

This report is in conformity with EN 45001 and ISO/IEC 17025. The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report must not be reproduced in any form except in full with the approval of Hermon Laboratories Ltd.

Contents

1 Project information	
2 Summary of tests	
3 EUT description	
 3.1 GENERAL DESCRIPTION	
4.1 FIELD STRENGTH OF EMISSION WITHIN THE ASSIGNED BAND ACCORDING TO § 15.225 (A)	
4.2 OUT OF BAND RADIATED SPURIOUS EMISSIONS ACCORDING TO § 15.225 (B), §15.209	
 4.3 FREQUENCY TOLERANCE OF THE CARRIER SIGNAL ACCORDING TO § 15.225 (c) 4.4 Receiver spurious emissions, according to §15.109 	
 4.4 Receiver sporious emissions, according to §15.109	
4.6 UNINTENTIONAL RADIATED EMISSIONS TEST ACCORDING TO §15.109	
Appendix A Plots	15
Appendix B Test setup photographs	
Appendix C Test equipment used for tests and correction factors	
Appendix D General information	
TEST FACILITY DESCRIPTION	
ABBREVIATIONS AND ACRONYMS	
SPECIFICATION REFERENCES	

1 **Project information**

Description of equipment under test

Test items Manufacturer Types (Models) Equipment FCC code¹ :Reader :On Track Innovations Ltd. :Saturn M.B V-2 :DXX

Applicant information

Applicant's responsible person Company Address City Postal code Country Telephone number Telefax number

Test performance

Project Number: Location Receipt date Test started Test completed Purpose of test Test specification(s) :Mr. Hemy Itay, project manager : On Track Innovations Ltd. :Zahar industrial zone, P.O.B. 32 :Rosh Pina :12000 :Israel :+972 4 6868000 :+972 4 6938887

:14816 :Hermon Laboratories :September 16, 2002 :October 7, 2002 :October 8, 2002 Apparatus compliance verification in accordance with emission requirements 47CFR Part 15 subpart C §15.225 and subpart B

¹ FCC Equipment codes – see Appendix D

2 Summary of tests

The tests listed in the table below were performed. The EUT was found complying with the limits of 47CFR Part 15 subpart C §15.225 and subpart B.

Parameter	Subclause	С	NC	NT	NA	Tested by	Date tested	Remarks
Transmitter characteristics, §15.225		•	•	1	•			
Field strength of emission within the assigned band	(a)	С				Mrs. E Pitt, test engineer	Oct-7-2002	
Out of band spurious emissions (radiated)	(b)	С				Mrs. E Pitt, test engineer	Oct-7-2002	
Frequency tolerance of carrier signal	(C)	С				Mrs. E Pitt, test engineer	Oct-8-2002	
Unintentional radiation, §15.107, §15.109								
Conducted emissions	15.107	С				Mrs. E Pitt, test engineer	Oct-7-2002	
Radiated emissions	15.109	С				Mrs. E Pitt, test engineer	Oct-7-2002	
Receiver characteristics, §15.109								
Spurious radiated emissions	15.109	С				Mrs. E Pitt, test engineer	Oct-7-2002	
General conditions under Part 15								
The Intentional radiator operates at 13.56 MHz	15.225	С						
The intentional radiator has permanently attached antenna or antenna that uses a unique coupling to the intentional radiator.	15.203	С						

Parameter	Subclause	С	NC	NT	NA	Tested by	Date tested	Remarks
The intentional radiator has a standard connector and must be professionally installed. To demonstrate that professional installation is required, the following three points must be addressed: (a) the application (or intended use) of the EUT; (b) the installation requirements of the EUT, and (c) the method by which the EUT will be marketed.	15.203				NA			
No antenna other than that furnished by the responsible party can be used with the device.	15.203					Respo	onsibility of the end	user
Antenna technical characteristics, as referred to in "Transmitter description" table in the test report	15.204	С						
NOTE: C: The parameter is compliant with the requirements. NC: The parameter is not compliant with the requirements. NT: The parameter is not tested. NA: The test of this parameter is not applicable.		1						

Test report prepared by: Mrs. V. Mednikov, certification engineer

Test report approved by: Mr. A. Usoskin, QA manager

lig-

3 EUT description

3.1 General description

The Saturn reader is a compact electronic interface unit, which provides bi-directional contact and non-contact communication with smart cards and RS232 communication with local controller.

