

FCC Test Report Report No.: RFBDKG-WTW-P21123175 FCC ID: JNZA00155 Test Model: A00155 Received Date: 2022/4/19 Test Date: 2022/5/4 ~ 2022/5/7 Issued Date: 2022/6/17 Applicant: LOGITECH FAR EAST LTD. Address: 7700 Gateway Boulevard Newark California United States Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan FCC Registration / 723255 / TW2022 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	Release Control Record 4						
1	c	ertificate of Conformity	5				
2	S	ummary of Test Results	6				
	2.1 2.2	Measurement Uncertainty Modification Record					
3	Ģ	eneral Information	. 7				
Ū		General Description of EUT					
	3.1 3.2	Description of Test Modes					
	3.2.1	Test Mode Applicability and Tested Channel Detail					
	3.3	Duty Cycle of Test Signal					
	3.4	Description of Support Units					
	3.4.1	Configuration of System under Test					
	3.5	General Description of Applied Standards and References	14				
4	т	est Types and Results	15				
	4.1	Radiated Emission and Bandedge Measurement	15				
	4.1.1						
		Test Instruments					
		Test Procedures					
		Deviation from Test Standard					
		Test Setup EUT Operating Conditions					
		Test Results					
	4.1.7	Conducted Emission Measurement					
	4.2.1						
		Test Instruments					
		Test Procedures					
	4.2.4	Deviation from Test Standard	27				
	4.2.5	Test Setup	27				
		EUT Operating Conditions					
		Test Results					
	4.3	6dB Bandwidth Measurement					
	4.3.1						
		Test Setup Test Instruments					
		Test Procedure					
		Deviation from Test Standard					
		EUT Operating Conditions					
		Test Results					
	4.4	Conducted Output Power Measurement	32				
	4.4.1	Limits of Conducted Output Power Measurement	32				
		Test Setup					
		Test Instruments					
		Test Procedures					
		Deviation from Test Standard					
		EUT Operating Conditions					
	4.4.7 4.5	Test Results Power Spectral Density Measurement					
	-	Limits of Power Spectral Density Measurement					
		Test Setup.					
		Test Instruments					
	4.5.4	Test Procedure	34				
		Deviation from Test Standard					
	4.5.6	EUT Operating Condition	34				

4.5.7	Test Results	35
4.6	Conducted Out of Band Emission Measurement	35
4.6.1	Limits of Conducted Out of Band Emission Measurement	36
4.6.2	Test Setup	36
4.6.3	Test Instruments	36
4.6.4	Test Procedure	36
4.6.5	Deviation from Test Standard	36
4.6.6	EUT Operating Condition	36
4.6.7	Test Results	37
5 Pi	ctures of Test Arrangements	38
Annex A	- Band-Edge Measurement	39
Appendi	x – Information of the Testing Laboratories	40

Release Control Record Issue No. Description Date Issued RFBDKG-WTW-P21123175 Original release. 2022/6/17

1 Certificate of Conformity

Product:	wireless dongle
Brand:	Logitech
Test Model:	A00155
Sample Status:	Engineering sample
Applicant:	LOGITECH FAR EAST LTD.
Test Date:	2022/5/4 ~ 2022/5/7
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Cherry Chuo Cherry Chuo / Specialist	, Date:	2022/6/17	
Approved by :	May Chen / Manager	, Date:	2022/6/17	

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)								
FCC Clause	Test Item	Result	Remarks					
15.207	15.207 AC Power Conducted Emission		Meet the requirement of limit. Minimum passing margin is -17.45 dB at 0.48209 MHz.					
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -10.1 dB at 2390.00 MHz.					
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.					
15.247(a)(2)	6dB bandwidth	Pass	Meet the requirement of limit.					
15.247(b)	Conducted power	Pass	Meet the requirement of limit.					
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.					
15.203	Antenna Requirement	Pass	No antenna connector is used.					

Note:

1. For 2.4 GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Conducted emissions	-	2.5 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.5 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.1 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	wireless dongle
Brand	Logitech
Test Model	A00155
Status of EUT	Engineering sample
Power Supply Rating	5 Vdc from USB interface
Modulation Type	pi/4-DQPSK
Modulation Technology	DTS
Transfer Rate	2 Mbps
Operating Frequency	2403.35 ~ 2477.35 MHz
Number of Channel	38
Output Power	2.08 mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Cable Supplied	NA

Note:

1. The EUT may have a lot of colors for marketing requirement.

2. The antenna provided to the EUT, please refer to the following table:

RF Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connector Type
ANT 1	Logitech	A00155	-0.83	2.4~2.4835	PCB	None

3. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

4. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

38 channels are provided to this EUT:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2403.35	11	2425.35	22	2447.35	33	2469.35
1	2405.35	12	2427.35	23	2449.35	34	2471.35
2	2407.35	13	2429.35	24	2451.35	35	2473.35
3	2409.35	14	2431.35	25	2453.35	36	2475.35
4	2411.35	15	2433.35	26	2455.35	37	2477.35
5	2413.35	16	2435.35	27	2457.35		
6	2415.35	17	2437.35	28	2459.35		
7	2417.35	18	2439.35	29	2461.35		
8	2419.35	19	2441.35	30	2463.35		
9	2421.35	20	2443.35	31	2465.35		
10	2423.35	21	2445.35	32	2467.35		

