|                                                                                                                                                                                                                                                                                                                         | VERITAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                         | FCC Test Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Report No.:                                                                                                                                                                                                                                                                                                             | RF190214E10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FCC ID:                                                                                                                                                                                                                                                                                                                 | JNZA00085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Model:                                                                                                                                                                                                                                                                                                             | A00085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Received Date:                                                                                                                                                                                                                                                                                                          | Feb. 14, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Date:                                                                                                                                                                                                                                                                                                              | Feb. 26 to Mar. 08, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Issued Date:                                                                                                                                                                                                                                                                                                            | Mar. 28, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Applicant:                                                                                                                                                                                                                                                                                                              | LOGITECH FAR EAST LTD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Address:                                                                                                                                                                                                                                                                                                                | #2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Issued By:                                                                                                                                                                                                                                                                                                              | Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lab Address                                                                                                                                                                                                                                                                                                             | Hsin Chu Laboratory<br>E E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                         | Taiwan R.O.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                         | E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FCC Registration /<br>Designation Number                                                                                                                                                                                                                                                                                | 723255 / TW2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                         | BC-MRA<br>Taff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| only with our prior written permission. Th<br>report are not indicative or representative<br>unless specifically and expressly noted.<br>provided to us. You have 60 days from<br>however, that such notice shall be in writti<br>shall constitute your unqualified acceptan<br>mention, the uncertainty of measurement | copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted<br>is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this<br>e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product<br>Our report includes all of the tests requested by you and the results thereof based upon the information that you<br>date of issuance of this report to notify us of any material error or omission caused by our negligence, provided,<br>ng and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time<br>ce of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific<br>has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report<br>oduct certification, approval, or endorsement by TAF or any government agencies. |



## **Table of Contents**

| Re | elease     | Control Record                                       | 4  |
|----|------------|------------------------------------------------------|----|
| 1  | C          | ertificate of Conformity                             | 5  |
| 2  | S          | ummary of Test Results                               | 6  |
|    | 2.1<br>2.2 | Measurement Uncertainty Modification Record          |    |
| 3  | G          | eneral Information                                   | 7  |
|    |            | General Description of EUT                           |    |
|    | 3.1<br>3.2 | Description of Test Modes                            |    |
|    | 3.2.1      | Test Mode Applicability and Tested Channel Detail    |    |
|    | 3.3        | Duty Cycle of Test Signal                            |    |
|    | 3.4        | Description of Support Units                         |    |
|    | 3.4.1      | Configuration of System under Test                   | 13 |
|    | 3.5        | General Description of Applied Standards             | 14 |
| 4  | Т          | est Types and Results                                | 15 |
|    | 4.1        | Radiated Emission and Bandedge Measurement           | 15 |
|    |            | Limits of Radiated Emission and Bandedge Measurement |    |
|    |            | Test Instruments                                     |    |
|    |            | Test Procedures                                      |    |
|    |            | Deviation from Test Standard                         |    |
|    |            | Test Setup.                                          |    |
|    |            | EUT Operating Conditions<br>Test Results             |    |
|    | 4.1.7      | Conducted Emission Measurement                       |    |
|    |            | Limits of Conducted Emission Measurement             |    |
|    |            | Test Instruments                                     |    |
|    |            | Test Procedures                                      |    |
|    | 4.2.4      | Deviation from Test Standard                         | 26 |
|    | 4.2.5      | Test Setup                                           | 26 |
|    |            | EUT Operating Conditions                             |    |
|    |            | Test Results                                         |    |
|    | 4.3        | 6dB Bandwidth Measurement                            |    |
|    |            | Limits of 6dB Bandwidth Measurement                  |    |
|    |            | Test Setup<br>Test Instruments                       |    |
|    |            | Test Procedure                                       |    |
|    |            | Deviation from Test Standard                         |    |
|    |            | EUT Operating Conditions                             |    |
|    |            | Test Result                                          |    |
|    | 4.4        | Conducted Output Power Measurement                   | 31 |
|    |            | Limits OF Conducted Output Power Measurement         |    |
|    |            | Test Setup                                           |    |
|    |            | Test Instruments                                     |    |
|    |            | Test Procedures                                      |    |
|    |            | Deviation from Test Standard                         |    |
|    |            | EUT Operating Conditions<br>Test Results             |    |
|    | 4.4.7      | Power Spectral Density Measurement                   |    |
|    | 4.5.1      | Limits of Power Spectral Density Measurement         |    |
|    |            | Test Setup.                                          |    |
|    |            | Test Instruments                                     |    |
|    |            | Test Procedure                                       |    |
|    |            | Deviation from Test Standard                         |    |
|    | 4.5.6      | EUT Operating Condition                              | 33 |



| Ap | pend  | lix – Information of the Testing Laboratories        | . 38 |
|----|-------|------------------------------------------------------|------|
| 5  | Ρ     | ctures of Test Arrangements                          | . 37 |
|    | 4.6.7 | Test Results                                         | . 36 |
|    |       | EUT Operating Condition                              |      |
|    | 4.6.5 | Deviation from Test Standard                         | . 35 |
|    | 4.6.4 | Test Procedure                                       | . 35 |
|    |       | Test Instruments                                     |      |
|    |       | Test Setup                                           |      |
|    |       | Limits of Conducted Out of Band Emission Measurement |      |
|    |       | Conducted Out of Band Emission Measurement           |      |
|    | 4.5.7 | Test Results                                         | . 34 |



|             | Release Control Record |               |
|-------------|------------------------|---------------|
| Issue No.   | Description            | Date Issued   |
| RF190214E10 | Original release.      | Mar. 28, 2019 |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |
|             |                        |               |



# 1Certificate of ConformityProduct:A50 WIRELESS GAMING HEADSETBrand:AstroTest Model:A00085Sample Status:ENGINEERING SAMPLEApplicant:LOGITECH FAR EAST LTD.Test Date:Feb. 26 to Mar. 08, 2019Standards:47 CFR FCC Part 15, Subpart C (Section 15.247)<br/>ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

| Prepared by : | Wendy Wu / Specialist | _ , Date: | Mar. 28, 2019 |  |
|---------------|-----------------------|-----------|---------------|--|
| Approved by : | May Chen / Manager    | _, Date:  | Mar. 28, 2019 |  |



## 2 Summary of Test Results

| 47 CFR FCC Part 15, Subpart C (SECTION 15.247) |                                               |        |                                                                                        |
|------------------------------------------------|-----------------------------------------------|--------|----------------------------------------------------------------------------------------|
| FCC<br>Clause                                  | Test Item                                     | Result | Remarks                                                                                |
| 15.207                                         | AC Power Conducted Emission                   | PASS   | Meet the requirement of limit.<br>Minimum passing margin is -17.63dB<br>at 0.15781MHz. |
| 15.205 & 209<br>& 15.247(d)                    | Radiated Emissions & Band Edge<br>Measurement | PASS   | Meet the requirement of limit.<br>Minimum passing margin is -3.1dB at<br>2483.50MHz.   |
| 15.247(d)                                      | Antenna Port Emission                         | PASS   | Meet the requirement of limit.                                                         |
| 15.247(a)(2)                                   | 6dB bandwidth                                 | PASS   | Meet the requirement of limit.                                                         |
| 15.247(b)                                      | Conducted power                               | PASS   | Meet the requirement of limit.                                                         |
| 15.247(e)                                      | Power Spectral Density                        | PASS   | Meet the requirement of limit.                                                         |
| 15.203                                         | Antenna Requirement                           | PASS   | No antenna connector is used.                                                          |

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

## 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                        | Frequency      | Expanded Uncertainty<br>(k=2) (±) |
|------------------------------------|----------------|-----------------------------------|
| Conducted Emissions at mains ports | 150kHz ~ 30MHz | 1.8 dB                            |
| Radiated Emissions up to 1 GHz     | 30MHz ~ 1GHz   | 4.9 dB                            |
|                                    | 1GHz ~ 6GHz    | 5.1 dB                            |
| Radiated Emissions above 1 GHz     | 6GHz ~ 18GHz   | 4.9 dB                            |
|                                    | 18GHz ~ 40GHz  | 5.2 dB                            |

## 2.2 Modification Record

There were no modifications required for compliance.



