r	BUREAU VERITAS
	FCC Test Report (BT-LE)
Report No.:	RF190221E04-1
FCC ID:	JNZMR0081
Test Model:	MR0081
Received Date:	Feb. 21, 2019
Test Date:	Feb. 23 to 25, 2019
Issued Date:	Mar. 13, 2019
Applicant:	LOGITECH FAR EAST LTD.
Address:	#2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
FCC Registration / Designation Number:	723255 / TW2022
	TAF
	Testing Laboratory 2022
This report is for your ovaluation use Asy	conving or replication of this report to or for any other parson or optity or use of our name as trademark is permitted
only with our prior written permission. The report are not indicative or representation unless specifically and expressly noted, provided to us. You have 60 days from however, that such notice shall be in wri- shall constitute your unqualified acceptar mention, the uncertainty of measuremer	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted his report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this re of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time nee of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific t has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report
	roduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record 4				
1	Certificate of Conformity				
2	S	ummary of Test Results	6		
	2.1 2.2	Measurement Uncertainty Modification Record			
3	G	eneral Information	7		
	3.1	General Description of EUT (BT-LE)	7		
	3.2	Description of Test Modes			
	3.2.1	Test Mode Applicability and Tested Channel Detail			
	3.3	Duty Cycle of Test Signal			
	3.4	Description of Support Units			
	3.4.1	Configuration of System under Test			
	3.5	General Description of Applied Standards	15		
4	т	est Types and Results	16		
	4.1	Radiated Emission and Bandedge Measurement			
		Limits of Radiated Emission and Bandedge Measurement			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions			
	4.1.7	Test Results Conducted Emission Measurement			
		Limits of Conducted Emission Measurement			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
	4.2.5	Test Setup	. 30		
	4.2.6	EUT Operating Conditions	30		
		Test Results			
	4.3	6dB Bandwidth Measurement			
		Limits of 6dB Bandwidth Measurement			
		Test Setup Test Instruments	. 33		
		Test Procedure			
		Deviation from Test Standard			
		EUT Operating Conditions			
		Test Results			
	4.4	Conducted Output Power Measurement			
	4.4.1	Limits of Conducted Output Power Measurement	36		
		Test Setup			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		EUT Operating Conditions			
	4.4. <i>1</i> 4.5	Test Results Power Spectral Density Measurement			
	4.5 4.5.1				
		Test Setup			
		Test Instruments			
		Test Procedure			
		Deviation from Test Standard			
		EUT Operating Condition			

4.5.7	Test Results	. 39
4.6	Conducted Out of Band Emission Measurement	. 41
4.6.1	Limits of Conducted Out of Band Emission Measurement	. 41
4.6.2	Test Setup	. 41
	Test Instruments	
	Test Procedure	
4.6.5	Deviation from Test Standard	. 41
4.6.6	EUT Operating Condition	. 41
4.6.7	Test Results	. 41
5 F	Pictures of Test Arrangements	. 44
Append	lix – Information of the Testing Laboratories	. 45

Release Control Record					
Issue No.	Description				Date Issued
RF190221E04-1	Original release.				Mar. 13, 2019

1 Certificate of Conformity

Product:	Wireless Mouse
Brand:	logitech G
Test Model:	MR0081
Sample Status:	ENGINEERING SAMPLE
Applicant:	LOGITECH FAR EAST LTD.
Test Date:	Feb. 23 to 25, 2019
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Claire Kuan / Specialist	, Date:	Mar. 13, 2019
Approved by :	May Chen / Manager	, Date:	Mar. 13, 2019

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)				
FCC Clause	Test Item	Result	Remarks	
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -15.77dB at 0.15000MHz.	
15.205 / 15.209 / 15.247(d)	15.209 / Radiated Emissions and Band Edge Measurement		Meet the requirement of limit. Minimum passing margin is -4.6dB at 324.49MHz.	
15.247(d)			Meet the requirement of limit.	
15.247(a)(2)	15.247(a)(2)6dB bandwidth15.247(b)Conducted power		Meet the requirement of limit.	
15.247(b)			Meet the requirement of limit.	
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.	
15.203	Antenna Requirement	PASS	No antenna connector is used.	

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.1 dB
	1GHz ~ 6GHz	5.1 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.2 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-LE)

Product	Wireless Mouse
PMN	G903 LIGHTSPEED
Brand	logitech G
Test Model	MR0081
Status of EUT	ENGINEERING SAMPLE
Dower Supply Dating	3.7Vdc from battery or
Power Supply Rating	5Vdc from USB interface
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	BT 5.0: Up to 2Mbps (*Note 1)
Operating Frequency	BT 5.0: 2402MHz ~ 2480MHz (*Note 1)
Number of Channel	BT 5.0: 40 (*Note 1)
Output Power	BT 5.0 1M: 6.067mW BT 5.0 2M: 6.039mW
Antenna Type	Refer to Note
Antenna Connector Refer to Note	
Accessory Device	NA
Data Cable Supplied	USB to Micro USB cable x 1 (shielded, 1.85m with one core)

Note:

1. BT 5.0 technique supports 1Mbps and 2Mbps data rates, both have been evaluated in this test report. Refer to "section 3.2 Description of Test Modes" for more detail specification.

- 2. The EUT may have a lot of colors for marketing requirement.
- 3. The EUT could be supplied with rechargeable battery as the following table:

Brand	Model No.	Spec.
Springpower Technology (Shenzhen) Co., LTD. or Logitech	383450 or 533-000130	3.7V, 750mAh, 2.775Wh

4. The device wireless function will be disabled automatically when the device is connected to the host equipment through USB cable.

5. For radiated emissions, the EUT was pre-tested under the following modes:

Test Mode	Description			
Mode A	Power from USB adapter			
Mode B	Power from Battery			
	pove modes, the worst case was found in Mode A . Therefore only the test data of the mode ed in this report.			
6. For AC power	conducted emissions, the EUT was pre-tested under the following modes:			
Test Mode	Description			
Mode A	Power from USB adapter			
Mode B	Mode B Power from Laptop			
Note: From the above modes, the worst case was found in Mode B . Therefore only the test data of the mode was recorded in this report.				