3.2.1 Test Mode Applicability and Tested Channel Detail

ONFIGURE -		APPLICA	BLE TO		DESCRIPTION
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION
-	\checkmark	\checkmark	\checkmark	\checkmark	-
are	3: Radiated I dge Measure	Emission above 1GHz &	RE<1G: Radiate	d Emission below	1GHz
		Conducted Emission		Port Conducted M	
E: The EUT h	ad been pre-	-tested on the positioned	ot each 3 axis. The wo	st case was found	when positioned on X-plane .
ndiated Em	iccion To	et (Above 104-)-			
	1331011 18	<u>st (Above 1GHz):</u>			
	available n	conducted to deterr nodulations, data ra			Il possible combinations n antenna diversity
-	,	s) was (were) select	ed for the final test	as listed below	Ι.
AVAILABLE	, i	TESTED CHANNEL	MODULATION TYPE		
0 to	37	0, 19, 37	pi/4-DQPSK	2	
		•		_1	
adiated Em	ission Te	st (Below 1GHz):			
_					Uners 21 1 1 1 1
		conducted to deterr nodulations, data rat			Il possible combinations
architectu		nourialions, uala fa	anu anterina po	יינס (וו בט ד WII	r amerina uiversity
	,	s) was (were) selecte	ed for the final test	<u>as liste</u> d below	<i>I.</i>
AVAILABLE		TESTED CHANNEL			
	•	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to	-	19	pi/4-DQPSK	DATA RATE (Mbps)
	-			-	Mbps)
0 to	37			-	Mbps)
0 to	37 Conducted	19 d Emission Test:	pi/4-DQPSK	2	
0 to ower Line C Pre-Scan	37 Conducted	19 d Emission Test:	pi/4-DQPSK	2 e mode from a	Il possible combinations
0 to ower Line C Pre-Scan between a architectu	37 Conducted has been available n re).	19 d Emission Test: conducted to deterr nodulations, data ra	pi/4-DQPSK nine the worst-cas tes and antenna po	e mode from a rts (if EUT with	Il possible combinations n antenna diversity
0 to ower Line C Pre-Scan between a architectu	37 Conducted has been available n re).	19 d Emission Test: conducted to deterr	pi/4-DQPSK nine the worst-cas tes and antenna po	e mode from a rts (if EUT with	Il possible combinations n antenna diversity
0 to ower Line C Pre-Scan between a architectu	37 Conducted has been available n re). channel(s	19 d Emission Test: conducted to deterr nodulations, data ra	pi/4-DQPSK nine the worst-cas tes and antenna po	e mode from al orts (if EUT with as listed below	Il possible combinations n antenna diversity
0 to ower Line C Pre-Scan between a architectur Following	37 Conducted has been available n re). channel(s CHANNEL	19 <u>d Emission Test:</u> conducted to deterr nodulations, data rat s) was (were) selecte	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test	e mode from al orts (if EUT with as listed below	Il possible combinations n antenna diversity
0 to Dwer Line C Pre-Scan between a architectur Following AVAILABLE	37 Conducted has been available n re). channel(s CHANNEL	19 d Emission Test: conducted to deterr nodulations, data rat s) was (were) selector TESTED CHANNEL	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE	e mode from al orts (if EUT with as listed below DATA RATE (Il possible combinations n antenna diversity
0 to ower Line C Pre-Scan between a architectur Following AVAILABLE 0 to	37 Conducted has been available n re). channel(s CHANNEL 37	19 d Emission Test: conducted to deterr nodulations, data rat s) was (were) selector TESTED CHANNEL	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE	e mode from al orts (if EUT with as listed below DATA RATE (Il possible combinations n antenna diversity
0 to ower Line C Pre-Scan between a architectur Following AVAILABLE 0 to ntenna Port	37 Conducted has been available n re). channel(s CHANNEL 37 t Conduct	19 d Emission Test: conducted to deterr nodulations, data rat s) was (were) selector TESTED CHANNEL 19 ted Measurement:	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE pi/4-DQPSK	e mode from al orts (if EUT with as listed below DATA RATE (2	Il possible combinations n antenna diversity /. Mbps)
0 to ower Line C Pre-Scan between a architectur Following AVAILABLE 0 to ntenna Port	37 Conducted has been available n re). channel(s CHANNEL 37 t Conduct	19 d Emission Test: conducted to deterr nodulations, data rat s) was (were) selector TESTED CHANNEL 19 ted Measurement:	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE pi/4-DQPSK	e mode from al orts (if EUT with as listed below DATA RATE (2	Il possible combinations n antenna diversity v.
0 to ower Line C Pre-Scan between a architectur Following AVAILABLE 0 to ntenna Port This item i mode. Pre-Scan	37 Conducted has been available n re). channel(s CHANNEL 37 t Conduct includes a has been	19 d Emission Test: conducted to deterr nodulations, data rat s) was (were) selector TESTED CHANNEL 19 ted Measurement: ill test value of each conducted to deterr	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE pi/4-DQPSK mode, but only inc	2 e mode from al orts (if EUT with as listed below DATA RATE (2 ludes spectrum e mode from al	Il possible combinations n antenna diversity // Mbps) n plot of worst value of eac
0 to ower Line C Pre-Scan between a architectur Following AVAILABLE 0 to ntenna Port This item i mode. Pre-Scan between a	37 Conducted has been available n re). channel(s CHANNEL 37 t Conduct includes a has been available n	19 d Emission Test: conducted to deterr nodulations, data rat was (were) selected TESTED CHANNEL 19 ted Measurement: ill test value of each	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE pi/4-DQPSK mode, but only inc	2 e mode from al orts (if EUT with as listed below DATA RATE (2 ludes spectrum e mode from al	Il possible combinations n antenna diversity // Mbps) n plot of worst value of eac
0 to ower Line C Pre-Scan between a architectur Following AVAILABLE 0 to ntenna Port This item mode. Pre-Scan between a architectur	37 Conducted has been available n re). channel(s CHANNEL 37 t Conduct includes a has been available n re).	19 d Emission Test: conducted to deterr nodulations, data rate s) was (were) selected 19 ted Measurement: ull test value of each conducted to deterr nodulations, data rate	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE pi/4-DQPSK mode, but only inc nine the worst-cas tes and antenna po	2 e mode from al orts (if EUT with as listed below DATA RATE (2 ludes spectrur e mode from al orts (if EUT with	Il possible combinations n antenna diversity /. Mbps) n plot of worst value of eac Il possible combinations n antenna diversity
0 to ower Line C Pre-Scan between a architectur Following AVAILABLE 0 to ntenna Port This item mode. Pre-Scan between a architectur Following	37 Conducted has been available n re). channel(s CHANNEL 37 t Conduct available n available n available n re). channel(s	19 d Emission Test: conducted to deterr nodulations, data rate s) was (were) selector 19 ted Measurement: ill test value of each conducted to deterr nodulations, data rate s) was (were) selector ted Measurement: ill test value of each conducted to deterr nodulations, data rate s) was (were) selector	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE pi/4-DQPSK mode, but only inc nine the worst-cas tes and antenna po ed for the final test	2 e mode from al orts (if EUT with as listed below DATA RATE (2 ludes spectrum e mode from al orts (if EUT with as listed below	Il possible combinations n antenna diversity /. Mbps) n plot of worst value of eac Il possible combinations n antenna diversity
0 to Dwer Line C Pre-Scan between a architectur Following AVAILABLE 0 to Intenna Port This item i mode. Pre-Scan between a architectur Following AVAILABLE	37 Conducted has been available n re). channel(s CHANNEL 37 t Conduct available n re). channel(s CHANNEL	19 d Emission Test: conducted to deterr nodulations, data rat s) was (were) selecter TESTED CHANNEL 19 ted Measurement: ull test value of each conducted to deterr nodulations, data rat s) was (were) selecter TESTED CHANNEL	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE pi/4-DQPSK mode, but only inc nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE	2 e mode from al orts (if EUT with as listed below DATA RATE (2 ludes spectrum e mode from al orts (if EUT with as listed below DATA RATE (Il possible combinations n antenna diversity /. Mbps) n plot of worst value of eac Il possible combinations n antenna diversity
0 to ower Line C Pre-Scan between a architectur Following AVAILABLE 0 to ntenna Port This item mode. Pre-Scan between a architectur Following	37 Conducted has been available n re). channel(s CHANNEL 37 t Conduct available n re). channel(s CHANNEL	19 d Emission Test: conducted to deterr nodulations, data rate s) was (were) selector 19 ted Measurement: ill test value of each conducted to deterr nodulations, data rate s) was (were) selector ted Measurement: ill test value of each conducted to deterr nodulations, data rate s) was (were) selector	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE pi/4-DQPSK mode, but only inc nine the worst-cas tes and antenna po ed for the final test	2 e mode from al orts (if EUT with as listed below DATA RATE (2 ludes spectrum e mode from al orts (if EUT with as listed below	Il possible combinations n antenna diversity /. Mbps) n plot of worst value of eac Il possible combinations n antenna diversity
0 to Dwer Line C Pre-Scan between a architectur Following AVAILABLE 0 to Intenna Port This item i mode. Pre-Scan between a architectur Following AVAILABLE	37 Conducted has been available n re). channel(s CHANNEL 37 t Conduct available n re). channel(s CHANNEL	19 d Emission Test: conducted to deterr nodulations, data rat s) was (were) selecter TESTED CHANNEL 19 ted Measurement: ull test value of each conducted to deterr nodulations, data rat s) was (were) selecter TESTED CHANNEL	pi/4-DQPSK nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE pi/4-DQPSK mode, but only inc nine the worst-cas tes and antenna po ed for the final test MODULATION TYPE	2 e mode from al orts (if EUT with as listed below DATA RATE (2 ludes spectrum e mode from al orts (if EUT with as listed below DATA RATE (Il possible combinations n antenna diversity /. Mbps) n plot of worst value of eac Il possible combinations n antenna diversity

