	BUREAU VERITAS		
	FCC Test Report (GFSK)		
Report No.:	RF190417E03-1		
FCC ID:	JNZMR0077		
Test Model:	MR0077		
Received Date:	Apr. 17, 2019		
Test Date:	Apr. 24 to 29, 2019		
Issued Date:	May 22, 2019		
Applicant:	LOGITECH FAR EAST LTD.		
Address:	#2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.		
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory		
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.		
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.		
FCC Registration / Designation Number:	723255 / TW2022		
	Teting Laboratory 2022		
only with our prior written permission. The report are not indicative or representative	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you		

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the specification. The report mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record 4				
1	, , , , , , , , , , , , , , , , , , , ,				
2	S	ummary of Test Results	6		
	2.1 2.2	Measurement Uncertainty Modification Record			
3	0	General Information			
3					
	3.1	General Description of EUT (GFSK)			
	3.2 3.2.1	Description of Test Modes Test Mode Applicability and Tested Channel Detail			
	3.3	Duty Cycle of Test Signal			
	3.4	Description of Support Units			
	3.4.1	Configuration of System under Test			
	3.5	General Description of Applied Standards			
4		est Types and Results			
4					
	4.1	Radiated Emission and Bandedge Measurement	15		
	4.1.1				
		Test Instruments			
		Test Procedures Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions			
		Test Results			
	4.2	Conducted Emission Measurement			
		Limits of Conducted Emission Measurement			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions			
		Test Results			
	4.3	6dB Bandwidth Measurement			
	4.3.1	Limits of 6dB Bandwidth Measurement Test Setup			
		Test Instruments			
		Test Procedure			
		Deviation from Test Standard			
		EUT Operating Conditions			
	4.3.7				
	4.4	Conducted Output Power Measurement			
	4.4.1	Limits of Conducted Output Power Measurement	31		
		Test Setup			
		Test Instruments			
		Test Procedures			
	4.4.5				
		EUT Operating Conditions			
	4.4.7 4.5				
	4.5 4.5.1	Power Spectral Density Measurement Limits of Power Spectral Density Measurement			
		Test Setup			
		Test Instruments			
		Test Procedure			
		Deviation from Test Standard			
		EUT Operating Condition			

A	opend	ix – Information of the Testing Laboratories	. 38
5	Р	ictures of Test Arrangements	. 37
	4.6.7	Test Results	. 35
		EUT Operating Condition	
	4.6.5	Deviation from Test Standard	. 35
	4.6.4	Test Procedure	. 35
		Test Instruments	
		Test Setup	
		Limits of Conducted Out of Band Emission Measurement	
		Conducted Out of Band Emission Measurement	
	4.5.7	Test Results	. 34

Release Control Record				
Issue No.	Description	Date Issued		
RF190417E03-1	Original release.	May 22, 2019		

1 Certificate of Conformity

Product:	Wireless Mouse
Brand:	logitech
Test Model:	MR0077
Sample Status:	ENGINEERING SAMPLE
Applicant:	LOGITECH FAR EAST LTD.
Test Date:	Apr. 24 to 29, 2019
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	C- <_	_, Date:	May 22, 2019	
	Claire Kuan / Specialist			
Approved by :	May Chen / Manager	, Date:	May 22, 2019	

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)			
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -15.26dB at 0.15MHz.
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -3.9dB at 2390MHz, 2483.5MHz.
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.
15.247(b)	Conducted power	PASS	Meet the requirement of limit.
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.
15.203 Antenna Requirement		PASS	No antenna connector is used.

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.1 dB
	1GHz ~ 6GHz	5.1 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.2 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (GFSK)

Product	Wireless Mouse
PMN	MX Master 3
Brand	logitech
Test Model	MR0077
Status of EUT	ENGINEERING SAMPLE
Dewer Cuprily Deting	3.7Vdc from battery or
Power Supply Rating	5Vdc from USB interface
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 2Mbps
Operating Frequency	2403 ~ 2481GHz
Number of Channel	12
Output Power	2.965mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	USB cable x 1 (shielded, 1.3m)

Note:

1. The EUT may have a lot of colors for marketing requirement.

2. The EUT could be supplied with rechargeable battery as the following table:

Brand	Model No.	Spec.
SYNergy ScienTech Corp.	AHB572535PJT-02 or 533-000171	3.7V, 500mAh, 2.0Wh
HIGHPOWER INTERNATIONAL	533-000172 or 652535	3.7V. 500mAh. 1.85Wh

Note: From the above models, the worst case was found in **Model No. 533-000172 or 652535**. Therefore only the test data of the mode was recorded in this report.