7. The antenna provided to the EUT, please refer to the following table:

Antenna Gain(dBi)	Frequency range (GHz)	Antenna Type	Connector Type
1.6	2.4~2.4835	PIFA Antenna	NA

8. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

BT-LE channels:

RF	RF Center	Channel	Channels Ty	pe for BT 5.x	Channels Type for BT 4.x
Channel	Frequency	Index	Maximum Data Rate 2Mbps	Maximum Data Rate 1Mbps	Maximum Data Rate 1Mbps
0	2402 MHz	37		•	•
1	2404 MHz	0	•		•
2	2406 MHz	1	•		•
3	2408 MHz	2	•		•
4	2410 MHz	3	•		•
5	2412 MHz	4	•		•
6	2414 MHz	5	•		
7	2416 MHz	6	•		
8	2418 MHz	7	•		
9	2420 MHz	8	•		
10	2422 MHz	9			
11	2424 MHz	10			
12	2426 MHz	38		•	
13	2428 MHz	11	•		
14	2430 MHz	12	•		
15	2432 MHz	13	•		
16	2434 MHz	14	•		
17	2436 MHz	15	•		
18	2438 MHz	16	•		
19	2440 MHz	17	•		
20	2442 MHz	18	•		
21	2444 MHz	19	•		
22	2446 MHz	20	•		•
23	2448 MHz	21	•		
24	2450 MHz	22			
25	2452 MHz	23			
26	2454 MHz	24			
27	2456 MHz	25			
28	2458 MHz	26			
29	2460 MHz	27			
30	2462 MHz	28			
31	2464 MHz	29			
32	2466 MHz	30			
33	2468 MHz	31			
34	2470 MHz	32			
35	2472 MHz	33			
36	2474 MHz	34			
37	2476 MHz	35			
38	2478 MHz	36			
39	2480 MHz	39			

3.2.1 Test Mode Applicability and Tested Channel Detail

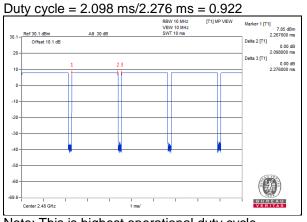
		APPLICA	BLE TO		DESCRIPTION
MODE	RE≥1G	RE<1G	PLC A	PCM	
-	\checkmark	\checkmark	\checkmark	\checkmark	-
		Emission above 1GHz &	RE<1G: Radiated	Emission below 1GHz	
	edge Measur Power Line (ement Conducted Emission	APCM: Antenna P	ort Conducted Measure	ment
diated Em	ission Te	st (Above 1GHz):			
			nine the worst-case tes and antenna por	-	
architectu			tes and antenna por		ina diversity
-		s) was (were) select	ed for the final test a	s listed below.	_
AVAILABLE		TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)	
0 to	39	0, 19, 39	GFSK	1]
1 to	38	1, 19, 38	GFSK	2	1
			ed for the final test a	s listed below.	1
	CHANNEL	TESTED CHANNEL	MODULATION TYPE		
	20	10	CESK		
0 10	39	19	GFSK	1	
			GFSK		
		19 d Emission Test:	GFSK		
ower Line (Conducte has been	d Emission Test: conducted to deterr	nine the worst-case	1 mode from all poss	
ower Line (Pre-Scan between a	Conducte has been available r	d Emission Test: conducted to deterr		1 mode from all poss	
Dwer Line (Pre-Scan between a architectu	<u>Conducte</u> has been available r ire).	d Emission Test: conducted to deterr nodulations, data ra	nine the worst-case tes and antenna por	1 mode from all poss ts (if EUT with anter	
Dwer Line (Pre-Scan between a architectu	Conducte has been available r ire). channel(s	d Emission Test: conducted to deterr nodulations, data ra	nine the worst-case	1 mode from all poss ts (if EUT with anter s listed below.	
ower Line (Pre-Scan between a architectu Following	Conducte has been available r ire). channel(s CHANNEL	d Emission Test: conducted to deterr nodulations, data ra s) was (were) select TESTED CHANNEL	nine the worst-case tes and antenna por ed for the final test a MODULATION TYPE	1 mode from all poss ts (if EUT with anter s listed below. DATA RATE (Mbps)	
Dwer Line (Pre-Scan between architectu Following	Conducte has been available r ire). channel(s	d Emission Test: conducted to deterr nodulations, data ra s) was (were) select	nine the worst-case tes and antenna por ed for the final test a	1 mode from all poss ts (if EUT with anter s listed below.	
 Dwer Line (Pre-Scan between a architectu Following AVAILABLE 0 to 	Conducte has been available r ire). channel(s CHANNEL	d Emission Test: conducted to deterr nodulations, data ra s) was (were) select TESTED CHANNEL 19	nine the worst-case tes and antenna por ed for the final test a MODULATION TYPE	1 mode from all poss ts (if EUT with anter s listed below. DATA RATE (Mbps)	
wer Line (Pre-Scan between a architectu Following AVAILABLE 0 to	Conducte has been available r ire). channel(s CHANNEL	d Emission Test: conducted to deterr nodulations, data ra s) was (were) select TESTED CHANNEL	nine the worst-case tes and antenna por ed for the final test a MODULATION TYPE	1 mode from all poss ts (if EUT with anter s listed below. DATA RATE (Mbps)	
Dwer Line (Pre-Scan between a architectu Following AVAILABLE 0 to ntenna Por	Conducte has been available r ire). channel(s CHANNEL 339	d Emission Test: conducted to deterr nodulations, data ra s) was (were) select TESTED CHANNEL 19 ted Measurement:	nine the worst-case tes and antenna por ed for the final test a MODULATION TYPE	1 mode from all poss ts (if EUT with anter s listed below. DATA RATE (Mbps) 1	nna diversity
ower Line (Pre-Scan between a architectu Following AVAILABLE 0 to ntenna Por This item mode.	Conducte has been available r ire). channel(s cHANNEL 339	d Emission Test: conducted to deterr nodulations, data ra s) was (were) selecto TESTED CHANNEL 19 ted Measurement: all test value of each	nine the worst-case tes and antenna por ed for the final test a MODULATION TYPE GFSK mode, but only inclu	1 mode from all poss ts (if EUT with anter s listed below. DATA RATE (Mbps) 1 udes spectrum plot of	nna diversity
ower Line (Pre-Scan between a architectu Following AVAILABLE 0 to ntenna Por This item mode. Pre-Scan	Conducte has been available r ire). channel(s cHANNEL 339 t Conduc includes a has been	d Emission Test: conducted to deterr nodulations, data ra s) was (were) select TESTED CHANNEL 19 ted Measurement: all test value of each conducted to deterr	nine the worst-case tes and antenna por ed for the final test a MODULATION TYPE GFSK mode, but only inclu	1 mode from all poss ts (if EUT with anter s listed below. DATA RATE (Mbps) 1 udes spectrum plot mode from all poss	nna diversity
ower Line (Pre-Scan between a architectu Following AVAILABLE 0 to ntenna Por This item mode. Pre-Scan between a architectu	Conducte has been available r ire). channel(s CHANNEL 339 t Conduc includes a has been available r ire).	d Emission Test: conducted to deterr nodulations, data ra s) was (were) selectr TESTED CHANNEL 19 ted Measurement: all test value of each conducted to deterr nodulations, data ra	nine the worst-case tes and antenna por ed for the final test a MODULATION TYPE GFSK mode, but only inclu nine the worst-case tes and antenna por	1 mode from all poss ts (if EUT with anter s listed below. DATA RATE (Mbps) 1 udes spectrum plot mode from all poss ts (if EUT with anter	nna diversity
ower Line (Pre-Scan between a architectu Following AVAILABLE 0 to ntenna Por This item mode. Pre-Scan between a architectu	Conducte has been available r ire). channel(s CHANNEL 339 t Conduc includes a has been available r ire).	d Emission Test: conducted to deterr nodulations, data ra s) was (were) selectr TESTED CHANNEL 19 ted Measurement: all test value of each conducted to deterr nodulations, data ra	nine the worst-case tes and antenna por ed for the final test a MODULATION TYPE GFSK mode, but only inclu	1 mode from all poss ts (if EUT with anter s listed below. DATA RATE (Mbps) 1 udes spectrum plot mode from all poss ts (if EUT with anter	nna diversity
ower Line (Pre-Scan between a architectu Following AVAILABLE 0 to htenna Por This item mode. Pre-Scan between a architectu	Conducte has been available r ire). channel(s CHANNEL 339 t Conduc includes a has been available r ire). channel(s	d Emission Test: conducted to deterr nodulations, data ra s) was (were) selectr TESTED CHANNEL 19 ted Measurement: all test value of each conducted to deterr nodulations, data ra	nine the worst-case tes and antenna por ed for the final test a MODULATION TYPE GFSK mode, but only inclu nine the worst-case tes and antenna por	1 mode from all poss ts (if EUT with anter s listed below. DATA RATE (Mbps) 1 udes spectrum plot mode from all poss ts (if EUT with anter	nna diversity
Power Line (Pre-Scan between a architectu Following AVAILABLE 0 to Intenna Por This item mode. Pre-Scan between a architectu AVAILABLE Oto Athis item mode. Pre-Scan between a architectu Following AVAILABLE	Conducte has been available r ire). channel(s CHANNEL 339 t Conduc includes a has been available r ire). channel(s	d Emission Test: conducted to deterr nodulations, data ra s) was (were) select TESTED CHANNEL 19 ted Measurement: all test value of each conducted to deterr nodulations, data ra	nine the worst-case tes and antenna por ed for the final test a MODULATION TYPE GFSK mode, but only inclu nine the worst-case tes and antenna por ed for the final test a	1 mode from all poss ts (if EUT with anter s listed below. DATA RATE (Mbps) 1 udes spectrum plot of mode from all poss ts (if EUT with anter s listed below.	nna diversity

