	B U R E A U VERITAS
	FCC Test Report
Report No.:	RF200421E04 R1
FCC ID:	JNZA00125
Test Model:	A00125
Received Date:	Apr. 22, 2020
Test Date:	May 01 to 05, 2020
Issued Date:	June 12, 2020
Applicant:	LOGITECH FAR EAST LTD.
Address:	#2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
FCC Registration / Designation Number:	723255 / TW2022
	lac-MRA TAF
	Testing Laboratory 2022
only with our prior written permission. The report are not indicative or representation unless specifically and expressly noted. provided to us. You have 60 days from however, that such notice shall be in writt shall constitute your unqualified acceptar mention, the uncertainty of measurement	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted nis report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ting and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time to the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific t has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report roduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	elease	Control Record	4
1	С	ertificate of Conformity	5
2	S	ummary of Test Results	6
	2.1 2.2	Measurement Uncertainty	
3		eneral Information	
3			
	3.1 3.2	General Description of EUT Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	3.4.1	Configuration of System under Test	
	3.5	General Description of Applied Standards and references	
4	т	est Types and Results	13
	4.1	Radiated Emission and Bandedge Measurement	
	4.1.1	Limits of Radiated Emission and Bandedge Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
	4.1.7	Test Results	18
	4.2	Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup EUT Operating Conditions	
		Test Results	
	4.2.7	6dB Bandwidth Measurement	
	4.3.1	Limits of 6dB Bandwidth Measurement	
		Test Setup	
		Test Instruments	
	4.3.4	Test Procedure	27
	4.3.5	Deviation from Test Standard	27
		EUT Operating Conditions	
		Test Result	
	4.4	Conducted Output Power Measurement	
		Limits of Conducted Output Power Measurement	
		Test Setup Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		EUT Operating Conditions	
		Test Results	
	4.5	Power Spectral Density Measurement	
	4.5.1		
		Test Setup	
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
	4.5.6	EUT Operating Condition	31

4.6.6 EUT Operating Condition 33 4.6.7 Test Results 33	4.6.4 Test Procedure 4.6.5 Deviation from Test Standard	
	4.6.6 EUT Operating Condition	
	4.6.7 Test Results	
5 Pictures of Test Arrangements	5 Pictures of Test Arrangements	
	Annex A - Radiated Band-edge Measurement for Restricted Frequencies	
Annex A - Radiated Band-edge Measurement for Restricted Frequencies	Appendix – Information of the Testing Laboratories	27

Release Control Record

Issue No.	Description	Date Issued
RF200421E04	Original release.	May 26, 2020
RF200421E04 R1	Modified battery information.	June 12, 2020

1 Certificate of Conformity

Product:	Wireless Headset	
Brand:	logitech G	
Test Model:	A00125	
Sample Status:	ENGINEERING SAMPLE	
Applicant:	LOGITECH FAR EAST LTD.	
Test Date: May 01 to 05, 2020		
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)	
	ANSI C63.10: 2013	

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

Claire Kuan / Specialist

·_____,

Date: June 12, 2020

Approved by :

Clark Lin / Technical Manager

Date: June 12, 2020

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)					
FCC Clause	Test Item	Result	Remarks		
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -13.94dB at 0.57969MHz.		
15.205 / 15.209 / 15.247(d)	.209 / Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -6.2dB at 39.17MHz.		
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.		
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.		
15.247(b)	Conducted power	PASS	Meet the requirement of limit.		
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.		
15.203	Antenna Requirement	PASS	No antenna connector is used.		

Note:

1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Conducted Emissions	-	2.5 dB
Padiated Emissions up to 1 CHz	9kHz~30MHz	3.1 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.4 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wireless Headset
PMN G733	
Brand	logitech G
Test Model A00125	
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	3.7Vdc from battery or 5Vdc from USB interface
Modulation Type Pi/4 DQPSK	
Transfer Rate	Up to 3Mbps
Operating Frequency 2403.35 ~ 2477.35 MHz	
Number of Channel	38
Output Power	3.954mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	Detachable mic x1 (Shielded, 0.14m)
Data Cable Supplied	USB to Type C Cable x 1 (Shielded, 2m)

Note:

1. The EUT may have a lot of colors for marketing requirement.

2. The antenna provided to the EUT, please refer to the following table:

Antenna No.	Antenna Gain (dBi)	Frequency range (GHz)	Antenna Type	Connector Type
1	2.37	2.4~2.48	Metal antenna	NA
2	4.07	2.4~2.48	Metal antenna	NA

Note:

1. The EUT incorporates a SISO function. (1Tx / 1Rx Diversity)

2. Max. gain was selected for the final test.

3. The EUT could be supplied with a rechargeable battery as the following table:

Brand Name	Model No.	Spec.				
Springpower Technology (Shenzhen) Co., LTD. or Logitech	533-000181 or 604050	3.7V, 1500mAh, 5.55Wh				

4. For conducted emissions, the EUT was pre-tested under the following modes:

Mode A	Power from USB adapter
Pre-test Mode	Description

Mode B Power from Laptop

From the above modes, the worst case was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

