	BUREAU VERITAS
	FCC Test Report (BT-LE)
Report No.:	RF200504E05-1
FCC ID:	JNZMR0083
Test Model:	MR0083
Received Date:	May 05, 2020
Test Date:	May 13 to 29, 2020
Issued Date:	June 04, 2020
Applicant:	LOGITECH FAR EAST LTD.
Address:	#2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
FCC Registration / Designation Number:	723255 / TW2022
	CEMRA CEMRA Testing Laboratory 2022
Inly with our prior written permission. The port are not indicative or representative less specifically and expressly noted. rovided to us. You have 60 days from powever, that such notice shall be in writt all constitute your unqualified acceptar ention, the uncertainty of measuremen	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time ice of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to declare the compliance or non-compliance to the specification. The report roduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record 4		
1	C	Certificate of Conformity	5
2	S	ummary of Test Results	6
	2.1	Measurement Uncertainty	
	2.2	Modification Record	
3	G	General Information	
	3.1	General Description of EUT (BT-LE)	7
	3.2	Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	3.4.1 3.5	Configuration of System under Test General Description of Applied Standards and References	
4	Т	est Types and Results	
	4.1	Radiated Emission and Bandedge Measurement	15
	4.1.1	Einite of Radiated Efficiency and Bandedge medealer for the first statement of the	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup.	
		EUT Operating Conditions	
	4.1.7	Test Results Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
		Test Results	
	4.3	6dB Bandwidth Measurement	
	4.3.1		
	4.3.2	Test Setup	
	4.3.3	Test Instruments	32
	4.3.4	Test Procedure	32
	4.3.5	Deviation from Test Standard	32
	4.3.6	EUT Operating Conditions	
	4.3.7		
	4.4	Conducted Output Power Measurement	
	4.4.1	Limits of Conducted Output Power Measurement	
		Test Setup	
		Test Instruments	
		Test Procedures.	
	4.4.5		
	4.4.6	EUT Operating Conditions Test Results	
	4.4.7 4.5	Power Spectral Density Measurement	
	4.5.1	Limits of Power Spectral Density Measurement	
		Test Setup	
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Condition	

4.5.7	Test Results	37
4.6	Conducted Out of Band Emission Measurement	38
4.6.1	Limits of Conducted Out of Band Emission Measurement	38
4.6.2	Test Setup	38
4.6.3	Test Instruments	38
4.6.4	Test Procedure	38
4.6.5	Deviation from Test Standard	38
4.6.6	EUT Operating Condition	39
4.6.7	Test Results	39
5 P	ictures of Test Arrangements	42
Annex A	A - Band-Edge Measurement	43
Append	Appendix – Information of the Testing Laboratories	

Release Control Record		
Issue No.	Description	Date Issued
RF200504E05-1	Original release.	June 04, 2020

Certificate of Conformity 1

Product:	Wireless Mouse
Brand:	Logitech
Test Model:	MR0083
Sample Status:	ENGINEERING SAMPLE
Applicant:	LOGITECH FAR EAST LTD.
Test Date:	May 13 to 29, 2020
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

Claire Kuan / Specialist

Approved by :

Date: June 04, 2020

Clark Lin / Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)			
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -20.34 dB at 0.64219 MHz.
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -5.9 dB at 30.02 MHz.
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.
15.247(b)	Conducted power	PASS	Meet the requirement of limit.
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used.

Note:

1. For 2.4 GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Conducted emissions	-	2.5 dB
Dedicted Emissions up to 4 CUE	9kHz ~ 30MHz	3.1 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.4 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-LE)

Product	Wireless Mouse	
PMN	MX Anywhere 3	
Brand	Logitech	
Test Model	MR0083	
Status of EUT	ENGINEERING SAMPLE	
Dewer Currely Define	3.7Vdc from battery or	
Power Supply Rating	5Vdc from USB interface	
Modulation Type	GFSK	
Modulation Technology	DTS	
Transfer Rate	BT-LE: Up to 2Mbps (*Note 1)	
Operating Frequency	BT-LE: 2402MHz ~ 2480MHz (*Note 1)	
Number of Channel	BT-LE: 40 (*Note 1)	
Output Power	2.466 mW	
Antenna Type	Refer to Note	
Antenna Connector	Refer to Note	
Accessory Device	NA	
Cable Cupplied	USB Cable Type A to Type C Cable x 1 (Shielded, 1 m),	
Cable Supplied	USB Cable Type C to Type C Cable x 1 (Shielded, 1 m)	

Note:

1. BT-LE technique supports 1Mbps and 2Mbps data rates, both have been evaluated in this test report. Refer to "section 3.2 Description of Test Modes" for more detail specification.

- 2. The device of Bluetooth and GFSK function type cannot transmit simultaneously.
- 3. The EUT may have a lot of colors for marketing requirement.
- 4. The EUT could be supplied with a rechargeable battery as the following table:

Brand Name	Model No.	Spec.
SYNergy ScienTech Corp.	AHB572535PJT-02 or 533-000171	3.7V, 500mAh, 2.0Wh
HIGHPOWER INTERNATIONAL	533-000172 or 652535	3.7V, 500mAh, 1.85Wh

5. The antenna provided to the EUT, please refer to the following table:

Antenna Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connector Type
0.52	2.4-2.4835	Printed Monopole	None
C. For conducted emissions, the EUT was are tested under the following medea:			

6. For conducted emissions, the EUT was pre-tested under the following modes:
Pre-test Mode Description

Fie-lest Mode	Description		
Mode A	Adapter	dapter Battery: SYNergy ScienTech Corp AHB572535PJT-02 or 533-000171 USB cable TypeC to TypeC	
Mode B	Adapter	Battery: HIGHPOWER INTERNATIONAL 533-100172 or 652535 USB cable TypeC to TypeC	
Mode C	Adapter	Battery: SYNergy ScienTech Corp AHB572535PJT-02 or 533-000171 USB cable TypeA to TypeC	
Mode D	Laptop	Battery: SYNergy ScienTech Corp AHB572535PJT-02 or 533-000171 USB cable TypeA to TypeC	
Mode E	Laptop	Battery: SYNergy ScienTech Corp AHB572535PJT-02 or 533-000171 USB cable TypeC to TypeC	