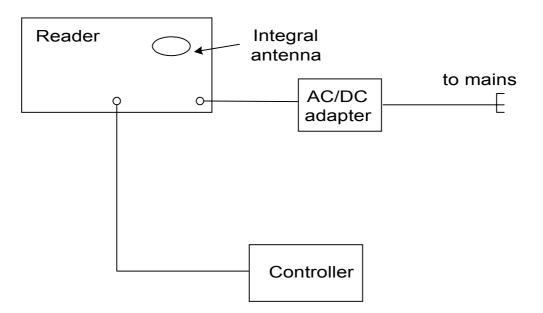
The EUT is powered by 12 V DC from AC/ DC adapter.

3.2 EUT test configuration

The EUT ports and lines description is given in Table 3.2.1, test configuration is shown in Figure 3.2.1. Local oscillator frequencies are 4 MHz, 13.56 MHz, 24 MHz.

Port type	Port description	Connector type	Quantity	Cable type description	Cable length, m	Connected to
Power	DC power	non-detachable	1	unshielded	1.5	AC/DC adapter
Signal	RS232	D-type 9 pin	1	shielded	10	controller

Table 3.2.1 EUT ports and lines


3.2.1 Changes made in EUT

To withstand the radiated emission requirements one ferrite bead manufactured by Steward Corp., p/n A2029-0A was installed at RS232 cable (two turns).

It is manufacturer responsibility to implement the change in the production version of the EUT. In any case the test report applies to the tested item only.

3.3 Transmitter description

Туре													
Х			alone (Equipment with										
			ned equipment (Equi						grated wit	thin anoth	er type of e	quipmen	t)
			card (Equipment inte	nded fo	or a variety	of hos	st systems)					
	•	ther:											
Opera	ating	g frec	luency				13.56 M	IHz					
			ggregate data ra	te (bit	ts per sec	ond)	106						
Norm	al te	st si	gnal				Rep	etiti	ve REQB	(ISO 1444	43-3)		
			d output power										
			ermanent external 5										
Effe	ective	radiat	ed power (for equipr	nent wi	ith integra	al ante	nna) (dBr	n)		dBm into inector	50 Ohm t	emp an	tenna
	ls t	ransm	litter output power	X		No							
		iable?			,	Yes				CC	ntinuous v	variable	
								stepped variable					
										stepsize (dB):			
										minimum RF power			
1								_		(dBm):			
								maximum RF power					
Tuese										(0	Bm):		
Irans	-	-	ower source							1			
	Batt				Nomina	l rate	d voltage	e (v	DC)				
			lickel Cadmium										
			ithium										
X	DC	C	Other		Nomino	Irata	d voltage	<u>, //</u>		1		12	
^		mains	•				d voltage					12	
Is there			oower source for tra	nsmitte				- (v	AU)	x	ves		no
										[,		
Anten	na te	cum	cal characteristic	5		Ти	1 00		Manufa	oturor	Model nu	umbor	Gain
Integral		x	with temporary RF	connor	tor		pe op (very		OTI	clurer	1000691	linner	NA
nicyla	' F	`	without temporary F				nall)						
Externa	al		without temporary r										
		ntenn	a connection NA			- 1					I		I
			onnector				11	inia	ue couplii	na			
	0.011						0			.9			

4 Tests results

4.1 Field strength of emission within the assigned band according to § 15.225 (a)

METHOD OF MEASUREMENTS EQUIPMENT UNDER TEST DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: OPERATING FREQUENCY RANGE TEST DISTANCE ANSI 63.4 §13.1.4 Reader October 7, 2002 57 % 23 °C 13.553-13.567 MHz 3 m

Peak detector

Frequency, MHz	Field strength, dB(μV/m)	Calculated limit*, dB (μV/m)	Margin, dB	Reference to Plots in Appendix A		
13.562 68.57		120 50.43 A1				
Measurement uncertair	nty, dB	± 2.36 dB				

*The limit for 3 m distance was calculated using the square of the inverse linear distance extrapolation factor as follows:

 $Lim_{3m} = Lim_{30m} + 40 \log (S_1/S_2)$, where $S_1 = 30 \text{ m}$, $S_2 = 3 \text{ m}$.