3. The antenna provided to the EUT, please refer to the following table:

	Antenna Gain (dBi)	Frequency range(GHz)	Antenna Type	Connector Type	
	-0.89	2.4~2.4835	Printed Antenna	None	
4. There are Bluetooth and GFSK technology used for the EUT. The EUT has two radios as following table:					
	Radio 1		Radio	2	
Ιſ	GFSK		Blueto	oth	

5. For radiated emissions, the EUT was pre-tested under the following modes:

	Test Mode	Description	
	Mode A	Power from USB adapter	
Mode B Power from Battery		Power from Battery	
	Note: From the above modes, the worst case was found in Mode A . Therefore only the test data of the mode		

Note: From the above modes, the worst case was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

6. For AC power conducted emissions, the EUT was pre-tested under the following modes:

Mode B	Power from Laptop
Mode A	Power from USB adapter
Test Mode	Description

Note: From the above modes, the worst case was found in **Mode B**. Therefore only the test data of the mode was recorded in this report.

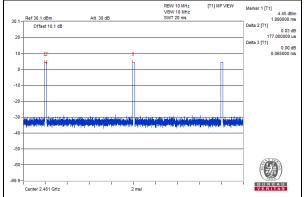
7. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

12 channels are provided to this EUT:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2403	7	2441	
2	2408	8	2444	
3	2414	9	2462	
4	2417	10	2465	
5	2432	11	2471	
6 2435		12	2481	