From the above modes, the worst case was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

7. For radiated emissions, the EUT was p	pre-tested under the following modes:
--	---------------------------------------

Pre-test Mode		Description				
Mode A	Battery	ttery Battery: SYNergy ScienTech Corp AHB572535PJT-02 or 533-000171				
Mode B	Battery	Battery: HIGHPOWER INTERNATIONAL 533-100172 or 652535				
Mode C	Adapter Battery: SYNergy ScienTech Corp AHB572535PJT-02 or 533-00017 USB cable TypeC to TypeC					
Mode D	Adapter	Battery: SYNergy ScienTech Corp AHB572535PJT-02 or 533-000171 USB cable TypeA to TypeC				

From the above modes, the worst spurious emission was found in **Mode C**. Therefore only the test data of the modes were recorded in this report.

8. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

BT-LE channels:

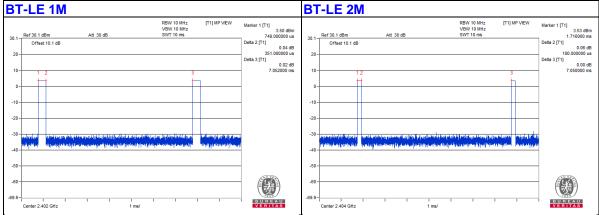
RF	RF Center	Channel	Channels Ty	pe for BT 5.x	Channels Type for BT 4.x
Channel	Frequency	Index	Maximum Data Rate 2Mbps	Maximum Data Rate 1Mbps	Maximum Data Rate 1Mbps
0	2402 MHz	37		•	•
1	2404 MHz	0	•		•
2	2406 MHz	1	•		•
3	2408 MHz	2	•		•
4	2410 MHz	3	•		•
5	2412 MHz	4	•		•
6	2414 MHz	5	•		
7	2416 MHz	6	•		
8	2418 MHz	7	•		
9	2420 MHz	8	•		
10	2422 MHz	9			
11	2424 MHz	10			
12	2426 MHz	38		•	
13	2428 MHz	11	•		
14	2430 MHz	12	•		
15	2432 MHz	13			
16	2434 MHz	14	•		
17	2436 MHz	15	•		
18	2438 MHz	16	•		
19	2440 MHz	17	•		
20	2442 MHz	18	•		
21	2444 MHz	19	•		
22	2446 MHz	20	•		•
23	2448 MHz	21	•		
24	2450 MHz	22			
25	2452 MHz	23			
26	2454 MHz	24			
27	2456 MHz	25			
28	2458 MHz	26			
29	2460 MHz	27			
30	2462 MHz	28			
31	2464 MHz	29			
32	2466 MHz	30			
33	2468 MHz	31			
34	2470 MHz	32			
35	2472 MHz	33			
36	2474 MHz	34			
37	2476 MHz	35			
38	2478 MHz	36			
39	2480 MHz	39			