TEST EQUIPMENT USED:

HL 0446	HL 0521	HL 0589	HL 1004				

LIMIT

The field strength of any emissions within 13.553-13.567 MHz band shall not exceed 10000 μ V/m at 30 m.

TEST PROCEDURE

The EUT was tested, being placed on a wooden 80 cm height table in each of three orthogonal planes in turn.

The loop antenna was positioned with its plane horizontal. The loop center was 1 meter above the ground plane. To find maximum radiation the turntable was rotated 360°. Then the loop position was changed to vertical. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated about its vertical axis. Plot A1 in Appendix A refers to vertical antenna polarization as the worst case.

4.2 Out of band radiated spurious emissions according to § 15.225 (b), §15.209

METHOD OF MEASUREMENTS EQUIPMENT UNDER TEST MODE OF OPERATION DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: RATED CARRIER FIELD STRENGTH TEST DISTANCE OPERATING FREQUENCY FREQUENCY RANGE ANSI 63.4 §13.1.4/ §13.1.5 Reader Tx October 7, 2002 57 % 23 °C 68.57 dB(μV/m) 3 m 13.56 MHz 9 kHz to 1000 MHz

Frequency, MHz	Radiated emission, dB (μV/m)	Limit, dB (µV/m)	Margin, dB	Reference to Plots in Appendix A
0.009 – 0.15	1	No spurious emissions four	nd	A2
0.15 – 13.0	1	No spurious emissions four	nd	A3
13.0 – 13.553	All out of ba	nd emissions were found b	pelow the limit	A4
13.567 – 14.0	All out of ba	nd emissions were found b	pelow the limit	A5
14.0 – 30.0	All out of ba	nd emissions were found b	pelow the limit	A6
39.9864	27.53*	40.0	12.47	A7
40.6800	29.88*	40.0	10.12	A7
48.0085	29.70*	40.0	10.30	A7
67.8012	32.86*	40.0	7.14	A7
72.0123	31.75*	40.0	8.25	A7
76.0124	29.75*	A7		
Measurement uncertainty	, dB		\pm 2.36 dB	

* Quasi-peak value

Table abbreviations:

Margin = dB below (negative if above) specification limit.

TEST EQUIPMENT USED:

HL 0446	HL 0521	HL 0589	HL 0604	HL 1004					

LIMIT

The field strength of any emissions appearing outside of the assigned band shall not exceed the general radiated emission limits shown in Section15.209(a).

TEST PROCEDURE

The EUT was tested, being placed on a wooden 80 cm height turntable in each of three orthogonal planes in turn.

9 kHz – 30 MHz frequency range. The loop antenna was positioned with its plane horizontal. The loop center was 1 meter above the ground plane. To find maximum radiation the turntable was rotated 360°. Then the loop position was changed to vertical. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated about its vertical axis. Plots A2 to A6 in Appendix A refer to vertical antenna polarization as the worst case.

30 MHz – 1000 MHz frequency range. To find maximum radiation the turntable was rotated 360°, measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

4.3 Frequency tolerance of the carrier signal according to § 15.225 (c)

METHOD OF MEASUREMENTS EQUIPMENT UNDER TEST MODE OF OPERATION DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: OPERATING FREQUENCY ANSI 63.4 §13.1.6 Reader Tx October 8, 2002 57 % 23 °C 13.56 MHz

Temperature, _ °C	Supply voltage, V AC	Operating frequency, kHz	Frequency tolerance*, kHz	Reference to Plots in Appendix A
	V _{nom} 120 V	13560.3	Reference	A8
T _{nom} 20 °C	V _{min} 102 V	13560.3	0	-
	V _{max} 138 V	13560.3	0	-
T _{min} –20 °C	V _{min} .120 V	13560.9	0.6	A9
T _{max} +50 °C	V _{max} .120 V	13560.1	-0.2	A10
Measurement uncertain	ty		\pm 0.21 ppm	

* Frequency tolerance of the carrier signal shall be within \pm 1.35603 kHz

TEST EQUIPMENT USED:

TEST EQUIPMENT USED.								
HL 0026	HL 0493	HL 0559						

LIMIT

The frequency tolerance of the carrier signal shall be maintained within \pm 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

TEST PROCEDURE

The EUT was tested in the oven, in temperature range $-20^{\circ} - +50^{\circ}$ C with 10° interval.