1 to 38

1, 19, 38

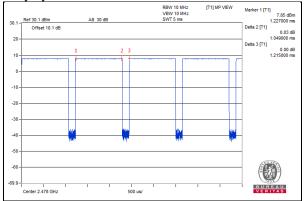
GFSK

2


Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS (SYSTEM)		TESTED BY
RE≥1G	21deg. C, 62%RH	120Vac, 60Hz	Steven Chiang
RE<1G	22deg. C, 67%RH	120Vac, 60Hz	Steven Chiang
PLC	25deg. C, 75%RH	120Vac, 60Hz	Frank Chuang
APCM	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

3.3 Duty Cycle of Test Signal


BT 5.0 1M

Note: This is highest operational duty cycle.

BT 5.0 2M

Duty cycle = 1.049 ms/1.215 ms = 0.863

Note: This is highest operational duty cycle.

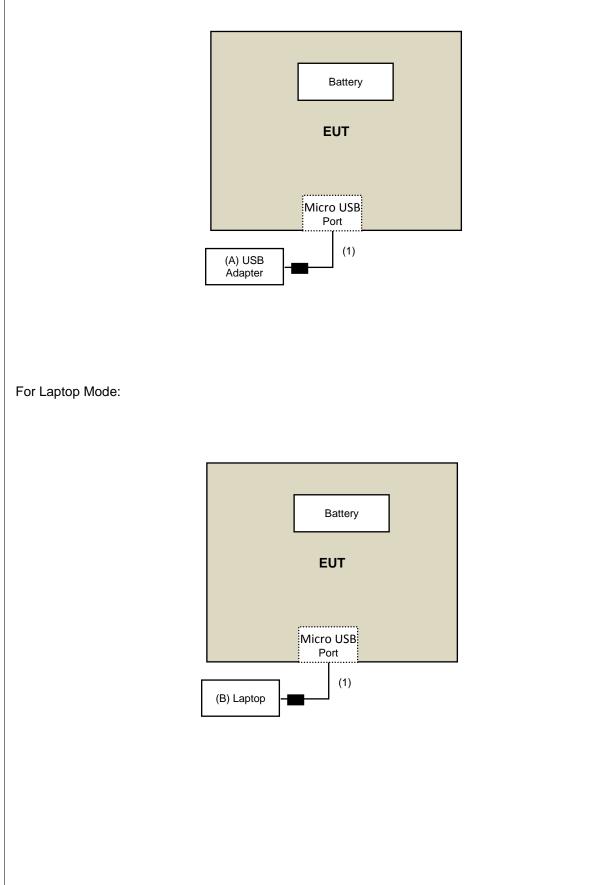
3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	USB Adapter	ASUS	AD876320	NA	NA	Provided by Lab
В.	Laptop	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).


ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	1.85	Yes	1	Supplied by client

Note: The core is originally attached to the cable.