3.2.1 Test Mode Applicability and Tested Channel Detail

	APPLI		DESCRIPTION		
CONFIGURE MODE RE	≥1G RE<1G	PLC	АРСМ	DESCRIPTION	
-	√ √		\checkmark	-	
horo	ated Emission above 1GHz	RE<1G: Radia	ted Emission below	1GHz	
Bandedge Me PLC: Power L	ine Conducted Emission	APCM: Anten	a Port Conducted M	easurement	
Radiated Emission	<u>1 Test (Above 1GHz)</u>	<u>:</u>			
				I possible combinations	
architecture).	ble modulations, data	rates and antenna	oorts (if EUT with	n antenna diversity	
	nel(s) was (were) sele	cted for the final te	as listed below	Ι.	
AVAILABLE CHANNEL TESTED CHANNEL MODULATION TECHNOLOGY MODULATION TYPE DATA RATE (M					
VAILABLE CHANNEL	TESTED CHANNEL	TECHNOLOGY			
0 to 39	0, 19, 39	DTS	GFSK	1	
0 to 39 1 to 38 Radiated Emission ∑ Pre-Scan has be between availab architecture).	0, 19, 39 1, 19, 38 n Test (Below 1GHz) een conducted to dete ble modulations, data	DTS DTS ermine the worst-ca rates and antenna	GFSK se mode from al ports (if EUT with	l possible combinations n antenna diversity	
0 to 39 1 to 38 Radiated Emission ∑ Pre-Scan has be between availab architecture).	0, 19, 39 1, 19, 38 Test (Below 1GHz) een conducted to dete	DTS DTS ermine the worst-ca rates and antenna	GFSK se mode from al ports (if EUT with	l possible combinations n antenna diversity	
0 to 39 1 to 38 Radiated Emission Pre-Scan has be between availab architecture). ∑ Following chanr	0, 19, 39 1, 19, 38 n Test (Below 1GHz) een conducted to dete ble modulations, data	DTS DTS ermine the worst-ca rates and antenna	GFSK se mode from al ports (if EUT with	l possible combinations n antenna diversity	
0 to 39 1 to 38 Radiated Emission Pre-Scan has be between availab architecture). ∑ Following chanr	0, 19, 39 1, 19, 38 n Test (Below 1GHz) een conducted to dete ble modulations, data nel(s) was (were) sele	DTS DTS ermine the worst-ca rates and antenna cted for the final te MODULATION	GFSK se mode from al ports (if EUT with st as listed below	2 I possible combinations n antenna diversity	
0 to 39 1 to 38 Radiated Emission Pre-Scan has be between availat architecture). Following chann VAILABLE CHANNEL	0, 19, 39 1, 19, 38 n Test (Below 1GHz) een conducted to det ole modulations, data nel(s) was (were) sele TESTED CHANNEL	DTS DTS ermine the worst-ca rates and antenna ected for the final te MODULATION TECHNOLOGY	GFSK se mode from al ports (if EUT with st as listed below MODULATION	I possible combinations n antenna diversity I TYPE DATA RATE (Mbps)	
0 to 39 1 to 38 Radiated Emission Pre-Scan has be between availat architecture). Following channel VAILABLE CHANNEL 0 to 39	0, 19, 39 1, 19, 38 n Test (Below 1GHz) een conducted to det ole modulations, data nel(s) was (were) sele TESTED CHANNEL	DTS DTS ermine the worst-ca rates and antenna ccted for the final te MODULATION TECHNOLOGY DTS	GFSK se mode from al ports (if EUT with st as listed below MODULATION	I possible combinations n antenna diversity I TYPE DATA RATE (Mbps)	
0 to 39 1 to 38 Radiated Emission Pre-Scan has be between availab architecture). Following channel 0 to 39 Power Line Condu	0, 19, 39 1, 19, 38 Test (Below 1GHz) een conducted to detro- ble modulations, data nel(s) was (were) selection TESTED CHANNEL 0 10 10 10 10 10 10 10 10 10	DTS DTS ermine the worst-ca rates and antenna octed for the final te MODULATION TECHNOLOGY DTS	GFSK se mode from al ports (if EUT with st as listed below MODULATION GFSK	I possible combinations n antenna diversity I TYPE DATA RATE (Mbps)	
0 to 39 1 to 38 Radiated Emission Pre-Scan has be between availab architecture). Following chann VAILABLE CHANNEL 0 to 39 Power Line Condu Pre-Scan has be between availab	0, 19, 39 1, 19, 38 Test (Below 1GHz) een conducted to detro- ble modulations, data nel(s) was (were) selection TESTED CHANNEL 0 10 10 10 10 10 10 10 10 10	DTS DTS DTS ermine the worst-ca rates and antenna octed for the final te MODULATION TECHNOLOGY DTS ermine the worst-ca	GFSK se mode from al ports (if EUT with st as listed below MODULATION GFSK se mode from al	I possible combinations antenna diversity I TYPE DATA RATE (Mbps) 1 I possible combinations	
0 to 39 1 to 38 Radiated Emission Pre-Scan has be between availab architecture). Following channel 0 to 39 Power Line Condu Pre-Scan has be between availab architecture).	0, 19, 39 1, 19, 38 Test (Below 1GHz) een conducted to detro- ble modulations, data nel(s) was (were) selection TESTED CHANNEL 0 Interfed Emission Test : een conducted to detro- ble modulations, data	DTS DTS DTS ermine the worst-ca rates and antenna ccted for the final te MODULATION TECHNOLOGY DTS ermine the worst-ca rates and antenna	GFSK Se mode from al ports (if EUT with st as listed below MODULATION GFSK se mode from al ports (if EUT with	2 I possible combinations antenna diversity I DATA RATE (Mbps) 1 1	
0 to 39 1 to 38 Radiated Emission Pre-Scan has be between availab architecture). Following channe AVAILABLE CHANNEL 0 to 39 Power Line Condu Pre-Scan has be between availab architecture). Pre-Scan has be between availab	0, 19, 39 1, 19, 38 Test (Below 1GHz) een conducted to detro- ble modulations, data nel(s) was (were) selection TESTED CHANNEL 0 Interfed Emission Test : een conducted to detro- ble modulations, data nel(s) was (were) selection	DTS DTS DTS ermine the worst-ca rates and antenna ccted for the final te MODULATION TECHNOLOGY DTS ermine the worst-ca rates and antenna	GFSK Se mode from al ports (if EUT with st as listed below MODULATION GFSK se mode from al ports (if EUT with st as listed below	2 I possible combinations n antenna diversity n I TYPE DATA RATE (Mbps) 1 1	
0 to 39 1 to 38 Radiated Emission Pre-Scan has be between availab architecture). Following channel 0 to 39 Power Line Condu Pre-Scan has be between availab architecture).	0, 19, 39 1, 19, 38 Test (Below 1GHz) een conducted to detro- ble modulations, data nel(s) was (were) selection TESTED CHANNEL 0 Interfed Emission Test : een conducted to detro- ble modulations, data	DTS DTS DTS ermine the worst-ca rates and antenna octed for the final te MODULATION TECHNOLOGY DTS ermine the worst-ca rates and antenna	GFSK Se mode from al ports (if EUT with st as listed below MODULATION GFSK se mode from al ports (if EUT with	2 I possible combinations antenna diversity 1 I TYPE DATA RATE (Mbps) 1 1	

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.


AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
0 to 39	0, 19, 39	DTS	GFSK	1
1 to 38	1, 19, 38	DTS	GFSK	2

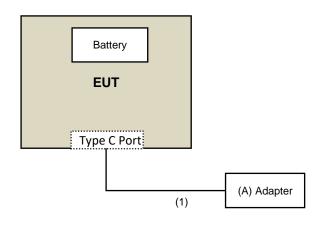
Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (System)	TESTED BY
RE≥1G	22deg. C, 69%RH		Ryan Du
	25deg. C, 75%RH	120Vac, 60Hz	Nelson Teng
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Nelson Teng
PLC	24deg. C, 68%RH	120Vac, 60Hz	Sampson Chen
APCM	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

3.3 Duty Cycle of Test Signal

BT-LE 1M: Duty cycle = 0.351 ms/7.052 ms = 0.05 **BT-LE 2M:** Duty cycle = 0.18 ms/7.05 ms = 0.026

Note: This is highest operational duty cycle.


