

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	lease	e Control Record	4
1	C	Certificate of Conformity	5
2	S	ummary of Test Results	6
	2.1 2.2	Measurement Uncertainty Modification Record	
3	Ģ	General Information	. 7
		General Description of EUT	
	3.1 3.2	Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	9
	3.3	Duty Cycle of Test Signal	
:	3.4	Description of Support Units	
	3.4.1	Configuration of System under Test	
;	3.5	General Description of Applied Standards	14
4	Т	est Types and Results	15
	4.1	Radiated Emission and Bandedge Measurement	15
	4.1.1	0	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup EUT Operating Conditions	
		Test Results	
	+. 1.7 4.2	Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
4	4.2.4	Deviation from Test Standard	24
4	4.2.5	Test Setup	24
		EUT Operating Conditions	
		Test Results (Mode 1)	
		Test Results (Mode 2)	
	4.3	6dB Bandwidth Measurement	
	4.3.1		29 29
		Test Instruments	
		Test Procedure	
		Deviation fromTest Standard	
		EUT Operating Conditions	
4	4.3.7	Test Result	
	4.4	Conducted Output Power Measurement	31
		Limits of Conducted Output Power Measurement	
		Test Setup	
		Test Instruments Test Procedures	
		Deviation from Test Standard	
		EUT Operating Conditions	
		Test Results	
	4.5	Power Spectral Density Measurement	
	4.5.1		
		Test Setup	33
		Test Instruments	
		Test Procedure	
4	4.5.5	Deviation from Test Standard	33

4.5.6	EUT Operating Condition	33
4.5.7	Test Results	34
4.6	Conducted Out of Band Emission Measurement	35
4.6.1	Limits of Conducted Out of Band Emission Measurement	35
4.6.2	Test Setup	35
4.6.3	Test Instruments	35
	Test Procedure	
	Deviation from Test Standard	
4.6.6	EUT Operating Condition	35
4.6.7	Test results	37
5 P	ictures of Test Arrangements	38
Append	ix – Information on the Testing Laboratories	39

	Release Contro	ol Record	
Issue No.	Description		Date Issued
Issue No. RF160602E05	Description Original release.		Date Issued June 23, 2016

1 Certificate of Conformity

Product:	2.4 GHz Wireless Mouse
Brand:	Logitech
Test Model:	M-R0063
Sample Status:	ENGINEERING SAMPLE
Applicant:	LOGITECH FAR EAST LTD.
Test Date:	June 13 to 17, 2016
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	C	_, Date:	June 23, 2016
	Claire Kuan / Specialist		
Approved by :	May Shen / Manager	, Date:	June 23, 2016

2 Summary of Test Results

	47 CFR FCC Part 15, Sub	part C (SEC	TION 15.247)
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -8.67dB at 0.15000MHz.
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -4.8dB at 2483.50MHz.
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.
15.247(b)	Conducted power	PASS	Meet the requirement of limit.
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.83 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.19 dB
	1GHz ~ 6GHz	3.43 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	3.49 dB
	18GHz ~ 40GHz	4.11 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	2.4 GHz Wireless Mouse
Brand	Logitech
Test Model	M-R0063
Status of EUT	ENGINEERING SAMPLE
Dewer Currely Detine	DC 3.7V from Battery or
Power Supply Rating	DC 5V from USB interface
Modulation Type	GFSK
Transfer Rate	Up to 2Mbps
Operating Frequency	2402MHz ~ 2481MHz
Number of Channel	8
Output Power	4.56mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	USB cable (Shielded, 1.8m with one core)

Note:

1. The EUT may have a lot of colors for marketing requirement.

2. The antenna provided to the EUT, please refer to the following table:

Antenna Gain (dBi)	Frequency range (GHz to GHz)	Antenna Type
1.94	2.4-2.4835	PCB printed Antenna

3. The EUT could be supplied with 3.7V battery as the following table:

BrandModelSpec.SPRINGPOWER TECHNOLOGY SHENZHEN CO LTD (Logitech)533-000130 or 3834503.7V, 750mAh

4. EUT has been pre-tested for radiated emission under following test modes, and test mode A was the worst case for final test.

