	26.6 AV	54.0	-27.4	3.18 H	68	23.7	2.9		
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2387.50	47.5 PK	74.0	-26.5	3.87 V	305	49.4	-1.9		
2	2387.50	40.8 AV	54.0	-13.2	3.87 V	305	42.7	-1.9		
3	*2403.00	99.1 PK			3.87 V	305	101.0	-1.9		
4	*2403.00	84.5 AV			3.87 V	305	86.4	-1.9		
5	4806.00	41.0 PK	74.0	-33.0	1.68 V	224	38.1	2.9		
6	4806.00	26.4 AV	54.0	-27.6	1.68 V	224	23.5	2.9		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:
20 log(Duty cycle) = 20 log(0.1819 ms / 0.9773 ms) = -14.6 dB

Please see section 3.3 for plotted duty.

Channel	TX Channel 40	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2442.00	102.4 PK			1.53 H	12	104.4	-2.0			
2	*2442.00	87.8 AV			1.53 H	12	89.8	-2.0			
3	4884.00	47.3 PK	74.0	-26.7	3.20 H	77	44.5	2.8			
4	4884.00	32.7 AV	54.0	-21.3	3.20 H	77	29.9	2.8			
5	7326.00	54.7 PK	74.0	-19.3	2.44 H	20	45.8	8.9			
6	7326.00	40.1 AV	54.0	-13.9	2.44 H	20	31.2	8.9			

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2442.00	99.3 PK			3.83 V	312	101.3	-2.0		
2	*2442.00	84.7 AV			3.83 V	312	86.7	-2.0		
3	4884.00	47.7 PK	74.0	-26.3	1.66 V	237	44.9	2.8		
4	4884.00	33.1 AV	54.0	-20.9	1.66 V	237	30.3	2.8		
5	7326.00	51.4 PK	74.0	-22.6	1.61 V	285	42.5	8.9		
6	7326.00	36.8 AV	54.0	-17.2	1.61 V	285	27.9	8.9		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:
20 log(Duty cycle) = 20 log(0.1819 ms / 0.9773 ms) = -14.6 dB

Please see section 3.3 for plotted duty.

Channel	TX Channel 79	Detector Eurotion	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Table Raw		Correction Factor (dB/m)				
1	*2481.00	102.3 PK			1.46 H	358	104.2	-1.9			
2	*2481.00	87.7 AV			1.46 H	358	89.6	-1.9			
3	2483.50	65.6 PK	74.0	-8.4	1.46 H	358	67.5	-1.9			
4	2483.50	51.0 AV	54.0	-3.0	1.46 H	358	52.9	-1.9			
5	4962.00	47.4 PK	74.0	-26.6	3.23 H	66	44.6	2.8			
6	4962.00	32.8 AV	54.0	-21.2	3.23 H	66	30.0	2.8			
7	7443.00	54.9 PK	74.0	-19.1	2.40 H	9	45.9	9.0			
8	7443.00	40.3 AV	54.0	-13.7	2.40 H	9	31.3	9.0			
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m					
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2481.00	98.8 PK			3.99 V	306	100.7	-1.9			
2	*2481.00	84.2 AV			3.99 V	306	86.1	-1.9			
3	2483.50	62.0 PK	74.0	-12.0	3.99 V	306	63.9	-1.9			
4	2483.50	47.4 AV	54.0	-6.6	3.99 V	306	49.3	-1.9			
5	4962.00	46.8 PK	74.0	-27.2	1.70 V	210	44.0	2.8			
6	4962.00	32.2 AV	54.0	-21.8	1.70 V	210	29.4	2.8			
7	7443.00	51.1 PK	74.0	-22.9	1.62 V	284	42.1	9.0			
8	7443.00	36.5 AV	54.0	-17.5	1.62 V	284	27.5	9.0			

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log(Duty cycle) = 20 log(0.1819 ms / 0.9773 ms) = -14.6 dB

Please see section 3.3 for plotted duty.

Below 1GHz Data:

Channel	TX Channel 1	Detector Function	Quesi Deek (QD)
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

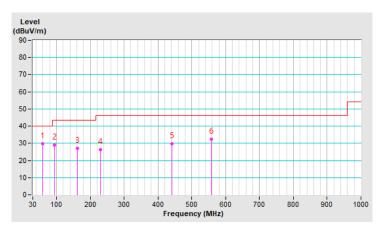

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	46.95	30.0 QP	40.0	-10.0	2.00 H	288	37.7	-7.7				
2	95.67	28.1 QP	43.5	-15.4	3.00 H	296	40.5	-12.4				
3	151.23	27.6 QP	43.5	-15.9	3.00 H	128	34.5	-6.9				
4	310.35	27.5 QP	46.0	-18.5	1.50 H	346	32.9	-5.4				
5	474.31	31.0 QP	46.0	-15.0	2.00 H	77	31.9	-0.9				
6	637.07	32.6 QP	46.0	-13.4	1.00 H	149	29.6	3.0				