5. For radiated emissions, the EUT was pre-tested under the following modes:

Pre-test Mode	Item	Description	
Mode A	Below 1GHz	X-Y axis	Power from Adapter
Mode B	Below 1GHz	X-Z axis	Power from Adapter
Mode C	Below 1GHz	Y-Z axis	Power from Adapter
Mode D	Below 1GHz	X-Y axis	Power from Battery
Mode E	Above 1GHz	X-Y axis	Power from Adapter
Mode F	Above 1GHz	X-Z axis	Power from Adapter
Mode G	Above 1GHz	Y-Z axis	Power from Adapter

From the above modes, the worst spurious emission was found in **Mode A and Mode F**. Therefore only the test data of the modes were recorded in this report.

6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

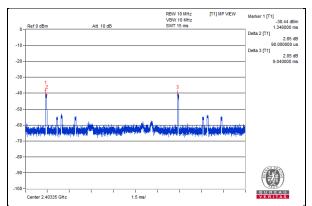
3.2 Description of Test Modes

38 channels are provided to this EUT:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2403.35	11	2423.35	21	2443.35	31	2463.35
2	2405.35	12	2425.35	22	2445.35	32	2465.35
3	2407.35	13	2427.35	23	2447.35	33	2467.35
4	2409.35	14	2429.35	24	2449.35	34	2469.35
5	2411.35	15	2431.35	25	2451.35	35	2471.35
6	2413.35	16	2433.35	26	2453.35	36	2473.35
7	2415.35	17	2435.35	27	2455.35	37	2475.35
8	2417.35	18	2437.35	28	2457.35	38	2477.35
9	2419.35	19	2439.35	29	2459.35		
10	2421.35	20	2441.35	30	2461.35		

3.2.1 Test Mode Applicability and Tested Channel Detail

		APPLICA						
CONFIGURE MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION			
-	\checkmark	\checkmark	\checkmark	\checkmark	-			
Where RE≥1G: Radiated Emission above 1GHz & Bandedge Measurement RE<1G: Radiated Emission below 1GHz								
 Radiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). 								
_	,	as (were) select	ed for the fi	nal test as listed b	elow.			
AVAILABLE (CHANNEL	TESTED CHA	NNEL	MODULATION TY	PE DATA RATE (Mbps)			
1 to 3	8	1, 19, 38		Pi/4 DQPSK	3			
between architect	available mod ure). g channel(s) wa	ulations, data ra as (were) select	tes and ant	enna ports (if EUT nal test as listed b				
AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mb				PE DATA RATE (Mbps)				
1 to 3		19		Pi/4 DQPSK	3			
1 to 3 Power Line Pre-Scar between architect	Conducted Er n has been con available modure).	19 mission Test: iducted to deter ulations, data ra	mine the wo	Pi/4 DQPSK prst-case mode fro enna ports (if EUT	m all possible combinations with antenna diversity			
1 to 3 Power Line Netween architectr Following	Conducted Er n has been con available modu ure). g channel(s) wa	19 mission Test: Iducted to deter ulations, data ra as (were) select	mine the wo ites and ant	Pi/4 DQPSK prst-case mode fro enna ports (if EUT nal test as listed b	m all possible combinations with antenna diversity elow.			
1 to 3 Power Line Pre-Scar between architect	Conducted Er has been con available modure). g channel(s) wa	19 mission Test: iducted to deter ulations, data ra	mine the wo ites and ant	Pi/4 DQPSK prst-case mode fro enna ports (if EUT	m all possible combinations with antenna diversity elow.			
1 to 3 Power Line Pre-Scar between architectt Following AVAILABLE 0 1 to 3 Antenna Po Antenna Po This item mode. Pre-Scar between architect	Conducted Ei n has been con available modi available modi ure). g channel(s) was CHANNEL 38 rt Conducted includes all te n has been con available modi available modi available modi ure).	19 mission Test: iducted to deter ulations, data ra as (were) select TESTED CHA 19 Measurement: st value of each iducted to deter ulations, data ra	mine the wo ates and ante ted for the fi NNEL	Pi/4 DQPSK prst-case mode fro enna ports (if EUT nal test as listed b <u>MODULATION TY</u> Pi/4 DQPSK only includes spec prst-case mode fro enna ports (if EUT	3 m all possible combinations with antenna diversity elow. PE DATA RATE (Mbps) 3			
1 to 3 Power Line Pre-Scar between architectt Following AVAILABLE (1 to 3 Antenna Po Antenna Po This item mode. Pre-Scar between architect	Conducted En n has been con available modi available modi ure). g channel(s) was CHANNEL 38 rt Conducted includes all te n has been con available modi available modi available modi g channel(s) was	19 mission Test: iducted to deter ulations, data ra as (were) select TESTED CHA 19 Measurement: st value of each iducted to deter ulations, data ra	mine the wo ates and ante ted for the fi NNEL	Pi/4 DQPSK prst-case mode fro enna ports (if EUT nal test as listed b MODULATION TY Pi/4 DQPSK only includes spec	m all possible combinations with antenna diversity elow. PE DATA RATE (Mbps) 3 ctrum plot of worst value of each m all possible combinations with antenna diversity elow.			
1 to 3 Power Line Pre-Scar between architectt Following AVAILABLE 0 1 to 3 Antenna Po Antenna Po This item mode. Pre-Scar between architect	Conducted Ei n has been con available modi available modi ure). g channel(s) was CHANNEL 38 rt Conducted includes all te n has been con available modi available modi available modi ure).	19 mission Test: iducted to deter ulations, data ra as (were) select TESTED CHA 19 Measurement: st value of each iducted to deter ulations, data ra	mine the wo ates and ante ted for the fi NNEL	Pi/4 DQPSK prst-case mode fro enna ports (if EUT nal test as listed b <u>MODULATION TY</u> Pi/4 DQPSK only includes spec prst-case mode fro enna ports (if EUT	3 m all possible combinations with antenna diversity elow. PE DATA RATE (Mbps) 3			



Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (System)	TESTED BY	
RE≥1G	RE≥1G 25deg. C, 65%RH		Nelson Teng	
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Nelson Teng	
PLC	PLC 25deg. C, 61%RH		Nick Lo	
APCM	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen	

3.3 Duty Cycle of Test Signal

Duty cycle = 0.09/9.04 = 0.1, Duty factor = 10 * log(1/0.1) = 20.02

Note: This is highest operational duty cycle.

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Adapter	ASUS	EXA1205UA	NA	NA	Provided by Lab

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Type C Cable	1	2	Yes	0	Supplied by client

3.4.1 Configuration of System under Test

Batter	y		
EUT	3.5mm Audic	Detachable mic	
	USB Type C port	. (1)	(A) Adapter

3.5 General Description of Applied Standards and references

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED	
MANUFACTURER		•=••••	DATE	UNTIL	
Test Receiver	N9038A	MY54450088	July 03, 2019	July 02, 2020	
Keysight	N9030A	1011 34430000	July 03, 2013	July 02, 2020	
Pre-Amplifier	EMC001340	980142	May 30, 2019	May 29, 2020	
EMCI	Emelection	500142	May 00, 2010	May 20, 2020	
Loop Antenna Electro-Metrics	EM-6879	264	Feb. 18, 2020	Feb. 17, 2021	
RF Cable	NA	LOOPCAB-001	Jan. 08, 2020	Jan. 07, 2021	
RF Cable	NA	LOOPCAB-001			
	INA	LUUPCAB-002	Jan. 08, 2020	Jan. 07, 2021	
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 28, 2020	Apr. 27, 2021	
Trilog Broadband Antenna					
SCHWARZBECK	VULB 9168	9168-361	Nov. 11, 2019	Nov. 10, 2020	
RF Cable	8D	966-3-1	Mar. 17, 2020	Mar. 16, 2021	
RF Cable	8D	966-3-2	Mar. 17, 2020	Mar. 16, 2021	
RF Cable	8D	966-3-3	Mar. 17, 2020	Mar. 16, 2021	
Fixed attenuator			Sep. 20. 2010	Com 05 0000	
Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 26, 2019	Sep. 25, 2020	
Horn_Antenna	BBHA9120-D	9120D-406	Nov. 24, 2019	Nov. 23, 2020	
SCHWARZBECK	BBHA9120-D	91200-406	1100. 24, 2019	1100. 23, 2020	
Pre-Amplifier	EMC12630SE	980384	Jan. 15, 2020	Jan. 14, 2021	
EMCI					
RF Cable	EMC104-SM-SM-1200	160922	Jan. 15, 2020	Jan. 14, 2021	
RF Cable	EMC104-SM-SM-2000	180601	June 10, 2019	June 09, 2020	
RF Cable	EMC104-SM-SM-6000	180602	June 10, 2019	June 09, 2020	
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020	
Pre-Amplifier	EN040404505	000007	1	1	
EMCI	EMC184045SE	980387	Jan. 15, 2020	Jan. 14, 2021	
Horn_Antenna	BBHA 9170	BBHA9170519	Nov. 24, 2019	Nov 22 2020	
SCHWARZBECK	BBHA 9170	DDHA9170319	1100. 24, 2019	Nov. 23, 2020	
RF Cable	EMC102-KM-KM-1200	160924	Jan. 15, 2020	Jan. 14, 2021	
RF Cable	EMC-KM-KM-4000	200214	Mar. 11, 2020	Mar. 10, 2021	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	
Antenna Tower & Turn Table	MF-7802	MF780208406	NA	NA	
Max-Full					
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA	
Spectrum Analyzer R&S	FSV40	100964	June 04, 2019	June 03, 2020	
Power meter	141.0.405.4	4044000	10 0010	10 0000	
Anritsu	ML2495A	1014008	May 13, 2019	May 12, 2020	
Power sensor		0047400	May 40, 0040	May 40, 0000	
Anritsu	MA2411B	0917122	May 13, 2019	May 12, 2020	
Fixed Attenuator			A == 4.4 0000	A == 40,0004	
Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 14, 2020	Apr. 13, 2021	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: May 01 to 05, 2020