Pre-test Mode	Description
Mode A	Battery Mode
Mode B	USB Mode

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

8 channels are provided to EUT:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2402	5	2450
2	2404	6	2457
3	2425	7	2479
4	2442	8	2481

3.2.1 Test Mode Applicability and Tested Channel Detail

DNFIGURE MODE 1 2 3 ere RE≥1G:	RE≥1G				DECODIDITION
2 3		RE<1G	PLC	APCM	DESCRIPTION
3	-	-	\checkmark	-	Power by Adapter
	-	-	\checkmark	-	Power by USB interface
ere RE≥1G:	\checkmark	\checkmark	-	\checkmark	Power by battery
PLC: Pc		mission above 1GH			mission below 1GHz rt Conducted Measurement
Pre-Scan h between av architecture	nas been c vailable mo e).		ermine th rates and	l antenna port	node from all possible combinations s (if EUT with antenna diversity s listed below.
	CHANNEL	TESTED CHANNE		LATION TYPE	
1 to 8	8	1, 4, 8		GFSK	
Pre-Scan h between av	nas been c vailable mo		ermine th		node from all possible combinations s (if EUT with antenna diversity
Pre-Scan h between av architecture Following c	nas been c vailable mo e). channel(s)	conducted to det odulations, data was (were) sele	ermine th rates and ected for t	l antenna ports	s (if EUT with antenna diversity
Pre-Scan h between av architecture Following c	nas been c vailable mo e). channel(s) CHANNEL	conducted to det odulations, data was (were) sele TESTED CHANNE	ermine th rates and ected for t	l antenna ports he final test as LATION TYPE	s (if EUT with antenna diversity
Pre-Scan h between av architecture Following c	nas been c vailable mo e). channel(s) CHANNEL	conducted to det odulations, data was (were) sele	ermine th rates and ected for t	l antenna ports	s (if EUT with antenna diversity
 Pre-Scan h between av architecture Following c AVAILABLE C 1 to 8 Dwer Line Cc Pre-Scan h between av architecture 	nas been c vailable mo e). channel(s) CHANNEL 8 onducted nas been c vailable mo e).	eonducted to det odulations, data was (were) sele TESTED CHANNE 4 Emission Test conducted to det	ermine th rates and ected for t L MODU : ermine th rates and	l antenna ports he final test as ILATION TYPE GFSK e worst-case r l antenna ports	s (if EUT with antenna diversity s listed below. node from all possible combinations s (if EUT with antenna diversity
 Pre-Scan h between av architecture Following c AVAILABLE C 1 to 8 Dwer Line Cc Pre-Scan h between av architecture 	nas been c vailable mo e). channel(s) CHANNEL 8 onducted nas been c vailable mo e). channel(s)	eonducted to det odulations, data was (were) sele TESTED CHANNE 4 Emission Test conducted to det odulations, data	ermine th rates and ected for t MODU : rermine th rates and ected for t	l antenna ports he final test as ILATION TYPE GFSK e worst-case r l antenna ports	s (if EUT with antenna diversity s listed below. node from all possible combinations s (if EUT with antenna diversity

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1 to 8	1, 4, 8	GFSK

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G 26deg. C, 61%RH		DC 3.7V	Russell Yeh
RE<1G	25deg. C, 67%RH	DC 3.7V	Russell Yeh
PLC	26deg. C, 70%RH	120Vac, 60Hz	Arthur Yang
APCM	26deg. C, 66%RH	DC 3.7V	Anderson Chen

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is < 98 %, duty factor shall be considered.

Duty cycle = 0.072 ms/1.818 ms = 0.04

31	Ref 31 dBm	Att 30 di	9	RBW 10 MHz VBW 10 MHz SWT 5 ms	[T1] MP VIEW	Marker 1 [T1] 6.03 dBm 1.858000 ms
20 -	Offset 11 dB					Detta 2 [T1] 0.00 dB 72.000000 us Detta 3 [T1]
10-		1:	2	3		0.00 dB 1.818000 ms
0-	η	t	ł	1		
-10 -						
-20 -						
-30 -					1.	
-40 -		an a		gilados despelsión Anna directo entre entre	angan philipping an basay diping si An Manga Insteam Magana bada an	
-50 -						
-60 -						
-69 -	Center 2.481 GHz	1 1	1 I 500 us/	1 1	1 1	

3.4 Description of Support Units

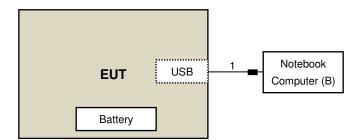
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remark
Α	Adapter	ASUS	EXA1205UA	NA	NA	Provided by Lab
В	Notebook Computer	DELL	E6420	482T3R1	FCC DoC	Provided by Lab

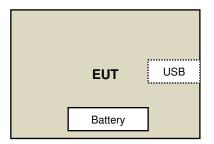
NOTE: All power cords of the above support units are non-shielded (1.8 m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB cable	1	1.8	Yes	1	Supplied by Client

Note: The core(s) is(are) originally attached to the cable(s).



