Logitech Antenna Under Test (AUT) Report

Model Name: M-R0037

Equipment Type: Mouse

Manufacturer: Logitech Far East LTD.

Test Location: No. 3 Songshan Road, Suzhou New District, Jiangsu,

China

Test Personnel: _____ Jin Wang____

Report Date: 2023.12.18

Report No: EVT-700-002513 Page 1 of 11

Report Release History

Report version	Description	Date Issued	
M-R0037 AUT Report	Original release	2023/12/18	

Table of Contents

1.	EUT Antenna Information	2
2.	Measured Values and Calculation of Antenna Gains	2
3.	Conducted Power Measurement	1
	3.1 Test Setup	3
	3.2 Test Instruments	3
	3.3 Test Procedure	3
	3.4 Test Result of RF conducted Power	4
4.	2D Radiation Pattern Measurement	4
	4.1 Test Location	4
	4.2 Description of the anechoic chamber	4
	4.3 Test Instruments	4
	4.4 Test Procedure	7
	4.5 Test Setup photos	8
	4.6 2D Pattern Test Plot	8

Report No: EVT-700-002513 Page 2 of 11

1. EUT Antenna Information

Antenna Material: PCB on board
 Antenna Type: Dipole Antenna
 Antenna Dimension: 2.0 x 0.7 mm

4) Operating Frequency: 2.4 GHz - 2.4835 GHz

5) Input Impedance: 50 Ω6) Standing-Wave Ratio: 2:1

2. Measured Values and Calculation of Antenna Gains

Measure peak horizontal/vertical EIRP on each x-y, y-z, x-z plane. The highest measured values will be used to calculate the antenna peak gain.

Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

		X-Y Plane φ=0~360°, θ=90°		X-Z Plane φ=0°, θ=0~360°		Y-Z Plane φ=90⁰, θ=0~360⁰		Conducted	Antenna
Frequency	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	- Max Peak EIRP (dBm)	Power (dBm)	Peak Gain (dBi)
2405	-10.54	2.37	-2.09	-2.31	2.29	-5.92	2.37	-4.44	6.81
2444	-9.82	1.12	-2.89	-2.36	2.00	-12.43	2.00	-5.23	7.23
2474	-10.89	0.23	-2.90	-2.57	1.18	-9.00	1.18	-5.90	7.08

Test Date: ______2023.12.18

Report No: EVT-700-002513 Page 3 of 11

3. Conducted Power Measurement

3.1 Test Setup

3.2 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9020B	MY63490193	2023.7.19
RF signal cable Woken	Huber+suhner 10844497	276	2023.05.28

Note: The calibration interval of the above test instruments is <u>12</u> months

3.3 Test Procedure

A spectrum analyzer or Power meter was used to perform output power measurement, setting the detector to average and configuring EUT continuously transmitting power(100% duty cycle).

Report No: EVT-700-002513 Page 4 of 11

3.4 Test Result of RF conducted Power

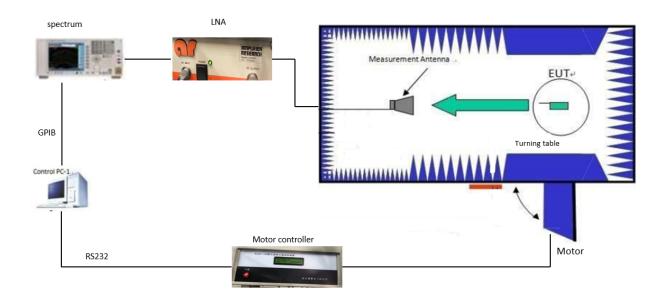
Frequency	Conducted Power (dBm)		
2405	-4.44		
2444	-5.23		
2474	-5.90		

Test Date: 2023.12.18

Report No: EVT-700-002513 Page 5 of 11

4. 2D Radiation Pattern Measurement

4.1 Test Location


2D radiation pattern measurement in the anechoic chamber

4.2 Description of the anechoic chamber

Length: 5.0m Width: 2.8m Height: 2.8m

Turn table Height: 1.4m

Measurement antenna height: 1.4m

Report No: EVT-700-002513 Page 6 of 11

4.3 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9020B	MY60110508	2023.09.25
Horn Antenna ETS	BBHA 9120 D(1201)	D69250	2023.07.28
RF signal cable	SUCOFLEX104	SN293270/4	2023.07.28
Software	FAC-Radio Measurement System	Version 1.1.0.7	N/A
Turntable Controller	BJ3AC-100	N/A	N/A
Chamber Antenna Tower	LWP-AS	N/A	2023.11.28
LNA	LN1G11	321282	2023.11.28

Note: The calibration interval of the above test instruments is 12 months

4.4 Test Procedure

- i. Connect the EUT to Spectrum Analyzer and record the power setting of EUT and the measured conducted power.
- ii. Fasten the EUT in the center of the turntable, record the coordinates and take pictures.
- iii. Configuring EUT continuously transmitting power(100% duty cycle).
- iv. Make sure the transmit signal is stable and at the maximum RF power level.
- v. Setup the channel power function by spectrum analyzer.
- vi. Read the channel power level on the spectrum analyzer and record in the following positions.