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

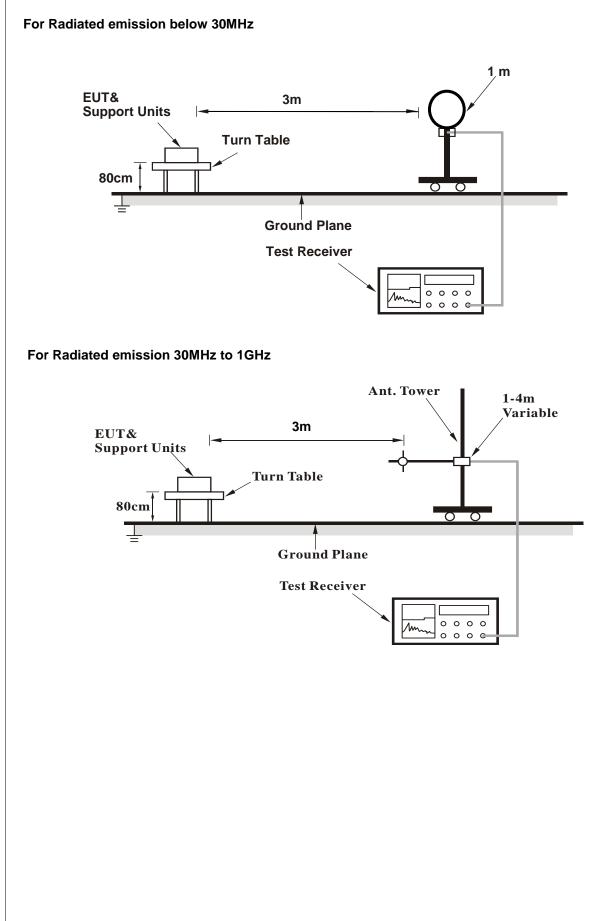
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