## 3 General Information

## 3.1 General Description of EUT

| Product             | A50 WIRELESS GAMING HEADSET                    |
|---------------------|------------------------------------------------|
| PMN                 | A50 WIRELESS HEADSET                           |
| Brand               | Astro                                          |
| Test Model          | A00085                                         |
| Status of EUT       | ENGINEERING SAMPLE                             |
| Power Supply Rating | 3.7Vdc from battery or 5Vdc from USB interface |
| Modulation Type     | Pi/4 DQPSK                                     |
| Transfer Rate       | Up to 2Mbps                                    |
| Operating Frequency | 2403.35 ~ 2479.35 MHz                          |
| Number of Channel   | 39                                             |
| Output Power        | 2.213mW                                        |
| Antenna Type        | Refer to Note                                  |
| Antenna Connector   | Refer to Note                                  |
| Accessory Device    | NA                                             |
| Data Cable Supplied | USB to Micro USB Cable x 1 (Shielded, 2.1m)    |

Note:

1. The EUT may have a lot of colors for marketing requirement.

2. The USB port of the EUT is only for charging the rechargeable battery. And the EUT has wireless function under charging mode.

3. The EUT could be supplied with a rechargeable battery as the following table:

| Brand Name | Model No.            | Spec.                 |
|------------|----------------------|-----------------------|
| Logitech   | 533-000169 or 623441 | 3.7V, 1000mAh, 3.70Wh |

#### 4. The antenna provided to the EUT, please refer to the following table:

| Antenna No. | Antenna Gain<br>(dBi) | Frequency range<br>(GHz) | Antenna Type    | Connector Type |
|-------------|-----------------------|--------------------------|-----------------|----------------|
| 1           | 2.50                  | 2.4~2.4835               | Printed Antenna | none           |
| 2           | 3.23                  | 2.4~2.4835               | Printed Antenna | none           |

Note:

1. The EUT incorporates a SISO function. (1TX / 1RX Diversity)

2. Max. gain was selected for the final test.

5. For conducted emissions, the EUT was pre-tested under the following modes:

| Test Mode | Description            |
|-----------|------------------------|
| Mode A    | Power from USB adapter |
| Mode B    | Power from Laptop      |

From the above modes, the worst cases were found in **Mode B**. Therefore only the test data of the mode was recorded in this report.

6. For radiated emissions, the EUT was pre-tested under the following modes:

| Test Mode | Description            |
|-----------|------------------------|
| Mode A    | Power from USB adapter |
| Mode B    | Power from Battery     |

From the above modes, the worst case was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

7. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.



# 3.2 Description of Test Modes

39 channels are provided to this EUT:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| 1       | 2403.35            | 11      | 2423.35            | 21      | 2443.35            | 31      | 2463.35            |
| 2       | 2405.35            | 12      | 2425.35            | 22      | 2445.35            | 32      | 2465.35            |
| 3       | 2407.35            | 13      | 2427.35            | 23      | 2447.35            | 33      | 2467.35            |
| 4       | 2409.35            | 14      | 2429.35            | 24      | 2449.35            | 34      | 2469.35            |
| 5       | 2411.35            | 15      | 2431.35            | 25      | 2451.35            | 35      | 2471.35            |
| 6       | 2413.35            | 16      | 2433.35            | 26      | 2453.35            | 36      | 2473.35            |
| 7       | 2415.35            | 17      | 2435.35            | 27      | 2455.35            | 37      | 2475.35            |
| 8       | 2417.35            | 18      | 2437.35            | 28      | 2457.35            | 38      | 2477.35            |
| 9       | 2419.35            | 19      | 2439.35            | 29      | 2459.35            | 39      | 2479.35            |
| 10      | 2421.35            | 20      | 2441.35            | 30      | 2461.35            |         |                    |



## 3.2.1 Test Mode Applicability and Tested Channel Detail

|                                                                                                                                                                                                                                                                         | EUT             |                | APPLICABLE TO     |              |                 | 550                    |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-------------------|--------------|-----------------|------------------------|---------|
|                                                                                                                                                                                                                                                                         | IFIGURE<br>MODE | RE≥1G          | RE<1G PLC APCM    |              | DES             | CRIPTION               |         |
|                                                                                                                                                                                                                                                                         | -               | $\checkmark$   | $\checkmark$      | $\checkmark$ | $\checkmark$    | PLC: power from Laptop |         |
|                                                                                                                                                                                                                                                                         |                 |                |                   |              |                 | Other: power from USB  | adapter |
| Where                                                                                                                                                                                                                                                                   | e RE≥1          | G: Radiated Er | nission above 1GI | Hz RE-       | <1G: Radiated I | Emission below 1GHz    |         |
|                                                                                                                                                                                                                                                                         | PLC:            | Power Line Co  | nducted Emission  | AP           | CM: Antenna Po  | ort Conducted Measurem | ent     |
| <ul> <li>Radiated Emission Test (Above 1GHz):</li> <li>Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).</li> </ul> |                 |                |                   |              |                 |                        |         |
| Following channel(s) was (were) selected for the final test as listed below.                                                                                                                                                                                            |                 |                |                   |              |                 |                        |         |
| 4                                                                                                                                                                                                                                                                       | AVAILABLE       | E CHANNEL      | TESTED CHANN      |              | ATION TYPE      | DATA RATE (Mbps)       |         |
|                                                                                                                                                                                                                                                                         |                 |                |                   |              |                 |                        |         |

#### Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| AVAILABLE CHANNEL | TESTED CHANNEL | MODULATION TYPE | DATA RATE (Mbps) |
|-------------------|----------------|-----------------|------------------|
| 1 to 39           | 1              | Pi/4 DQPSK      | 2                |

#### Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| AVAILABLE CHANNEL | TESTED CHANNEL | MODULATION TYPE | DATA RATE (Mbps) |
|-------------------|----------------|-----------------|------------------|
| 1 to 39           | 1              | Pi/4 DQPSK      | 2                |

#### Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

| AVAILABLE CHANNEL | TESTED CHANNEL | MODULATION TYPE | DATA RATE (Mbps) |
|-------------------|----------------|-----------------|------------------|
| 1 to 39           | 1, 19, 39      | Pi/4 DQPSK      | 2                |



# Test Condition:

| APPLICABLE TO | ENVIRONMENTAL CONDITIONS (SYSTEM) |              | TESTED BY     |
|---------------|-----------------------------------|--------------|---------------|
| RE≥1G         | 23deg. C, 68%RH                   | 120Vac, 60Hz | Steven Chiang |
| RE<1G         | 23deg. C, 66%RH                   | 120Vac, 60Hz | Steven Chaung |
| PLC           | 24deg. C, 76%RH                   | 120Vac, 60Hz | Andy Ho       |
| APCM          | 25deg. C, 60%RH                   | 120Vac, 60Hz | Jyunchun Lin  |



