

FCC Test Report (BT-EDR)

Report No.: RFBDKG-WTW-P21060161

FCC ID: JNZB00037

Test Model: B00037

Received Date: June 04, 2021

Test Date: June 23 to July 04, 2021

Issued Date: July 29, 2021

Applicant: LOGITECH FAR EAST LTD.

Address: 7700 Gateway Boulevard Newark California United States

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

FCC Registration / 723255 / TW2022

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	elease Control Record4				
1	Certificate of Conformity5				
2	S	summary of Test Results	. 6		
	2.1 2.2	Measurement Uncertainty			
•		General Information			
3					
	3.1	General Description of EUT (BT-EDR)			
	3.2	Description of Test Modes			
	3.2.1	Test Mode Applicability and Tested Channel Detail			
	3.3 3.4	Duty Cycle of Test Signal Description of Support Units			
	3.4.1	Configuration of System under Test			
	3.5	General Description of Applied Standards and References			
_		· · · · · · · · · · · · · · · · · · ·			
4		est Types and Results			
	4.1	Radiated Emission and Bandedge Measurement			
		Limits of Radiated Emission and Bandedge Measurement			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup EUT Operating Conditions			
		Test Results			
	4.1.7	Conducted Emission Measurement			
		Limits of Conducted Emission Measurement			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup			
	4.2.6	EUT Operating Condition	32		
		Test Results	33		
	4.3	Number of Hopping Frequency Used			
		Limits of Hopping Frequency Used Measurement			
		Test Setup			
			35		
		Test Procedure			
		Deviation from Test Standard			
	4.3.6	Test Results Dwell Time on Each Channel			
		Limits of Dwell Time on Each Channel Measurement			
		Test Setup			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Results			
	4.5	Channel Bandwidth			
	4.5.1	Limits of Channel Bandwidth Measurement			
		Test Setup			
	4.5.3	Test Instruments	42		
		Test Procedure			
		Deviation from Test Standard			
		EUT Operating Condition			
		Test Results			
	4.6	Hopping Channel Separation	44		

4.6.1	Limits of Hopping Channel Separation Measurement	. 44		
	Test Setup			
	Test Instruments			
	Test Procedure			
4.6.5	Deviation from Test Standard	. 44		
4.6.6	Test Results	. 45		
4.7	Maximum Output Power			
	Limits of Maximum Output Power Measurement			
	Test Setup			
	Test Instruments			
	Test Procedure			
	Deviation from Test Standard			
	EUT Operating Condition			
4.7.7	Test Results			
4.8				
	Limits of Conducted Out of Band Emission Measurement			
	Test Instruments			
	Test Procedure			
	Deviation from Test Standard			
	EUT Operating Condition			
4.8.6	Test Results	. 48		
5 F	ctures of Test Arrangements	. 51		
Annex	A - Band-Edge Measurement	. 52		
Append	Appendix – Information of the Testing Laboratories54			

Release Control Record

Issue No.	Description	Date Issued	
RFBDKG-WTW-P21060161	Original release.	July 29, 2021	

1 Certificate of Conformity

Product: Charger case

Brand: Jaybird

Test Model: B00037

Sample Status: Engineering sample

Applicant: LOGITECH FAR EAST LTD.

Test Date: June 23 to July 04, 2021

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : _______, Date: _______, July 29, 2021

Claire Kuan / Specialist

Approved by: , Date: July 29, 2021

Clark Lin / Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)						
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -13.17 dB at 0.57578 MHz.			
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.			
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.			
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	Pass	Meet the requirement of limit.			
15.247(b)	Maximum Peak Output Power	Pass	Meet the requirement of limit.			
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -4.5 dB at 45.91 MHz.			
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.			
15.203	Antenna Requirement	Pass	No antenna connector is used.			

Note:

- 1. For 2.4 GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 3. If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Conducted emissions	9kHz ~ 40GHz	2.5 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
Radiated Emissions up to 1 GHZ	30MHz ~ 1GHz	5.4 dB
	1GHz ~ 6GHz	5.0 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.3 dB
	18GHz ~ 40GHz	1.9 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-EDR)

Product	Charger case			
Brand	Jaybird			
Test Model	B00037			
Status of EUT	Engineering sample			
Dower Supply Poting	DC 5V from USB interface or			
Power Supply Rating	DC 3.8V from battery			
Modulation Type	GFSK, π/4-DQPSK, 8DPSK			
Modulation Technology	FHSS			
Transfer Rate	Up to 3 Mbps			
Operating Frequency	2.402 ~ 2.480 GHz			
Number of Channel	79			
Output Power	2.344 mW			
Antenna Type	Refer to Note			
Antenna Connector	Refer to Note			
	Battery (for charging case B00037) x1 (Brand: GP, Model: NTA3640-V2)			
Accessory Device	Earphone (optional) x 1 (Brand: Jaybird, Model: B00036)			
	Battery (optional for earphone) x 1 (Brand: VDL, Model: ZJ1254H)			
Cable Supplied	Y Cable (Type C to 3.5mm/Type A) x 1 (Shielded, 0.25m)			

Note:

1. The EUT may have a lot of colors for marketing requirement.

2. The EUT must be supplied with a battery as the following table:

Brand	Model No.	Spec.
GP	NTA3640-V2	3.8 Vdc; 490 mAh

3. The antenna provided to the EUT, please refer to the following table:

Antenna No.	Antenna Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connector Type	
1. (BT EDR) 0.32		2.4~2.4835	PIFA	None	
2. (BLE)	-0.05	2.4~2.4835	PIFA	None	

4. For conducted emission test, the EUT was pre-tested under the following modes:

Test Mode	Description				
Mode A	Power from Adapter mode				
Mode B	Power from Laptop mode connect 3.5mm with Y cable				
Mode C	Power from Qi mode				

Note: From the above modes, the worst case was found in **Mode C**. Therefore only the test data of the mode was recorded in this report.