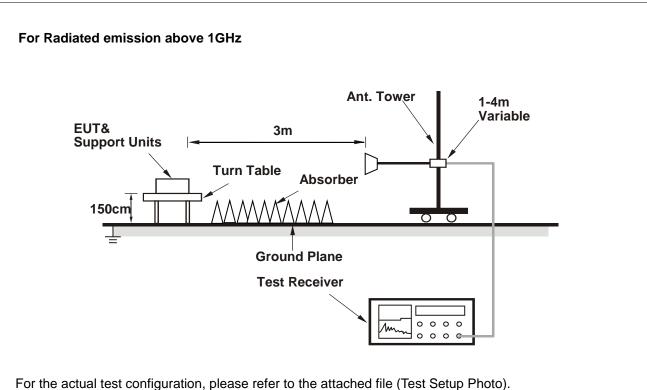
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Controlling software (VMIdebug-1.1.6.47) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
2390.00	57.0 PK	74.0	-17.0	1.58 H	232	58.9	-1.9	
2390.00	42.7 AV	54.0	-11.3	1.58 H	232	44.6	-1.9	
*2403.35	98.1 PK			1.58 H	232	100.0	-1.9	
*2403.35	94.5 AV			1.58 H	232	96.4	-1.9	
4806.70	40.3 PK	74.0	-33.7	3.03 H	247	37.4	2.9	
4806.70	32.4 AV	54.0	-21.6	3.03 H	247	29.5	2.9	
	ANTENNA	POLARITY	& TEST DI	ISTANCE: V	ERTICAL A	Т 3 М		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
2390.00	56.2 PK	74.0	-17.8	2.40 V	301	58.1	-1.9	
2390.00	43.2 AV	54.0	-10.8	2.40 V	301	45.1	-1.9	
*2403.35	98.8 PK			2.40 V	301	100.7	-1.9	
*2403.35	93.3 AV			2.40 V	301	95.2	-1.9	
4806.70	41.4 PK	74.0	-32.6	2.25 V	122	38.5	2.9	
4806.70	33.4 AV	54.0	-20.6	2.25 V	122	30.5	2.9	
	(MHz) 2390.00 2390.00 *2403.35 *2403.35 4806.70 4806.70 FREQ. (MHz) 2390.00 2390.00 2390.00 *2403.35 *2403.35	FREQ. (MHz) EMISSION LEVEL (dBuV/m) 2390.00 57.0 PK 2390.00 57.0 PK 2390.00 42.7 AV *2403.35 98.1 PK *2403.35 94.5 AV 4806.70 40.3 PK 4806.70 32.4 AV ANTENNA EMISSION LEVEL (dBuV/m) 2390.00 56.2 PK 2390.00 56.2 PK 2390.00 43.2 AV *2403.35 98.8 PK *2403.35 93.3 AV 4806.70 41.4 PK	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 2390.00 57.0 PK 74.0 2390.00 42.7 AV 54.0 *2403.35 98.1 PK * *2403.35 94.5 AV * *2403.35 94.5 AV * 4806.70 40.3 PK 74.0 4806.70 32.4 AV 54.0 KINESION LIMIT (MHz) EMISSION LIMIT (MHz) 64.0 * 2390.00 56.2 PK 74.0 2390.00 56.2 PK 74.0 2390.00 56.2 PK 74.0 2390.00 43.2 AV 54.0 *2403.35 98.8 PK * *2403.35 93.3 AV 4806.70 4806.70 41.4 PK 74.0	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 2390.00 57.0 PK 74.0 -17.0 2390.00 42.7 AV 54.0 -11.3 *2403.35 98.1 PK - - *2403.35 94.5 AV - - 4806.70 40.3 PK 74.0 -33.7 4806.70 32.4 AV 54.0 -21.6 ANTENNA POLARITY & TEST DI FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 2390.00 56.2 PK 74.0 -17.8 2390.00 56.2 PK 74.0 -10.8 *2403.35 98.8 PK - - *2403.35 93.3 AV - - 4806.70 41.4 PK 74.0 -32.6	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 2390.00 57.0 PK 74.0 -17.0 1.58 H 2390.00 42.7 AV 54.0 -11.3 1.58 H *2403.35 98.1 PK 1.58 H 1.58 H *2403.35 94.5 AV 1.58 H 1.58 H *2403.35 94.5 AV 1.58 H 1.58 H 4806.70 40.3 PK 74.0 -33.7 3.03 H 4806.70 32.4 AV 54.0 -21.6 3.03 H FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 2390.00 56.2 PK 74.0 -17.8 2.40 V 2390.00 56.2 PK 74.0 -10.8 2.40 V *2403.35 98.8 PK 2.40 V *240 X *2403.35 93.3 AV 2.40 V *240 V	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 2390.00 57.0 PK 74.0 -17.0 1.58 H 232 2390.00 42.7 AV 54.0 -11.3 1.58 H 232 *2403.35 98.1 PK -17.0 1.58 H 232 *2403.35 94.5 AV -11.3 1.58 H 232 *2403.35 94.5 AV -158 H 232 *4806.70 40.3 PK 74.0 -33.7 3.03 H 247 4806.70 32.4 AV 54.0 -21.6 3.03 H 247 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT FREQ. (MHz) EMISSION LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 2390.00 56.2 PK 74.0 -17.8 2.40 V 301 2390.00 56.2 PK 74.0 -10.8 2.40 V 301 2390.00 56.2 PK 74.0 -10.8 2.40 V 301 *2403.35	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 2390.00 57.0 PK 74.0 -17.0 1.58 H 232 58.9 2390.00 42.7 AV 54.0 -11.3 1.58 H 232 44.6 *2403.35 98.1 PK 1.58 H 232 100.0 *2403.35 94.5 AV 1.58 H 232 96.4 4806.70 40.3 PK 74.0 -33.7 3.03 H 247 37.4 4806.70 32.4 AV 54.0 -21.6 3.03 H 247 29.5 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M FREQ. (MHz) EMISSION LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 2390.00 56.2 PK 74.0 -17.8 2.40 V 301 58.1 2390.00 56.2 PK 74.0 -10.8 2.40 V 301 45.1 '2403.35 98.8 PK - <t< td=""></t<>	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2439.35	97.5 PK			1.54 H	217	99.5	-2.0	
2	*2439.35	93.7 AV			1.54 H	217	95.7	-2.0	
3	4878.70	39.7 PK	74.0	-34.3	3.00 H	237	36.9	2.8	
4	4878.70	32.2 AV	54.0	-21.8	3.00 H	237	29.4	2.8	
5	7318.05	44.0 PK	74.0	-30.0	3.11 H	252	35.1	8.9	
6	7318.05	33.7 AV	54.0	-20.3	3.11 H	252	24.8	8.9	
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
	EREO	EMISSION	ТИЛТ	MARGIN	ANTENNA	TABLE	RAW	CORRECTION	

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2439.35	95.3 PK			2.17 V	305	97.3	-2.0
2	*2439.35	92.9 AV			2.17 V	305	94.9	-2.0
3	4878.70	41.3 PK	74.0	-32.7	2.25 V	137	38.5	2.8
4	4878.70	33.1 AV	54.0	-20.9	2.25 V	137	30.3	2.8
5	7318.05	44.7 PK	74.0	-29.3	1.95 V	128	35.8	8.9
6	7318.05	34.4 AV	54.0	-19.6	1.95 V	128	25.5	8.9