3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Adapter	ANKER	A2019	NA	NA	Provided by Lab

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Type C to type C Cable	1	1	Yes	0	Supplied by client

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard: FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION &			CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver	N9038A	MY54450088	July 02, 2010	July 02, 2020
Keysight	N9030A	WIT54450066	July 03, 2019	July 02, 2020
Pre-Amplifier EMCI	EMC001340	980142	May 30, 2019	May 29, 2020
Loop Antenna				
Electro-Metrics	EM-6879	264	Feb. 18, 2020	Feb. 17, 2021
RF Cable	NA	LOOPCAB-001	Jan. 08, 2020	Jan. 07, 2021
RF Cable	NA	LOOPCAB-002	Jan. 08, 2020	Jan. 07, 2021
Pre-Amplifier				
Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 28, 2020	Apr. 27, 2021
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 11, 2019	Nov. 10, 2020
RF Cable	8D	966-3-1	Mar. 17, 2020	Mar. 16, 2021
RF Cable	8D	966-3-2	Mar. 17, 2020	Mar. 16, 2021
RF Cable	8D	966-3-3	Mar. 17, 2020	Mar. 16, 2021
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 26, 2019	Sep. 25, 2020
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 24, 2019	Nov. 23, 2020
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-1200	160922	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-2000	180601	June 10, 2019	June 09, 2020
RF Cable	EMC104-SM-SM-6000	180602	June 10, 2019	June 09, 2020
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 15, 2020	Jan. 14, 2021
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 24, 2019	Nov. 23, 2020
RF Cable	EMC102-KM-KM-1200	160924	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC-KM-KM-4000	200214	Mar. 11, 2020	Mar. 10, 2021
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 04, 2019	June 03, 2020
Power meter Anritsu	MA2411B	1339443	July 26, 2019	July 25, 2020
Power sensor Anritsu	ML2495A	1529002	July 26, 2019	July 25, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 14, 2020	Apr. 13, 2021
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Tested Date: May 13 to 29, 2020

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

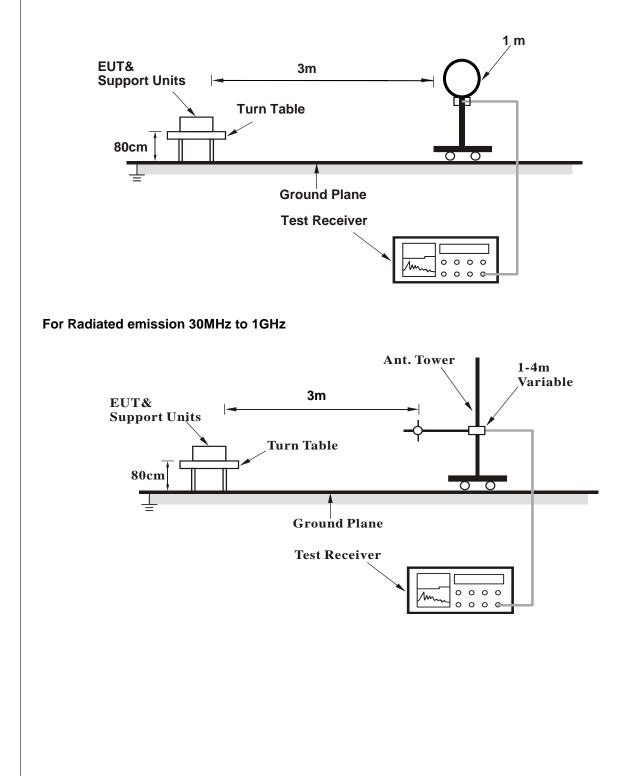
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

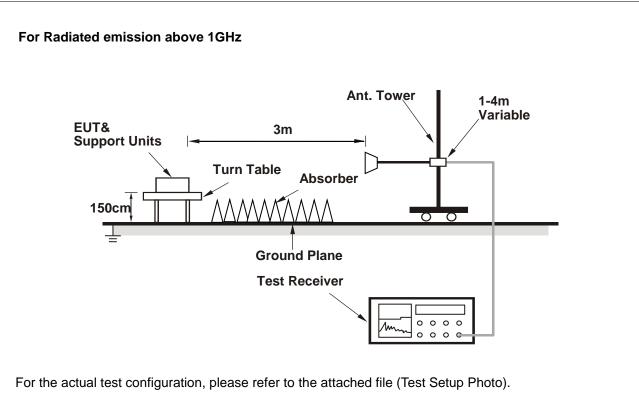
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (RF Sample with receiver [Number Lock]) has been activated to set the EUT under transmission condition continuously.
- BLE 1M TX Modulated 2402MHz Standard duty cycle
- BLE 1M TX Modulated 2440MHz Standard duty cycle
- ♦ BLE 1M TX Modulated 2480MHz Standard duty cycle
- BLE 2M TX Modulated 2404MHz Standard duty cycle
- BLE 2M TX Modulated 2440MHz Standard duty cycle
- BLE 2M TX Modulated 2478MHz Standard duty cycle

4.1.7 Test Results

Above 1GHz Data:

BT-LE 1M

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA		& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	54.2 PK	74.0	-19.8	1.28 H	231	56.1	-1.9
2	2390.00	44.8 AV	54.0	-9.2	1.28 H	231	46.7	-1.9
3	*2402.00	97.4 PK			1.28 H	231	99.3	-1.9
4	*2402.00	83.1 AV			1.28 H	231	85.0	-1.9
5	4804.00	47.5 PK	74.0	-26.5	1.37 H	235	44.6	2.9
6	4804.00	37.1 AV	54.0	-16.9	1.37 H	235	34.2	2.9
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	54.0 PK	74.0	-20.0	3.47 V	202	55.9	-1.9
2	2390.00	44.6 AV	54.0	-9.4	3.47 V	202	46.5	-1.9
3	*2402.00	93.4 PK			3.47 V	202	95.3	-1.9
4	*2402.00	79.4 AV			3.47 V	202	81.3	-1.9
5	4804.00	41.8 PK	74.0	-32.2	2.54 V	48	38.9	2.9
6	4804.00	33.2 AV	54.0	-20.8	2.54 V	48	30.3	2.9