EUT CONFIGURE		APPLIC	ABLE TO		DESCRIPTION				
MODE	RE≥1G	RE<1G	PLC	APCM					
-	\checkmark	\checkmark	\checkmark	\checkmark	-				
		sion above 1GHz	& RE<1G: F	adiated Emission b	elow 1GHz				
	dge Measuremen Power Line Condu		APCM: A	ntenna Port Conduc	ted Measurement				
•									
adiated Emi	ission Test (/	Above 1GHz):							
_									
					om all possible combinations				
architectur		liations, data ra	ates and anten	na ports (if EUI	with antenna diversity				
	,	as (were) selec	ted for the fina	I test as listed b	pelow				
	LE CHANNEL		TESTED CHA		MODULATION TYPE				
1	to 12		1, 8, 12		GFSK				
			, -,						
a diata d Emi									
adlated Em	<u>SSION Test (E</u>	<u> Below 1GHz):</u>							
	has heen con	ducted to deter	mine the wors	t-case mode fro	m all possible combinations				
🛛 Pre-Scan I	nas deeli CON		Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity						
			ates and anten	na ports (if EUT	with antenna diversity				
	vailable modu		ates and anten	na ports (if EUT	with antenna diversity				
between a architectur	vailable modu e).	ulations, data ra		na ports (if EUT I test as listed b					
between a architectur Following	vailable modu e).	ulations, data ra		I test as listed b					
between a architectur Following	vailable modu e). channel(s) wa	ulations, data ra	ted for the fina	I test as listed b	pelow.				
between a architectur Following	vailable modu re). channel(s) wa LE CHANNEL	ulations, data ra	ted for the fina TESTED CHA	I test as listed b	elow. MODULATION TYPE				
between a architectur Following AVAILAB	vailable modu re). channel(s) wa LE CHANNEL to 12	ulations, data ra	ted for the fina TESTED CHA	I test as listed b	elow. MODULATION TYPE				
between a architectur Following AVAILAB 1 Power Line C	vailable modu re). channel(s) wa LE CHANNEL to 12 conducted En	ulations, data ra as (were) selec nission Test:	ted for the fina TESTED CHA 1	l test as listed b	Delow. MODULATION TYPE GFSK				
between a architectur Following <u>AVAILABI</u> 1 Power Line C	vailable modu re). channel(s) wa LE CHANNEL to 12 Conducted En has been cond	ulations, data ra as (were) selec nission Test: ducted to deter	ted for the fina TESTED CHA 1 mine the wors	I test as listed b	MODULATION TYPE GFSK				
between a architectur Following AVAILABI 1 Power Line C Pre-Scan between a	vailable modu re). channel(s) wa LE CHANNEL to 12 Conducted En has been conv vailable modu	ulations, data ra as (were) selec nission Test: ducted to deter	ted for the fina TESTED CHA 1 mine the wors	I test as listed b	Delow. MODULATION TYPE GFSK				
between a architectur Following AVAILAB 1 Power Line C Power Line C Pre-Scan between a architectur	vailable modu re). channel(s) wa <u>LE CHANNEL</u> to 12 Conducted En has been con- vailable modu re).	ulations, data ra as (were) selec mission Test: ducted to deter ulations, data ra	ted for the fina TESTED CHA 1 mine the wors ates and anten	I test as listed b	MODULATION TYPE GFSK om all possible combinations with antenna diversity				
between a architectur ✓ Following 1 Power Line C ✓ Pre-Scan between a architectur ✓ Following	vailable modu re). channel(s) wa <u>LE CHANNEL</u> to 12 Conducted En has been con vailable modu re). channel(s) wa	ulations, data ra as (were) selec mission Test: ducted to deter ulations, data ra	ted for the fina TESTED CHA 1 mine the wors ates and anten ted for the fina	I test as listed b NNEL t-case mode fro na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations with antenna diversity below.				
between a architectur Following AVAILABI	vailable modu channel(s) wa LE CHANNEL to 12 Conducted En has been cont vailable modu re). channel(s) wa LE CHANNEL	ulations, data ra as (were) selec mission Test: ducted to deter ulations, data ra	ted for the fina TESTED CHA 1 mine the wors ates and anten ted for the fina TESTED CHA	I test as listed b NNEL t-case mode fro na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations with antenna diversity below. MODULATION TYPE				
between a architectur Following AVAILABI	vailable modu re). channel(s) wa <u>LE CHANNEL</u> to 12 Conducted En has been con vailable modu re). channel(s) wa	ulations, data ra as (were) selec mission Test: ducted to deter ulations, data ra	ted for the fina TESTED CHA 1 mine the wors ates and anten ted for the fina	I test as listed b NNEL t-case mode fro na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations with antenna diversity below.				
between a architectur Following AVAILABI	vailable modu channel(s) wa to 12 conducted En has been con- vailable modu re). channel(s) wa LE CHANNEL to 12	ulations, data ra as (were) select nission Test: ducted to deter ulations, data ra as (were) select	ted for the fina TESTED CHAI 1 mine the wors ates and anten ted for the fina TESTED CHAI 1	I test as listed b NNEL t-case mode fro na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations with antenna diversity below. MODULATION TYPE				
between a architectur Following 1 Power Line C Pre-Scan between a architectur Following AVAILAB	vailable modu channel(s) wa to 12 conducted En has been con- vailable modu re). channel(s) wa LE CHANNEL to 12	ulations, data ra as (were) selec mission Test: ducted to deter ulations, data ra	ted for the fina TESTED CHAI 1 mine the wors ates and anten ted for the fina TESTED CHAI 1	I test as listed b NNEL t-case mode fro na ports (if EUT I test as listed b	MODULATION TYPE GFSK om all possible combinations with antenna diversity below. MODULATION TYPE				
between a architectur Following AVAILABI Power Line C Pre-Scan between a architectur Following AVAILABI 1 Antenna Port	vailable modu channel(s) wa LE CHANNEL to 12 Conducted En has been convailable modu re). channel(s) wa LE CHANNEL to 12 to 12	ulations, data ra	ted for the fina TESTED CHA 1 mine the wors ates and anten ted for the fina TESTED CHA 1	I test as listed b	MODULATION TYPE GFSK om all possible combinations with antenna diversity below. MODULATION TYPE				
between a architectur Following AVAILABI Power Line C Pre-Scan between a architectur Following AVAILABI 1 Antenna Port This item i mode.	vailable modure). channel(s) water to 12 conducted Entropy conducted Entropy channel(s) water to 12 to 12 channel(s) water to 12 conducted I to 12	ulations, data ra as (were) select mission Test: ducted to deter ulations, data ra as (were) select Measurement: st value of each	ted for the fina TESTED CHA 1 mine the wors ates and anten ted for the fina TESTED CHA 1 1 n mode, but or	I test as listed b	MODULATION TYPE GFSK om all possible combinations with antenna diversity below. MODULATION TYPE GFSK				
between a architectur Following AVAILABI 1 Power Line C Pre-Scan between a architectur Following AVAILABI 1 Antenna Port This item i mode. Pre-Scan	vailable modu re). channel(s) wa to 12 conducted En has been con- vailable modu re). channel(s) wa LE CHANNEL to 12 conducted I to 12	ulations, data ra as (were) select nission Test: ducted to deter ulations, data ra as (were) select Measurement: st value of each ducted to deter	ted for the fina TESTED CHA 1 mine the wors ates and anten ted for the fina TESTED CHA 1 1 mode, but or mine the wors	I test as listed b NNEL t-case mode fro na ports (if EUT I test as listed b NNEL lly includes spec t-case mode fro	MODULATION TYPE GFSK om all possible combinations with antenna diversity below. <u>MODULATION TYPE</u> GFSK ctrum plot of worst value of ea om all possible combinations				
between a architectur Following AVAILABI 1 Power Line C Pre-Scan between a architectur Following AVAILABI 1 Antenna Port This item i mode. Pre-Scan between a	vailable modu re). channel(s) wa to 12 conducted En has been con- vailable modu re). channel(s) wa LE CHANNEL to 12 conducted I to 12 to 12	ulations, data ra as (were) select nission Test: ducted to deter ulations, data ra as (were) select Measurement: st value of each ducted to deter	ted for the fina TESTED CHA 1 mine the wors ates and anten ted for the fina TESTED CHA 1 1 mode, but or mine the wors	I test as listed b NNEL t-case mode fro na ports (if EUT I test as listed b NNEL lly includes spec t-case mode fro	MODULATION TYPE GFSK om all possible combinations with antenna diversity below. MODULATION TYPE GFSK				
between a architectur Following AVAILABI Power Line C Pre-Scan between a architectur Following AVAILABI 1 Antenna Port This item i mode. Pre-Scan between a architectur	vailable modu channel(s) wa to 12 conducted En has been con- vailable modu re). channel(s) wa LE CHANNEL to 12 conducted I to 12 conducted I to 12	ulations, data ra as (were) select mission Test: ducted to deter ulations, data ra as (were) select Measurement: st value of each ducted to deter ulations, data ra	ted for the fina TESTED CHAI 1 mine the wors ates and anten ted for the fina TESTED CHAI 1 n mode, but or mine the wors ates and anten	I test as listed b NNEL t-case mode fro na ports (if EUT I test as listed b NNEL lly includes spec t-case mode fro na ports (if EUT	MODULATION TYPE GFSK om all possible combinations with antenna diversity pelow. MODULATION TYPE GFSK ctrum plot of worst value of ea om all possible combinations r with antenna diversity				
between a architectur Following AVAILABI 1 Power Line C Pre-Scan between a architectur Following AVAILABI 1 Antenna Port This item i mode. Pre-Scan between a architectur S Following	vailable modu re). channel(s) wa LE CHANNEL to 12 conducted En has been control vailable modu re). channel(s) wa to 12 conducted I ncludes all tes has been control vailable modu re). channel(s) wa	ulations, data ra as (were) select mission Test: ducted to deter ulations, data ra as (were) select Measurement: st value of each ducted to deter ulations, data ra	ted for the fina TESTED CHA 1 mine the wors ates and anten ted for the fina TESTED CHA 1 1 mode, but or mine the wors ates and anten ted for the fina	I test as listed b	MODULATION TYPE GFSK om all possible combinations with antenna diversity below. MODULATION TYPE GFSK ctrum plot of worst value of ea om all possible combinations with antenna diversity below.				
between a architectur ✓ Following AVAILABI 1 Power Line C ✓ Pre-Scan between a architectur ✓ Following AVAILABI 1 Antenna Port ✓ This item i mode. ✓ Pre-Scan between a architectur ✓ Following AVAILABI	vailable modu channel(s) wa to 12 conducted En has been con- vailable modu re). channel(s) wa LE CHANNEL to 12 conducted I to 12 conducted I to 12	ulations, data ra as (were) select mission Test: ducted to deter ulations, data ra as (were) select Measurement: st value of each ducted to deter ulations, data ra	ted for the fina TESTED CHAI 1 mine the wors ates and anten ted for the fina TESTED CHAI 1 n mode, but or mine the wors ates and anten	I test as listed b	MODULATION TYPE GFSK om all possible combinations with antenna diversity pelow. MODULATION TYPE GFSK ctrum plot of worst value of ea om all possible combinations r with antenna diversity				