5. For radiated emissions below 1GHz test, the EUT was pre-tested under the following modes:

Test Mode	Description		
Mode A	Power from Battery mode , Eut X-Y		
Mode B Power from Battery mode , Eut X-Z			
Mode C	Power from Battery mode , Eut Y-Z		
Mode D	Power from Adapter mode , Eut X-Y		
Mode E	Power from Qi mode , Eut X-Y		
Mode F	Power from Laptop mode connect 3.5mm with Y cable		

Note: From the above modes, the worst case was found in Mode E . Therefore only the test data of the mode was recorded in this report.					
6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.					
7. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.					

3.2 Description of Test Modes

79 channels are provided for BT-EDR mode:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode		Applic	Description		
	RE≥1G	RE<1G	PLC	APCM	Description
-	V	√	√	V	-

Where

RE≥1G: Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **X-place for above 1GHz**.

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
0 to 78	0, 39, 78	FHSS	GFSK	DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
0 to 78	0	FHSS	GFSK	DH5

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
0 to 78	0	FHSS	GFSK	DH5

Antenna Port Conducted Measurement:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

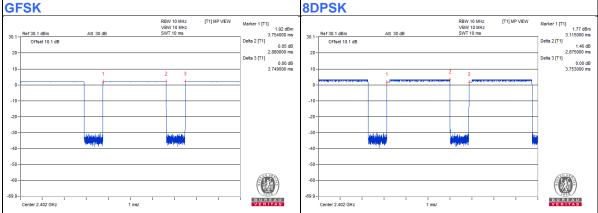
Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
0 to 78	0, 39, 78	FHSS	GFSK	DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Report No.: RFBDKG-WTW-P21060161 Page No. 10 / 54 Report Format Version: 6.1.1

Test Condition:

Applicable To	Environmental Conditions	Input Power (System)	Tested By
RE≥1G	25deg. C, 66%RH	120Vac, 60Hz	Tom Yang
RE<1G	25deg. C, 66%RH	120Vac, 60Hz	Tom Yang
PLC	25deg. C, 66%RH	120Vac, 60Hz	Tom Yang
APCM	25deg. C, 60%RH	120Vac, 60Hz	Kevin Ko


3.3 Duty Cycle of Test Signal

TX continuous-fixed mode

Duty cycle of test signal is < 98 %, duty factor shall be considered.

GFSK: Duty cycle = 2.88 ms/3.749 ms = 0.768, Duty factor = 10 * log(1/Duty cycle) = 1.16 dB

8DPSK: Duty cycle = 2.875 ms/3.753 ms = 0.766, Duty factor = 10 * log(1/Duty cycle) = 2.41 dB

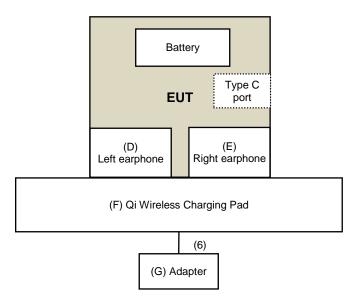
TX hopping mode (for Radiated Emission test)

GFSK: 20 log(Duty cycle) = 20 log(4 ms / 100 ms) = -28.0 dB **8DPSK**: 20 log(Duty cycle) = 20 log(3.8 ms / 100 ms) = -28.4 dB

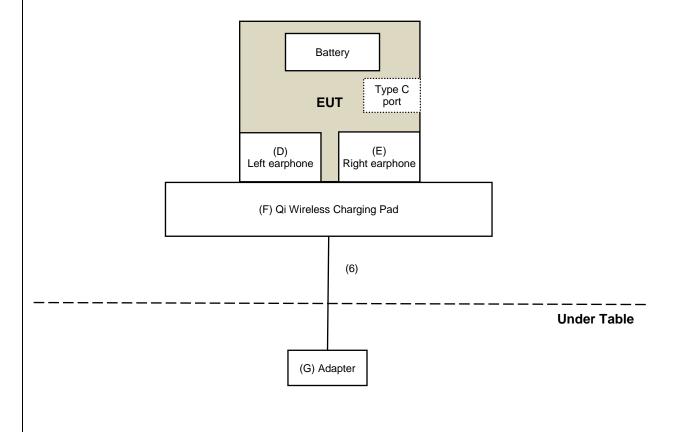
3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