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2440.00	97.5 PK			1.29 H	242	99.5	-2.0	
2	*2440.00	83.3 AV			1.29 H	242	85.3	-2.0	
3	4880.00	47.7 PK	74.0	-26.3	1.39 H	245	44.9	2.8	
4	4880.00	37.1 AV	54.0	-16.9	1.39 H	245	34.3	2.8	
5	7320.00	52.9 PK	74.0	-21.1	1.18 H	126	44.0	8.9	
6	7320.00	47.3 AV	54.0	-6.7	1.18 H	126	38.4	8.9	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
	EREO	EMISSION		MARCIN	ANTENNA	TABLE	RAW	CORRECTION	

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	FACTOR (dB/m)
1	*2440.00	93.5 PK			3.56 V	200	95.5	-2.0
2	*2440.00	80.3 AV			3.56 V	200	82.3	-2.0
3	4880.00	42.0 PK	74.0	-32.0	2.52 V	58	39.2	2.8
4	4880.00	33.4 AV	54.0	-20.6	2.52 V	58	30.6	2.8
5	7320.00	49.8 PK	74.0	-24.2	1.27 V	295	40.9	8.9
6	7320.00	42.8 AV	54.0	-11.2	1.27 V	295	33.9	8.9

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	97.0 PK			1.27 H	234	98.9	-1.9
2	*2480.00	82.8 AV			1.27 H	234	84.7	-1.9
3	2483.50	53.9 PK	74.0	-20.1	1.27 H	234	55.8	-1.9
4	2483.50	44.2 AV	54.0	-9.8	1.27 H	234	46.1	-1.9
5	4960.00	47.7 PK	74.0	-26.3	1.35 H	240	44.9	2.8
6	4960.00	37.1 AV	54.0	-16.9	1.35 H	240	34.3	2.8
7	7440.00	52.4 PK	74.0	-21.6	1.13 H	123	43.4	9.0
8	7440.00	46.9 AV	54.0	-7.1	1.13 H	123	37.9	9.0
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	93.6 PK			3.53 V	192	95.5	-1.9
2	*2480.00	80.7 AV			3.53 V	192	82.6	-1.9
3	2483.50	54.0 PK	74.0	-20.0	3.53 V	192	55.9	-1.9
4	2483.50	44.1 AV	54.0	-9.9	3.53 V	192	46.0	-1.9
5	4960.00	41.4 PK	74.0	-32.6	2.56 V	60	38.6	2.8
6	4960.00	32.9 AV	54.0	-21.1	2.56 V	60	30.1	2.8
7	7440.00	49.6 PK	74.0	-24.4	1.26 V	320	40.6	9.0
8	7440.00	43.1 AV	54.0	-10.9	1.26 V	320	34.1	9.0

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

BT-LE 2M

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	54.0 PK	74.0	-20.0	1.54 H	230	55.9	-1.9	
2	2390.00	44.8 AV	54.0	-9.2	1.54 H	230	46.7	-1.9	
3	*2404.00	96.8 PK			1.54 H	230	98.7	-1.9	
4	*2404.00	81.2 AV			1.54 H	230	83.1	-1.9	
5	4808.00	47.6 PK	74.0	-26.4	1.25 H	235	44.7	2.9	
6	4808.00	35.3 AV	54.0	-18.7	1.25 H	235	32.4	2.9	
		ANTENNA	POLARITY	& TEST D	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	53.6 PK	74.0	-20.4	3.54 V	196	55.5	-1.9	
2	2390.00	44.2 AV	54.0	-9.8	3.54 V	196	46.1	-1.9	
3	*2404.00	92.9 PK			3.54 V	196	94.8	-1.9	
4	*2404.00	78.0 AV			3.54 V	196	79.9	-1.9	
5	4808.00	41.2 PK	74.0	-32.8	2.39 V	47	38.3	2.9	
6	4808.00	30.9 AV	54.0	-23.1	2.39 V	47	28.0	2.9	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2440.00	96.9 PK			1.53 H	239	98.9	-2.0	
2	*2440.00	81.1 AV			1.53 H	239	83.1	-2.0	
3	4880.00	47.2 PK	74.0	-26.8	1.35 H	229	44.4	2.8	
4	4880.00	35.4 AV	54.0	-18.6	1.35 H	229	32.6	2.8	
5	7320.00	52.2 PK	74.0	-21.8	1.18 H	114	43.3	8.9	
6	7320.00	46.3 AV	54.0	-7.7	1.18 H	114	37.4	8.9	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ.	EMISSION LEVEL		MARGIN	ANTENNA HEIGHT	TABLE ANGLE	RAW VALUE	CORRECTION FACTOR	

NO.	FREQ. (MHz)	LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)
1	*2440.00	92.7 PK			3.49 V	199	94.7	-2.0
2	*2440.00	77.9 AV			3.49 V	199	79.9	-2.0
3	4880.00	41.6 PK	74.0	-32.4	2.39 V	79	38.8	2.8
4	4880.00	31.0 AV	54.0	-23.0	2.39 V	79	28.2	2.8
5	7320.00	49.7 PK	74.0	-24.3	1.15 V	295	40.8	8.9
6	7320.00	43.1 AV	54.0	-10.9	1.15 V	295	34.2	8.9