# 3.3 Duty Cycle of Test Signal

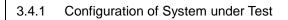
# Duty cycle of test signal is 100 %, duty factor is not required.

| .1-Ref 30.1 dBm    | Att 30 dB | RBW 10 MHz<br>VBW 10 MHz<br>SWT 100 ms | [T1] MP VIEW |         |
|--------------------|-----------|----------------------------------------|--------------|---------|
| Offset 10.1 dB     |           |                                        |              |         |
| 20-                |           |                                        |              |         |
| 10                 |           |                                        |              |         |
| 0                  |           |                                        |              |         |
| 10                 |           |                                        |              |         |
| 20                 |           |                                        |              |         |
| 30 -               |           |                                        |              |         |
| 40 -               |           |                                        |              |         |
| 50-                |           |                                        |              |         |
| 60-                |           |                                        |              |         |
| 9.9-               |           |                                        |              | BUREAU  |
| Center 2.47935 GHz | 10        | ms/                                    |              | VERITAS |

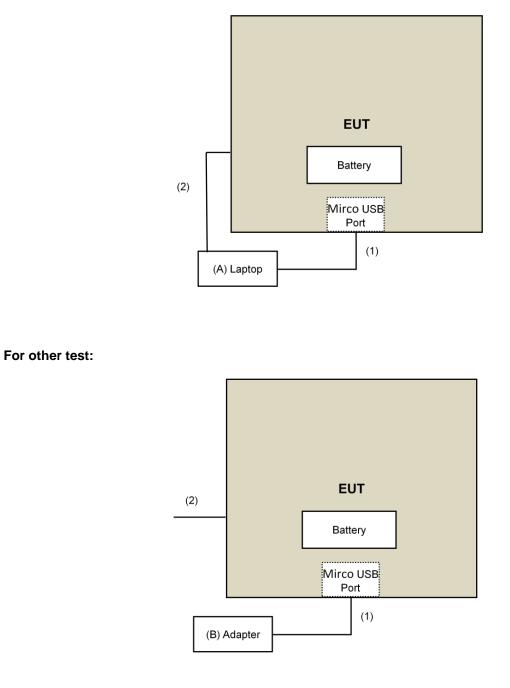
Note: This is highest operational duty cycle.



# 3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| ID | Product     | Brand | Model No. | Serial No. | FCC ID  | Remarks         |  |  |
|----|-------------|-------|-----------|------------|---------|-----------------|--|--|
| Α. | Laptop      | DELL  | E6420     | 482T3R1    | FCC DoC | Provided by Lab |  |  |
| В. | USB Adapter | ASUS  | EXA1205UA | NA         | NA      | Provided by Lab |  |  |
| -  |             |       |           |            |         |                 |  |  |


Note: 1. All power cords of the above support units are non-shielded (1.8m).

| ID | Descriptions           | Qty. | Length (m) | Shielding (Yes/No) | Cores (Qty.) | Remarks                          |
|----|------------------------|------|------------|--------------------|--------------|----------------------------------|
| 1. | USB to Micro USB Cable | 1    | 2.1        | Yes                | 0            | Supplied by client               |
| 2. | USB Cable              | 1    | 1.8        | Yes                | 0            | Supplied by client(for RF Setup) |





## For conducted emissions test:





## 3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

# FCC Part 15, Subpart C (15.247) KDB 558074 D01 15.247 Meas Guidance v05r01

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.



## 4 Test Types and Results

## 4.1 Radiated Emission and Bandedge Measurement

#### 4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009 ~ 0.490        | 2400/F(kHz)                          | 300                              |
| 0.490 ~ 1.705        | 24000/F(kHz)                         | 30                               |
| 1.705 ~ 30.0         | 30                                   | 30                               |
| 30 ~ 88              | 100                                  | 3                                |
| 88 ~ 216             | 150                                  | 3                                |
| 216 ~ 960            | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

## NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.



## 4.1.2 Test Instruments

| DESCRIPTION &                                       | MODEL NO.            | SERIAL NO.    | CALIBRATED    | CALIBRATED    |
|-----------------------------------------------------|----------------------|---------------|---------------|---------------|
| MANUFACTURER                                        |                      |               | DATE          | UNTIL         |
| Test Receiver<br>Keysight                           | N9038A               | MY54450088    | July 05, 2018 | July 04, 2019 |
| Pre-Amplifier<br>EMCI                               | EMC001340            | 980142        | Jan. 25, 2019 | Jan. 24, 2020 |
| Loop Antenna<br>Electro-Metrics                     | EM-6879              | 269           | Sep. 07, 2018 | Sep. 06, 2019 |
| RF Cable                                            | NA                   | LOOPCAB-001   | Jan. 14, 2019 | Jan. 13, 2020 |
| RF Cable                                            | NA                   | LOOPCAB-002   | Jan. 14, 2019 | Jan. 13, 2020 |
| Pre-Amplifier<br>Mini-Circuits                      | ZFL-1000VH2B         | AMP-ZFL-01    | Oct. 30, 2018 | Oct. 29, 2019 |
| Trilog Broadband Antenna<br>SCHWARZBECK             | VULB 9168            | 9168-406      | Nov. 22, 2018 | Nov. 21, 2019 |
| RF Cable                                            | 8D                   | 966-4-1       | Mar. 21, 2018 | Mar. 20, 2019 |
| RF Cable                                            | 8D                   | 966-4-2       | Mar. 21, 2018 | Mar. 20, 2019 |
| RF Cable                                            | 8D                   | 966-4-3       | Mar. 21, 2018 | Mar. 20, 2019 |
| Fixed attenuator<br>Mini-Circuits                   | UNAT-5+              | PAD-3m-4-01   | Sep. 27, 2018 | Sep. 26, 2019 |
| Horn_Antenna<br>SCHWARZBECK                         | BBHA 9120D           | 9120D-783     | Nov. 25, 2018 | Nov. 24, 2019 |
| Pre-Amplifier<br>EMCI                               | EMC12630SE           | 980385        | Aug. 16, 2018 | Aug. 15, 2019 |
| RF Cable                                            | EMC104-SM-SM-1200    | 160923        | Jan. 28, 2019 | Jan. 27, 2020 |
| RF Cable                                            | 104 RF cable         | 131215        | Jan. 10, 2019 | Jan. 09, 2020 |
| RF Cable                                            | EMC104-SM-SM-6000    | 180418        | May 07, 2018  | May 06, 2019  |
| Pre-Amplifier<br>EMCI                               | EMC184045SE          | 980387        | Jan. 28, 2019 | Jan. 27, 2020 |
| Horn_Antenna<br>SCHWARZBECK                         | BBHA 9170            | BBHA9170519   | Nov. 25, 2018 | Nov. 24, 2019 |
| RF Cable                                            | EMC102-KM-KM-1200    | 160924        | Jan. 28, 2019 | Jan. 27, 2020 |
| RF Cable                                            | EMC102-KM-KM-1200    | 160925        | Jan. 28, 2019 | Jan. 27, 2020 |
| Software                                            | ADT_Radiated_V8.7.08 | NA            | NA            | NA            |
| Boresight Antenna Tower &<br>Turn Table<br>Max-Full | MF-7802BS            | MF780208530   | NA            | NA            |
| Spectrum Analyzer<br>R&S                            | FSV40                | 100964        | June 20, 2018 | June 19, 2019 |
| Power meter<br>Anritsu                              | ML2495A              | 1014008       | May 09, 2018  | May 08, 2019  |
| Power sensor<br>Anritsu                             | MA2411B              | 0917122       | May 09, 2018  | May 08, 2019  |
| Fixed Attenuator<br>Mini-Circuits                   | MDCS18N-10           | MDCS18N-10-01 | Apr. 16, 2018 | Apr. 15, 2019 |

## Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2 The test was performed in 966 Chamber No. 4.
- 3 The CANADA Site Registration No. is 20331-2
- 4 Loop antenna was used for all emissions below 30 MHz.
- 5 Tested Date: Feb. 27 to 28, 2019



## 4.1.3 Test Procedures

## For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### NOTE:

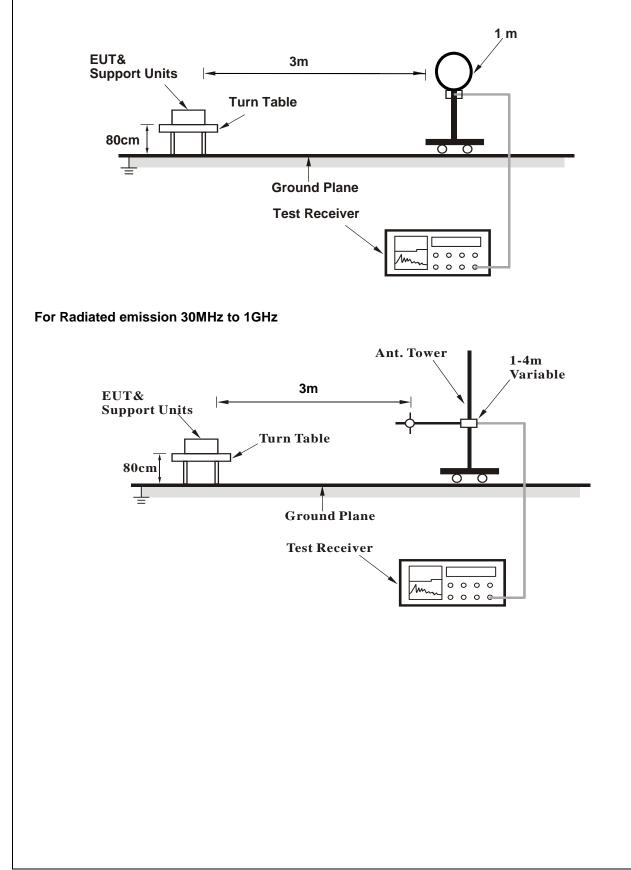
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

#### For Radiated emission above 30MHz

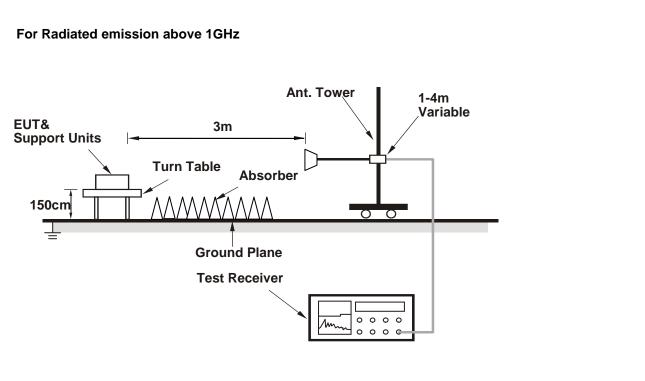
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

#### Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.




## 4.1.5 Test Setup

#### For Radiated emission below 30MHz







For the actual test configuration, please refer to the attached file (Test Setup Photo).

## 4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (VMItest-1.1.6.56) has been activated to set the EUT on specific status.



## 4.1.7 Test Results

#### Above 1GHz Data:

| CHANNEL         | TX Channel 1 | DETECTOR | Peak (PK)    |
|-----------------|--------------|----------|--------------|
| FREQUENCY RANGE | 1GHz ~ 25GHz | FUNCTION | Average (AV) |

| ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |  |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--|--|
|                                                     |                                                                                                                                                                        | LIMIT<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TABLE<br>ANGLE<br>(Degree)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RAW<br>VALUE<br>(dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CORRECTION<br>FACTOR<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |  |  |
| 2390.00                                             | 55.9 PK                                                                                                                                                                | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.28 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |  |  |
| 2390.00                                             | 43.7 AV                                                                                                                                                                | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.28 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.9 | -2.2 |  |  |
| *2403.35                                            | 93.2 PK                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.28 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |  |  |
| *2403.35                                            | 88.9 AV                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.28 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |  |  |
| 4802.70                                             | 39.0 PK                                                                                                                                                                | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -35.0 1.16 H 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |  |  |
| 4802.70                                             | 31.2 AV                                                                                                                                                                | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -22.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.16 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |  |  |
|                                                     | ANTENNA                                                                                                                                                                | <b>POLARITY</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( & TEST DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STANCE: V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ERTICAL A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Т 3 М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |  |  |
| FREQ.<br>(MHz)                                      | EMISSION<br>LEVEL<br>(dBuV/m)                                                                                                                                          | LIMIT<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MARGIN<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANTENNA<br>HEIGHT<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TABLE<br>ANGLE<br>(Degree)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RAW<br>VALUE<br>(dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CORRECTION<br>FACTOR<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |  |  |
| 2390.00                                             | 60.3 PK                                                                                                                                                                | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.29 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |  |  |
| 2390.00                                             | 48.1 AV                                                                                                                                                                | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.29 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |  |  |
| *2403.35                                            | 97.9 PK                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.29 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |  |  |
| *2403.35                                            | 93.6 AV                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.29 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |  |  |
| 4802.70                                             | 43.1 PK                                                                                                                                                                | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -30.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.46 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |  |  |
| 4802.70                                             | 35.0 AV                                                                                                                                                                | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.46 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |  |  |
|                                                     | (MHz)<br>2390.00<br>2390.00<br>*2403.35<br>*2403.35<br>4802.70<br>4802.70<br><b>FREQ.</b><br>(MHz)<br>2390.00<br>2390.00<br>2390.00<br>2390.00<br>*2403.35<br>*2403.35 | FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)           2390.00         55.9 PK           2390.00         55.9 PK           2390.00         43.7 AV           *2403.35         93.2 PK           *2403.35         88.9 AV           4802.70         39.0 PK           4802.70         31.2 AV           FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)           2390.00         60.3 PK           2390.00         48.1 AV           *2403.35         97.9 PK           *2403.35         93.6 AV           4802.70         43.1 PK | FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)           2390.00         55.9 PK         74.0           2390.00         43.7 AV         54.0           *2403.35         93.2 PK         *           *2403.35         88.9 AV         *           *2403.35         39.0 PK         74.0           4802.70         39.0 PK         74.0           4802.70         31.2 AV         54.0           FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)           2390.00         60.3 PK         74.0           2390.00         60.3 PK         74.0           2390.00         48.1 AV         54.0           *2403.35         97.9 PK         *           *2403.35         93.6 AV         4802.70 | FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)           2390.00         55.9 PK         74.0         -18.1           2390.00         43.7 AV         54.0         -10.3           *2403.35         93.2 PK         *         *           *2403.35         93.2 PK         *         *           *2403.35         88.9 AV         *         *           4802.70         39.0 PK         74.0         -35.0           4802.70         39.0 PK         74.0         -35.0           4802.70         31.2 AV         54.0         -22.8           ANTENNA POLARITY & TEST DI         EMISSION         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)           2390.00         60.3 PK         74.0         -13.7           2390.00         60.3 PK         74.0         -5.9           *2403.35         97.9 PK         *         *           *2403.35         93.6 AV         *         *           4802.70         43.1 PK         74.0         -30.9 | FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)           2390.00         55.9 PK         74.0         -18.1         2.28 H           2390.00         43.7 AV         54.0         -10.3         2.28 H           *2403.35         93.2 PK         2.28 H         2.28 H           *2403.35         88.9 AV         2.28 H         2.28 H           4802.70         39.0 PK         74.0         -35.0         1.16 H           4802.70         39.0 PK         74.0         -35.0         1.16 H           ANTENNA POLARITY & TEST DISTANCE: V         FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)           2390.00         60.3 PK         74.0         -13.7         1.29 V           2390.00         60.3 PK         74.0         -13.7         1.29 V           2390.00         48.1 AV         54.0         -5.9         1.29 V           *2403.35         97.9 PK         1.29 V         1.29 V           *2403.35         93.6 AV         -30.9         1.46 V | FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)         TABLE<br>ANGLE<br>(Degree)           2390.00         55.9 PK         74.0         -18.1         2.28 H         341           2390.00         43.7 AV         54.0         -10.3         2.28 H         341           *2403.35         93.2 PK         2.28 H         341         341           *2403.35         88.9 AV         2.28 H         341           4802.70         39.0 PK         74.0         -35.0         1.16 H         177           4802.70         31.2 AV         54.0         -22.8         1.16 H         177           ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)         TABLE<br>ANGLE<br>(Degree)           2390.00         60.3 PK         74.0         -13.7         1.29 V         218           2390.00         48.1 AV         54.0         -5.9         1.29 V         218           2390.00         48.1 AV         54.0         -5.9         1.29 V         218           2390.00         48.1 AV         54.0         -5.9         1.29 V         218           *2403.35         97.9 PK         1.29 V         218 <t< td=""><td>FREQ.<br/>(MHz)         EMISSION<br/>LEVEL<br/>(dBuV/m)         LIMIT<br/>(dBuV/m)         MARGIN<br/>(dB)         ANTENNA<br/>HEIGHT<br/>(m)         TABLE<br/>ANGLE<br/>(Degree)         RAW<br/>VALUE<br/>(dBuV)           2390.00         55.9 PK         74.0         -18.1         2.28 H         341         58.1           2390.00         43.7 AV         54.0         -10.3         2.28 H         341         45.9           *2403.35         93.2 PK          2.28 H         341         95.5           *2403.35         88.9 AV          2.28 H         341         91.2           4802.70         39.0 PK         74.0         -35.0         1.16 H         177         37.3           4802.70         31.2 AV         54.0         -22.8         1.16 H         177         29.5           ANTENNA POLARITY &amp; TEST DISTANCE: VERTICAL AT 3 M           FREQ.<br/>(MHz)         EMISSION<br/>LEVEL<br/>(dBuV/m)         MARGIN<br/>(dB)         ANTENNA<br/>HEIGHT<br/>(m)         TABLE<br/>ANGLE<br/>(Degree)         RAW<br/>VALUE<br/>(dBuV)           2390.00         60.3 PK         74.0         -13.7         1.29 V         218         62.5           2390.00         60.3 PK         74.0         -5.9         1.29 V         218         50.3           '2403.35         97.9 PK&lt;</td></t<> | FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)         TABLE<br>ANGLE<br>(Degree)         RAW<br>VALUE<br>(dBuV)           2390.00         55.9 PK         74.0         -18.1         2.28 H         341         58.1           2390.00         43.7 AV         54.0         -10.3         2.28 H         341         45.9           *2403.35         93.2 PK          2.28 H         341         95.5           *2403.35         88.9 AV          2.28 H         341         91.2           4802.70         39.0 PK         74.0         -35.0         1.16 H         177         37.3           4802.70         31.2 AV         54.0         -22.8         1.16 H         177         29.5           ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M           FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)         TABLE<br>ANGLE<br>(Degree)         RAW<br>VALUE<br>(dBuV)           2390.00         60.3 PK         74.0         -13.7         1.29 V         218         62.5           2390.00         60.3 PK         74.0         -5.9         1.29 V         218         50.3           '2403.35         97.9 PK< |      |      |  |  |

#### **REMARKS**:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " \* ": Fundamental frequency.

| СНА    | NNEL           |                  | TX Channel 19 | Э              | DETECTOR                 |                            | Peak (PK)              |                                |
|--------|----------------|------------------|---------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|
| FRE    |                | ANGE             | 1GHz ~ 25GH   | GHz ~ 25GHz    |                          | FUNCTION                   |                        | V)                             |
|        |                | ANTEN            |               | & TEST D       | ISTANCE: HO              | RIZONTAL                   | _ AT 3 M               |                                |
| NO.    | FREQ.<br>(MHz) | EMISSI<br>LEVE   | LIMIT         | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1      | 2390.00        | 54.4 P           | K 74.0        | -19.6          | 2.23 H                   | 353                        | 56.6                   | -2.2                           |
| 2      | 2390.00        | 41.9 A           | V 54.0        | -12.1          | 2.23 H                   | 353                        | 44.1                   | -2.2                           |
| 3      | *2439.35       | 92.0 P           | 92.0 PK       |                | 2.23 H                   | 353                        | 94.4                   | -2.4                           |
| 4      | *2439.35       | 87.7 A           | V             |                | 2.23 H                   | 353                        | 90.1                   | -2.4                           |
| 5      | 2483.50        | 54.5 P           | K 74.0        | -19.5          | 2.23 H                   | 353                        | 56.8                   | -2.3                           |
| 6      | 2483.50        | 42.0 A           | V 54.0        | -12.0          | 2.23 H                   | 353                        | 44.3                   | -2.3                           |
| 7      | 4878.70        | 39.0 P           | K 74.0        | -35.0          | 1.20 H                   | 166                        | 37.3                   | 1.7                            |
| 8      | 4878.70        | 31.4 A           | V 54.0        | -22.6          | 1.20 H                   | 166                        | 29.7                   | 1.7                            |
| 9      | 7318.05        | 53.9 P           | K 74.0        | -20.1          | 1.17 H                   | 18                         | 45.7                   | 8.2                            |
| 10     | 7318.05        | 46.5 A           | V 54.0        | -7.5           | 1.17 H                   | 18                         | 38.3                   | 8.2                            |
|        |                | ANTE             | NNA POLARIT   | Y & TEST       | DISTANCE: V              | ERTICAL                    | AT 3 M                 |                                |
| NO.    | FREQ.<br>(MHz) | EMISSI<br>LEVE   | LIMIT         | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1      | 2390.00        | 54.6 P           | K 74.0        | -19.4          | 1.19 V                   | 222                        | 56.8                   | -2.2                           |
| 2      | 2390.00        | 42.1 A           | V 54.0        | -11.9          | 1.19 V                   | 222                        | 44.3                   | -2.2                           |
| 3      | *2439.35       | 96.7 P           | ĸ             |                | 1.19 V                   | 222                        | 99.1                   | -2.4                           |
| 4      | *2439.35       | 92.4 A           | V             |                | 1.19 V                   | 222                        | 94.8                   | -2.4                           |
| 5      | 2483.50        | 54.7 P           | K 74.0        | -19.3          | 1.19 V                   | 222                        | 57.0                   | -2.3                           |
| 6      | 2483.50        | 42.3 A           | V 54.0        | -11.7          | 1.19 V                   | 222                        | 44.6                   | -2.3                           |
|        | 1070 70        | 40 7 D           |               | 04.0           | 4 45 14                  | 28                         | 44.0                   | 4 7                            |
| 7      | 4878.70        | 42.7 P           | K 74.0        | -31.3          | 1.45 V                   | 28                         | 41.0                   | 1.7                            |
| 7<br>8 | 4878.70        | 42.7 P<br>34.9 A |               | -31.3          | 1.45 V<br>1.45 V         | 28<br>28                   | 33.2                   | 1.7                            |