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 38	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2477.35	95.7 PK			1.56 H	230	97.6	-1.9			
2	*2477.35	91.8 AV			1.56 H	230	93.7	-1.9			
3	2483.98	57.5 PK	74.0	-16.5	1.56 H	230	59.4	-1.9			
4	2483.98	46.5 AV	54.0	-7.5	1.56 H	230	48.4	-1.9			
5	4954.70	40.2 PK	74.0	-33.8	3.00 H	248	37.4	2.8			
6	4954.70	32.5 AV	54.0	-21.5	3.00 H	248	29.7	2.8			
7	7432.05	44.5 PK	74.0	-29.5	3.15 H	237	35.5	9.0			
8	7432.05	34.0 AV	54.0	-20.0	3.15 H	237	25.0	9.0			
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2477.35	94.1 PK			2.19 V	298	96.0	-1.9			
2	*2477.35	90.9 AV			2.19 V	298	92.8	-1.9			
3	2484.06	57.5 PK	74.0	-16.5	2.19 V	298	59.4	-1.9			
4	2484.06	45.2 AV	54.0	-8.8	2.19 V	298	47.1	-1.9			
5	4954.70	40.9 PK	74.0	-33.1	2.30 V	132	38.1	2.8			
6	4954.70	33.0 AV	54.0	-21.0	2.30 V	132	30.2	2.8			
7	7432.05	44.7 PK	74.0	-29.3	1.94 V	124	35.7	9.0			
8	7432.05	34.2 AV	54.0	-19.8	1.94 V	124	25.2	9.0			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

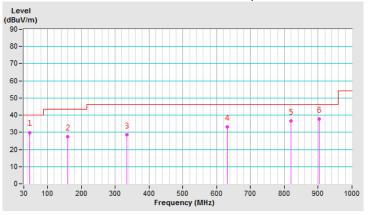
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value 5. " * ": Fundamental frequency.

Below 1GHz Data:

CHANNEL	TX Channel 19	DETECTOR	Over Deals (OD)	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)	


	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	48.21	29.9 QP	40.0	-10.1	3.00 H	3	37.5	-7.6			
2	160.88	27.4 QP	43.5	-16.1	2.00 H	98	34.3	-6.9			
3	334.02	28.5 QP	46.0	-17.5	1.00 H	56	33.2	-4.7			
4	632.15	33.1 QP	46.0	-12.9	4.00 H	284	30.1	3.0			
5	819.70	36.5 QP	46.0	-9.5	3.00 H	360	30.1	6.4			
6	902.37	37.6 QP	46.0	-8.4	2.00 H	250	30.1	7.5			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

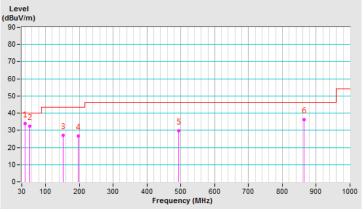
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 19	DETECTOR		
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	39.17	33.8 QP	40.0	-6.2	1.00 V	134	42.1	-8.3		
2	53.45	32.5 QP	40.0	-7.5	1.00 V	82	40.2	-7.7		
3	152.07	27.0 QP	43.5	-16.5	3.00 V	298	33.9	-6.9		
4	196.06	26.5 QP	43.5	-17.0	4.00 V	172	36.5	-10.0		
5	494.48	29.6 QP	46.0	-16.4	2.00 V	270	30.1	-0.5		
6	864.35	36.2 QP	46.0	-9.8	3.00 V	0	29.5	6.7		

REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

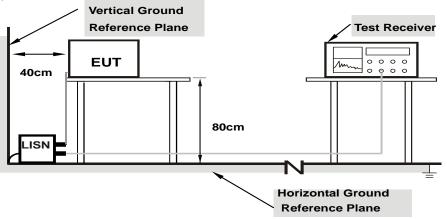
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 19, 2020	Mar. 18, 2021
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	005	Aug. 30, 2019	Aug. 29, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3. Tested Date: May 04, 2020


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase			ie (L)		D	Detector Function			Quasi-Peak (QP) / Average (AV)		
	Corr		Readin	g Value	Emissi	Emission Level		Limit		gin	
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB (uV)]	(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.17734	10.04	36.85	28.15	46.89	38.19	64.61	54.61	-17.72	-16.42	
2	0.22422	10.04	33.76	25.20	43.80	35.24	62.66	52.66	-18.86	-17.42	
3	0.25156	10.04	24.26	12.93	34.30	22.97	61.71	51.71	-27.41	-28.74	
4	0.57969	10.06	27.09	20.16	37.15	30.22	56.00	46.00	-18.85	-15.78	
5	0.92344	10.09	18.04	9.93	28.13	20.02	56.00	46.00	-27.87	-25.98	
6	15.26172	11.13	16.10	8.98	27.23	20.11	60.00	50.00	-32.77	-29.89	

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

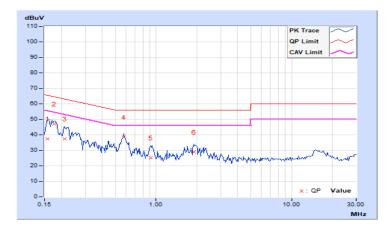
3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