At each temperature level, prior to frequency measurements, the de-energized EUT was allowed sufficient time for stabilization of all components of oscillator circuit. While maintaining the constant temperature, the EUT was turned on, and the frequency was measured at the startup and two, five and ten minutes after the EUT was energized. The results provided in the Table above refer to the worst case.

At reference (+20°C) temperature the frequency was measured at input voltage (at the adapter input) 85% and 115% of nominal. As the adapter output voltage remained 12 V DC in each case, no difference in frequency values was observed.

4.4 Receiver spurious emissions, according to §15.109

METHOD OF MEASUREMENT: EQUIPMENT UNDER TEST TEST PERFORMED IN: MODE OF OPERATION DATE RELATIVE HUMIDITY AMBIENT TEMPERATURE: DISTANCE BETWEEN ANTENNA AND EUT: THE EUT WAS TESTED AS: RECEIVER OPERATING FREQUENCIES FREQUENCY RANGE: ANSI 63.4 §11.6 / ANSI 63.4 §12.1.4 Reader ANECHOIC CHAMBER Tx October 7, 2002 59 % 23 °C 3 m TABLE-TOP 13.56 MHz 30 MHz – 1 GHz

The EUT highest used frequency (not including operating frequency), MHz	Upper frequency of measurement range, MHz
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

The EUT was tested in Tx mode, all emissions were found below class B specification limit, refer to paragraph 4.2 and Plot A7.

TEST EQUIPMENT USED:

TEST EQUIPMENT USED.							

LIMIT

§ 15.109

Frequency, MHz	Class A equipment @ 10 m dB(µV/m)	Class B equipment @ 3 m dB(μV/m)
30 – 88	39.0	40
88 – 216	43.5	43.5
216 – 960	46.4	46
960 - 5000	49.5	54

4.5 Unintentional conducted emissions test according to §15.107, §15.207

METHOD OF MEASUREMENTS DATE: MODE OF OPERATION RELATIVE HUMIDITY: AMBIENT TEMPERATURE: THE EUT WAS TESTED AS: DETECTOR USED: FREQUECNY RANGE: RESOLUTION BANDWIDTH: LINES TESTED ANSI 63.4 §13.1.3 October 7, 2002 Tx 54% 22 °C TABLE-TOP QUASI-PEAK 450 kHz – 30 MHz 9 kHz PHASE/NEUTRAL

Class B equipment

Line: Phase

Frequency, MHz	Measured e dB (µ		Specification limit, dB (μV)	Margin, dB	Reference to Plots in Appendix A
0.512500	32.1	0	48.00	15.90	A11, A12
0.729863	35.9	1	48.00	12.09	A11, A12
0.789863	35.86		48.00	12.14	A11, A12
0.839863	35.1	9	48.00	12.81	A11, A12
0.889863	33.5	5	48.00	14.45	A11, A12
13.559975	39.73		48.00	8.27	A11, A12
Measurement uncertainty, dB			+2.43	3 dB / -2.22 dB	

TEST EQUIPMENT USED:

HL 0163	HL 0521	HL 0586	HL 0787	HL 1003	

LIMIT

Frequency, MHz	Class A Equipment, dB(μV)	Class B equipment, dB(μV)
0.45 - 1.705	60.0	48
1.705 - 30	69.5	48