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

CHANNEL	TX Channel 38	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2478.00	97.0 PK			1.48 H	230	98.9	-1.9
2	*2478.00	81.4 AV			1.48 H	230	83.3	-1.9
3	2483.50	53.4 PK	74.0	-20.6	1.48 H	230	55.3	-1.9
4	2483.50	44.7 AV	54.0	-9.3	1.48 H	230	46.6	-1.9
5	4956.00	47.1 PK	74.0	-26.9	1.30 H	224	44.3	2.8
6	4956.00	35.1 AV	54.0	-18.9	1.30 H	224	32.3	2.8
7	7434.00	51.8 PK	74.0	-22.2	1.10 H	125	42.8	9.0
8	7434.00	45.7 AV	54.0	-8.3	1.10 H	125	36.7	9.0
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2478.00	95.2 PK			3.58 V	211	97.1	-1.9
2	*2478.00	79.9 AV			3.58 V	211	81.8	-1.9
3	2483.50	53.7 PK	74.0	-20.3	3.58 V	211	55.6	-1.9
4	2483.50	44.3 AV	54.0	-9.7	3.58 V	211	46.2	-1.9
5	4956.00	41.7 PK	74.0	-32.3	2.40 V	48	38.9	2.8
6	4956.00	31.2 AV	54.0	-22.8	2.40 V	48	28.4	2.8
7	7434.00	50.6 PK	74.0	-23.4	1.20 V	292	41.6	9.0
8	7434.00	43.4 AV	54.0	-10.6	1.20 V	292	34.4	9.0

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

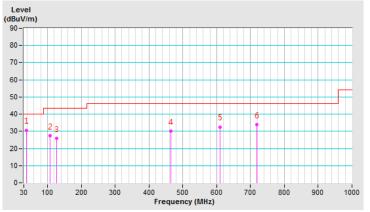
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

Below 1GHz Data:

BT-LE 1M


CHANNEL	TX Channel 0	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	37.74	30.7 QP	40.0	-9.3	4.00 H	250	39.0	-8.3
2	107.99	27.3 QP	43.5	-16.2	1.00 H	1	37.6	-10.3
3	126.61	26.0 QP	43.5	-17.5	2.00 H	274	34.4	-8.4
4	463.64	30.2 QP	46.0	-15.8	4.00 H	98	31.4	-1.2
5	610.69	32.6 QP	46.0	-13.4	1.00 H	214	30.1	2.5
6	719.04	34.0 QP	46.0	-12.0	1.00 H	1	29.9	4.1

REMARKS:

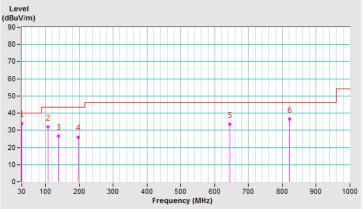
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

_				
	CHANNEL	TX Channel 0	DETECTOR	
	FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	30.02	34.1 QP	40.0	-5.9	1.00 V	3	42.7	-8.6
2	108.01	32.0 QP	43.5	-11.5	4.00 V	266	42.3	-10.3
3	138.88	26.7 QP	43.5	-16.8	2.00 V	185	34.1	-7.4
4	196.04	26.1 QP	43.5	-17.4	4.00 V	358	36.1	-10.0
5	644.40	33.6 QP	46.0	-12.4	2.00 V	305	30.5	3.1
6	820.79	36.6 QP	46.0	-9.4	1.00 V	141	30.2	6.4

REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

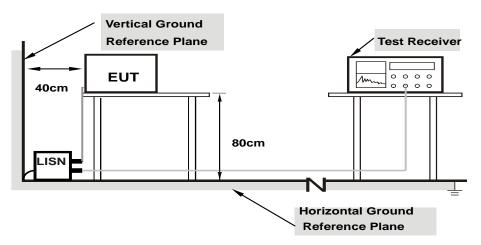
Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 19, 2020	Mar. 18, 2021
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	005	Aug. 30, 2019	Aug. 29, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3. Tested Date: May 15, 2020


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

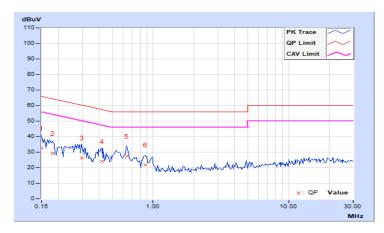
4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase Line (L)					D	etector Fu	nction	Quasi-I Averag	Peak (QP) e (AV)	/
	Fra	Corr.	Readin	g Value	Emissi	on Level	Lir	nit	Mar	gin
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB (uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.99	22.71	0.25	32.70	10.24	66.00	56.00	-33.30	-45.76
2	0.18125	9.99	19.38	-6.23	29.37	3.76	64.43	54.43	-35.06	-50.67
3	0.29844	9.99	16.35	-5.15	26.34	4.84	60.29	50.29	-33.95	-45.45
4	0.41953	10.00	14.16	-5.03	24.16	4.97	57.46	47.46	-33.30	-42.49
5	0.64219	10.02	17.41	-0.11	27.43	9.91	56.00	46.00	-28.57	-36.09
6	0.87656	10.04	11.84	-5.43	21.88	4.61	56.00	46.00	-34.12	-41.39

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

Phase Neutral (N)			D	etector Fu	nction	Quasi- Averag	Peak (QP) e (AV)	/		
_ Cor		Corr.	Reading	g Value	Emissi	on Level	Lir	nit	Mar	gin
No	Freq.	Factor	[dB ((uV)]	[dB	(uV)]	[dB ([uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16953	9.99	20.44	-2.09	30.43	7.90	64.98	54.98	-34.55	-47.08
2	0.25547	10.00	17.44	0.38	27.44	10.38	61.58	51.58	-34.14	-41.20
3	0.42734	10.01	20.06	2.73	30.07	12.74	57.30	47.30	-27.23	-34.56
4	0.64219	10.03	25.63	8.35	35.66	18.38	56.00	46.00	-20.34	-27.62
5	0.88438	10.04	19.17	1.87	29.21	11.91	56.00	46.00	-26.79	-34.09
6	0.99766	10.05	17.71	1.07	27.76	11.12	56.00	46.00	-28.24	-34.88
_	_									