#### **REMARKS**:

7318.05

7318.05

9

10

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-17.9

-4.8

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.50 V

1.50 V

334

334

47.9

41.0

8.2

8.2

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

74.0

54.0

5. " \* ": Fundamental frequency.

56.1 PK

49.2 AV

| CHANNEL         | TX Channel 39 | DETECTOR | Peak (PK)    |
|-----------------|---------------|----------|--------------|
| FREQUENCY RANGE | 1GHz ~ 25GHz  | FUNCTION | Average (AV) |

|     |                | ANTENNA                       | POLARITY          | & TEST DIS     | TANCE: HO                | RIZONTAL                   | AT 3 M                 |                                |
|-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|
| NO. | FREQ.<br>(MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1   | *2479.35       | 91.6 PK                       |                   |                | 2.22 H                   | 354                        | 94.0                   | -2.4                           |
| 2   | *2479.35       | 87.2 AV                       |                   |                | 2.22 H                   | 354                        | 89.6                   | -2.4                           |
| 3   | 2483.50        | 58.4 PK                       | 74.0              | -15.6          | 2.22 H                   | 354                        | 60.7                   | -2.3                           |
| 4   | 2483.50        | 46.4 AV                       | 54.0              | -7.6           | 2.22 H                   | 354                        | 48.7                   | -2.3                           |
| 5   | 4958.70        | 39.2 PK                       | 74.0              | -34.8          | 1.19 H                   | 175                        | 37.2                   | 2.0                            |
| 6   | 4958.70        | 31.5 AV                       | 54.0              | -22.5          | 1.19 H                   | 175                        | 29.5                   | 2.0                            |
| 7   | 7438.05        | 53.6 PK                       | 74.0              | -20.4          | 1.13 H                   | 8                          | 45.0                   | 8.6                            |
| 8   | 7438.05        | 46.1 AV                       | 54.0              | -7.9           | 1.13 H                   | 8                          | 37.5                   | 8.6                            |
|     |                | ANTENNA                       | POLARITY          | & TEST DI      | STANCE: V                | ERTICAL A                  | Т 3 М                  |                                |
| NO. | FREQ.<br>(MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1   | *2479.35       | 96.4 PK                       |                   |                | 1.11 V                   | 228                        | 98.8                   | -2.4                           |
| 2   | *2479.35       | 91.9 AV                       |                   |                | 1.11 V                   | 228                        | 94.3                   | -2.4                           |
| 3   | 2483.50        | 62.8 PK                       | 74.0              | -11.2          | 1.11 V                   | 228                        | 65.1                   | -2.3                           |
| 4   | 2483.50        | 50.9 AV                       | 54.0              | -3.1           | 1.11 V                   | 228                        | 53.2                   | -2.3                           |
| 5   | 4958.70        | 42.9 PK                       | 74.0              | -31.1          | 1.49 V                   | 14                         | 40.9                   | 2.0                            |
| 6   | 4958.70        | 35.0 AV                       | 54.0              | -19.0          | 1.49 V                   | 14                         | 33.0                   | 2.0                            |
| 7   | 7438.05        | 56.8 PK                       | 74.0              | -17.2          | 1.53 V                   | 326                        | 48.2                   | 8.6                            |
| 8   | 7438.05        | 49.6 AV                       | 54.0              | -4.4           | 1.53 V                   | 326                        | 41.0                   | 8.6                            |

#### **REMARKS**:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

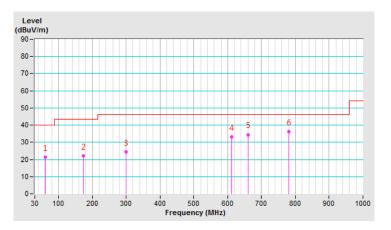
4. The other emission levels were very low against the limit.

5. " \* ": Fundamental frequency.



Below 1GHz Data:

| CHANNEL         | TX Channel 1       | DETECTOR | Oweni Back (OB) |
|-----------------|--------------------|----------|-----------------|
| FREQUENCY RANGE | E 9kHz ~ 1GHz FUNC | FUNCTION | Quasi-Peak (QP) |


|     |                | ANTENNA                       | POLARITY          |                | TANCE: HO                | RIZONTAL                   | AT 3 M                 |                                |
|-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|
| NO. | FREQ.<br>(MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1   | 61.48          | 21.5 QP                       | 40.0              | -18.5          | 2.00 H                   | 141                        | 30.7                   | -9.2                           |
| 2   | 173.78         | 22.1 QP                       | 43.5              | -21.4          | 1.50 H                   | 94                         | 30.8                   | -8.7                           |
| 3   | 300.02         | 24.5 QP                       | 46.0              | -21.5          | 1.00 H                   | 232                        | 31.6                   | -7.1                           |
| 4   | 612.02         | 33.2 QP                       | 46.0              | -12.8          | 1.50 H                   | 322                        | 32.5                   | 0.7                            |
| 5   | 659.99         | 34.5 QP                       | 46.0              | -11.5          | 1.00 H                   | 326                        | 33.2                   | 1.3                            |
| 6   | 780.00         | 36.2 QP                       | 46.0              | -9.8           | 1.00 H                   | 133                        | 32.2                   | 4.0                            |

## **REMARKS**:

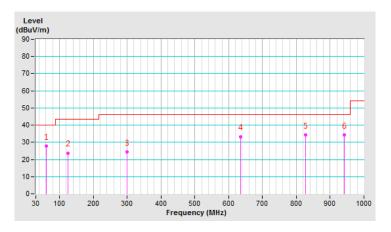
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



| CHANNEL         | TX Channel 1 | DETECTOR |                 |  |
|-----------------|--------------|----------|-----------------|--|
| FREQUENCY RANGE | 9kHz ~ 1GHz  | FUNCTION | Quasi-Peak (QP) |  |


|     |                | ANTENNA                       | POLARITY          | & TEST DI      | STANCE: V                | ERTICAL A                  | Т 3 М                  |                                |
|-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|
| NO. | FREQ.<br>(MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |
| 1   | 61.72          | 27.7 QP                       | 40.0              | -12.3          | 1.00 V                   | 0                          | 36.9                   | -9.2                           |
| 2   | 125.86         | 23.8 QP                       | 43.5              | -19.7          | 1.50 V                   | 360                        | 33.2                   | -9.4                           |
| 3   | 300.02         | 24.4 QP                       | 46.0              | -21.6          | 1.00 V                   | 0                          | 31.5                   | -7.1                           |
| 4   | 635.98         | 33.4 QP                       | 46.0              | -12.6          | 1.00 V                   | 73                         | 32.2                   | 1.2                            |
| 5   | 827.99         | 34.3 QP                       | 46.0              | -11.7          | 1.50 V                   | 216                        | 29.8                   | 4.5                            |
| 6   | 942.75         | 34.2 QP                       | 46.0              | -11.8          | 1.00 V                   | 59                         | 27.9                   | 6.3                            |