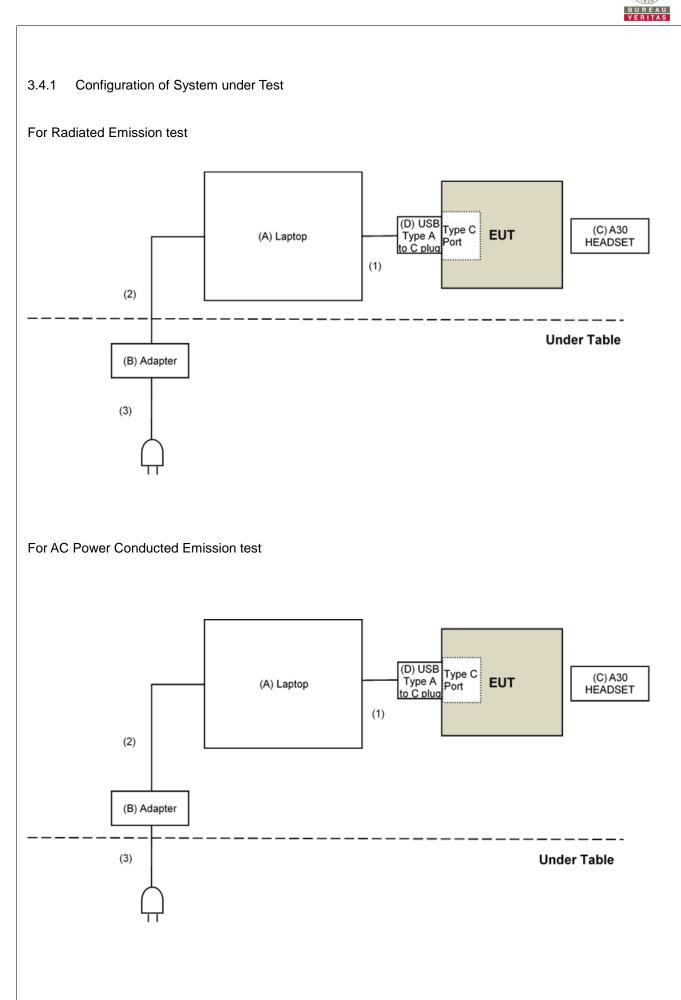
Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (System)	TESTED BY
RE≥1G	20deg. C, 70%RH	120Vac, 60Hz	Ryan Du
RE<1G	24deg. C, 65%RH	120Vac, 60Hz	Ryan Du
PLC	25deg. C, 75%RH	120Vac, 60Hz	Ryan Du
APCM	25deg. C, 60%RH	120Vac, 60Hz	John Peng