3.4.1 Configuration of System under Test


For Adapter Mode:

For USB Mode:

For Battery Mode:

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v03r05 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED
Test Receiver Agilent	N9038A	MY54450088	July 24, 2015	July 23, 2016
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2014	Dec. 15, 2016
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 18, 2016	Jan. 17, 2017
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-01	Nov. 11, 2015	Nov. 10, 2016
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Jan. 04, 2016	Jan. 03, 2017
RF Cable	8D	966-4-1 966-4-2 966-4-3	Apr. 02, 2016	Apr. 01, 2017
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Jan. 19, 2016	Jan. 18, 2017
Pre-Amplifier Agilent	8449B	3008A01922	Sep. 19, 2015	Sep. 18, 2016
RF Cable	EMC104-SM- SM-2000 EMC104-SM- SM-5000 EMC104-SM- SM-5000	150318 150323 150324	Mar. 30, 2016	Mar. 29, 2017
Pre-Amplifier EMCI	EMC184045	980143	Jan. 15, 2016	Jan. 14, 2017
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Jan. 08, 2016	Jan. 07, 2017
RF Cable	SUCOFLEX 102	36432/2 36441/2	Jan. 16, 2016	Jan. 15, 2017
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table Max-Full	 MF-7802	MF780208410	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP02	NA	NA
Power meter Anritsu	ML2495A	1014008	May 05, 2016	May 04, 2017
Power sensor Anritsu	MA2411B	0917122	May 05, 2016	May 04, 2017
Spectrum Analyzer R&S	FSP40	100060	May 11, 2016	May 10, 2017

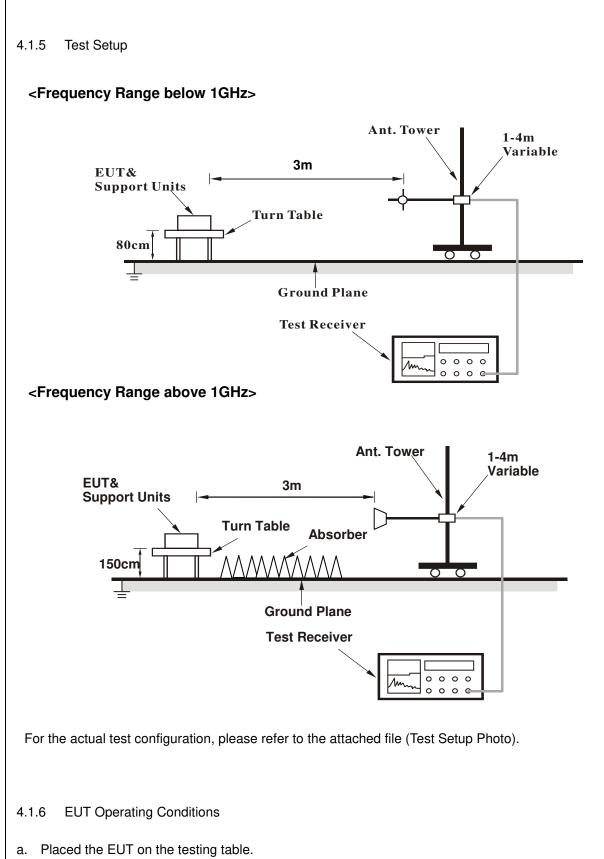
Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 4.
- 4. The FCC Site Registration No. is 292998
- 5. The CANADA Site Registration No. is 20331-2
- 6. Tested Date: June 13 to 17, 2016

4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.


Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

b. The communication partner run test program "RF Sample with Transceiver[NUM Lock]" to enable EUT under transmission/receiving condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data :

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	48.6 PK	74.0	-25.4	1.04 H	155	54.2	-5.6		
2	2390.00	20.6 AV	54.0	-33.4	1.04 H	155	26.2	-5.6		
3	*2402.00	96.8 PK			1.04 H	155	102.4	-5.6		
4	*2402.00	68.8 AV			1.04 H	155	74.4	-5.6		
5	4804.00	41.8 PK	74.0	-32.2	1.34 H	350	40.9	0.9		
6	4804.00	13.8 AV	54.0	-40.2	1.34 H	350	12.9	0.9		
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М			
2	FREQ.	EMISSION	LIMIT	MARGIN			RAW	CORRECTION		