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

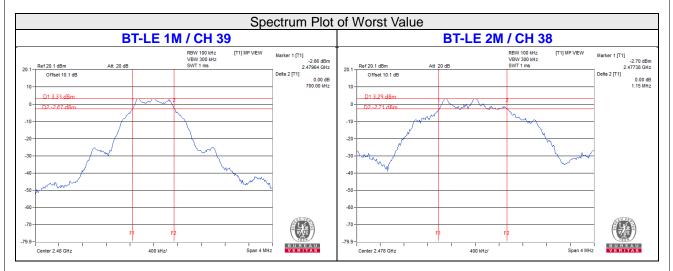
- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

- BLE 1M TX Modulated 2402MHz Standard duty cycle
- BLE 1M TX Modulated 2440MHz Standard duty cycle
- BLE 1M TX Modulated 2480MHz Standard duty cycle
- BLE 2M TX Modulated 2404MHz Standard duty cycle
- BLE 2M TX Modulated 2440MHz Standard duty cycle
- BLE 2M TX Modulated 2478MHz Standard duty cycle

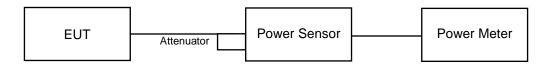

4.3.7 Test Results

BT-LE 1M

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.71	0.5	Pass
19	2440	0.7	0.5	Pass
39	2480	0.7	0.5	Pass

BT-LE 2M

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2404	1.15	0.5	Pass
19	2440	1.15	0.5	Pass
38	2478	1.15	0.5	Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.2.6.

4.4.7 Test Results

BT-LE 1M

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	2.466	3.92	30	Pass
19	2440	2.432	3.86	30	Pass
39	2480	2.393	3.79	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	2.455	3.90
19	2440	2.421	3.84
39	2480	2.382	3.77

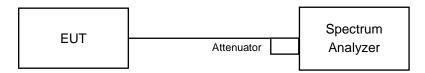
BT-LE 2M

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2404	2.46	3.91	30	Pass
19	2440	2.432	3.86	30	Pass
38	2478	2.393	3.79	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2404	2.449	3.89
19	2440	2.415	3.83
38	2478	2.382	3.77



4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

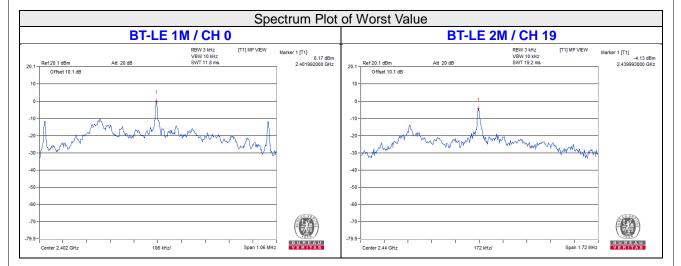
- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition

Same as Item 4.2.6.


4.5.7 Test Results

BT-LE 1M

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	2402	0.17	8	Pass
19	2440	0.17	8	Pass
39	2480	0.15	8	Pass

BT-LE 2M

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2404	-4.30	8	Pass
19	2440	-4.13	8	Pass
38	2478	-4.14	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

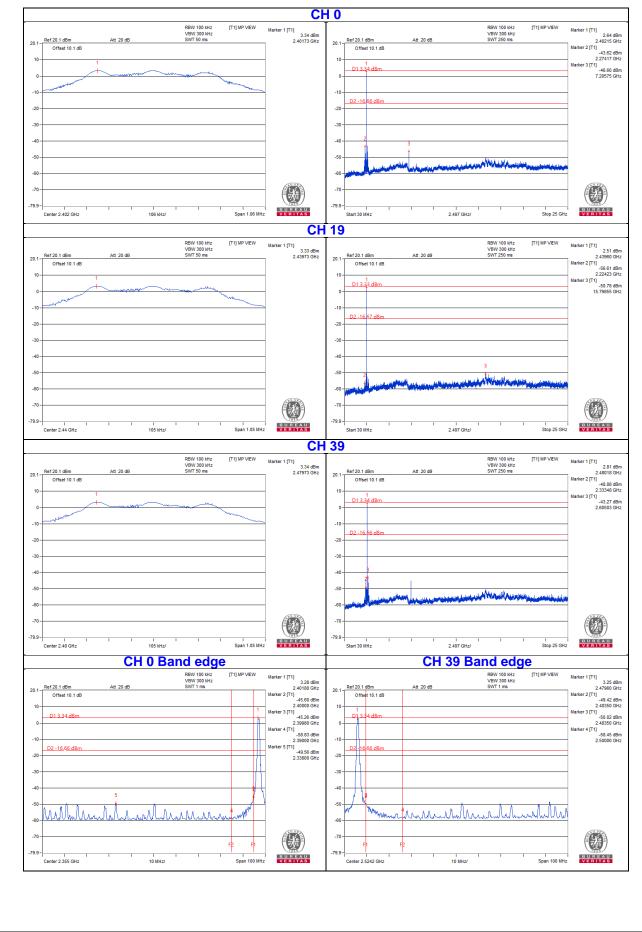
- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