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100 %, duty factor is not required.

			RBW 10 MHz	[T1] MP VIEW	
			VBW 10 MHz		
20.1-	Ref 20.1 dBm	Att 30 dB	SWT 100 ms		
20.1-	Offset 0.1 dB				
10-					
0-					
-					
-10 -					
-20 -					
-30 -					
-40 -					
-50 -					
-60 -					
-00-					
					LU.VE
-70 -					A YUB
-79.9-		1 1 1			7828
	Center 2.40335 GHz	10 ms/		1	VERITAS
	Center 2.40555 GHz	TO HIS			VENTING.



3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	Lenovo	20U5S01X00 L14	PF-28LKK7	NA	Provided by Lab
В.	Adapter	Lenovo	ADLX45YLC3D	NA	NA	Provided by Lab
C.	A30 HEADSET	Logitech	A00153	NA	NA	Supplied by applicant
D.	USB Type A to C plug	Benevo	BUSB31AMCFA	NA	NA	Provided by Lab

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB extension Cable	1	1.5	Yes	0	Provided by Lab
2.	DC Cable	1	1.8	No	0	Provided by Lab
3.	AC Cable	1	1	No	0	Provided by Lab

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard: FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

For Radiated Emission & Bandedge test:

For Radiated Emissio	n & Bandedge test:			
Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Test Receiver Agilent	N9038A	MY51210202	2021/11/19	2022/11/18
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Pre_Amplifier EMCI	EMC001340	980142	2021/5/24	2022/5/23
LOOP ANTENNA Electro-Metrics	EM-6879	264	2022/3/18	2023/3/17
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-001	2022/1/6	2023/1/5
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-002	2022/1/6	2023/1/5
Pre_Amplifier EMCI	EMC330N	980701	2022/3/8	2023/3/7
Trilog Broadband Antenna Schwarzbeck	VULB 9168	9168-406	2021/10/27	2022/10/26
RF Coaxial Cable COMMATE/PEWC	8D	966-4-1	2022/3/8	2023/3/7
RF Coaxial Cable COMMATE/PEWC	8D	966-4-2	2022/3/8	2023/3/7
RF Coaxial Cable COMMATE/PEWC	8D	966-4-3	2022/3/8	2023/3/7
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-03	2022/1/10	2023/1/9
Horn Antenna Schwarzbeck	BBHA 9120D	9120D-783	2021/11/14	2022/11/13
Pre_Amplifier EMCI	EMC 12630 SE	980638	2022/4/5	2023/4/4
RF Cable-Frequency Range : 1-26.5GHz EMCI	EMC104-SM-SM-1200	160922	2021/12/24	2022/12/23
RF Coaxial Cable EMCI	EMC104-SM-SM-2000	180502	2022/4/25	2023/4/24
RF Coaxial Cable EMCI	EMC104-SM-SM-6000	210704	2021/11/9	2022/11/8
Pre_Amplifier EMCI	EMC184045SE	980387	2022/1/10	2023/1/9
Horn Antenna Schwarzbeck	BBHA 9170	9170-739	2021/11/14	2022/11/13
RF Cable-Frequency range: 1-40GHz EMCI	EMC102-KM-KM-1200	160924	2022/1/10	2023/1/9
RF Coaxial Cable EMCI	ЕМС-КМ-КМ-4000	200214	2022/3/8	2023/3/7
Note:				