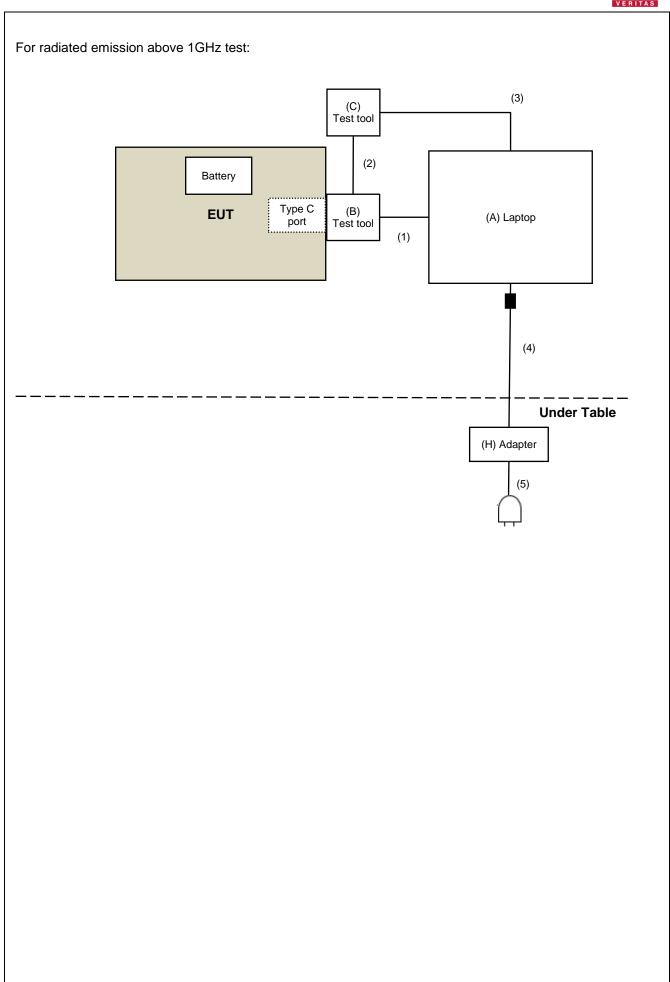
ID	Product	Brand	Model No.	Serial No	FCC ID	Remarks
A.	Laptop	DELL	Inspiron 7570	DW3CSJ2	NA	Provided by Lab
B.	Test Tool	Logitech	NA	NA	NA	Supplied by client
C.	Test Tool	Logitech	NA	NA	NA	Supplied by client
D.	Left earphone	Logitech	B00036	NA	NA	Supplied by client
E.	Right earphone	Logitech	B00036	NA	NA	Supplied by client
F.	Qi Wireless Charging Pad	Belkin	F8M747	NA	NA	Provided by Lab
G.	Adapter	ASUS	EXA1205UA	NA	NA	Provided by Lab
H.	Adapter	Dell	LA65NS2-01	NA	NA	Provided by Lab


ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Type C to 3.5mm and Type A	1	0.5	Yes	0	Provided by Lab
2.	Console Cable	1	0.1	No	0	Supplied by client
3.	Mini USB Cable	1	1.5	Yes	0	Provided by Lab
4.	DC Cable	1	1.8	No	1	Provided by Lab
5.	AC Cable	1	0.9	No	0	Provided by Lab
6.	USB Cable	1	1.8	Yes	0	Provided by Lab

Note: The core(s) is(are) originally attached to the cable(s).



3.4.1 Configuration of System under Test


For conducted emission test:

For radiated emission bleow 1GHz test:

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

potron		
Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Report No.: RFBDKG-WTW-P21060161 Page No. 17 / 54 Report Format Version: 6.1.1

4.1.2 Test Instruments

For Radiated Emission & Band Edge test:

DESCRIPTION &			CALIBRATED	CALIBRATED	
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL	
Test Receiver	N9038A	MY54450088	July 06, 2020	July 05, 2021	
Keysight	N9036A	W1134430066	July 06, 2020	July 05, 2021	
Pre-Amplifier EMCI	EMC001340	980142	May 24, 2021	May 23, 2022	
Loop Antenna Electro-Metrics	EM-6879	264	Mar. 05, 2021	Mar. 04, 2022	
RF Cable	5D-FB	LOOPCAB-001	Jan. 07, 2021	Jan. 06, 2022	
RF Cable	5D-FB	LOOPCAB-002	Jan. 07, 2021	Jan. 06, 2022	
Pre-Amplifier Mini-Circuits	ZFL-1000VH2	QA0838008	Oct. 20, 2020	Oct. 19, 2021	
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 05, 2020	Nov. 04, 2021	
RF Cable	8D	966-3-1	Mar. 16, 2021	Mar. 15, 2022	
RF Cable	8D	966-3-2	Mar. 16, 2021	Mar. 15, 2022	
RF Cable	8D	966-3-3	Mar. 16, 2021	Mar. 15, 2022	
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 24, 2020	Sep. 23, 2021	
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 22, 2020	Nov. 21, 2021	
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 11, 2021	Jan. 10, 2022	
RF Cable	EMC104-SM-SM-1500	180504	Apr. 26, 2021	Apr. 25, 2022	
RF Cable	EMC104-SM-SM-2000	180601	June 08, 2021	June 07, 2022	
RF Cable	EMC104-SM-SM-6000	210201	May 13, 2021	May 12, 2022	
Spectrum Analyzer Keysight	N9030A	MY54490679	July 13, 2020	July 12, 2021	
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 11, 2021	Jan. 10, 2022	
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 22, 2020	Nov. 21, 2021	
RF Cable	EMC102-KM-KM-1200	160924	Jan. 11, 2021	Jan. 10, 2022	
RF Cable	EMC-KM-KM-4000	200214	Mar. 10, 2021	Mar. 09, 2022	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA	
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA	

Note

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Tested Date: July 01, 2021

For other test items:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSV40	101516	Mar. 08, 2021	Mar. 07, 2022
Power meter Anritsu	ML2495A	1529002	July 22, 2020	July 21, 2021
Power sensor Anritsu	MA2411B	1339443	July 22, 2020	July 21, 2021
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 13, 2021	Apr. 12, 2022
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

NOTE: 1. The test was performed in Oven room 2.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: June 23, 2021

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

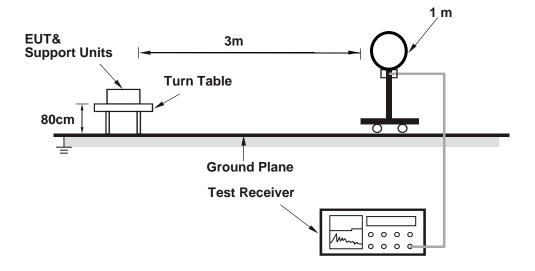
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