Test Condition:

APPLICABLE TO ENVIRONMENTAL CONDITIONS RE≥1G 22deg. C, 67%RH		INPUT POWER (SYSTEM)	TESTED BY
		120Vac, 60Hz	Nelson Teng
RE<1G	23deg. C, 68%RH	120Vac, 60Hz	Andy Ho
PLC	24deg. C, 76%RH	120Vac, 60Hz	Andy Ho
APCM	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

3.3 Duty Cycle of Test Signal

Duty cycle = 0.177 ms / 8.065 ms = 0.022

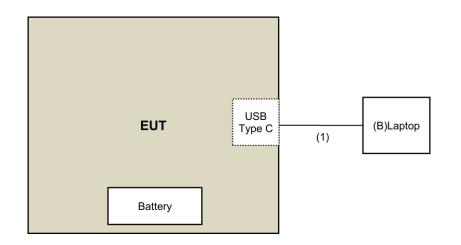
Note: This is highest operational duty cycle.

3.4 Description of Support Units

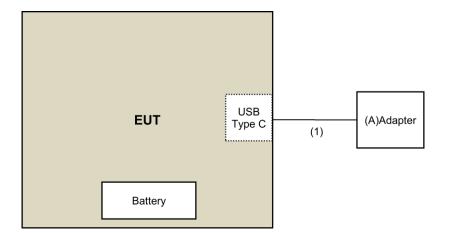
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	ID Product Brand		Product Brand Model No.		Serial No.	FCC ID	Remarks	
Α.	USB Adapter	ASUS	EXA1205UA	NA	NA	Provided by Lab		
В.	Laptop	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab		

Note:


1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB type C Cable	1	1.3	Yes	0	Supplied by client



3.4.1 Configuration of System under Test

For conducted emissions test:

For other test:

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver				
Agilent	N9038A	MY50010156	July 12, 2018	July 11, 2019
Pre-Amplifier	EN0004040	000440	1	1
EMCI	EMC001340	980142	Jan. 25, 2019	Jan. 24, 2020
Loop Antenna	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
Electro-Metrics	NIA		-	
RF Cable	NA	LOOPCAB-001	Jan. 14, 2019	Jan. 13, 2020
RF Cable	NA	LOOPCAB-002	Jan. 14, 2019	Jan. 13, 2020
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	May 05, 2018	May 04, 2019
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 22, 2018	Nov. 21, 2019
RF Cable	8D	966-3-1	Mar. 18, 2019	Mar. 17, 2020
RF Cable	8D	966-3-2	Mar. 18, 2019	Mar. 17, 2020
RF Cable	8D	966-3-3	Mar. 18, 2019	Mar. 17, 2020
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 27, 2018	Sep. 26, 2019
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 25, 2018	Nov. 24, 2019
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC104-SM-SM-1200	160922	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC104-SM-SM-2000	180601	June 12, 2018	June 11, 2019
RF Cable	EMC104-SM-SM-6000	180602	June 12, 2018	June 11, 2019
Spectrum Analyzer Keysight	N9030A	MY54490679	July 23, 2018	July 22, 2019
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 28, 2019	Jan. 27, 2020
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 25, 2018	Nov. 24, 2019
RF Cable	EMC102-KM-KM-1200	160924	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC102-KM-KM-1200	160925	Jan. 28, 2019	Jan. 27, 2020
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 20, 2018	June 19, 2019
Power meter Anritsu	ML2495A	1014008	May 09, 2018	May 08, 2019
Power sensor Anritsu	MA2411B	0917122	May 09, 2018	May 08, 2019
Fixed Attenuator	MDCS18N-10	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: Apr. 24 to 29, 2019

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

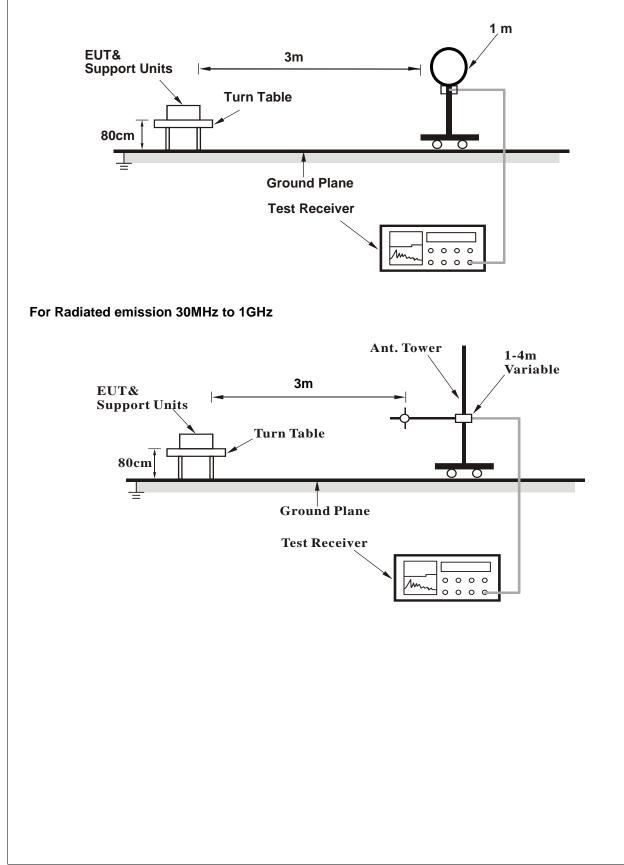
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

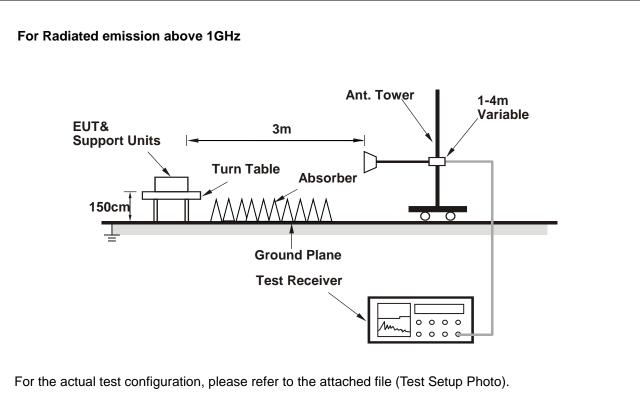
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Controlling software (RF Sample [Number Lock]) has been activated to set the EUT under transmission condition continuously.
- UFY TX Modulated 2403MHz
- UFY TX Modulated 2444MHz
- UFY TX Modulated 2481MHz

4.1.7 Test Results

Above 1GHz Data:

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)	
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	65.0 PK	74.0	-9.0	2.77 H	338	67.1	-2.1
2	2390.00	50.1 AV	54.0	-3.9	2.77 H	338	52.2	-2.1
3	*2403.00	99.1 PK			2.77 H	338	101.2	-2.1
4	*2403.00	94.7 AV			2.77 H	338	96.8	-2.1
5	4806.00	51.3 PK	74.0	-22.7	1.15 H	94	49.2	2.1
6	4806.00	43.8 AV	54.0	-10.2	1.15 H	94	41.7	2.1
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	60.4 PK	74.0	-13.6	1.21 V	287	62.5	-2.1
2	2390.00	45.8 AV	54.0	-8.2	1.21 V	287	47.9	-2.1
3	*2403.00	93.6 PK			1.21 V	287	95.7	-2.1
4	*2403.00	87.9 AV			1.21 V	287	90.0	-2.1
5	4806.00	43.1 PK	74.0	-30.9	1.15 V	104	41.0	2.1
6	4806.00	37.6 AV	54.0	-16.4	1.15 V	104	35.5	2.1

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 8	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2444.00	99.2 PK			2.80 H	317	101.5	-2.3	
2	*2444.00	94.5 AV			2.80 H	317	96.8	-2.3	
3	4888.00	51.7 PK	74.0	-22.3	1.13 H	89	49.5	2.2	
4	4888.00	44.1 AV	54.0	-9.9	1.13 H	89	41.9	2.2	
5	7332.00	51.2 PK	74.0	-22.8	1.11 H	103	43.1	8.1	
6	7332.00	42.4 AV	54.0	-11.6	1.11 H	103	34.3	8.1	
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
		EMISSION			ANTENNA	TABLE	RAW	CORRECTION	

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2444.00	92.9 PK			1.20 V	291	95.2	-2.3
2	*2444.00	87.5 AV			1.20 V	291	89.8	-2.3
3	4888.00	42.9 PK	74.0	-31.1	1.16 V	106	40.7	2.2
4	4888.00	37.9 AV	54.0	-16.1	1.16 V	106	35.7	2.2
5	7332.00	48.5 PK	74.0	-25.5	1.09 V	310	40.4	8.1
6	7332.00	40.8 AV	54.0	-13.2	1.09 V	310	32.7	8.1

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 12	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2481.00	98.9 PK			2.82 H	325	101.3	-2.4		
2	*2481.00	94.2 AV			2.82 H	325	96.6	-2.4		
3	2483.50	65.0 PK	74.0	-9.0	2.82 H	325	67.4	-2.4		
4	2483.50	50.1 AV	54.0	-3.9	2.82 H	325	52.5	-2.4		
5	4962.00	51.3 PK	74.0	-22.7	1.15 H	88	49.0	2.3		
6	4962.00	43.7 AV	54.0	-10.3	1.15 H	88	41.4	2.3		
7	7443.00	51.8 PK	74.0	-22.2	1.06 H	98	43.4	8.4		
8	7443.00	42.8 AV	54.0	-11.2	1.06 H	98	34.4	8.4		
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2481.00	93.0 PK			1.25 V	282	95.4	-2.4		
2	*2481.00	87.4 AV			1.25 V	282	89.8	-2.4		
3	2483.50	61.0 PK	74.0	-13.0	1.25 V	282	63.4	-2.4		
4	2483.50	46.3 AV	54.0	-7.7	1.25 V	282	48.7	-2.4		
5	4962.00	43.2 PK	74.0	-30.8	1.13 V	102	40.9	2.3		
6	4962.00	37.9 AV	54.0	-16.1	1.13 V	102	35.6	2.3		
7	7443.00	48.4 PK	74.0	-25.6	1.12 V	319	40.0	8.4		
8	7443.00	40.6 AV	54.0	-13.4	1.12 V	319	32.2	8.4		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

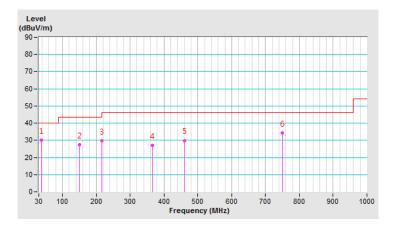
3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

Below 1GHz Data:

CHANNEL	TX Channel 1	DETECTOR	Overi Beek (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)


	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	38.22	30.0 QP	40.0	-10.0	2.00 H	71	39.4	-9.4			
2	149.75	27.6 QP	43.5	-15.9	1.00 H	65	35.3	-7.7			
3	215.27	29.7 QP	43.5	-13.8	1.00 H	99	39.8	-10.1			
4	365.04	27.2 QP	46.0	-18.8	2.00 H	241	32.2	-5.0			
5	460.34	29.9 QP	46.0	-16.1	2.00 H	233	32.7	-2.8			
6	749.16	34.1 QP	46.0	-11.9	3.00 H	250	30.9	3.2			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