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 4.
- 3. Tested Date: 2022/5/4 ~ 2022/5/7

For other test items:				
Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Power Meter Anritsu	ML2495A	1529002	2021/6/21	2022/6/20
Pulse Power Sensor Anritsu	MA2411B	1339443	2021/5/31	2022/5/30
Spectrum Analyzer R&S	FSV40	100964	2021/5/31	2022/5/30
Attenuator WOKEN	MDCS18N-10	MDCS18N-10-01	2022/4/5	2023/4/4
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

NOTE: 1. The test was performed in Oven room 2.

 The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/5/5

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

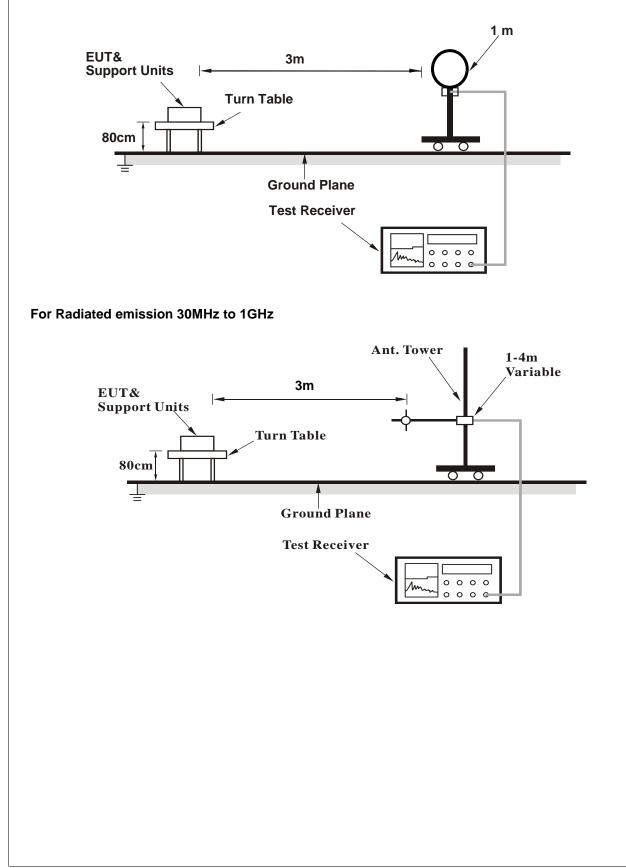
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

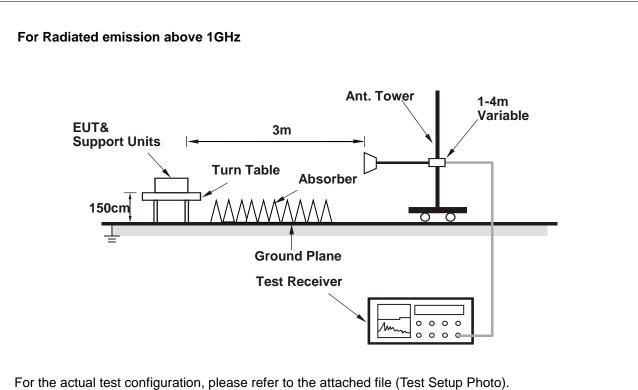
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Controlling software (MachUI_1.0.exe) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

RF Mode	TX pi/4-DQPSK	Channel	CH 0 : 2403.35 MHz		
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz		
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	20°C, 70% RH		
Tested By	Ryan Du				

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	56.8 PK	74.0	-17.2	2.03 H	63	61.3	-4.5		
2	2390.00	43.8 AV	54.0	-10.2	2.03 H	63	48.3	-4.5		
3	*2403.35	90.8 PK			2.03 H	63	95.3	-4.5		
4	*2403.35	88.3 AV			2.03 H	63	92.8	-4.5		
5	4806.70	44.5 PK	74.0	-29.5	1.77 H	69	44.7	-0.2		
6	4806.70	33.7 AV	54.0	-20.3	1.77 H	69	33.9	-0.2		
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	56.8 PK	74.0	-17.2	1.33 V	191	61.3	-4.5		
2	2390.00	43.9 AV	54.0	-10.1	1.33 V	191	48.4	-4.5		
3	*2403.35	95.6 PK			1.33 V	191	100.1	-4.5		
4	*2403.35	93.2 AV			1.33 V	191	97.7	-4.5		
5	4806.70	44.7 PK	74.0	-29.3	2.44 V	76	44.9	-0.2		
•	4000.70	44.7 FN	74.0	-29.5	2.44 V	10		0.2		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

RF Mode	TX pi/4-DQPSK	Channel	CH 19:2441.35 MHz	
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz	
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	20°C, 70% RH	
Tested By	Ryan Du			