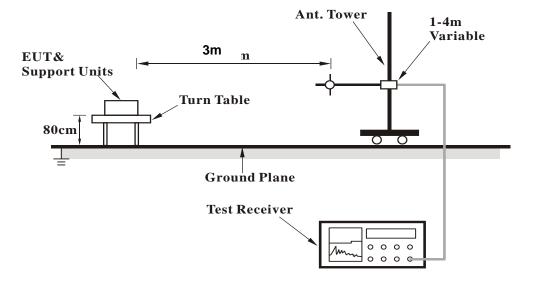
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

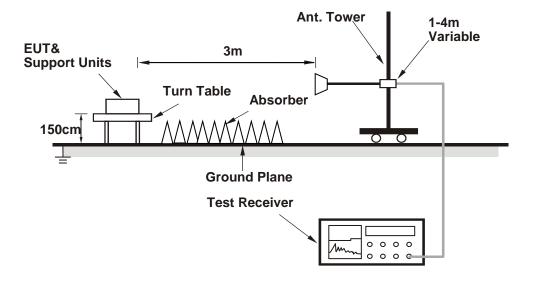

4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (bluesuite.win.3.3_installer_3.3.3.604) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

BT GFSK

RF Mode	TX BT_GFSK	Channel	CH 0: 2402 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2314.80	57.4 PK	74.0	-16.6	1.24 H	215	58.5	-1.1			
2	2314.80	44.4 AV	54.0	-9.6	1.24 H	215	45.5	-1.1			
3	*2402.00	96.8 PK			1.24 H	215	98.0	-1.2			
4	*2402.00	68.8 AV			1.24 H	215	70.0	-1.2			
5	4804.00	40.4 PK	74.0	-33.6	1.44 H	126	36.6	3.8			
6	4804.00	12.4 AV	54.0	-41.6	1.44 H	126	8.6	3.8			
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m					
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2349.35	56.8 PK	74.0	-17.2	1.26 V	343	57.9	-1.1			
2	2349.35	45.6 AV	54.0	-8.4	1.26 V	343	46.7	-1.1			
3	*2402.00	90.4 PK			1.26 V	343	91.6	-1.2			

Remarks:

5

*2402.00

4804.00

4804.00

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-34.4

-42.4

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.26 V

1.55 V

1.55 V

343

276

276

63.6

35.8

7.8

-1.2

3.8

3.8

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

74.0

54.0

5. " * ": Fundamental frequency.

62.4 AV

39.6 PK

11.6 AV

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

 $20 \log(\text{Duty cycle}) = 20 \log(4 \text{ ms} / 100 \text{ ms}) = -28.0 \text{ dB}$

RF Mode	TX BT_GFSK	Channel	CH 39: 2441 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Kange	1002 ~ 20002	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2441.00	96.2 PK			1.20 H	222	97.4	-1.2			
2	*2441.00	68.2 AV			1.20 H	222	69.4	-1.2			
3	4882.00	40.1 PK	74.0	-33.9	1.43 H	125	36.3	3.8			
4	4882.00	12.1 AV	54.0	-41.9	1.43 H	125	8.3	3.8			
5	7323.00	43.7 PK	74.0	-30.3	1.65 H	228	34.0	9.7			
6	7323.00	15.7 AV	54.0	-38.3	1.65 H	228	6.0	9.7			

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2441.00	90.0 PK			1.27 V	354	91.2	-1.2			
2	*2441.00	62.0 AV	-		1.27 V	354	63.2	-1.2			
3	4882.00	39.1 PK	74.0	-34.9	1.54 V	293	35.3	3.8			
4	4882.00	11.1 AV	54.0	-42.9	1.54 V	293	7.3	3.8			
5	7323.00	44.1 PK	74.0	-29.9	1.47 V	166	34.4	9.7			
6	7323.00	16.1 AV	54.0	-37.9	1.47 V	166	6.4	9.7			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

 $20 \log(\text{Duty cycle}) = 20 \log(4 \text{ ms} / 100 \text{ ms}) = -28.0 \text{ dB}$

RF Mode	TX BT_GFSK	Channel	CH 78: 2480 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Kange	IGHZ ~ 25GHZ	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2480.00	95.9 PK			1.25 H	124	97.1	-1.2		
2	*2480.00	67.9 AV			1.25 H	124	69.1	-1.2		
3	2495.95	56.9 PK	74.0	-17.1	1.25 H	124	58.1	-1.2		
4	2495.95	41.6 AV	54.0	-12.4	1.25 H	124	42.8	-1.2		
5	4960.00	40.3 PK	74.0	-33.7	1.41 H	113	36.3	4.0		
6	4960.00	12.3 AV	54.0	-41.7	1.41 H	113	8.3	4.0		
7	7440.00	44.5 PK	74.0	-29.5	1.67 H	243	34.8	9.7		
8	7440.00	16.5 AV	54.0	-37.5	1.67 H	243	6.8	9.7		
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2480.00	90.2 PK			1.27 V	62	91.4	-1.2		
2	*2480.00	62.2 AV			1.27 V	62	63.4	-1.2		
3	2485.20	55.4 PK	74.0	-18.6	1.27 V	62	56.6	-1.2		
4	2485.20	41.5 AV	54.0	-12.5	1.27 V	62	42.7	-1.2		
5	4960.00	39.1 PK	74.0	-34.9	1.59 V	284	35.1	4.0		
6	4960.00	11.1 AV	54.0	-42.9	1.59 V	284	7.1	4.0		
7	7440.00	44.5 PK	74.0	-29.5	1.47 V	151	34.8	9.7		
8	7440.00	16.5 AV	54.0	-37.5	1.47 V	151	6.8	9.7		

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

 $20 \log(\text{Duty cycle}) = 20 \log(4 \text{ ms} / 100 \text{ ms}) = -28.0 \text{ dB}$