1 0.15781 10.02 27.57 10.06 37.59 20.08 65.58 55.58 -27.99 -35.3 2 0.17734 10.03 36.99 26.31 47.02 36.34 64.61 54.61 -17.59 -18.3 3 0.21250 10.03 27.28 12.04 37.31 22.07 63.11 53.11 -25.80 -31.4												
No Freq. Factor [dB (uV)] [dB (uV)] [dB (uV)] (dB (uV)] (dB) [MHz] (dB) Q.P. AV. Q.P. AV. <td< td=""><td colspan="3">Phase Neutral</td><td>Neutral (N)</td><td></td><td>D</td><td>etector Fu</td><td>nction</td><td></td><td colspan="3">. ,</td></td<>	Phase Neutral			Neutral (N)		D	etector Fu	nction		. ,		
No Factor [dB (uV)] [dB (uV)] [dB (uV)] [dB (uV)] [dB (uV)] (dB) [MHz] (dB) Q.P. AV.	Corr. Reading Value Emission Level Limit Margin							gin				
1 0.15781 10.02 27.57 10.06 37.59 20.08 65.58 55.58 -27.99 -35.3 2 0.17734 10.03 36.99 26.31 47.02 36.34 64.61 54.61 -17.59 -18.3 3 0.21250 10.03 27.28 12.04 37.31 22.07 63.11 53.11 -25.80 -31.4	No Freq. F		Factor	r [dB	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
2 0.17734 10.03 36.99 26.31 47.02 36.34 64.61 54.61 -17.59 -18.1 3 0.21250 10.03 27.28 12.04 37.31 22.07 63.11 53.11 -25.80 -31.4		[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
3 0.21250 10.03 27.28 12.04 37.31 22.07 63.11 53.11 -25.80 -31.0	1	0.15781	10.02	2 27.57	10.06	37.59	20.08	65.58	55.58	-27.99	-35.50	
	2	0.17734	10.03	3 36.99	26.31	47.02	36.34	64.61	54.61	-17.59	-18.27	
4 0.57969 10.05 28.46 22.01 38.51 32.06 56.00 46.00 -17.49 -13.	3	0.21250	10.03	3 27.28	12.04	37.31	22.07	63.11	53.11	-25.80	-31.04	
	4	0.57969	10.05	5 28.46	22.01	38.51	32.06	56.00	46.00	-17.49	-13.94	
5 0.90781 10.08 15.20 7.66 25.28 17.74 56.00 46.00 -30.72 -28.1	5	0.90781	10.08	3 15.20	7.66	25.28	17.74	56.00	46.00	-30.72	-28.26	
6 1.90625 10.16 18.85 10.47 29.01 20.63 56.00 46.00 -26.99 -25.33	6	1.90625	10.16	6 18.85	10.47	29.01	20.63	56.00	46.00	-26.99	-25.37	

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

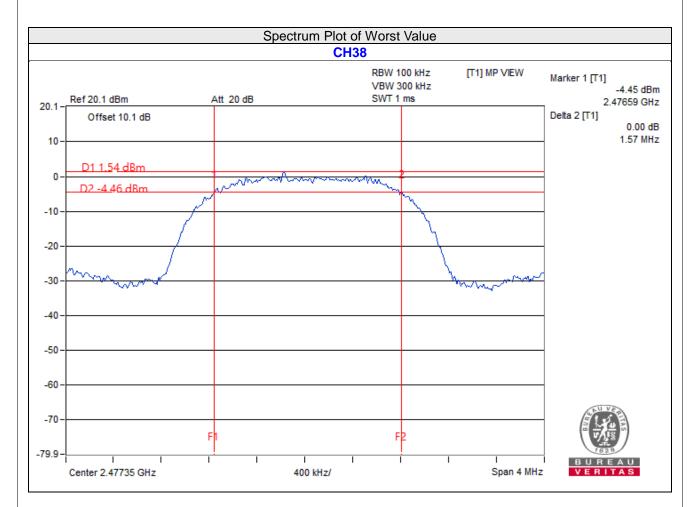
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation from Test Standard

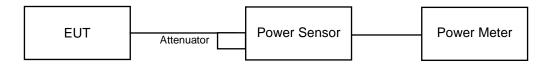
No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
1	2403.35	1.64	0.5	Pass
19	2439.35	1.62	0.5	Pass
38	2477.35	1.57	0.5	Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
1	2403.35	3.802	5.80	30	Pass
19	2439.35	3.954	5.97	30	Pass
38	2477.35	3.89	5.90	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
1	2403.35	2.382	3.77
19	2439.35	2.46	3.91
38	2477.35	2.432	3.86



4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

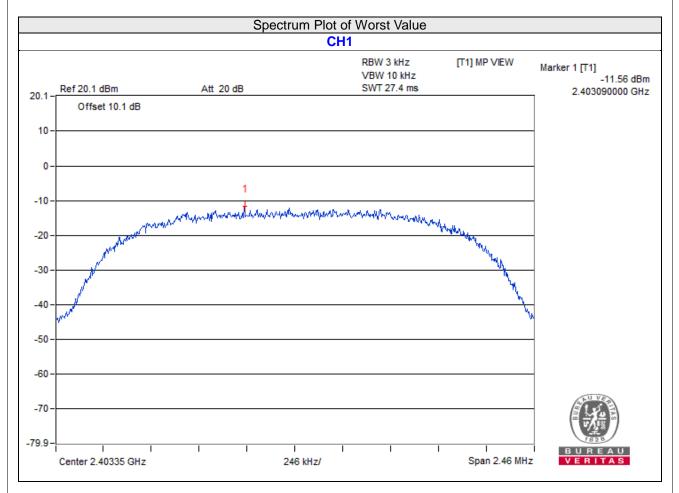
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW \ge 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.3.6