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2441.35	91.0 PK			1.97 H	52	95.5	-4.5			
2	*2441.35	88.5 AV			1.97 H	52	93.0	-4.5			
3	4882.70	44.3 PK	74.0	-29.7	1.72 H	82	44.5	-0.2			
4	4882.70	33.7 AV	54.0	-20.3	1.72 H	82	33.9	-0.2			
5	7324.05	44.2 PK	74.0	-29.8	1.34 H	251	38.0	6.2			
6	7324.05	33.8 AV	54.0	-20.2	1.34 H	251	27.6	6.2			
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m					
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	*2441.35	96.1 PK			1.37 V	194	100.6	-4.5			
2	*2441.35	93.7 AV			1.37 V	194	98.2	-4.5			
3	4882.70	44.9 PK	74.0	-29.1	2.41 V	67	45.1	-0.2			
4	4882.70	34.0 AV	54.0	-20.0	2.41 V	67	34.2	-0.2			
5	7324.05	44.6 PK	74.0	-29.4	1.63 V	189	38.4	6.2			
6	7324.05	34.2 AV	54.0	-19.8	1.63 V	189	28.0	6.2			

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

RF Mode	TX pi/4-DQPSK	Channel	CH 37:2477.35 MHz	
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz	
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	20°C, 70% RH	
Tested By	Ryan Du			

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*2477.35	90.6 PK			1.89 H	43	95.1	-4.5				
2	*2477.35	88.2 AV			1.89 H	43	92.7	-4.5				
3	2483.50	56.3 PK	74.0	-17.7	1.89 H	43	60.8	-4.5				
4	2483.50	43.7 AV	54.0	-10.3	1.89 H	43	48.2	-4.5				
5	4954.70	44.5 PK	74.0	-29.5	1.76 H	70	44.3	0.2				
6	4954.70	33.9 AV	54.0	-20.1	1.76 H	70	33.7	0.2				
7	7432.05	44.4 PK	74.0	-29.6	1.40 H	242	37.7	6.7				
8	7432.05	33.9 AV	54.0	-20.1	1.40 H	242	27.2	6.7				
		An	tenna Polari	ty & Test Di	stance : Vert	ical at 3 m						

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2477.35	94.6 PK			1.34 V	176	99.1	-4.5
2	*2477.35	92.3 AV			1.34 V	176	96.8	-4.5
3	2483.50	56.4 PK	74.0	-17.6	1.34 V	176	60.9	-4.5
4	2483.50	43.8 AV	54.0	-10.2	1.34 V	176	48.3	-4.5
5	4954.70	44.8 PK	74.0	-29.2	2.37 V	71	44.6	0.2
6	4954.70	34.1 AV	54.0	-19.9	2.37 V	71	33.9	0.2
7	7432.05	44.6 PK	74.0	-29.4	1.67 V	173	37.9	6.7
8	7432.05	34.0 AV	54.0	-20.0	1.67 V	173	27.3	6.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

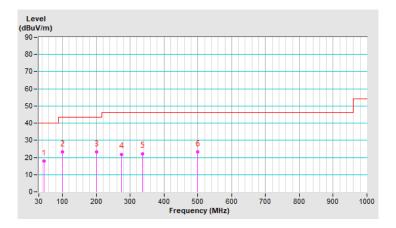
5. " * ": Fundamental frequency.

Below 1GHz Data:

RF Mode	TX pi/4-DQPSK	Channel	CH 19:2441.35 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	24°C, 65% RH
Tested By	Ryan Du		

	Antenna Polarity & Test Distance : Horizontal at 3 m												
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	45.47	17.9 QP	40.0	-22.1	2.00 H	302	30.1	-12.2					
2	99.98	23.1 QP	43.5	-20.4	2.00 H	281	39.4	-16.3					
3	199.79	23.2 QP	43.5	-20.3	1.50 H	262	37.9	-14.7					
4	275.01	21.9 QP	46.0	-24.1	1.00 H	298	33.2	-11.3					
5	336.71	22.3 QP	46.0	-23.7	1.00 H	324	31.7	-9.4					
6	499.34	23.4 QP	46.0	-22.6	1.00 H	121	28.2	-4.8					

Remarks:

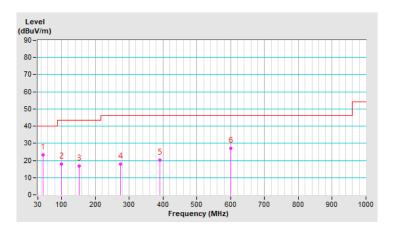

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.