Report No: EVT-700-002513 Page 7 of 11

- 1. The turntable is then stepped between 0 to 360 degrees along the horizontal plane in 15-degree increments.
- 2. Data is recorded using the spectrum analyzer for both theta and phi polarizations at each position.
- vii. Rotate the EUT with 90 degrees and repeat step f.1 and step f.2 until all 3 planes(X-Y,X-Z,Y-Z) were measured.
- viii. According to substitution techniques, a substitution horn antenna is substituted for EUT at the same position and the signal generator exports the CW signal to the substitution antenna via a TX cable. Rotated the turntable and moved the receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a value of spectrum reading equal to "Raw Value" gotten from step vii. Record the power level of S.G.

EIRP =
$$P_{SigGen} + G_T - L_C$$

where:

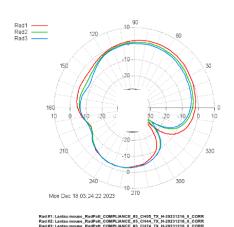
P_{SigGen} = power setting of the signal generator that produces the same received power reading as the DUT, in dBm;

 G_T = gain of the substitute antenna, in dBd (ERP) or dBi (EIRP);

 L_{C} = signal loss in the cable connecting the signal generator to the substitute antenna, in dB

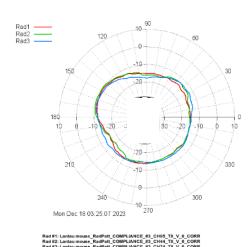
ix. Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

4.5 Test Setup photos


confidential

Report No: EVT-700-002513 Page 8 of 11

4.6 2D Pattern Test Plot


X-Y Plane: Horizontal and Vertical

Horizontal

 $[imgfile: tmp/_gnuplot20231218-21463-41fgvm-0.png] \\$

Vertical

[imgfile: tmp/_gnuplot20231218-21463-1lt5qmc-0.png]

Radiation pattern #1:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH05_TX_H-20231216_0_CORR

Average power = -4.09 dBm Front average power = -0.66 dBm (From 0 deg to 180 deg) Min power = -30.16 dBm @ -48.00 deg Max power = 2.37 dBm @ 72.00 deg

Radiation pattern #2:

Lantau mouse RadPatt COMPLIANCE #3 CH44 TX H-20231216 0 CORR

Average power = -5.08 dBm Front average power = -2.14 dBm (From 0 deg to 180 deg) Min power = -28.98 dBm @ -39.00 deg Max power = 1.12 dBm @ 75.00 deg Delta max power = -1.25 dBm Delta average power = -0.99 dBm

Radiation pattern #3:

Delta front average power = -1.47 dBm

Lantau mouse_RadPatt_COMPLIANCE_#3_CH74_TX_H-20231216_0_CORR

Average power = -5.56 dBm
Front average power = -3.15 dBm (From 0 deg to 180 deg)
Min power = -25.41 dBm @ -39.00 deg
Max power = 0.23 dBm @ 75.00 deg

Delta max power = -2.14 dBm
Delta average power = -1.47 dBm
Delta front average power = -2.49 dBm

Radiation pattern #1:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH05_TX_V_0_CORR

Average power = -14.05 dBm Front average power = -13.63 dBm (From 0 deg to 180 deg) Min power = -16.57 dBm @ -153.00 deg Max power = -10.54 dBm @ 147.00 deg

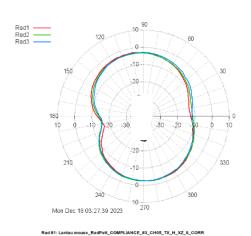
Radiation pattern #2:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH44_TX_V_0_CORR

Average power = -14.00~dBm Front average power = -13.21~dBm (From 0 deg to 180 deg)

Min power = -17.16~dBm @ -138.00~degMax power = -9.82~dBm @ 162.00~degDelta max power = 0.72~dBmDelta average power = 0.05~dBmDelta front average power = 0.43~dBm

Radiation pattern #3:


Lantau mouse_RadPatt_COMPLIANCE_#3_CH74_TX_V_0_CORR

Average power = -13.80 dBm
Front average power = -13.86 dBm (From 0 deg to 180 deg)
Min power = -17.79 dBm @ 90.00 deg
Max power = -10.89 dBm @ 159.00 deg

Delta max power = -0.35 dBm
Delta average power = 0.25 dBm
Delta front average power = -0.23 dBm

X-Z Plane: Horizontal and Vertical

Horizontal

[imgfile: tmp/_gnuplot20231218-21463-159b8ck-0.png]

Vertical

 $[imgfile: tmp/_gnuplot20231218-21463-17b0u48-0.png] \\$

Radiation pattern #1:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH05_TX_H_XZ_0_CORR

Average power = -6.99 dBm Front average power = -6.60 dBm (From 0 deg to 180 deg) Min power = -16.62 dBm @ -165.00 deg Max power = -2.31 dBm @ -81.00 deg

Radiation pattern #2:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH44_TX_H_XZ_0_CORR