BT_8DPSK

RF Mode	TX BT_8DPSK	Channel	CH 0: 2402 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2310.80	57.2 PK	74.0	-16.8	1.20 H	220	58.2	-1.0		
2	2310.80	45.8 AV	54.0	-8.2	1.20 H	220	46.8	-1.0		
3	*2402.00	97.4 PK			1.20 H	220	98.6	-1.2		
4	*2402.00	69.0 AV			1.20 H	220	70.2	-1.2		
5	4804.00	39.6 PK	74.0	-34.4	1.39 H	107	35.8	3.8		
6	4804.00	11.2 AV	54.0	-42.8	1.39 H	107	7.4	3.8		
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m				

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2331.00	55.7 PK	74.0	-18.3	1.41 V	343	56.7	-1.0			
2	2331.00	45.4 AV	54.0	-8.6	1.41 V	343	46.4	-1.0			
3	*2402.00	88.7 PK			1.41 V	343	89.9	-1.2			
4	*2402.00	60.3 AV			1.41 V	343	61.5	-1.2			
5	4804.00	39.7 PK	74.0	-34.3	1.60 V	270	35.9	3.8			
6	4804.00	11.3 AV	54.0	-42.7	1.60 V	270	7.5	3.8			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

 $20 \log(\text{Duty cycle}) = 20 \log(3.8 \text{ ms} / 100 \text{ ms}) = -28.4 \text{ dB}$

Report Format Version: 6.1.1

RF Mode	TX BT_8DPSK	Channel	CH 39: 2441 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Kange	1GHZ ~ 25GHZ	Detector Function Average (AV)	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2441.00	97.3 PK			1.24 H	218	98.5	-1.2		
2	*2441.00	68.9 AV			1.24 H	218	70.1	-1.2		
3	4882.00	39.9 PK	74.0	-34.1	1.43 H	132	36.1	3.8		
4	4882.00	11.5 AV	54.0	-42.5	1.43 H	132	7.7	3.8		
5	7323.00	44.7 PK	74.0	-29.3	1.67 H	220	35.0	9.7		
6	7323.00	16.3 AV	54.0	-37.7	1.67 H	220	6.6	9.7		

Antenna Polarity & Test Distance: Vertical at 3 m Correction **Emission** Antenna **Table** Raw Frequency Limit Margin No Level Angle Value **Factor** Height (MHz) (dBuV/m) (dB) (dBuV/m) (dB/m) (m) (Degree) (dBuV) *2441.00 1 89.2 PK 1.41 V 332 90.4 -1.2 2 *2441.00 60.8 AV 1.41 V 332 62.0 -1.2 4882.00 39.8 PK 74.0 -34.2 1.55 V 280 3 36.0 3.8 11.4 AV 54.0 -42.6 4882.00 1.55 V 280 7.6 4 3.8 7323.00 44.5 PK 74.0 -29.5 1.43 V 141 34.8 9.7 7323.00 16.1 AV 54.0 -37.9 1.43 V 141 6.4 9.7 6

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

 $20 \log(\text{Duty cycle}) = 20 \log(3.8 \text{ ms} / 100 \text{ ms}) = -28.4 \text{ dB}$

RF Mode	TX BT_8DPSK	Channel	CH 78: 2480 MHz	
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)	
Frequency Kange	1GHZ ~ 25GHZ	Detector Function	Average (AV)	

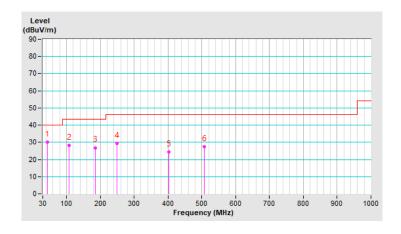
							<u> </u>	,			
	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2480.00	97.2 PK			1.22 H	123	98.4	-1.2			
2	*2480.00	68.8 AV			1.22 H	123	70.0	-1.2			
3	2483.50	59.2 PK	74.0	-14.8	1.22 H	123	60.4	-1.2			
4	2483.50	41.5 AV	54.0	-12.5	1.22 H	123	42.7	-1.2			
5	4960.00	40.7 PK	74.0	-33.3	1.36 H	110	36.7	4.0			
6	4960.00	12.3 AV	54.0	-41.7	1.36 H	110	8.3	4.0			
7	7440.00	44.7 PK	74.0	-29.3	1.65 H	239	35.0	9.7			
8	7440.00	16.3 AV	54.0	-37.7	1.65 H	239	6.6	9.7			
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m					
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2480.00	89.6 PK			1.24 V	52	90.8	-1.2			
2	*2480.00	61.2 AV			1.24 V	52	62.4	-1.2			
3	2492.80	55.4 PK	74.0	-18.6	1.24 V	52	56.6	-1.2			
4	2492.80	41.5 AV	54.0	-12.5	1.24 V	52	42.7	-1.2			
5	4960.00	38.4 PK	74.0	-35.6	1.60 V	290	34.4	4.0			
6	4960.00	10.0 AV	54.0	-44.0	1.60 V	290	6.0	4.0			
7	7440.00	44.3 PK	74.0	-29.7	1.43 V	148	34.6	9.7			
8	7440.00	15.9 AV	54.0	-38.1	1.43 V	148	6.2	9.7			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

 $20 \log(\text{Duty cycle}) = 20 \log(3.8 \text{ ms} / 100 \text{ ms}) = -28.4 \text{ dB}$

Below 1GHz Data:

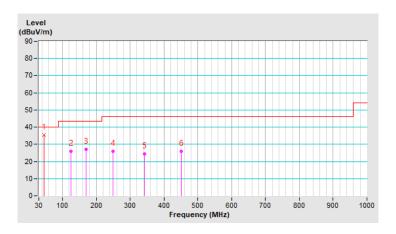

BT GFSK

RF Mode	TX BT_GFSK	Channel	CH 0: 2402 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	44.19	30.2 QP	40.0	-9.8	2.00 H	224	38.5	-8.3				
2	108.16	28.3 QP	43.5	-15.2	2.00 H	91	39.3	-11.0				
3	184.33	26.9 QP	43.5	-16.6	1.50 H	296	36.6	-9.7				
4	249.78	29.2 QP	46.0	-16.8	1.00 H	311	37.8	-8.6				
5	402.12	24.5 QP	46.0	-21.5	3.00 H	236	28.1	-3.6				
6	506.51	27.6 QP	46.0	-18.4	1.00 H	225	28.4	-0.8				

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX BT_GFSK	Channel	CH 0: 2402 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	45.91	35.5 QP	40.0	-4.5	1.00 V	309	43.6	-8.1				
2	124.67	25.9 QP	43.5	-17.6	1.00 V	256	35.2	-9.3				
3	170.24	26.9 QP	43.5	-16.6	1.00 V	294	35.1	-8.2				
4	249.41	26.0 QP	46.0	-20.0	2.00 V	360	34.6	-8.6				
5	343.16	24.5 QP	46.0	-21.5	2.00 V	0	29.7	-5.2				
6	450.06	25.8 QP	46.0	-20.2	2.00 V	171	27.8	-2.0				

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)					
Frequency (Miriz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

4.2.2 Test Instruments

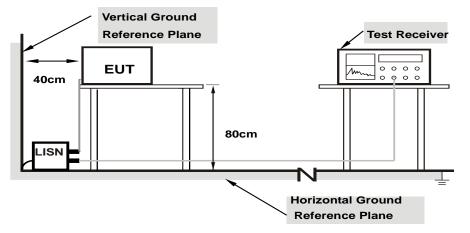
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 20, 2020	Oct. 19, 2021
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 27, 2020	Oct. 26, 2021
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 26, 2021	Mar. 25, 2022
50 ohms Terminator	50	3	Oct. 26, 2020	Oct. 25, 2021
RF Cable	5D-FB	COCCAB-001	Sep. 26, 2020	Sep. 25, 2021
Fixed attenuator EMCI	STI02-2200-10	005	Aug. 29, 2020	Aug. 28, 2021
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3. Tested Date: July 04, 2021

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

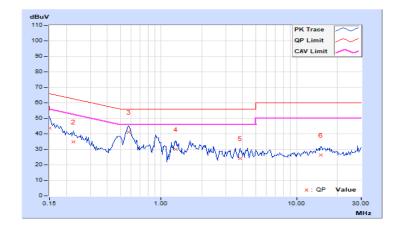
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.


4.2.7 Test Results

RF Mode	TX BT_GFSK	Channel	CH 0: 2402 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

	Phase Of Power : Line (L)												
No	Frequency	Correction Factor		g Value uV)		on Level uV)		nit uV)	Maı (d	gin B)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.			
1	0.15000	9.97	33.79	23.93	43.76	33.90	66.00	56.00	-22.24	-22.10			
2	0.22422	10.00	24.69	16.15	34.69	26.15	62.66	52.66	-27.97	-26.51			
3	0.57578	10.04	31.02	22.79	41.06	32.83	56.00	46.00	-14.94	-13.17			
4	1.27734	10.08	20.00	11.23	30.08	21.31	56.00	46.00	-25.92	-24.69			
5	3.84375	10.25	13.86	4.33	24.11	14.58	56.00	46.00	-31.89	-31.42			
6	15.17188	11.10	15.12	8.52	26.22	19.62	60.00	50.00	-33.78	-30.38			

Remarks:

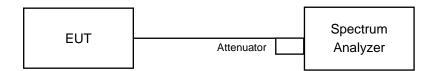
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

RF Mo	de	TX BT_GFSK	Channel	CH 0: 2402 MHz
Freque	ency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

	Phase Of Power : Neutral (N)												
No	Frequency	Correction Factor		g Value uV)		n Level uV)		mit uV)	Maı (d	gin B)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.			
1	0.16172	9.96	31.96	15.55	41.92	25.51	65.38	55.38	-23.46	-29.87			
2	0.27500	10.01	22.80	11.50	32.81	21.51	60.97	50.97	-28.16	-29.46			
3	0.59141	10.03	22.05	13.64	32.08	23.67	56.00	46.00	-23.92	-22.33			
4	0.94688	10.06	17.23	7.27	27.29	17.33	56.00	46.00	-28.71	-28.67			
5	1.90234	10.12	16.72	6.58	26.84	16.70	56.00	46.00	-29.16	-29.30			
6	18.11719	11.07	10.51	1.71	21.58	12.78	60.00	50.00	-38.42	-37.22			

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.


4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to below plots for the test result. On the plots, it shows that the hopping frequencies are equally spaced.



4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 Test Results

GFSK

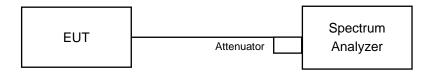
Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	51 (times / 5 sec) * 6.32 = 323 times	0.45	145.35	400
DH3	27 (times / 5 sec) * 6.32 = 171 times	1.69	288.99	400
DH5	16 (times / 5 sec) * 6.32 = 102 times	3.008	306.82	400

Note: Test plots of the transmitting time slot are shown on next page.

8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
3DH1	51 (times / 5 sec) * 6.32 = 323 times	0.444	143.41	400
3DH3	27 (times / 5 sec) * 6.32 = 171 times	1.73	295.83	400
3DH5	17 (times / 5 sec) * 6.32 = 108 times	2.944	317.95	400

Note: Test plots of the transmitting time slot are shown on next page.