RF Mode	TX pi/4-DQPSK	Channel	CH 19:2441.35 MHz
Frequency Range	1 9 KH7 ~ 1 (5H7	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power (System)	120 Vac 60 Hz	Environmental Conditions	24°C, 65% RH
Tested By	Ryan Du		

	Antenna Polarity & Test Distance : Vertical at 3 m												
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	45.73	23.1 QP	40.0	-16.9	1.00 V	352	35.3	-12.2					
2	99.91	17.8 QP	43.5	-25.7	2.00 V	324	34.1	-16.3					
3	151.97	16.9 QP	43.5	-26.6	2.00 V	357	28.4	-11.5					
4	274.87	17.8 QP	46.0	-28.2	1.50 V	157	29.0	-11.2					
5	391.71	20.1 QP	46.0	-25.9	1.00 V	34	27.8	-7.7					
6	599.92	26.9 QP	46.0	-19.1	1.50 V	224	28.9	-2.0					

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted	Limit (dBuV)
Frequency (MHZ)	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

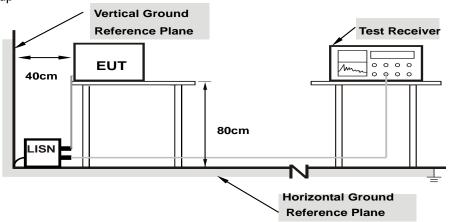
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
TEST RECEIVER R&S	ESCS 30	847124/029	2021/10/13	2022/10/12
LISN R&S	ESH3-Z5	848773/004	2021/10/29	2022/10/28
50 ohms Terminator NA	50	3	2021/10/27	2022/10/26
RF Coaxial Cable JYEBO	5D-FB	COCCAB-001	2021/9/25	2022/9/24
Fixed attenuator STI	STI02-2200-10	005	2021/8/27	2022/8/26
Software BVADT	BVADT_Cond_V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.

3 Tested Date: 2022/5/4



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (MachUI_1.0.exe) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.2.7 Test Results

RF Mode	TX pi/4-DQPSK	Channel	CH 19:2441.35 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	Ryan Du		

	Phase Of Power : Line (L)												
No	Frequency	Correction Factor		Reading Value (dBuV)		-			Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.			
1	0.15776	10.05	29.79	17.19	39.84	27.24	65.58	55.58	-25.74	-28.34			
2	0.20863	10.05	22.65	7.46	32.70	17.51	63.26	53.26	-30.56	-35.75			
3	0.48209	10.07	27.99	18.78	38.06	28.85	56.30	46.30	-18.24	-17.45			
4	0.90788	10.10	11.38	3.56	21.48	13.66	56.00	46.00	-34.52	-32.34			
5	2.62123	10.19	12.72	6.91	22.91	17.10	56.00	46.00	-33.09	-28.90			
6	7.29286	10.45	12.23	5.53	22.68	15.98	60.00	50.00	-37.32	-34.02			

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

	•		
RF Mode	TX pi/4-DQPSK	Channel	CH 19:2441.35 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power (System)	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	Ryan Du		

	Phase Of Power : Neutral (N)													
No	Frequency	Correction Factor		Reading Value (dBuV)		-		Limit (dBuV)		Margin (dB)				
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.				
1	0.15398	10.02	30.86	14.05	40.88	24.07	65.78	55.78	-24.90	-31.71				
2	0.25163	10.03	25.32	3.33	35.35	13.36	61.70	51.70	-26.35	-38.34				
3	0.48586	10.04	27.89	17.90	37.93	27.94	56.24	46.24	-18.31	-18.30				
4	2.01959	10.13	11.79	6.35	21.92	16.48	56.00	46.00	-34.08	-29.52				
5	7.28138	10.36	13.39	7.29	23.75	17.65	60.00	50.00	-36.25	-32.35				
6	15.98053	10.77	7.48	1.99	18.25	12.76	60.00	50.00	-41.75	-37.24				

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

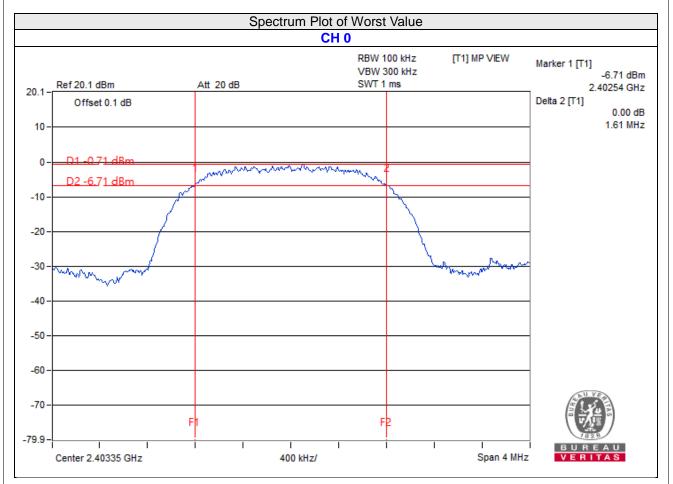
4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation from Test Standard

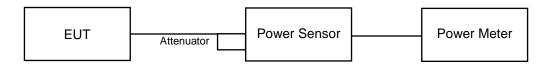
No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

Channel	Frequency (MHz)	Frequency (MHz) 6dB Bandwidth (MHz)		Pass / Fail
0	2403.35	1.61	0.5	Pass
19	2441.35	1.67	0.5	Pass
37	2477.35	1.64	0.5	Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

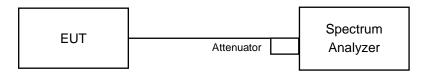
4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2403.35	2.004	3.02	30	Pass
19	2441.35	2.08	3.18	30	Pass
37	2477.35	2.051	3.12	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2403.35	1.222	0.87
19	2441.35	1.268	1.03
37	2477.35	1.253	0.98