Average power = $-6.81 \ dBm$ Front average power = $-6.68 \ dBm$ (From 0 deg to 180 deg)

Min power = $-15.30 \ dBm$ @ $-174.00 \ deg$ Max power = $-2.36 \ dBm$ @ $-81.00 \ deg$ Delta max power = $-0.05 \ dBm$ Delta average power = $-0.18 \ dBm$ Delta front average power = $-0.08 \ dBm$

Radiation pattern #3:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH74_TX_H_XZ_0_CORR

Average power = -6.93 dBm Front average power = -6.47 dBm (From 0 deg to 180 deg) Min power = -15.86 dBm @ -174.00 deg Max power = -2.57 dBm @ -84.00 deg Delta max power = -0.26 dBm Delta average power = 0.06 dBm Delta front average power = 0.13 dBm

Radiation pattern #1:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH05_TX_V_XZ_0_CORR

Average power = -7.58 dBm Front average power = -8.07 dBm (From 0 deg to 180 deg) Min power = -27.22 dBm @ -75.00 deg Max power = -2.09 dBm @ -153.00 deg

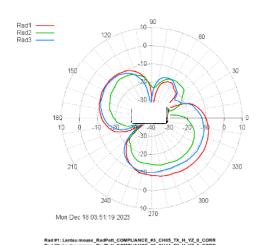
Radiation pattern #2:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH44_TX_V_XZ_0_CORR

Average power = -8.57 dBm Front average power = -8.95 dBm (From 0 deg to 180 deg) Min power = -31.94 dBm @ -78.00 deg Max power = -2.89 dBm @ -159.00 deg Delta max power = -0.81 dBm Delta average power = -0.99 dBm Delta front average power = -0.89 dBm

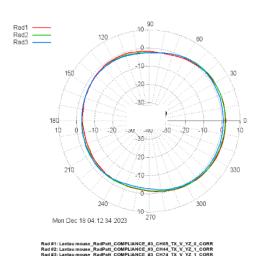
Radiation pattern #3:

 $Lantau\ mouse_RadPatt_COMPLIANCE_\#3_CH74_TX_V_XZ_0_CORR$


Average power = -8.90 dBm
Front average power = -9.41 dBm (From 0 deg to 180 deg)

Min power = -29.85 dBm @ -72.00 deg
Max power = -2.90 dBm @ -162.00 deg

Delta max power = -0.81 dBm
Delta average power = -1.32 dBm
Delta front average power = -1.34 dBm


Y-Z Plane: Horizontal and Vertical

Horizontal

[imgfile: tmp/_gnuplot20231218-21463-1stjs8r-0.png]

Vertical

[imgfile: tmp/_gnuplot20231218-21463-1ywa0b4-0.png]

Radiation pattern #1:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH05_TX_H_YZ_0_CORR

Average power = -14.38 dBm Front average power = -16.91 dBm (From 0 deg to 180 deg) Min power = -47.79 dBm @ 36.00 deg

Min power = -47.79 dBm @ 36.00 deg Max power = -5.92 dBm @ -42.00 deg

Radiation pattern #2:

Lantau mouse RadPatt COMPLIANCE #3 CH44 TX H YZ 0 CORR

Average power = -18.35 dBmFront average power = -18.09 dBm (From 0 deg to 180 deg) Min power = -45.54 dBm @ -150.00 deg

Max power = -12.43 dBm @ 129.00 deg

Delta max power = -6.51 dBm

Delta average power = 3.07 dBm

Delta average power = -3.97 dBm

Delta average power = -1.18 dBm

Delta front average power = 0.66 dBm

Radiation pattern #3:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH74_TX_H_YZ_0_CORR

Average power = -15.02 dBm Front average power = -16.25 dBm (From 0 deg to 180 deg) Min power = -45.11 dBm @ -150.00 deg Max power = -9.00 dBm @ -36.00 deg Delta max power = -3.08 dBm Delta average power = -0.64 dBm

Radiation pattern #1:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH05_TX_V_YZ_0_CORR

Average power = -0.86 dBm Front average power = -0.87 dBm (From 0 deg to 180 deg) Min power = -3.84 dBm @ -168.00 deg Max power = 2.29 dBm @ -9.00 deg

Radiation pattern #2:

Lantau mouse_RadPatt_COMPLIANCE_#3_CH44_TX_V_YZ_1_CORR

Average power = -0.83 dBm Front average power = -0.87 dBm (From 0 deg to 180 deg) Min power = -3.11 dBm @ -168.00 deg Max power = 2.00 dBm @ 9.00 deg

Delta max power = -0.28 dBm Delta average power = 0.03 dBm Delta front average power = 0.00 dBm

Delta front average power = -0.28 dBm

Radiation pattern #3:

$Lantau\ mouse_RadPatt_COMPLIANCE_\#3_CH74_TX_V_YZ_1_CORR$

Average power = -1.19 dBm
Front average power = -1.15 dBm (From 0 deg to 180 deg)
Min power = -3.25 dBm @ -102.00 deg
Max power = 1.18 dBm @ -39.00 deg

Delta max power = -1.11 dBm
Delta average power = -0.33 dBm

Report No: EVT-700-002513