NO.	FREQ. (MHz)	LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)
1	2390.00	48.4 PK	74.0	-25.6	2.90 V	296	54.0	-5.6
2	2390.00	20.4 AV	54.0	-33.6	2.90 V	296	26.0	-5.6
3	*2402.00	87.9 PK			2.90 V	296	93.5	-5.6
4	*2402.00	59.9 AV			2.90 V	296	65.5	-5.6
5	4804.00	41.1 PK	74.0	-32.9	2.54 V	108	40.2	0.9
6	4804.00	13.1 AV	54.0	-40.9	2.54 V	108	12.2	0.9

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log (Duty cycle) = 20 log (0.072 ms / 1.818 ms) = -28 dB

CHANNEL	TX Channel 4 DETECTOR	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2442.00	101.7 PK			1.11 H	147	107.1	-5.4		
2	*2442.00	73.7 AV			1.11 H	147	79.1	-5.4		
3	4884.00	47.9 PK	74.0	-26.1	1.45 H	360	46.9	1.0		
4	4884.00	19.9 AV	54.0	-34.1	1.45 H	360	18.9	1.0		
5	7326.00	48.1 PK	74.0	-25.9	2.40 H	101	40.4	7.7		
6	7326.00	20.1 AV	54.0	-33.9	2.40 H	101	12.4	7.7		
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
	FRFQ.	EMISSION	LIMIT	MARGIN	ANTENNA	TABLE	RAW	CORRECTION		

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2442.00	95.7 PK			2.88 V	320	101.1	-5.4
2	*2442.00	67.7 AV			2.88 V	320	73.1	-5.4
3	4884.00	41.3 PK	74.0	-32.7	2.64 V	114	40.3	1.0
4	4884.00	13.3 AV	54.0	-40.7	2.64 V	114	12.3	1.0
5	7326.00	47.5 PK	74.0	-26.5	1.54 V	88	39.8	7.7
6	7326.00	19.5 AV	54.0	-34.5	1.54 V	88	11.8	7.7

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

6. The average value of fundamental frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log (Duty cycle) = 20 log (0.072 ms / 1.818 ms) = -28 dB

CHANNEL	TX Channel 8	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2481.00	102.3 PK			2.00 H	352	107.6	-5.3
2	*2481.00	74.3 AV			2.00 H	352	79.6	-5.3
3	2483.50	69.2 PK	74.0	-4.8	2.00 H	352	74.5	-5.3
4	2483.50	41.2 AV	54.0	-12.8	2.00 H	352	46.5	-5.3
5	4962.00	49.6 PK	74.0	-24.4	1.59 H	343	48.2	1.4
6	4962.00	21.6 AV	54.0	-32.4	1.59 H	343	20.2	1.4
7	7443.00	49.4 PK	74.0	-24.6	2.54 H	96	41.5	7.9
8	7443.00	21.4 AV	54.0	-32.6	2.54 H	96	13.5	7.9
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2481.00	96.1 PK			2.71 V	323	101.4	-5.3
2	*2481.00	68.1 AV			2.71 V	323	73.4	-5.3
3	2483.50	57.1 PK	74.0	-16.9	2.71 V	323	62.4	-5.3
4	2483.50	29.1 AV	54.0	-24.9	2.71 V	323	34.4	-5.3
5	4962.00	41.1 PK	74.0	-32.9	2.69 V	127	39.7	1.4
6	4962.00	13.1 AV	54.0	-40.9	2.69 V	127	11.7	1.4
7	7443.00	47.3 PK	74.0	-26.7	1.56 V	75	39.4	7.9
8	7443.00	19.3 AV	54.0	-34.7	1.56 V	75	11.4	7.9

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

5. " * ": Fundamental frequency.

6. The average value of fundamental frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log (Duty cycle) = 20 log (0.072 ms / 1.818 ms) = -28 dB

Below 1GHz Data:

CHANNEL	TX Channel 4	DETECTOR	
FREQUENCY RANGE	below 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
FREQ. (MHz)			MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
54.47	23.8 QP	40.0	-16.2	2.50 H	268	32.6	-8.8				
99.94	31.8 QP	43.5	-11.7	2.00 H	68	44.8	-13.0				
166.60	29.1 QP	43.5	-14.4	1.50 H	78	38.0	-8.9				
233.22	35.5 QP	46.0	-10.5	1.50 H	286	46.4	-10.9				
433.20	23.7 QP	46.0	-22.3	2.00 H	336	27.9	-4.2				
796.57	31.0 QP	46.0	-15.0	1.50 H	289	28.6	2.4				
	ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М					
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
35.46	26.7 QP	40.0	-13.3	1.00 V	59	36.3	-9.6				
99.94	34.0 QP	43.5	-9.5	1.50 V	232	47.0	-13.0				
165.97	28.3 QP	43.5	-15.2	1.00 V	166	37.2	-8.9				
233.19	28.8 QP	46.0	-17.2	2.50 V	31	39.7	-10.9				
460.58	28.2 QP	46.0	-17.8	2.00 V	310	31.7	-3.5				
827.66	32.5 QP	46.0	-13.5	2.00 V	360	29.7	2.8				
	(MHz) 54.47 99.94 166.60 233.22 433.20 796.57 FREQ. (MHz) 35.46 99.94 165.97 233.19 460.58	LEVEL (dBuV/m) 54.47 23.8 QP 99.94 31.8 QP 166.60 29.1 QP 233.22 35.5 QP 433.20 23.7 QP 796.57 31.0 QP FREQ. (MHz) EMISSION LEVEL (dBuV/m) 35.46 26.7 QP 99.94 34.0 QP 165.97 28.3 QP 233.19 28.8 QP 460.58 28.2 QP 827.66 32.5 QP	LEVEL (dBuV/m) (dBuV/m) 54.47 23.8 QP 40.0 99.94 31.8 QP 43.5 166.60 29.1 QP 43.5 233.22 35.5 QP 46.0 433.20 23.7 QP 46.0 796.57 31.0 QP 46.0 ANTENNA POLARITY EMISSION LEVEL (dBuV/m) 35.46 26.7 QP 40.0 99.94 34.0 QP 43.5 165.97 28.3 QP 43.5 165.97 28.3 QP 46.0 99.94 34.0 QP 43.5 165.97 28.3 QP 46.0 94.00 99.94 34.0 QP 43.5 165.97 28.3 QP 46.0 460.58 28.2 QP 46.0 460.58 28.2 QP 46.0	LEVEL (dBuV/m) (dBuV/m) (dB) 54.47 23.8 QP 40.0 -16.2 99.94 31.8 QP 43.5 -11.7 166.60 29.1 QP 43.5 -14.4 233.22 35.5 QP 46.0 -10.5 433.20 23.7 QP 46.0 -22.3 796.57 31.0 QP 46.0 -15.0 ANTENNA POLARITY & TEST DI FREQ. (MH2) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 35.46 26.7 QP 40.0 -13.3 99.94 34.0 QP 43.5 -9.5 165.97 28.3 QP 46.0 -15.2 233.19 28.8 QP 46.0 -17.2 460.58 28.2 QP 46.0 -17.8 827.66 32.5 QP 46.0 -13.5	(MHz) LEVEL (dBuV/m) (dBuV/m) (dB) HEIGHT (m) 54.47 23.8 QP 40.0 -16.2 2.50 H 99.94 31.8 QP 43.5 -11.7 2.00 H 166.60 29.1 QP 43.5 -14.4 1.50 H 233.22 35.5 QP 46.0 -10.5 1.50 H 433.20 23.7 QP 46.0 -15.0 1.50 H 796.57 31.0 QP 46.0 -15.0 1.50 H ANTENNA POLARITY & TEST DISTANCE: V FREQ. EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 35.46 26.7 QP 40.0 -13.3 1.00 V 99.94 34.0 QP 43.5 -9.5 1.50 V 165.97 28.3 QP 43.5 -15.2 1.00 V 233.19 28.8 QP 46.0 -17.2 2.50 V 460.58 28.2 QP 46.0 -13.5 2.00 V	(MHz) LEVEL (dBuV/m) (dBuV/m) (dB) HEIGHT (m) ANGLE (Degree) 54.47 23.8 QP 40.0 -16.2 2.50 H 268 99.94 31.8 QP 43.5 -11.7 2.00 H 68 166.60 29.1 QP 43.5 -14.4 1.50 H 78 233.22 35.5 QP 46.0 -10.5 1.50 H 286 433.20 23.7 QP 46.0 -15.0 1.50 H 289 796.57 31.0 QP 46.0 -15.0 1.50 H 289 ANTENNA POLARITY & TEST DISTANCE: VENTICAL AT FREQ. EMISSION LIMIT (dBuV/m) MARGIN HEIGHT ANGLE (MHz) (dBuV/m) LIMIT (dBuV/m) MARGIN Cogree) 35.46 26.7 QP 40.0 -13.3 1.00 V 59 99.94 34.0 QP 43.5 -9.5 1.50 V 232 165.97 28.3 QP 46.0 -17.2 2.50 V 31	(MHz) LEVEL (dBuV/m) (dBuV/m) (dB) HEIGHT (m) ANGLE (Degree) VALUE (dBuV) 54.47 23.8 QP 40.0 -16.2 2.50 H 268 32.6 99.94 31.8 QP 43.5 -11.7 2.00 H 68 44.8 166.60 29.1 QP 43.5 -14.4 1.50 H 78 38.0 233.22 35.5 QP 46.0 -10.5 1.50 H 286 46.4 433.20 23.7 QP 46.0 -22.3 2.00 H 336 27.9 796.57 31.0 QP 46.0 -15.0 1.50 H 289 28.6 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT M FREQ. EMISSION (LBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (dB) TABLE ANGLE (Degree) RAW VALUE (dBuV) 35.46 26.7 QP 40.0 -13.3 1.00 V 59 36.3 99.94 34.0 QP 43.5 -9.5 1.50 V 232 47.0 165.97 28.3 QP				