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



Channel	TX Channel 1	Detector Function	
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Table Height Angle (m) (Degree		Raw Value (dBuV)	Correction Factor (dB/m)				
1	59.29	29.8 QP	40.0	-10.2	2.00 V	0	37.9	-8.1				
2	94.94	28.9 QP	43.5	-14.6	2.00 V	216	41.5	-12.6				
3	161.19	27.2 QP	43.5	-16.3	3 2.00 V	40	34.2	-7.0				
4	229.09	26.2 QP	46.0	-19.8	2.00 V	0	35.4	-9.2				
5	440.92	29.7 QP	46.0	-16.3	1.50 V	360	31.3	-1.6				
6	558.41	32.5 QP	46.0	-13.5	2.00 V	102	31.7	0.8				

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted	Limit (dBuV)		
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

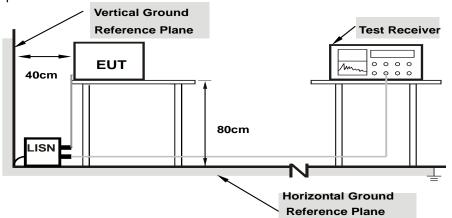
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 19, 2020	Mar. 18, 2021
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	00 5	Aug. 30, 2019	Aug. 29, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: July 03 2020



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase Line (L) De	DATACTOF ELINCTION	Quasi-Peak (QP) / Average (AV)
-------------------	--------------------	-----------------------------------

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor		g Value uV)		on Level uV)		nit uV)	Maı (d	rgin B)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.39609	10.06	26.62	4.96	36.68	15.02	57.93	47.93	-21.25	-32.91	
2	0.45859	10.06	35.86	29.54	45.92	39.60	56.72	46.72	-10.80	-7.12	
3	0.48203	10.07	38.97	31.70	49.04	41.77	56.30	46.30	-7.26	-4.53	
4	0.91563	10.09	26.43	13.86	36.52	23.95	56.00	46.00	-19.48	-22.05	
5	1.24609	10.12	26.55	20.55	36.67	30.67	56.00	46.00	-19.33	-15.33	
6	1.43359	10.14	20.65	1.05	30.79	11.19	56.00	46.00	-25.21	-34.81	

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		g Value uV)		on Level uV)		nit uV)	Mar (d	-
NO	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.29063	10.05	18.98	10.89	29.03	20.94	60.51	50.51	-31.48	-29.57
2	0.48203	10.07	29.79	21.49	39.86	31.56	56.30	46.30	-16.44	-14.74
3	0.72422	10.10	18.15	10.95	28.25	21.05	56.00	46.00	-27.75	-24.95
4	0.88438	10.12	17.98	7.39	28.10	17.51	56.00	46.00	-27.90	-28.49
5	1.20703	10.15	17.06	9.12	27.21	19.27	56.00	46.00	-28.79	-26.73
6	2.48438	10.24	10.46	-0.96	20.70	9.28	56.00	46.00	-35.30	-36.72

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

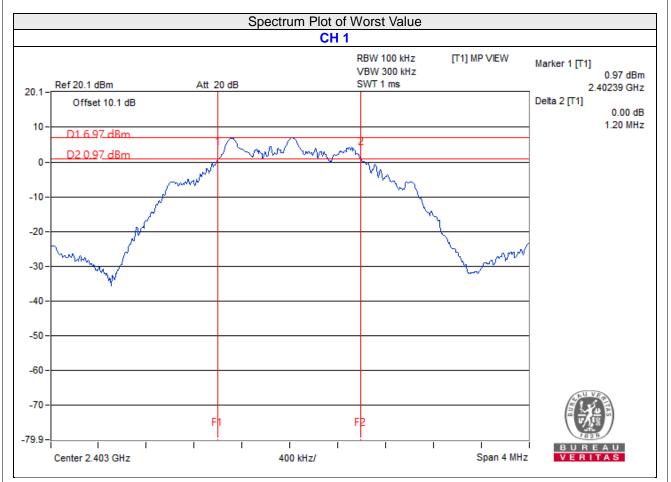
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation from Test Standard

No deviation.

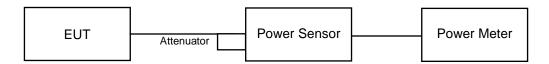
4.3.6 EUT Operating Conditions


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

- LS2 TX Modulated low duty cycle 2403MHz
- LS2 TX Modulated low duty cycle 2442MHz
- LS2 TX Modulated low duty cycle 2481MHz

4.3.7 Test Results

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2403	1.2	0.5	Pass
40	2442	1.2	0.5	Pass
79	2481	1.21	0.5	Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

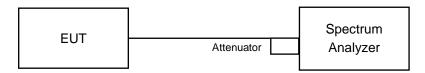
4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2403	5.023	7.01	30	Pass
40	2442	4.909	6.91	30	Pass
79	2481	4.571	6.60	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2403	5	6.99
40	2442	4.875	6.88
79	2481	4.539	6.57