TEST PROCEDURE

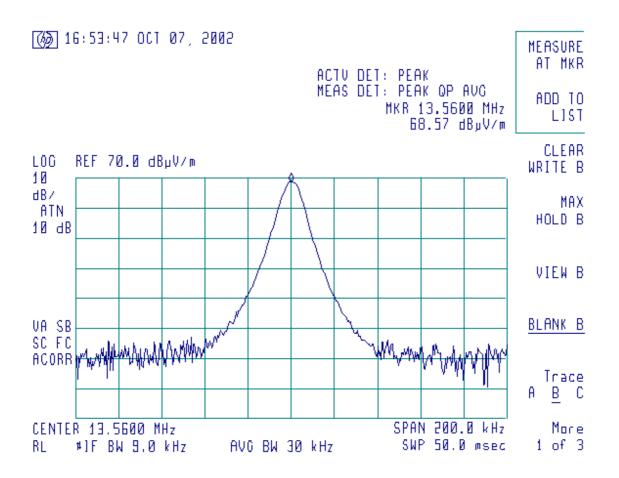
The EUT was set up as shown in Photograph 4 (Appendix B). The measurements were performed at mains terminals by means of LISN, connected to spectrum analyzer. The unused coaxial connector of the LISN was terminated with 50 Ω . The position of device cables was varied to determine maximum emission level.

4.6 Unintentional radiated emissions test according to §15.109

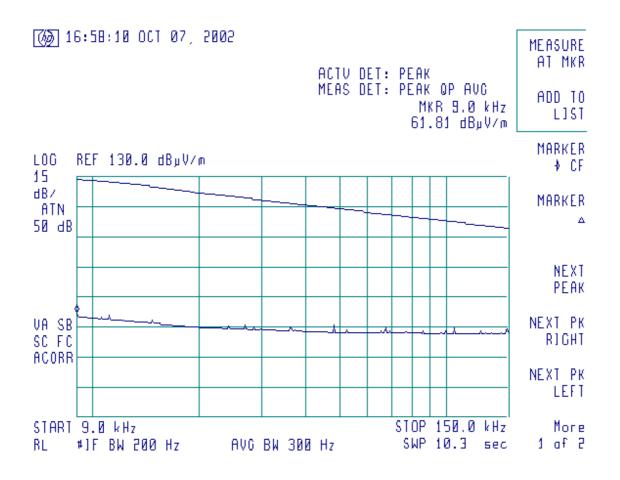
METHOD OF MEASUREMENT: TEST PERFROMED IN: DATE RELATIVE HUMIDITY AMBIENT TEMPERATURE: DISTANCE BETWEEN ANTENNA AND EUT: THE EUT WAS TESTED AS: FREQUECNY RANGE: DETECTOR TYPE: RESOLUTION BANDWIDTH: ANSI 63.4 §11.6 / ANSI 63.4 §12.1.4 ANECHOIC CHAMBER October 7, 2002 59% 23 °C 3 m TABLE-TOP 30 MHz – 1 GHz QUASI-PEAK 120 kHz

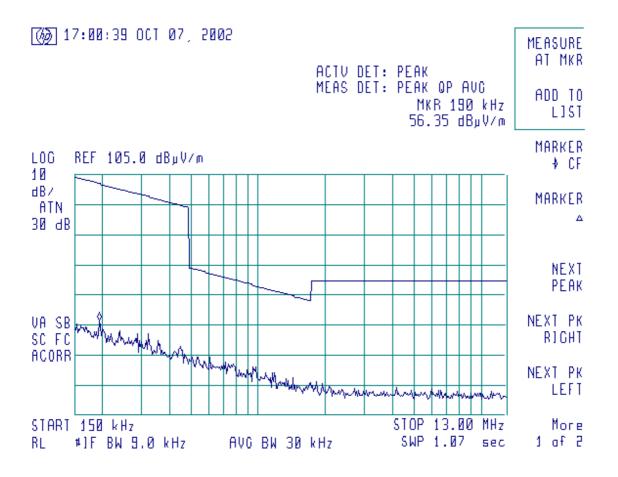
The EUT highest used frequency (not including operating frequency), MHz	Upper frequency of measurement range, MHz
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

The limits for class B unintentional radiated emissions were used while testing the equipment in Tx mode, refer to paragraph 4.2 and Plot A7.