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)						
Frequency (MHz)	Quasi-peak	Average					
0.15 - 0.5	66 - 56	56 - 46					
0.50 - 5.0	56	46					
5.0 - 30.0	60	50					

Note: 1. The lower limit shall apply at the transition frequencies.

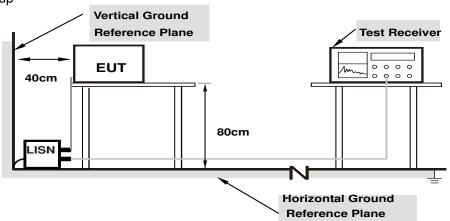
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER			DATE	UNTIL
Test Receiver	ESCS 30	100375	May 09, 2016	May 08, 2017
R&S	E303 30	100375	way 09, 2010	Way 00, 2017
Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK-8127	8127-522	Sep. 01, 2015	Aug. 31, 2016
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 11, 2015	June 10, 2016
RF Cable	5D-FB	COCCAB-001	Mar. 08, 2016	Mar. 07, 2017
10 dB PAD Mini-Circuits	HAT-10+	CONATT-002	Sep. 14, 2015	Sep. 13, 2016
50 ohms Terminator	N/A	EMC-03	Sep. 23, 2015	Sep. 22, 2016
50 ohms Terminator	N/A	EMC-02	Oct. 01, 2015	Sep. 30, 2016
50 ohms Terminator	E1-011315	13	Dec. 11 2015	Dec. 10 2016
Software BVADT	BVADT_Cond_ V7.3.7.3	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. C.
- 3. The VCCI Con C Registration No. is C-3611.
- 4. Tested Date: June 16, 2016



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

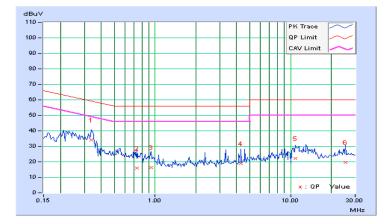
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.


4.2.7 Test Results (Mode 1)

Phase Line (L) Detector Function Quasi-Peak (QF Average (AV))) /

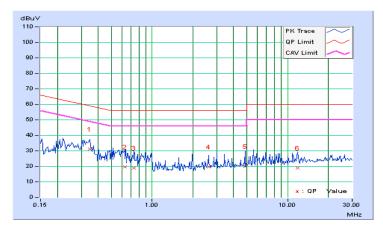
	Phase Of Power : Line (L)										
No	Frequency Correction Factor		Reading Value Emission (dBuV) (dBu						Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.33750	10.42	23.59	5.38	34.01	15.80	59.26	49.26	-25.25	-33.46	
2	0.73594	10.40	5.61	3.25	16.01	13.65	56.00	46.00	-39.99	-32.35	
3	0.93906	10.39	6.09	4.23	16.48	14.62	56.00	46.00	-39.52	-31.38	
4	4.30859	10.64	8.22	6.35	18.86	16.99	56.00	46.00	-37.14	-29.01	
5	10.90234	10.98	11.39	5.42	22.37	16.40	60.00	50.00	-37.63	-33.60	
6	25.32422	11.70	8.09	5.66	19.79	17.36	60.00	50.00	-40.21	-32.64	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phas	e	Dete	ctor Func	tion	Quasi-Peak (QP) / Average (AV)						
	Phase Of Power : Neutral (N)										
No	Frequency	Frequency Correction Reading Value Factor (dBuV)				mission Level Li (dBuV) (dB				Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.34531	10.47	20.54	4.58	31.01	15.05	59.07	49.07	-28.06	-34.02	
2	0.62656	10.46	9.20	4.92	19.66	15.38	56.00	46.00	-36.34	-30.62	
3	0.73203	10.45	8.60	4.82	19.05	15.27	56.00	46.00	-36.95	-30.73	
4	2.60156	10.57	8.98	6.43	19.55	17.00	56.00	46.00	-36.45	-29.00	
5	4.86719	10.76	9.25	5.66	20.01	16.42	56.00	46.00	-35.99	-29.58	
6	11.90625	11.06	7.73	5.86	18.79	16.92	60.00	50.00	-41.21	-33.08	