#### **REMARKS:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





## 4.2 Conducted Emission Measurement

## 4.2.1 Limits of Conducted Emission Measurement

|                 | Conducted  | Limit (dBuV) |  |  |
|-----------------|------------|--------------|--|--|
| Frequency (MHz) | Quasi-peak | Average      |  |  |
| 0.15 - 0.5      | 66 - 56    | 56 - 46      |  |  |
| 0.50 - 5.0      | 56         | 46           |  |  |
| 5.0 - 30.0      | 60         | 50           |  |  |

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

## 4.2.2 Test Instruments

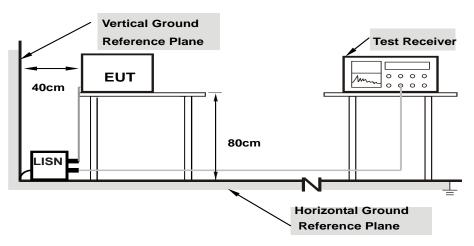
| DESCRIPTION &<br>MANUFACTURER                                      | MODEL NO.               | SERIAL NO. | CALIBRATED<br>DATE | CALIBRATED<br>UNTIL |
|--------------------------------------------------------------------|-------------------------|------------|--------------------|---------------------|
| Test Receiver<br>R&S                                               | ESCS 30                 | 847124/029 | Oct. 24, 2018      | Oct. 23, 2019       |
| Line-Impedance<br>Stabilization Network<br>(for EUT)<br>R&S        | ESH3-Z5                 | 848773/004 | Oct. 22, 2018      | Oct. 21, 2019       |
| Line-Impedance<br>Stabilization Network<br>(for Peripheral)<br>R&S | ENV216                  | 100072     | June 04, 2018      | June 03, 2019       |
| 50 ohms Terminator                                                 | N/A                     | 3          | Oct. 22, 2018      | Oct. 21, 2019       |
| RF Cable                                                           | 5D-FB                   | COCCAB-001 | Sep. 28, 2018      | Sep. 27, 2019       |
| Fixed attenuator<br>EMCI                                           | STI02-2200-10           | 003        | Mar. 16, 2018      | Mar. 15, 2019       |
| Software<br>BVADT                                                  | BVADT_Cond_<br>V7.3.7.4 | NA         | NA                 | NA                  |

#### Note:

- 2. The test was performed in Conduction 1.
- 3 Tested Date: Feb. 26, 2019

<sup>1.</sup> The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.




#### 4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

#### 4.2.4 Deviation from Test Standard

No deviation.

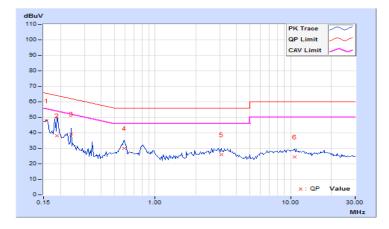
#### 4.2.5 Test Setup



**Note: 1.Support units were connected to second LISN.** For the actual test configuration, please refer to the attached file (Test Setup Photo).

#### 4.2.6 EUT Operating Conditions

Same as 4.1.6.




## 4.2.7 Test Results

| Phase | 9        | Li     | ne (L) |         | C     | etector Fu | nction    |       | Quasi-Peak (QP) /<br>Average (AV) |        |  |
|-------|----------|--------|--------|---------|-------|------------|-----------|-------|-----------------------------------|--------|--|
|       | Frag     | Corr.  | Readin | g Value | Emiss | ion Level  | Lir       | nit   | Mar                               | gin    |  |
| No    | Freq.    | Factor | [dB    | (uV)]   | [dB   | (uV)]      | [dB (uV)] |       | (dl                               | B)     |  |
|       | [MHz]    | (dB)   | Q.P.   | AV.     | Q.P.  | AV.        | Q.P.      | AV.   | Q.P.                              | AV.    |  |
| 1     | 0.15781  | 10.02  | 37.93  | 23.27   | 47.95 | 33.29      | 65.58     | 55.58 | -17.63                            | -22.29 |  |
| 2     | 0.18906  | 10.04  | 28.11  | 17.60   | 38.15 | 27.64      | 64.08     | 54.08 | -25.93                            | -26.44 |  |
| 3     | 0.23984  | 10.05  | 29.35  | 9.73    | 39.40 | 19.78      | 62.10     | 52.10 | -22.70                            | -32.32 |  |
| 4     | 0.59141  | 10.08  | 20.08  | 11.46   | 30.16 | 21.54      | 56.00     | 46.00 | -25.84                            | -24.46 |  |
| 5     | 3.07031  | 10.21  | 15.77  | 10.76   | 25.98 | 20.97      | 56.00     | 46.00 | -30.02                            | -25.03 |  |
| 6     | 10.67578 | 10.57  | 13.88  | 8.15    | 24.45 | 18.72      | 60.00     | 50.00 | -35.55                            | -31.28 |  |

#### **REMARKS:**

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



| Phase | 9       | Ne     | eutral (N)     |         |       | Detector Fu | nction |           | Quasi-Peak (QP) /<br>Average (AV) |        |  |
|-------|---------|--------|----------------|---------|-------|-------------|--------|-----------|-----------------------------------|--------|--|
|       | Frag    | Corr.  | Readin         | g Value | Emis  | sion Level  | Lir    | nit       | Mar                               | gin    |  |
| No    | Freq.   | Factor | ctor [dB (uV)] |         | [d    | [dB (uV)]   |        | [dB (uV)] |                                   | B)     |  |
|       | [MHz]   | (dB)   | Q.P.           | AV.     | Q.P.  | AV.         | Q.P.   | AV.       | Q.P.                              | AV.    |  |
| 1     | 0.15000 | 9.93   | 33.67          | 20.04   | 43.60 | ) 29.97     | 66.00  | 56.00     | -22.40                            | -26.03 |  |
| 2     | 0.17344 | 9.93   | 31.28          | 17.18   | 41.21 | 27.11       | 64.79  | 54.79     | -23.58                            | -27.68 |  |
| 3     | 0.29453 | 9.95   | 13.83          | 1.38    | 23.78 | 3 11.33     | 60.40  | 50.40     | -36.62                            | -39.07 |  |
| 4     | 0.58359 | 9.97   | 18.83          | 11.00   | 28.80 | 20.97       | 56.00  | 46.00     | -27.20                            | -25.03 |  |
| 5     | 2.36328 | 10.05  | 14.56          | 8.60    | 24.61 | 18.65       | 56.00  | 46.00     | -31.39                            | -27.35 |  |
| 6     | 7.62500 | 10.28  | 13.40          | 8.51    | 23.68 | 8 18.79     | 60.00  | 50.00     | -36.32                            | -31.21 |  |

#### **REMARKS:**

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.