3.4.1 Configuration of System under Test

For Adapter Mode:

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 15.247 Meas Guidance v05r01 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION &		055141 110	CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver	N9038A	MY50010156	July 12, 2018	July 11, 2019
Agilent	NSOSOA	10100010100	501y 12, 2010	50ly 11, 2015
Pre-Amplifier	EMC001340	980142	Jan. 25, 2019	Jan. 24, 2020
EMCI		0001.12	04111 20, 2010	04111 2 1, 2020
Loop Antenna	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
Electro-Metrics			-	-
RF Cable	NA	LOOPCAB-001	Jan. 14, 2019	Jan. 13, 2020
RF Cable	NA	LOOPCAB-002	Jan. 14, 2019	Jan. 13, 2020
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	May 05, 2018	May 04, 2019
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 22, 2018	Nov. 21, 2019
RF Cable	8D	966-3-1	Mar. 20, 2018	Mar. 19, 2019
RF Cable	8D	966-3-2	Mar. 20, 2018	Mar. 19, 2019
RF Cable	8D	966-3-3	Mar. 20, 2018	Mar. 19, 2019
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 27, 2018	Sep. 26, 2019
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 25, 2018	Nov. 24, 2019
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC104-SM-SM-1200	160922	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC104-SM-SM-2000	180601	June 12, 2018	June 11, 2019
RF Cable	EMC104-SM-SM-6000	180602	June 12, 2018	June 11, 2019
Spectrum Analyzer Keysight	N9030A	MY54490679	July 23, 2018	July 22, 2019
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 28, 2019	Jan. 27, 2020
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 25, 2018	Nov. 24, 2019
RF Cable	EMC102-KM-KM-1200	160924	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC102-KM-KM-1200	160925	Jan. 28, 2019	Jan. 27, 2020
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 20, 2018	June 19, 2019
Power meter Anritsu	ML2495A	1014008	May 09, 2018	May 08, 2019
Power sensor Anritsu	MA2411B	0917122	May 09, 2018	May 08, 2019

Note:

- 2. The test was performed in 966 Chamber No. 3.
- 3. The CANADA Site Registration No. is 20331-1
- 4. Loop antenna was used for all emissions below 30 MHz.
- 5. Tested Date: Feb. 23 to 25, 2019

^{1.} The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

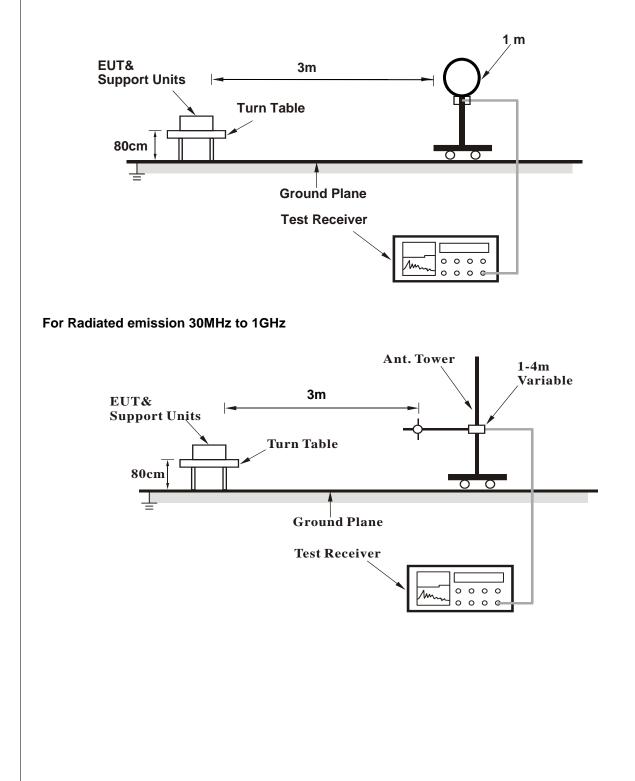
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

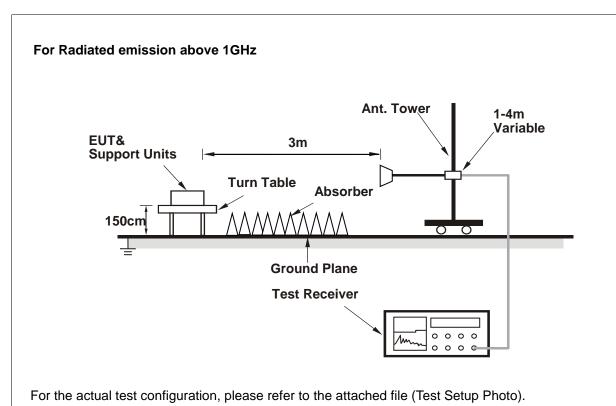
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Controlling software (RF Sample [Number Lock]) has been activated to set the EUT under transmission/receiving condition continuously.

4.1.7 Test Results

BT 5.0 1M

Above 1GHz Data:

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	55.7 PK	74.0	-18.3	1.20 H	156	57.8	-2.1		
2	2390.00	43.2 AV	54.0	-10.8	1.20 H	156	45.3	-2.1		
3	*2402.00	106.4 PK			1.20 H	156	108.5	-2.1		
4	*2402.00	102.1 AV			1.20 H	156	104.2	-2.1		
5	4804.00	50.2 PK	74.0	-23.8	3.70 H	66	48.1	2.1		
6	4804.00	42.5 AV	54.0	-11.5	3.70 H	66	40.4	2.1		
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	55.4 PK	74.0	-18.6	2.23 V	191	57.5	-2.1		

1	2390.00	55.4 PK	74.0	-18.6	2.23 V	191	57.5	-2.1
2	2390.00	42.8 AV	54.0	-11.2	2.23 V	191	44.9	-2.1
3	*2402.00	99.0 PK			2.23 V	191	101.1	-2.1
4	*2402.00	95.5 AV			2.23 V	191	97.6	-2.1
5	4804.00	49.0 PK	74.0	-25.0	1.08 V	279	46.9	2.1
6	4804.00	41.6 AV	54.0	-12.4	1.08 V	279	39.5	2.1

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2440.00	106.1 PK			1.18 H	148	108.4	-2.3	
2	*2440.00	102.7 AV			1.18 H	148	105.0	-2.3	
3	4880.00	50.6 PK	74.0	-23.4	3.67 H	75	48.5	2.1	
4	4880.00	42.6 AV	54.0	-11.4	3.67 H	75	40.5	2.1	
5	7320.00	53.3 PK	74.0	-20.7	1.26 H	222	45.3	8.0	
6	7320.00	44.8 AV	54.0	-9.2	1.26 H	222	36.8	8.0	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2440.00	98.9 PK			2.18 V	204	101.2	-2.3	
2	*2440.00	94.3 AV			2.18 V	204	96.6	-2.3	
3	4880.00	48.6 PK	74.0	-25.4	1.12 V	278	46.5	2.1	