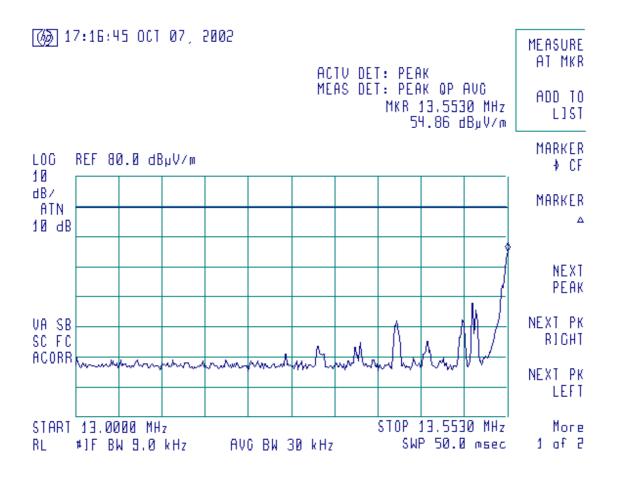

LIMIT (§ 15.109)

Frequency, MHz	Class A equipment @ 10 m dB(μV/m)	Class B equipment @ 3 m dB(µV/m)
30 - 88	39.0	40
88 - 216	43.5	43.5
216 - 960	46.4	46
960 - 5000	49.5	54

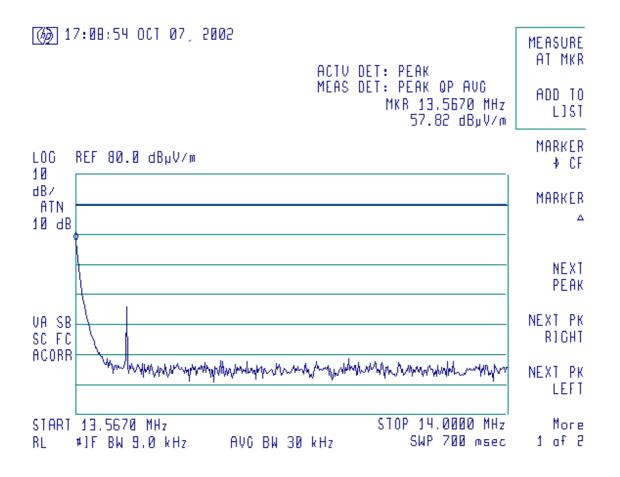

Appendix A Plots



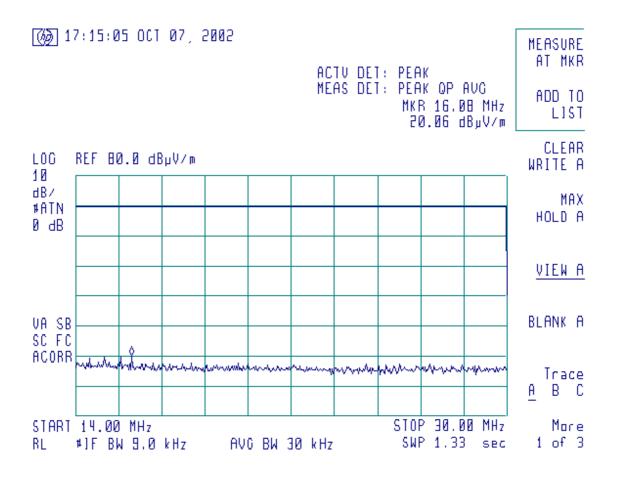
Plot A2 Field strength of out of band emissions, 9 kHz – 150 kHz frequency range



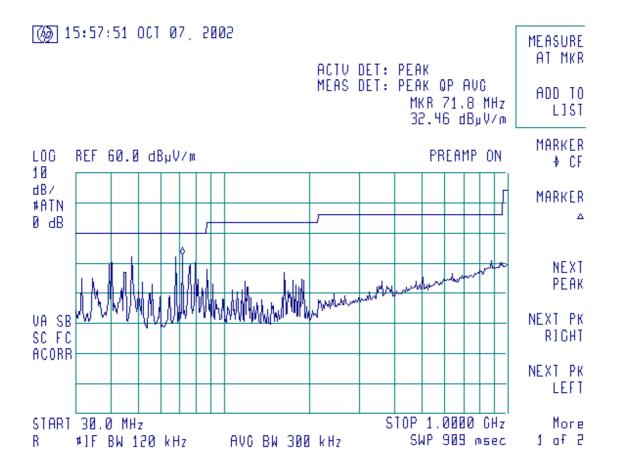
Plot A3 Field strength of out of band emissions, 150 kHz – 13.00 MHz frequency range