4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

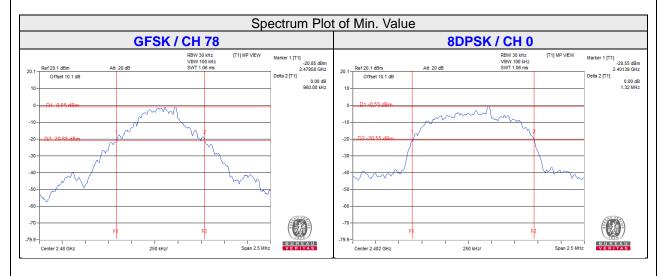
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Fraguenov (MHz)	20dB Bandwidth (MHz)		>= 25kHz
Channel	Frequency (MHz)	GFSK	8DPSK	>= 23KHZ
0	2402	0.95	1.32	Yes
39	2441	0.95	1.31	Yes
78	2480	0.96	1.31	Yes

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

4.6.3 Test Instruments

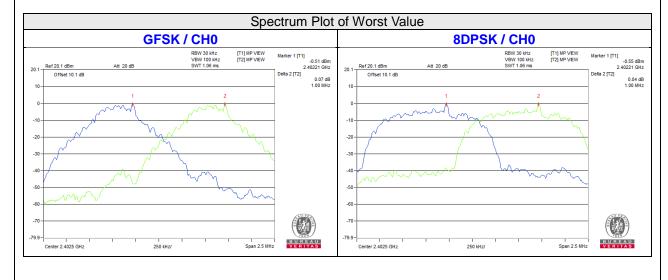
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

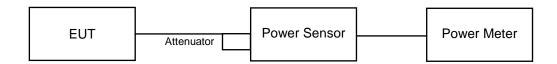
4.6.5 Deviation from Test Standard


No deviation.

4.6.6 Test Results

Channel Frequency (MHz)		Sepa	Channel ration Hz)		andwidth Hz)		m Limit Hz)	Pass / Fail
	, ,	GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1	1	0.95	1.32	0.64	0.88	Pass
39	2441	1	1	0.95	1.31	0.64	0.88	Pass
78	2480	1	1	0.96	1.31	0.64	0.88	Pass

Note: The minimum limit is two-third 20dB bandwidth.



4.7 Maximum Output Power

4.7.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125mW.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

Report No.: RFBDKG-WTW-P21060161 Page No. 46 / 54 Report Format Version: 6.1.1

4.7.7 Test Results

FOR PEAK POWER

GFSK

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass / Fail
0	2402	1.726	2.37	21	Pass
39	2441	1.57	1.96	21	Pass
78	2480	1.538	1.87	21	Pass

8DPSK

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass / Fail
0	2402	2.344	3.70	21	Pass
39	2441	2.168	3.36	21	Pass
78	2480	2.158	3.34	21	Pass

FOR AVERAGE POWER

GFSK

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	1.592	2.02
39	2441	1.51	1.79
78	2480	1.483	1.71

8DPSK

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	1.56	1.93
39	2441	1.462	1.65
78	2480	1.442	1.59

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.8.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

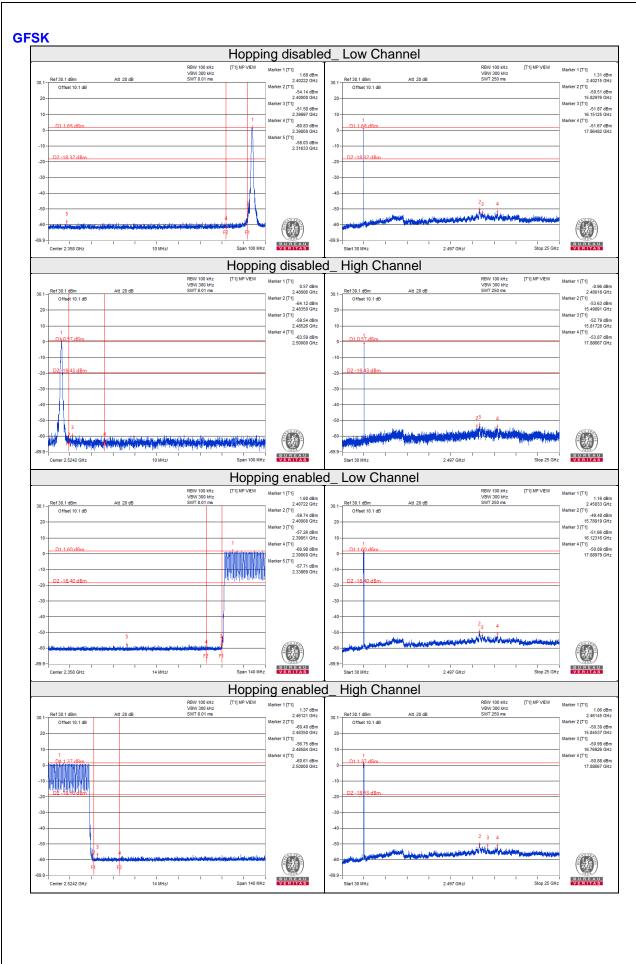
4.8.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