REMARKS:

4

5

6

4880.00

7320.00

7320.00

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-12.3

-22.1

-10.5

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.12 V

1.00 V

1.00 V

278

122

122

39.6

43.9

35.5

2.1

8.0

8.0

3. The other emission levels were very low against the limit.

54.0

74.0

54.0

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

41.7 AV

51.9 PK

43.5 AV

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2480.00	106.2 PK			1.20 H	157	108.6	-2.4		
2	*2480.00	102.8 AV			1.20 H	157	105.2	-2.4		
3	2483.50	60.6 PK	74.0	-13.4	1.20 H	157	63.0	-2.4		
4	2483.50	48.4 AV	54.0	-5.6	1.20 H	157	50.8	-2.4		
5	4960.00	49.9 PK	74.0	-24.1	3.70 H	67	47.6	2.3		
6	4960.00	42.1 AV	54.0	-11.9	3.70 H	67	39.8	2.3		
7	7440.00	53.0 PK	74.0	-21.0	1.23 H	217	44.7	8.3		
8	7440.00	44.9 AV	54.0	-9.1	1.23 H	217	36.6	8.3		
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2480.00	98.6 PK			2.17 V	203	101.0	-2.4		
2	*2480.00	94.1 AV			2.17 V	203	96.5	-2.4		
3	2483.50	55.6 PK	74.0	-18.4	2.17 V	203	58.0	-2.4		
4	2483.50	42.9 AV	54.0	-11.1	2.17 V	203	45.3	-2.4		
5	4960.00	48.2 PK	74.0	-25.8	1.08 V	289	45.9	2.3		
6	4960.00	41.0 AV	54.0	-13.0	1.08 V	289	38.7	2.3		
7	7440.00	52.7 PK	74.0	-21.3	1.00 V	107	44.4	8.3		
8	7440.00	43.8 AV	54.0	-10.2	1.00 V	107	35.5	8.3		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

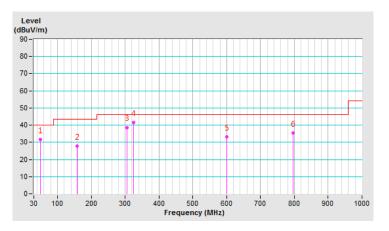
3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

Below 1GHz Data:

CHANNEL	TX Channel 19	DETECTOR	Over Deals (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)


	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	49.55	31.5 QP	40.0	-8.5	1.00 H	2	40.4	-8.9				
2	158.69	27.8 QP	43.5	-15.7	2.00 H	100	36.0	-8.2				
3	305.84	38.7 QP	46.0	-7.3	1.00 H	242	45.6	-6.9				
4	324.49	41.4 QP	46.0	-4.6	1.00 H	200	47.7	-6.3				
5	600.00	33.3 QP	46.0	-12.7	1.50 H	142	33.3	0.0				
6	796.01	35.4 QP	46.0	-10.6	1.00 H	268	32.2	3.2				

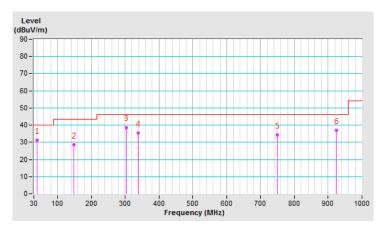
REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 19	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)


	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	38.78	31.1 QP	40.0	-8.9	2.00 V	16	40.7	-9.6				
2	148.36	28.4 QP	43.5	-15.1	2.00 V	205	36.5	-8.1				
3	304.41	38.7 QP	46.0	-7.3	2.00 V	178	45.7	-7.0				
4	338.07	35.3 QP	46.0	-10.7	1.50 V	157	41.4	-6.1				
5	749.13	34.2 QP	46.0	-11.8	1.00 V	223	31.3	2.9				
6	924.66	36.8 QP	46.0	-9.2	1.50 V	360	31.5	5.3				

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

BT 5.0 2M

Above 1GHz Data:

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
2390.00	55.8 PK	74.0	-18.2	1.18 H	150	57.9	-2.1		
2390.00	43.2 AV	54.0	-10.8	1.18 H	150	45.3	-2.1		
*2404.00	106.5 PK			1.35 H	150	108.6	-2.1		
*2404.00	98.7 AV			1.35 H	150	100.8	-2.1		
4808.00	50.6 PK	74.0	-23.4	3.59 H	47	48.5	2.1		
4808.00	42.8 AV	54.0	-11.2	3.59 H	47	40.7	2.1		
	ANTENNA	POLARITY	& TEST D	STANCE: V	ERTICAL A	Т 3 М			
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
2390.00	55.6 PK	74.0	-18.4	2.13 V	204	57.7	-2.1		
2390.00	42.9 AV	54.0	-11.1	2.13 V	204	45.0	-2.1		
*2404.00	99.0 PK			2.13 V	204	101.1	-2.1		
*2404.00	91.0 AV			2.13 V	204	93.1	-2.1		
4808.00	49.1 PK	74.0	-24.9	1.09 V	274	47.0	2.1		
4808.00	41.8 AV	54.0	-12.2	1.09 V	274	39.7	2.1		
	(MHz) 2390.00 2390.00 *2404.00 *2404.00 4808.00 4808.00 FREQ. (MHz) 2390.00 2390.00 2390.00 *2404.00 *2404.00	FREQ. (MHz) EMISSION LEVEL (dBuV/m) 2390.00 55.8 PK 2390.00 55.8 PK 2390.00 43.2 AV *2404.00 106.5 PK *2404.00 98.7 AV 4808.00 50.6 PK 4808.00 42.8 AV ANTENNA EMISSION LEVEL (dBuV/m) 2390.00 55.6 PK 2390.00 55.6 PK 2390.00 42.9 AV *2404.00 99.0 PK *2404.00 91.0 AV 4808.00 49.1 PK	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 2390.00 55.8 PK 74.0 2390.00 43.2 AV 54.0 *2404.00 106.5 PK * *2404.00 98.7 AV * 4808.00 50.6 PK 74.0 4808.00 42.8 AV 54.0 FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 2390.00 55.6 PK 74.0 2390.00 55.6 PK 74.0 2390.00 55.6 PK 74.0 2390.00 55.6 PK 74.0 2390.00 42.9 AV 54.0 *2404.00 99.0 PK * *2404.00 91.0 AV 4808.00 4808.00 49.1 PK 74.0	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 2390.00 55.8 PK 74.0 -18.2 2390.00 43.2 AV 54.0 -10.8 *2404.00 106.5 PK * * *2404.00 98.7 AV - * 4808.00 50.6 PK 74.0 -23.4 4808.00 50.6 PK 74.0 -23.4 4808.00 42.8 AV 54.0 -11.2 ANTENNA POLARITY & TEST DI FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 2390.00 55.6 PK 74.0 -18.4 2390.00 55.6 PK 74.0 -11.1 *2404.00 99.0 PK - - *2404.00 99.0 PK - - *2404.00 91.0 AV - - 4808.00 49.1 PK 74.0 -24.9	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 2390.00 55.8 PK 74.0 -18.2 1.18 H 2390.00 43.2 AV 54.0 -10.8 1.18 H *2404.00 106.5 PK -10.8 1.18 H *2404.00 98.7 AV 1.35 H 1.35 H *2404.00 98.7 AV 1.35 H 3.59 H 4808.00 50.6 PK 74.0 -23.4 3.59 H 4808.00 42.8 AV 54.0 -11.2 3.59 H ANTENNA POLARITY & TEST DISTANCE: V RANTENNA (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 2390.00 55.6 PK 74.0 -18.4 2.13 V 2390.00 55.6 PK 74.0 -18.4 2.13 V 2390.00 42.9 AV 54.0 -11.1 2.13 V *2404.00 99.0 PK 2.13 V 2.13 V *2404.00 91.0 AV 2.13 V 2.13 V	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 2390.00 55.8 PK 74.0 -18.2 1.18 H 150 2390.00 43.2 AV 54.0 -10.8 1.18 H 150 *2404.00 106.5 PK -10.8 1.18 H 150 *2404.00 98.7 AV -23.4 3.59 H 47 4808.00 50.6 PK 74.0 -23.4 3.59 H 47 4808.00 42.8 AV 54.0 -11.2 3.59 H 47 ANTENNA POLARITY & TEST DISTANCE: VERTICAL A FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 2390.00 55.6 PK 74.0 -18.4 2.13 V 204 2390.00 55.6 PK 74.0 -18.4 2.13 V 204 2390.00 42.9 AV 54.0 -11.1 2.13 V 204 *2404.00 99.0 PK 2.13 V 204 <	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 2390.00 55.8 PK 74.0 -18.2 1.18 H 150 57.9 2390.00 43.2 AV 54.0 -10.8 1.18 H 150 45.3 *2404.00 106.5 PK - 1.35 H 150 108.6 *2404.00 98.7 AV - 1.35 H 150 100.8 4808.00 50.6 PK 74.0 -23.4 3.59 H 47 48.5 4808.00 42.8 AV 54.0 -11.2 3.59 H 47 40.7 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M FREQ. (MHz) EMISSION LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 2390.00 55.6 PK 74.0 -18.4 2.13 V 204 57.7 2390.00 55.6 PK 74.0 -18.4 2.13 V 204 45.0 *2404.00 99.0 PK - </td		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2440.00	106.1 PK			1.38 H	159	108.4	-2.3		
2	*2440.00	98.3 AV			1.38 H	159	100.6	-2.3		
3	4880.00	50.8 PK	74.0	-23.2	3.68 H	53	48.7	2.1		
4	4880.00	43.1 AV	54.0	-10.9	3.68 H	53	41.0	2.1		
5	7320.00	53.5 PK	74.0	-20.5	1.27 H	211	45.5	8.0		
6	7320.00	45.4 AV	54.0	-8.6	1.27 H	211	37.4	8.0		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2440.00	98.5 PK			2.17 V	188	100.8	-2.3		
2	*2440.00	90.7 AV			2.17 V	188	93.0	-2.3		
3	4880.00	48.6 PK	74.0	-25.4	1.15 V	272	46.5	2.1		

REMARKS:

4880.00

7320.00

7320.00

4

5

6

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-12.3

-20.9

-9.7

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.15 V

1.00 V

1.00 V

272

103

103

39.6

45.1

36.3

2.1

8.0

8.0

3. The other emission levels were very low against the limit.

54.0

74.0

54.0

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

41.7 AV

53.1 PK

44.3 AV

ΡΚ) ∋ (AV)	́)
	<i>.</i>

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2478.00	106.3 PK			1.42 H	157	108.7	-2.4		
2	*2478.00	98.4 AV			1.42 H	157	100.8	-2.4		
3	2483.50	56.2 PK	74.0	-17.8	1.18 H	163	58.6	-2.4		
4	2483.50	43.3 AV	54.0	-10.7	1.18 H	163	45.7	-2.4		
5	4956.00	50.5 PK	74.0	-23.5	3.65 H	59	48.2	2.3		
6	4956.00	42.6 AV	54.0	-11.4	3.65 H	59	40.3	2.3		
7	7434.00	53.2 PK	74.0	-20.8	1.24 H	227	44.9	8.3		
8	7434.00	45.0 AV	54.0	-9.0	1.24 H	227	36.7	8.3		
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2478.00	98.7 PK			2.18 V	203	101.1	-2.4		
2	*2478.00	90.8 AV			2.18 V	203	93.2	-2.4		
3	2483.50	55.8 PK	74.0	-18.2	2.18 V	203	58.2	-2.4		
4	2483.50	43.0 AV	54.0	-11.0	2.18 V	203	45.4	-2.4		
5	4956.00	48.5 PK	74.0	-25.5	1.11 V	278	46.2	2.3		
6	4956.00	41.3 AV	54.0	-12.7	1.11 V	278	39.0	2.3		
7	7434.00	52.6 PK	74.0	-21.4	1.00 V	107	44.3	8.3		
8	7434.00	43.9 AV	54.0	-10.1	1.00 V	107	35.6	8.3		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)			
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

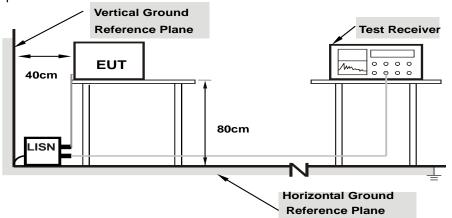
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2018	Oct. 23, 2019
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 22, 2018	Oct. 21, 2019
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 04, 2018	June 03, 2019
50 ohms Terminator	N/A	3	Oct. 22, 2018	Oct. 21, 2019
RF Cable	5D-FB	COCCAB-001	Sep. 28, 2018	Sep. 27, 2019
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 16, 2018	Mar. 15, 2019
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

2. The test was performed in Conduction 1.

3. Tested Date: Feb. 25, 2019

^{1.} The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

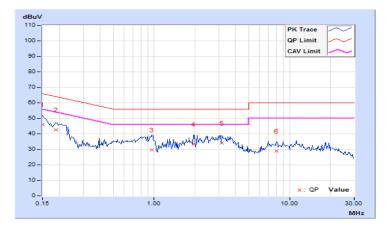
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.