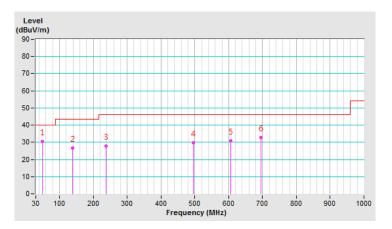
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 1	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	48.72	30.4 QP	40.0	-9.6	2.00 V	0	39.0	-8.6			
2	138.03	26.6 QP	43.5	-16.9	2.00 V	296	35.0	-8.4			
3	236.66	27.7 QP	46.0	-18.3	1.00 V	285	36.8	-9.1			
4	494.92	29.6 QP	46.0	-16.4	1.00 V	158	31.4	-1.8			
5	606.08	31.0 QP	46.0	-15.0	1.50 V	239	30.3	0.7			
6	695.10	32.8 QP	46.0	-13.2	2.00 V	212	30.7	2.1			

REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted	Limit (dBuV)		
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

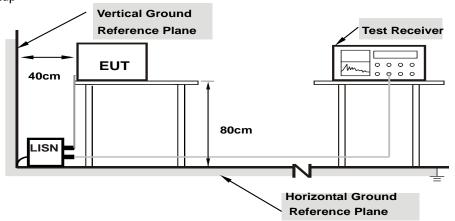
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2018	Oct. 23, 2019
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 22, 2018	Oct. 21, 2019
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 17, 2019	Mar. 16, 2020
50 ohms Terminator	N/A	3	Oct. 22, 2018	Oct. 21, 2019
RF Cable	5D-FB	COCCAB-001	Sep. 28, 2018	Sep. 27, 2019
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 14, 2019	Mar. 13, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: Apr. 24, 2019



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

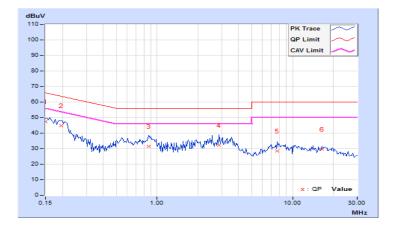
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (RF Sample [Number Lock]) has been activated to set the EUT under transmission condition continuously.
- UFY TX Modulated 2403MHz


4.2.7 Test Results

Phase Line (L) Detector Function Quasi-Peak (QP) / Average (AV)
--

	Phase Of Power : Line (L)											
No	Frequency	Correction Factor		g Value uV)		on Level uV)		nit uV)	Maı (d	rgin B)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15000	10.02	37.50	17.82	47.52	27.84	66.00	56.00	-18.48	-28.16		
2	0.19687	10.04	34.81	17.30	44.85	27.34	63.74	53.74	-18.89	-26.40		
3	0.86875	10.10	21.56	9.08	31.66	19.18	56.00	46.00	-24.34	-26.82		
4	2.85547	10.20	22.18	14.64	32.38	24.84	56.00	46.00	-23.62	-21.16		
5	7.74609	10.42	17.95	11.61	28.37	22.03	60.00	50.00	-31.63	-27.97		
6	16.46484	10.88	18.59	14.69	29.47	25.57	60.00	50.00	-30.53	-24.43		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phas	е	Dete	ctor Func	tion	Quasi-Pe Average	eak (QP) / (AV)	1			
	Phase Of Power : Neutral (N)									
No	Frequency	Frequency Correction Reading Value Factor (dBuV)			Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.93	40.81	18.55	50.74	28.48	66.00	56.00	-15.26	-27.52
2	0.20078	9.94	34.89	19.24	44.83	29.18	63.58	53.58	-18.75	-24.40
3	0.83359	9.98	20.66	9.38	30.64	19.36	56.00	46.00	-25.36	-26.64
4	1.33203	10.01	19.58	9.80	29.59	19.81	56.00	46.00	-26.41	-26.19
5	3.60938	10.10	21.22	14.22	31.32	24.32	56.00	46.00	-24.68	-21.68
6	7.22656	10.26	18.39	12.19	28.65	22.45	60.00	50.00	-31.35	-27.55

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

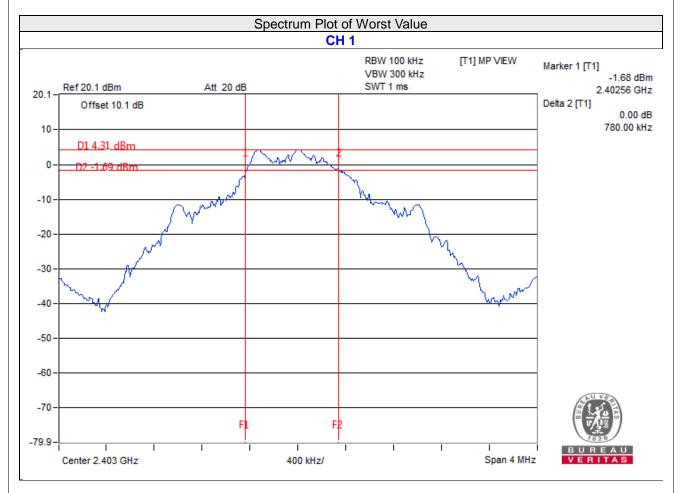
4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation from Test Standard

No deviation.