4.5.7 Test Results

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
1	2403.35	-11.56	8	Pass
19	2439.35	-12.42	8	Pass
38	2477.35	-13.31	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

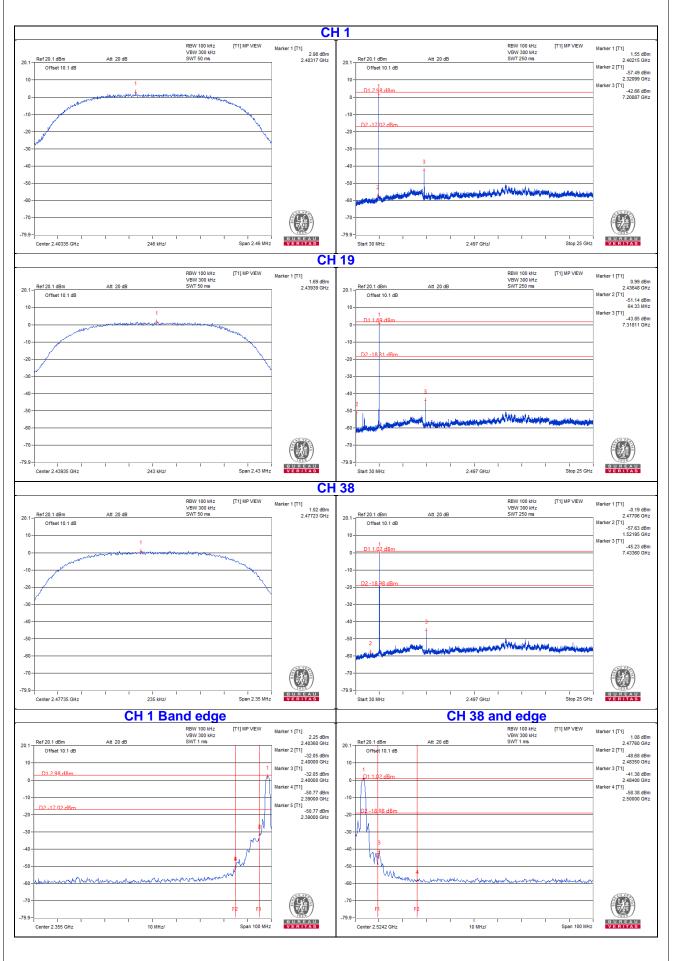
MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.
- 4.6.5 Deviation from Test Standard

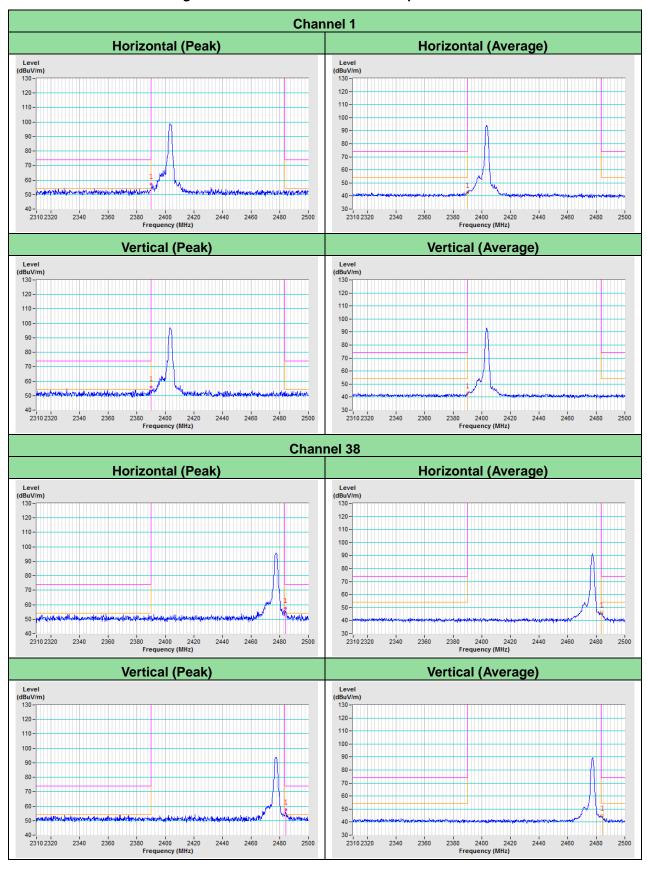
No deviation.


4.6.6 EUT Operating Condition

Same as Item 4.3.6

4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.



5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----