Remarks:

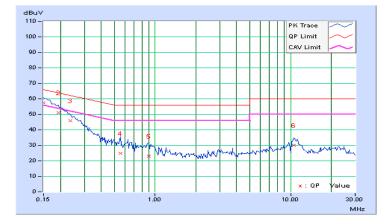

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value


4.2.8 Test Results (Mode 2)

Phase Line (L)	Detector Function Quasi-Peak (C Average (AV)	QP) /
----------------	---	-------

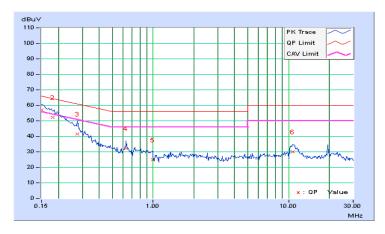
	Phase Of Power : Line (L)											
No	Frequency Correction Factor		Reading Value Emission Level (dBuV) (dBuV)		Limit (dBuV)		Margin (dB)					
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15000	10.44	46.89	30.93	57.33	41.37	66.00	56.00	-8.67	-14.63		
2	0.19297	10.41	40.74	24.95	51.15	35.36	63.91	53.91	-12.76	-18.55		
3	0.23594	10.41	35.55	21.01	45.96	31.42	62.24	52.24	-16.28	-20.82		
4	0.55625	10.42	14.58	6.29	25.00	16.71	56.00	46.00	-31.00	-29.29		
5	0.89609	10.39	12.52	7.48	22.91	17.87	56.00	46.00	-33.09	-28.13		
6	10.58203	10.96	19.21	13.99	30.17	24.95	60.00	50.00	-29.83	-25.05		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Dhaa	Phase Neutral (N) Detector Function Quasi-Peak (QP) /								,		
Phase			neutra	Neutral (N)			Delector Function		Average (AV)		
Phase Of Power : Neutral (N)											
No	No Frequency Correction Factor			Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dl	B)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.	44	46.43	31.23	56.87	41.67	66.00	56.00	-9.13	-14.33
2	0.18125	10.	45	41.90	26.21	52.35	36.66	64.43	54.43	-12.08	-17.77
3	0.27500	10.	46	31.16	17.77	41.62	28.23	60.97	50.97	-19.35	-22.74
4	0.63047	10.	46	21.75	16.43	32.21	26.89	56.00	46.00	-23.79	-19.11
5	0.99375	10.	43	14.51	9.64	24.94	20.07	56.00	46.00	-31.06	-25.93
6	10.68359	10.	98	18.95	11.40	29.93	22.38	60.00	50.00	-30.07	-27.62

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

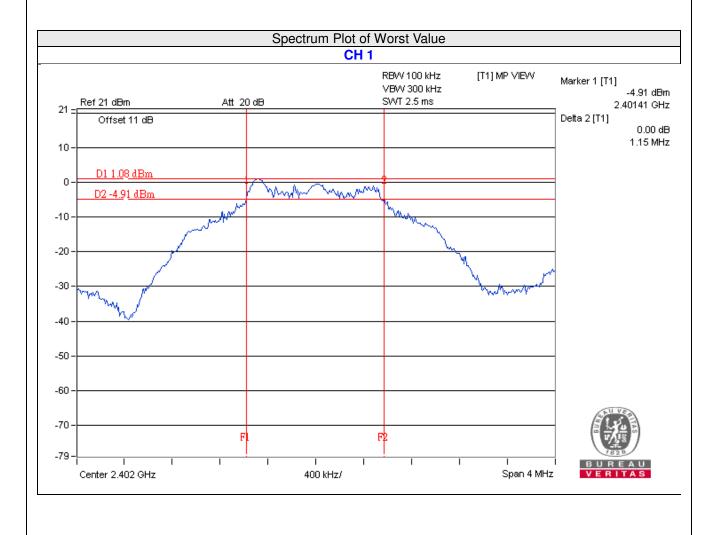
4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation fromTest Standard

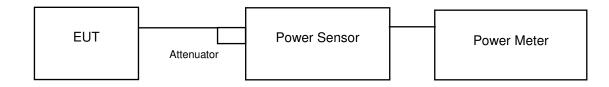
No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail	
1	2402	1.15	0.5	PASS	
4	2442	1.15	0.5	PASS	
8	2481	1.17	0.5	PASS	



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

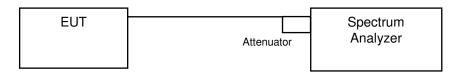
Same as Item 4.2.6.