## 4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

## 4.3.2 Test Setup



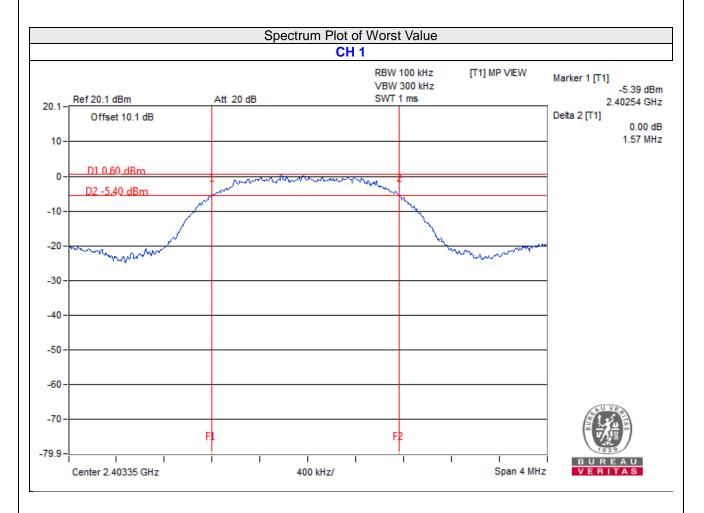
#### 4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

#### 4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW)  $\ge$  3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation from Test Standard

No deviation.


#### 4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.



## 4.3.7 Test Result

| Channel | Frequency (MHz) | 6dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass / Fail |
|---------|-----------------|------------------------|------------------------|-------------|
| 1       | 2403.35         | 1.57                   | 0.5                    | Pass        |
| 19      | 2439.35         | 1.62                   | 0.5                    | Pass        |
| 39      | 2479.35         | 1.65                   | 0.5                    | Pass        |





## 4.4 Conducted Output Power Measurement

## 4.4.1 Limits OF Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

## 4.4.2 Test Setup



#### 4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

## 4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

#### 4.4.6 EUT Operating Conditions

Same as Item 4.3.6.



## 4.4.7 Test Results

## FOR PEAK POWER

| Channel | Frequency (MHz) | Peak Power<br>(mW) | Peak Power<br>(dBm) | Limit (dBm) | Pass/Fail |
|---------|-----------------|--------------------|---------------------|-------------|-----------|
| 1       | 2403.35         | 2.213              | 3.45                | 30          | Pass      |
| 19      | 2439.35         | 2.046              | 3.11                | 30          | Pass      |
| 39      | 2479.35         | 1.683              | 2.26                | 30          | Pass      |

## FOR AVERAGE POWER

| Channel | Frequency<br>(MHz) | Average Power<br>(mW) | Average Power<br>(dBm) |
|---------|--------------------|-----------------------|------------------------|
| 1       | 2403.35            | 1.6                   | 2.04                   |
| 19      | 2439.35            | 1.449                 | 1.61                   |
| 39      | 2479.35            | 1.099                 | 0.41                   |



## 4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3kHz.

## 4.5.2 Test Setup



#### 4.5.3 Test Instruments

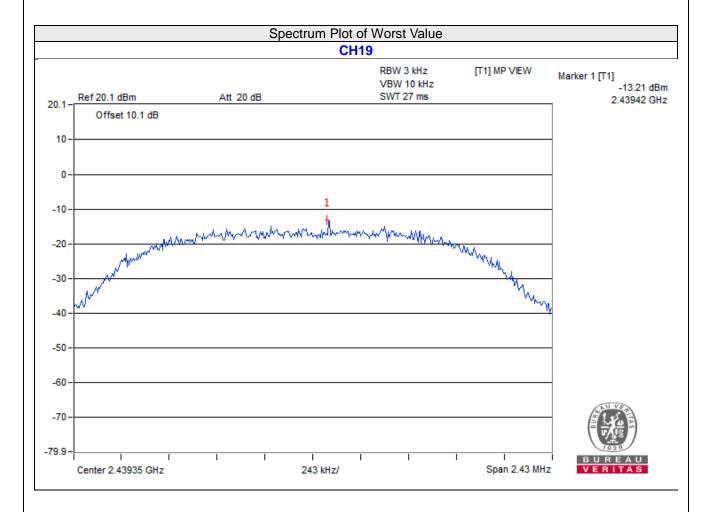
Refer to section 4.1.2 to get information of above instrument.

#### 4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to:  $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$ .
- d. Set the VBW ≥  $3 \times RBW$ .
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

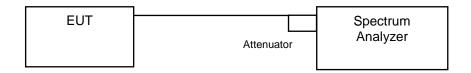
Same as Item 4.3.6



## 4.5.7 Test Results

| Channel | Freq.<br>(MHz) | PSD<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Pass<br>/Fail |
|---------|----------------|-------------------|---------------------|---------------|
| 1       | 2403.35        | -14.25            | 8.00                | Pass          |
| 19      | 2439.35        | -13.21            | 8.00                | Pass          |
| 39      | 2479.35        | -15.28            | 8.00                | Pass          |






## 4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

## 4.6.2 Test Setup



#### 4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

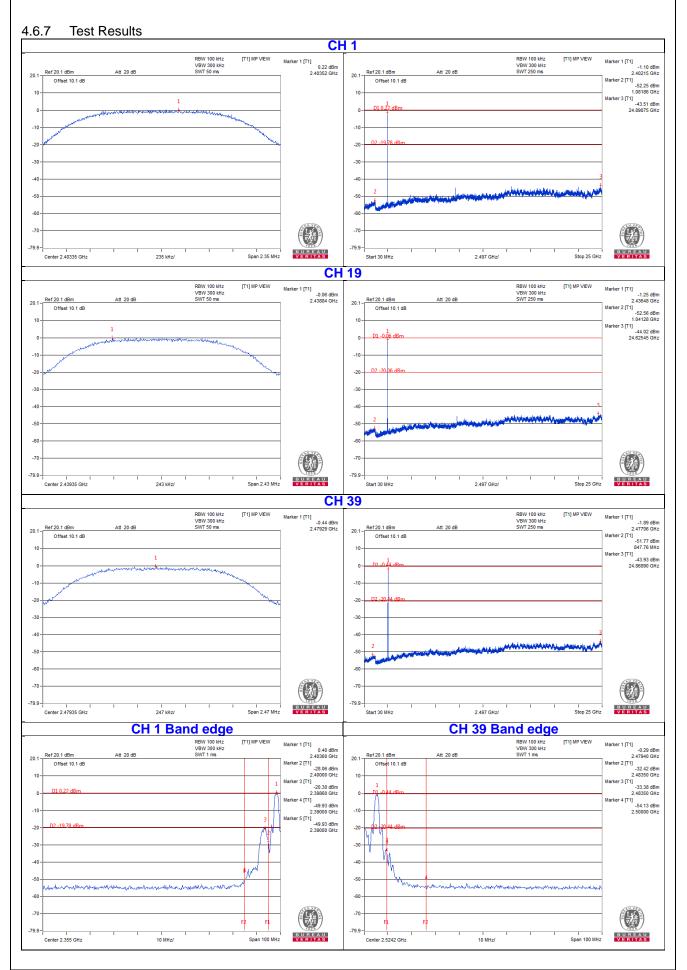


## MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW  $\geq$  300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

#### MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.


#### 4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition

Same as Item 4.3.6







# 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



## Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linkou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---