4.2.7 Test Results

Phase Line (L)			D	Detector Function Quasi-Peak (QP) / Average (AV)				/		
	_ Corr.		Reading Value Emission Level		on Level	Limit		Margin		
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB ([uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.02	35.88	15.96	45.90	25.98	66.00	56.00	-20.10	-30.02
2	0.18906	10.04	32.57	13.01	42.61	23.05	64.08	54.08	-21.47	-31.03
3	0.95859	10.11	19.69	8.94	29.80	19.05	56.00	46.00	-26.20	-26.95
4	1.94141	10.16	23.00	13.67	33.16	23.83	56.00	46.00	-22.84	-22.17
5	3.16797	10.21	23.83	16.63	34.04	26.84	56.00	46.00	-21.96	-19.16
6	7.99219	10.44	18.28	12.17	28.72	22.61	60.00	50.00	-31.28	-27.39

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase	Phase Neutral (N)		C	Detector Function			Quasi-Peak (QP) / Average (AV)				
	Corr. Reading Value Em			Emiss	ssion Level Limit		nit	Margin			
No	Freq.	Factor	[dB ([dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	9.93	40.30	18.09	50.23	28.02	66.00	56.00	-15.77	-27.98	
2	0.17344	9.93	32.07	10.42	42.00	20.35	64.79	54.79	-22.79	-34.44	
3	0.34531	9.95	15.52	1.14	25.47	11.09	59.07	49.07	-33.60	-37.98	
4	0.82578	9.98	21.05	8.86	31.03	18.84	56.00	46.00	-24.97	-27.16	
5	2.91016	10.08	24.55	17.00	34.63	27.08	56.00	46.00	-21.37	-18.92	
6	6.92188	10.25	20.74	13.75	30.99	24.00	60.00	50.00	-29.01	-26.00	
_											

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

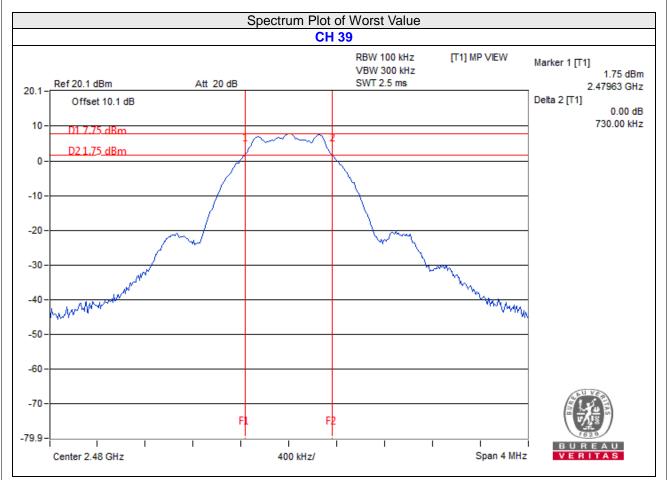
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

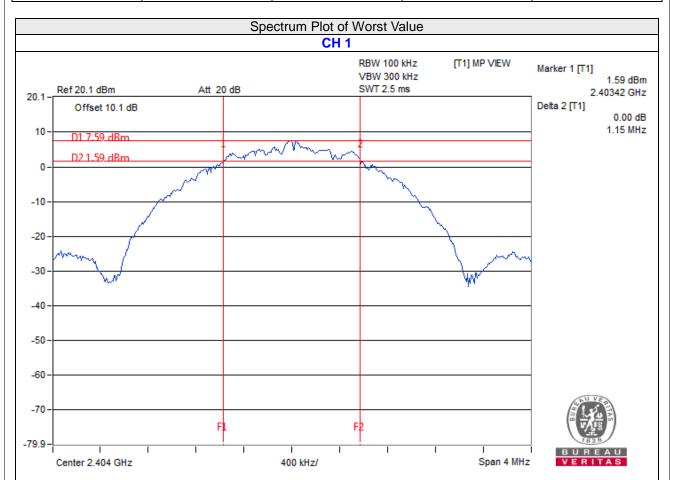
- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

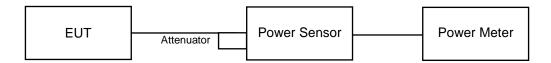

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results


BT 5.0 1M

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.74	0.5	Pass
19	2440	0.74	0.5	Pass
39	2480	0.73	0.5	Pass

BT 5.0 2M 6dB Bandwidth Minimum Limit Channel Frequency (MHz) Pass / Fail (MHz) (MHz) 1 2404 1.15 0.5 Pass 2440 19 1.16 0.5 Pass 38 2478 0.5 1.15 Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

BT 5.0 1M

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	6.026	7.80	30	Pass
19	2440	6.067	7.83	30	Pass
39	2480	6.039	7.81	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	5.998	7.78
19	2440	6.039	7.81
39	2480	6.012	7.79

BT 5.0 2M

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2404	6.026	7.80	30	Pass
19	2440	5.984	7.77	30	Pass
38	2478	6.039	7.81	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2404	5.998	7.78
19	2440	5.957	7.75
38	2478	6.012	7.79



4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

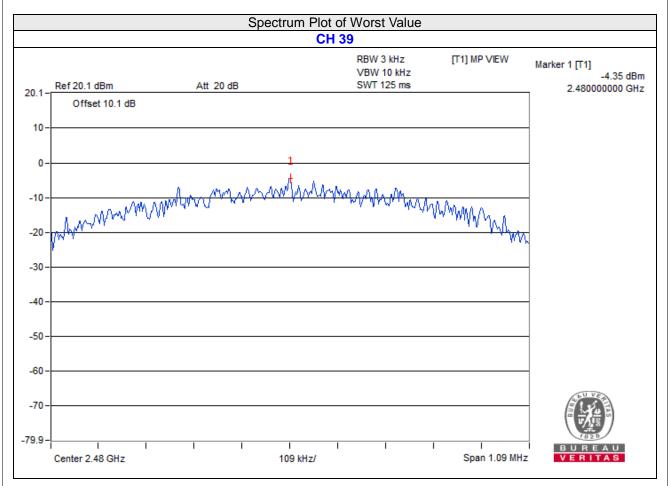
4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