4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

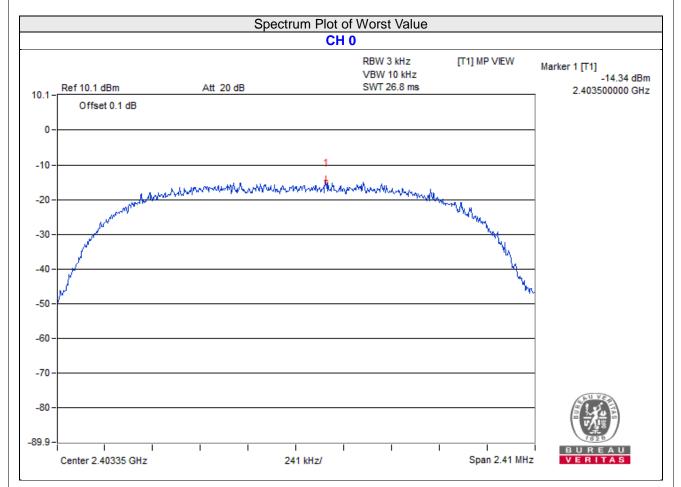
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	2403.35	-14.34	8	Pass
19	2441.35	-14.92	8	Pass
37	2477.35	-15.05	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

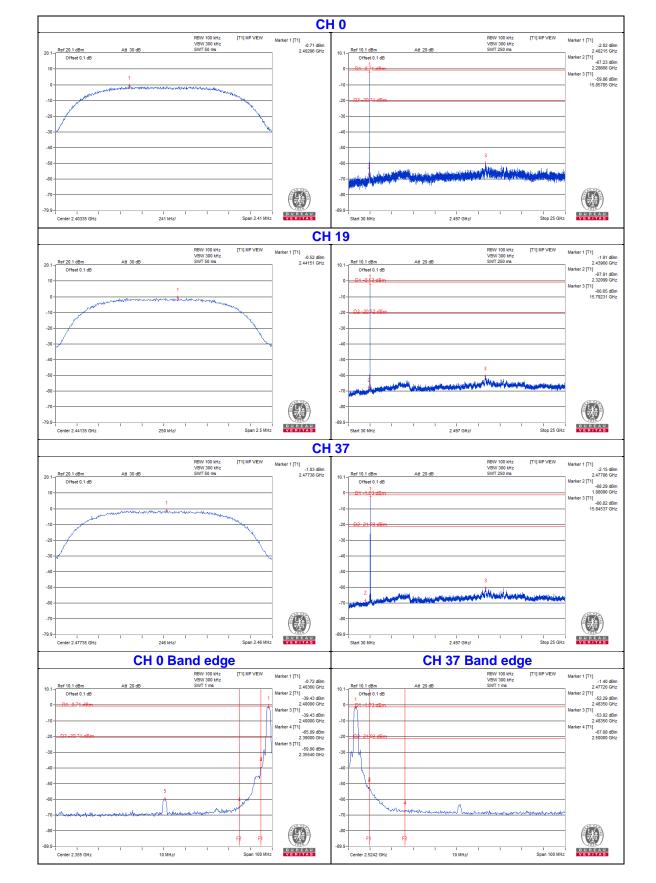
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

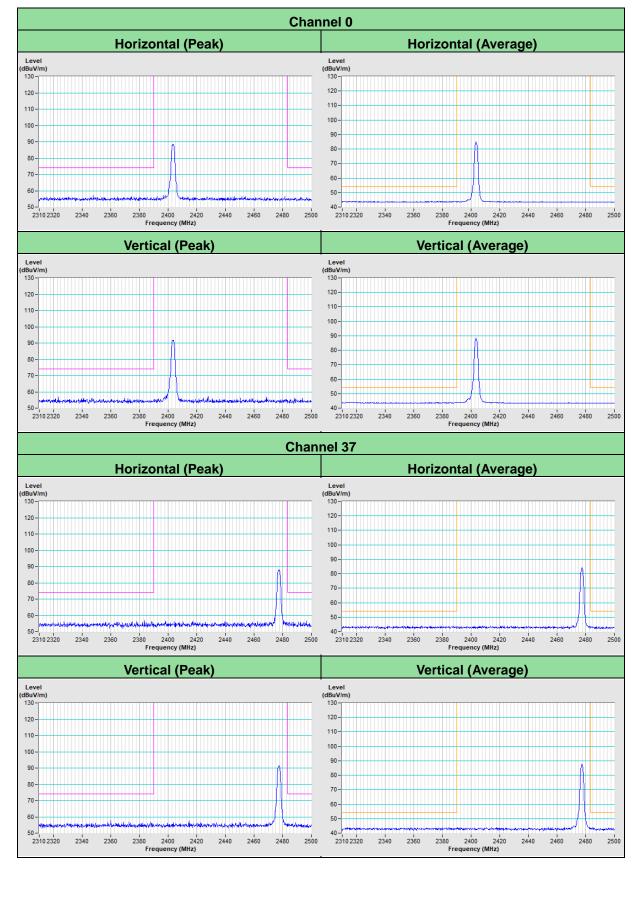
No deviation.


4.6.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.



5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---