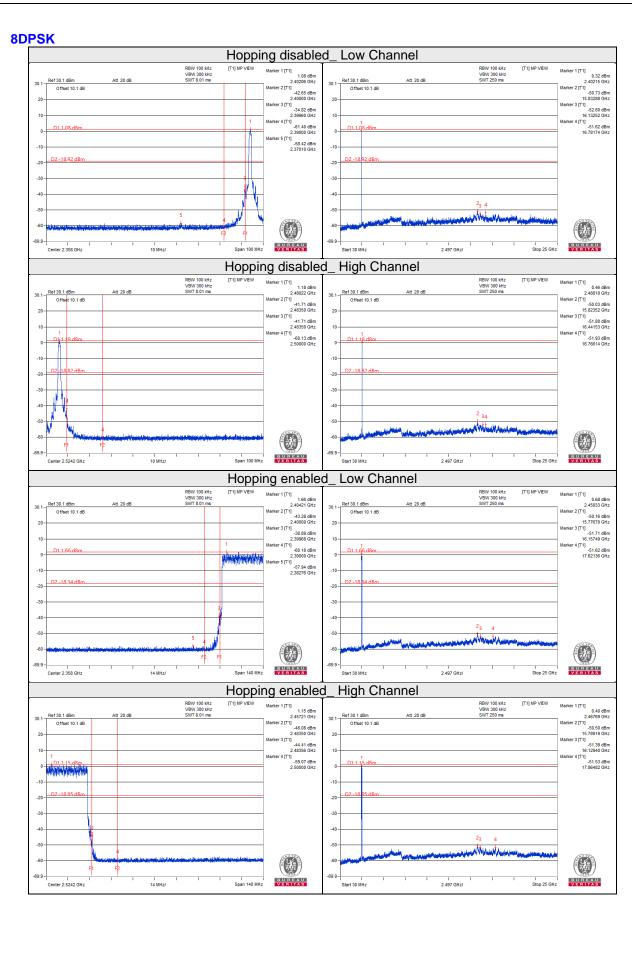
4.8.4 Deviation from Test Standard

No deviation.

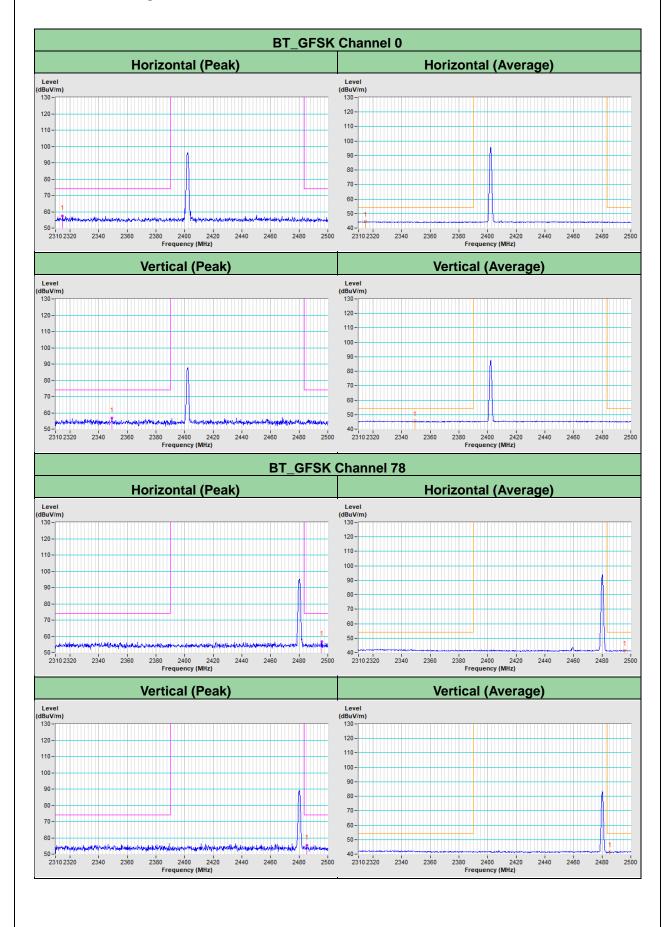
4.8.5 EUT Operating Condition

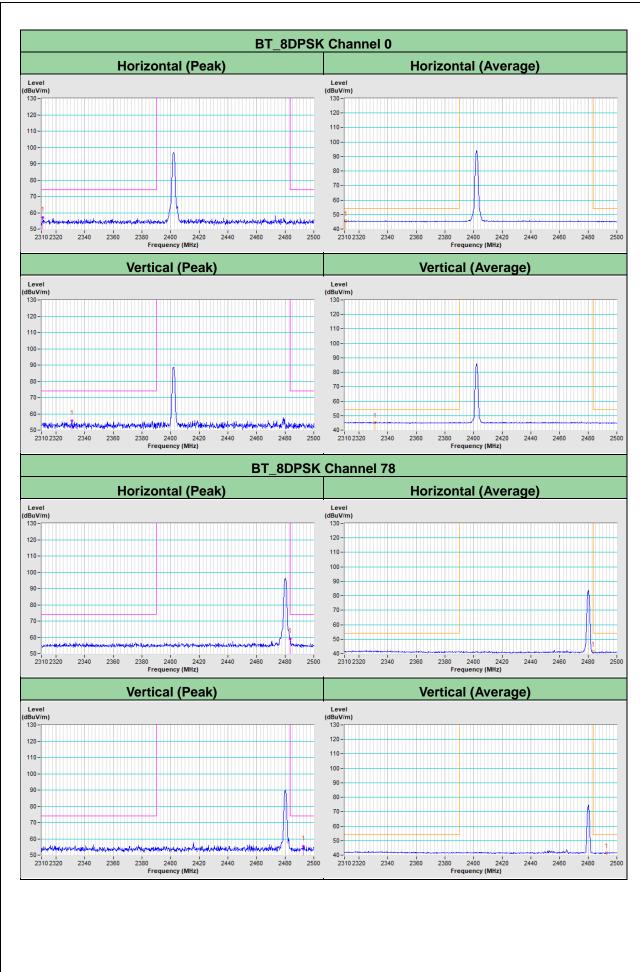

The software provided by client enabled the EUT to transmit and receive data at lowest and highest channel frequencies individually.

4.8.6 Test Results


The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

Report No.: RFBDKG-WTW-P21060161 Page No. 48 / 54 Report Format Version: 6.1.1




5 Picture	es of Test Arrangements
Please ref	er to the attached file (Test Setup Photo).

Annex A - Band-Edge Measurement

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---