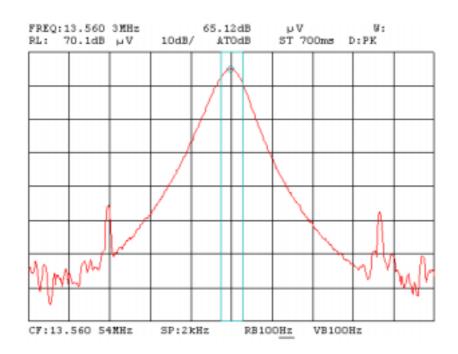
Plot A4 Field strength of out of band emissions, 13.00 – 13.553 MHz frequency range



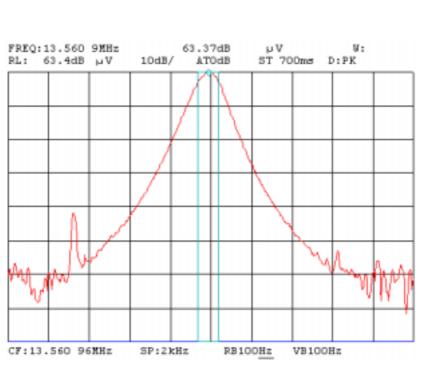
Plot A5 Field strength of out of band emissions, 13.567 – 14.00 MHz frequency range

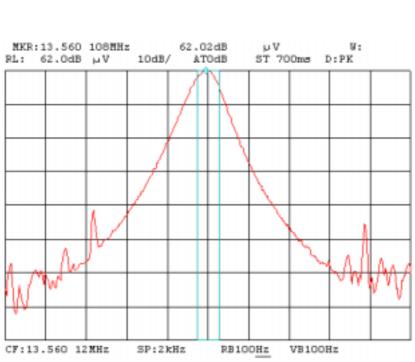


Plot A6 Field strength of out of band emissions, 14.00 – 30.00 MHz frequency range

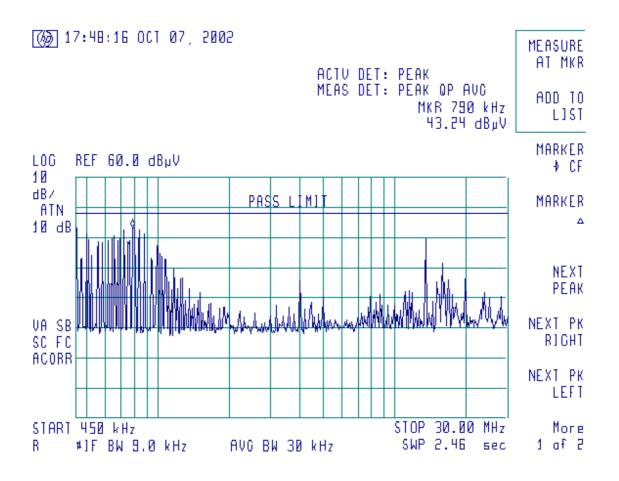


Plot A 7 Field strength of spurious emissions, 30 – 1000 MHz frequency range, vertical / horizontal polarization

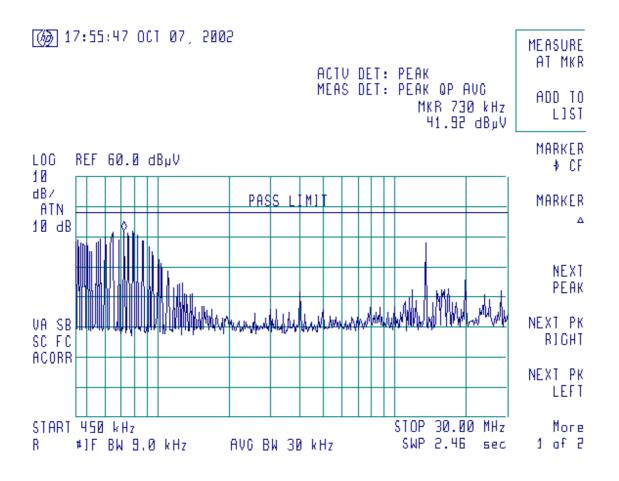



Plot A8 Frequency tolerance, temperature 20°C, supply voltage 120 V (reference)