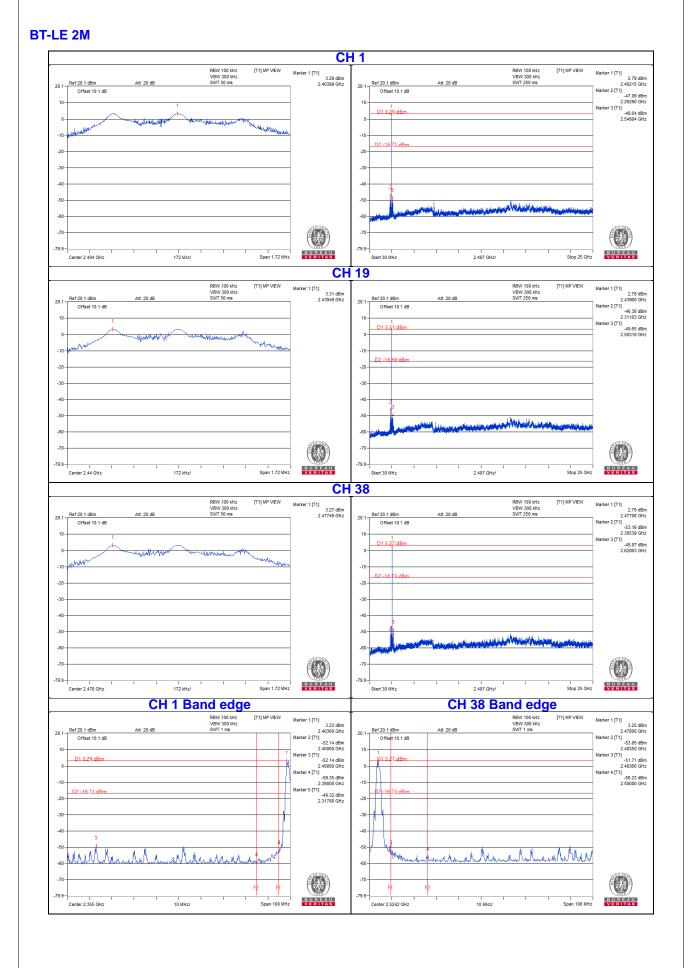
No deviation.

4.6.6 EUT Operating Condition

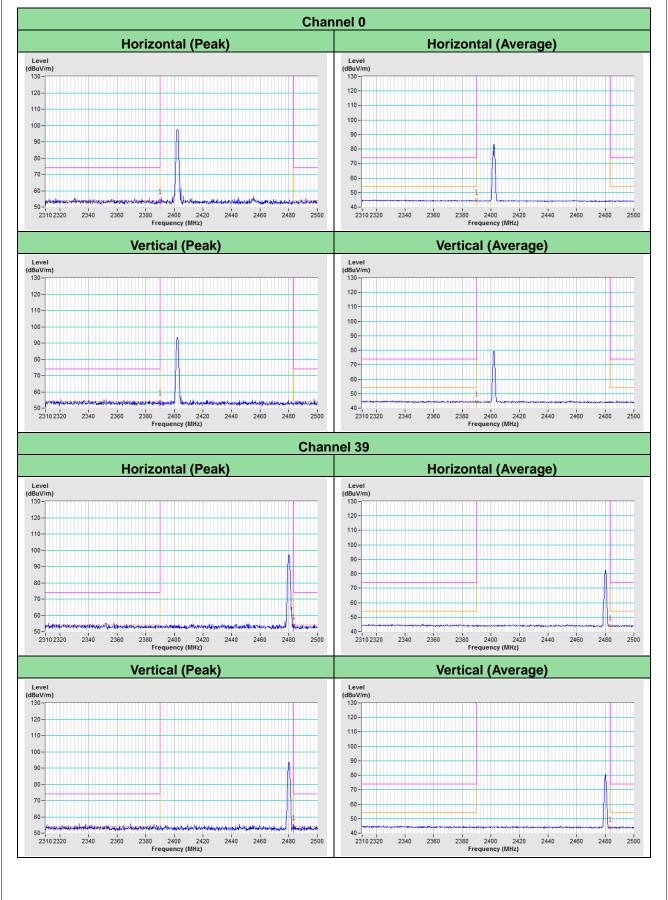
The software provided by client enabled the EUT to transmit and receive data at lowest and highest channel frequencies individually.


- BLE 1M TX Modulated 2402MHz Standard duty cycle
- BLE 1M TX Modulated 2440MHz Standard duty cycle
- BLE 1M TX Modulated 2480MHz Standard duty cycle
- BLE 2M TX Modulated 2404MHz Standard duty cycle
- BLE 2M TX Modulated 2440MHz Standard duty cycle
- BLE 2M TX Modulated 2478MHz Standard duty cycle

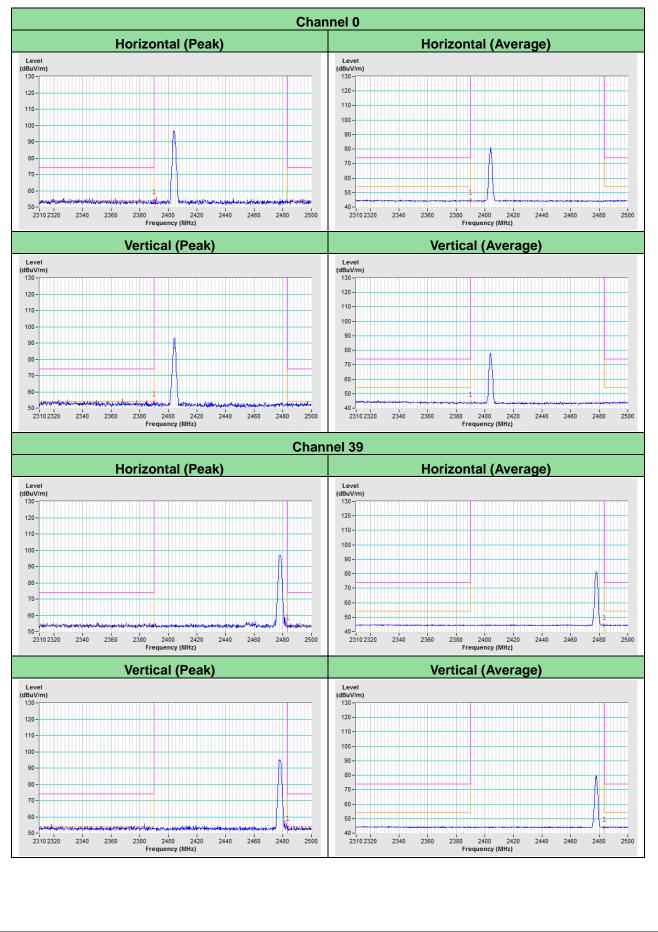
4.6.7 Test Results


The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

BT-LE 1M


5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).


Annex A - Band-Edge Measurement

BT-LE 1M

BT-LE 2M

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---