4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

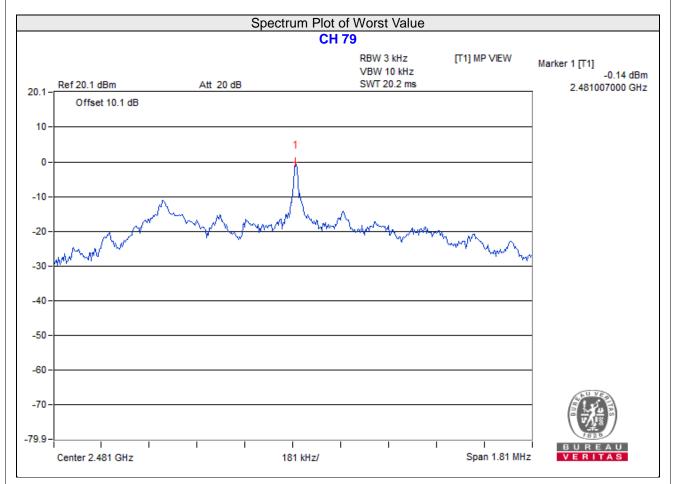
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.3.6.

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2403	-0.19	8	Pass
40	2442	-0.43	8	Pass
79	2481	-0.14	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

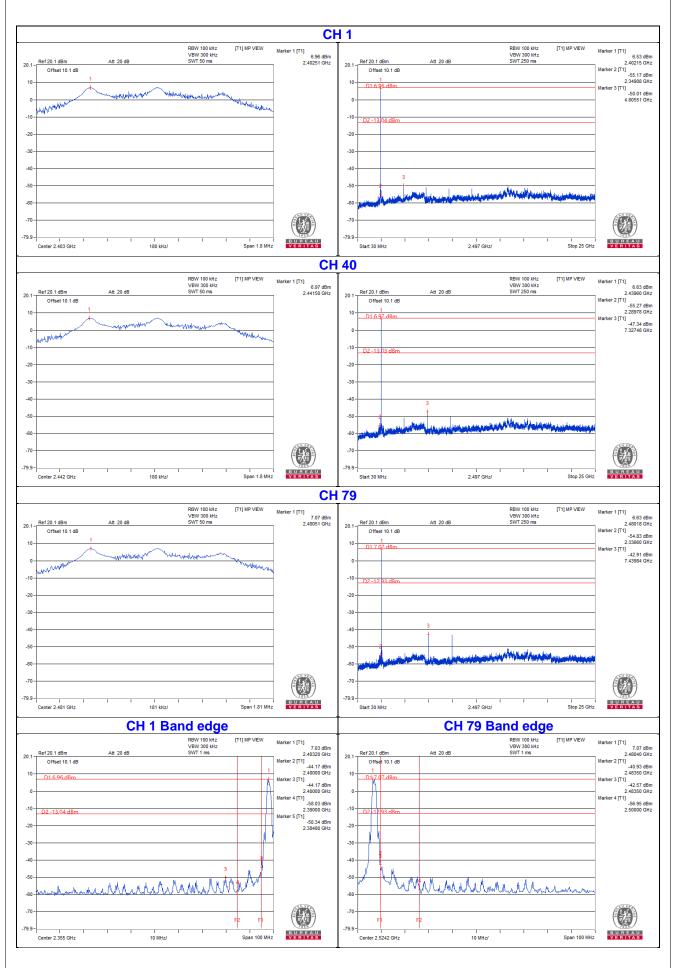
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

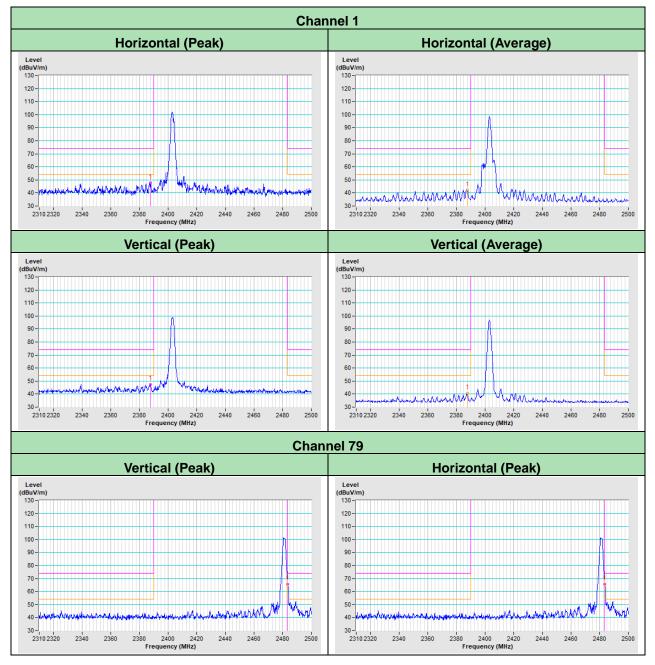
No deviation.


4.6.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest and highest channel frequencies individually.

4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.



5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----