4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2402	1.493	1.74	30	Pass
4	2442	4.56	6.59	30	Pass
8	2481	4.315	6.35	30	Pass

FOR AVERAGE POWER


Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2402	1.3	1.14
4	2442	4.018	6.04
8	2481	3.926	5.94

4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 Test Setup

4.5.3 Test Instruments

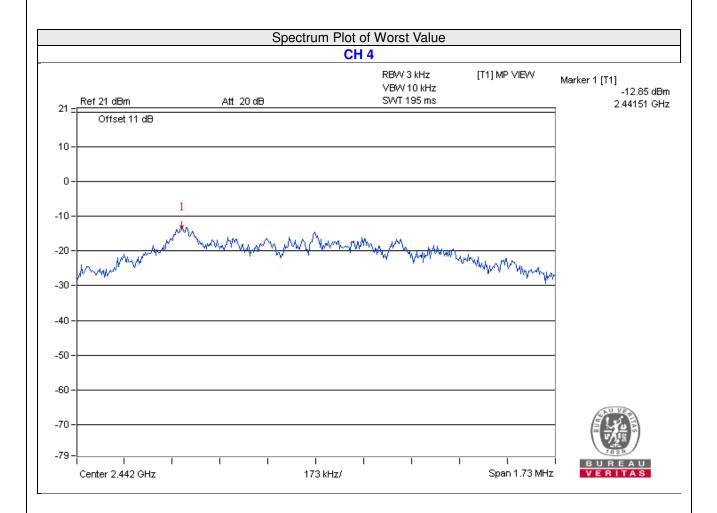
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.2.6

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2402	-17.59	8	Pass
4	2442	-12.85	8	Pass
8	2481	-12.96	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dBc of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

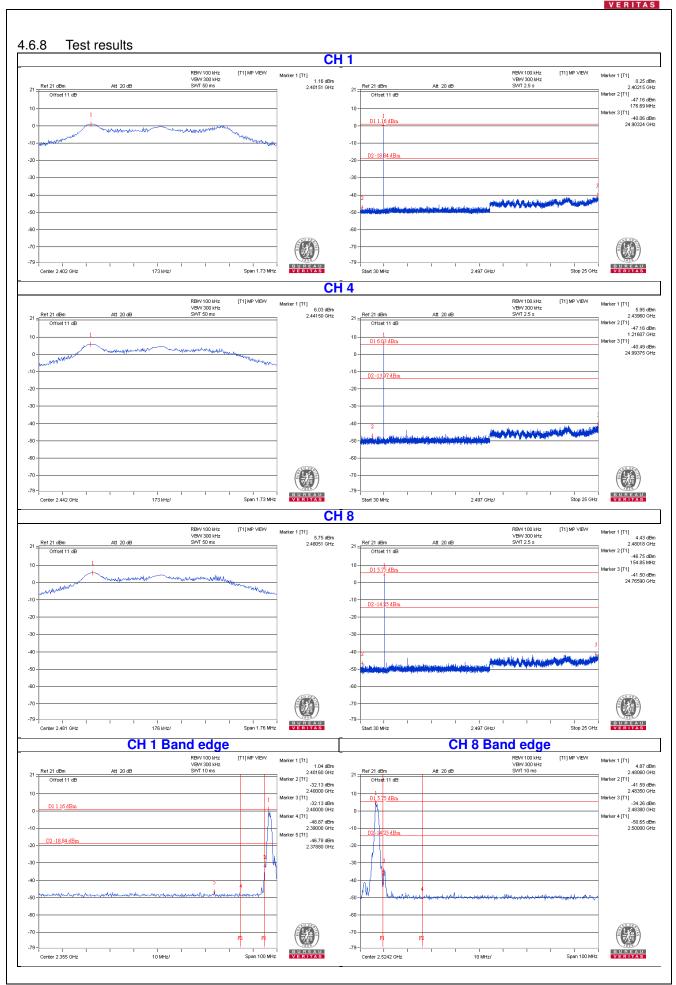
MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard No deviation.


4.6.6 EUT Operating Condition

Same as Item 4.2.6

4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----