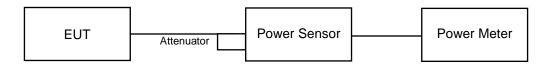
4.3.6 EUT Operating Conditions


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

- UFY TX Modulated 2403MHz
- UFY TX Modulated 2444MHz
- UFY TX Modulated 2481MHz

4.3.7 Test Results

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2403	0.78	0.5	Pass
8	2444	0.87	0.5	Pass
12	2481	0.80	0.5	Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

- UFY TX Modulated 2403MHz
- UFY TX Modulated 2444MHz
- UFY TX Modulated 2481MHz

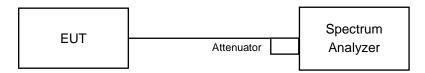
4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2403	2.965	4.72	30	Pass
8	2444	2.938	4.68	30	Pass
12	2481	2.897	4.62	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2403	2.891	4.61
8	2444	2.871	4.58
12	2481	2.825	4.51



4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

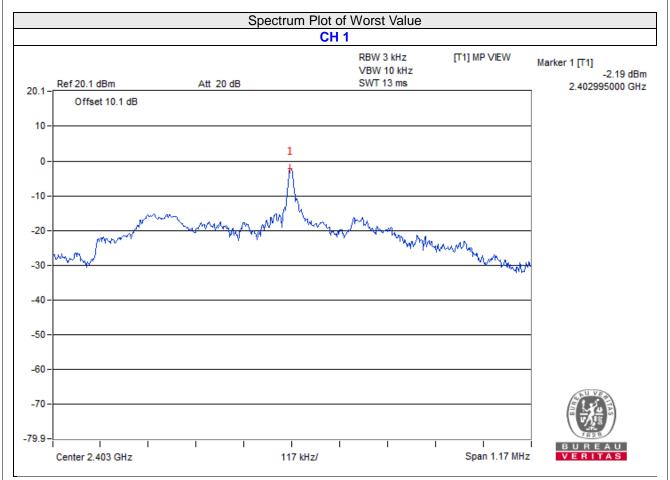
4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

- UFY TX Modulated 2403MHz
- UFY TX Modulated 2444MHz
- UFY TX Modulated 2481MHz

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2403	-2.19	8	Pass
8	2444	-2.34	8	Pass
12	2481	-2.42	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

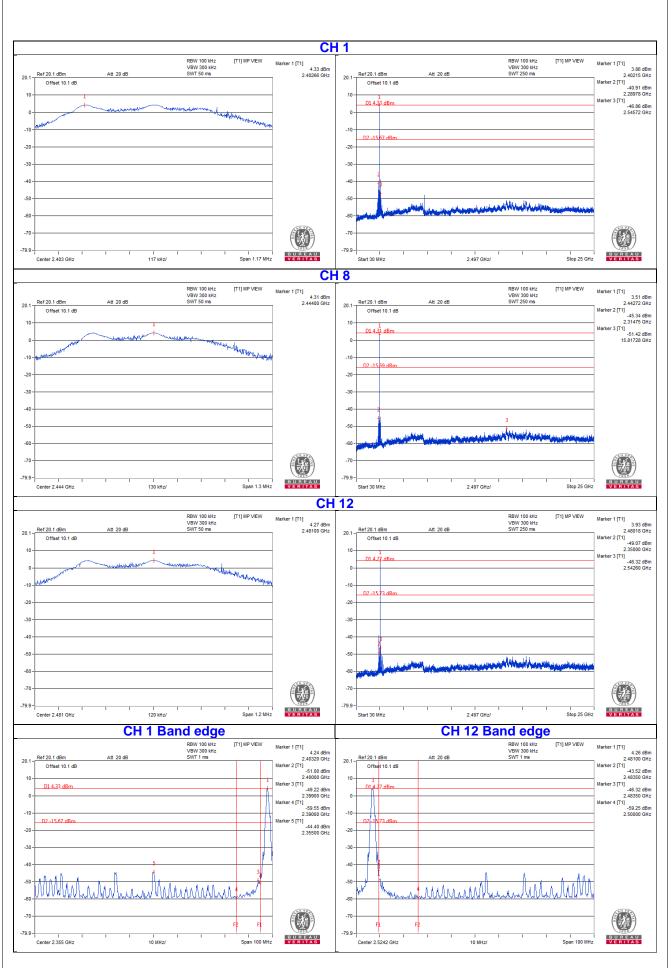
MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

- UFY TX Modulated 2403MHz
- UFY TX Modulated 2444MHz
- UFY TX Modulated 2481MHz

4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---