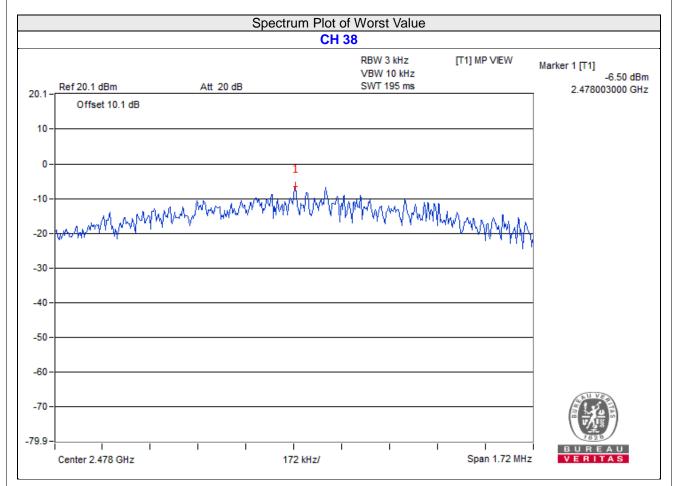
No deviation.

4.5.6 EUT Operating Condition


Same as Item 4.3.6.

4.5.7 Test Results

BT 5.0 1M


Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	2402	-4.40	8	Pass
19	2440	-4.47	8	Pass
39	2480	-4.35	8	Pass

BT 5.0 2M

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2404	-6.71	8	Pass
19	2440	-6.75	8	Pass
38	2478	-6.50	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

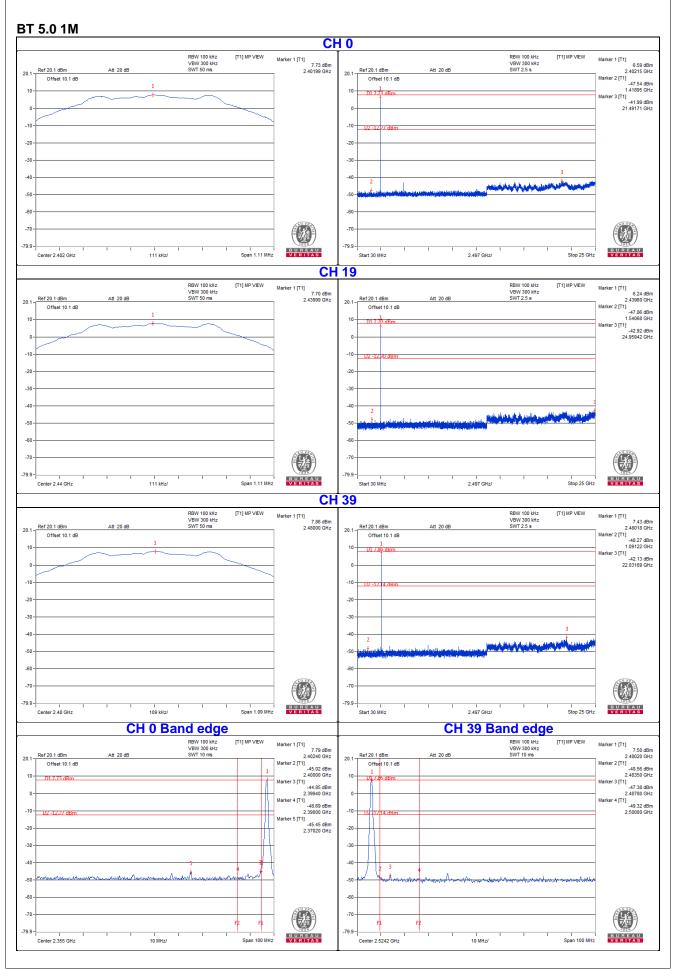
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

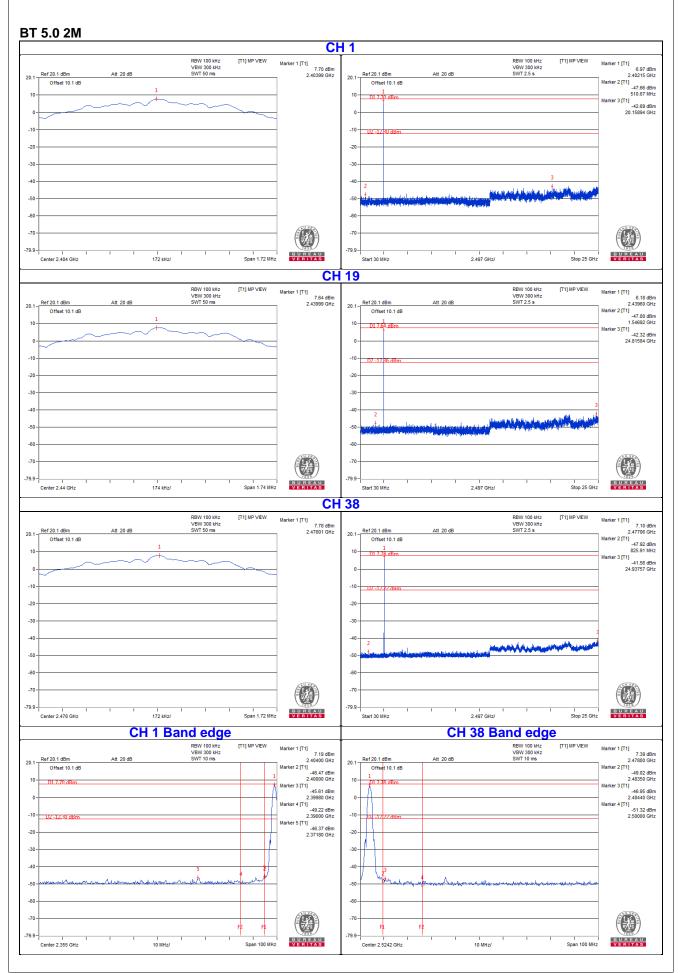
- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

No deviation.


4.6.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest and highest channel frequencies individually.


4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---