Plot A9 Frequency tolerance, temperature -20°C, supply voltage 120 V

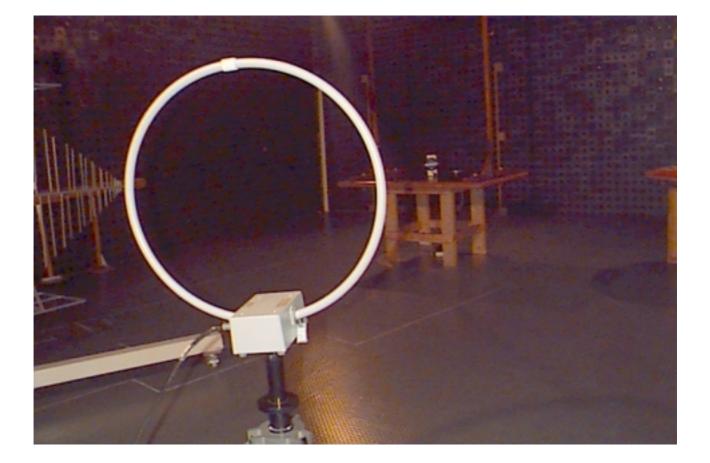


Plot A10 Frequency tolerance, temperature +50°C, supply voltage 120 V



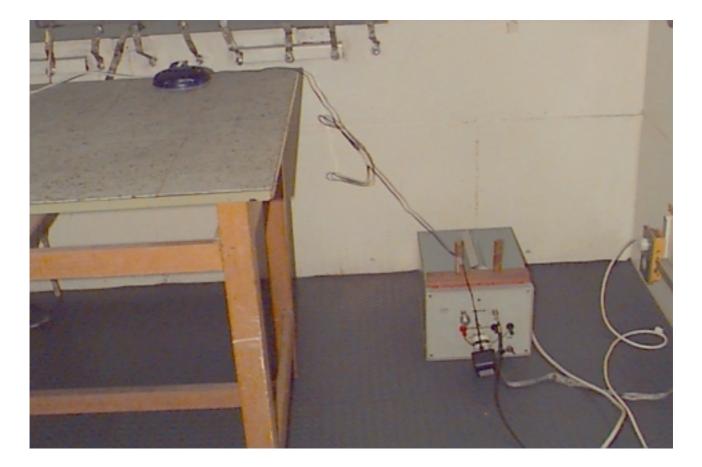
Plot A11 Unintentional conducted emissions on power line, Phase

Plot A12 Unintentional conducted emissions on power line, Neutral



Appendix B Test setup photographs

Photograph 1 EUT test setup


Photograph 2 Radiated emission measurements test setup with loop antenna, 9 kHz – 30 MHz frequency range, anechoic chamber method

Photograph 3 Radiated emission measurements test setup with biconilog antenna, 30 MHz – 1000 MHz frequency range, anechoic chamber method

Photograph 4 Conducted emission measurements test setup

Photograph 5 Frequency tolerance test setup

Photograph 6 Frequency tolerance test setup

Appendix C Test equipment used for tests and correction factors

HL Serial	Description	Man	Manufacturer information				
No.		Name	Model No.	Serial No.	Month/ year		
0026	Spectrum analyzer, 100 Hz-2.2 GHz	Anritsu	MS 2601A	3460	8/03		
0163	LISN FCC/VDE/MIL -STD	Electro-Metrics	ANS-25/2	1314	10/03		
0446	Active Loop Antenna, 10 kHz-30 MHz	Electro- Mechanics	6502	2857	11/02		
0493	Oven temperature	Thermotron	S-1.2 Mini-Max	4016	3/03		
0521	Spectrum Analyzer with RF filter section (EMI Receiver 9 kHz - 6.5 GHz)	Hewlett Packard	8546A	0319	7/03		
0559	Multimeter Digital	Fluke	76	0903	10/03		
0586	Load termination BNC 50 Ohm, 0.5 W	Hermon Labs	LT-50	095	11/02 check		
0589	Cable Coaxial, GORE A2POL118.2, 3m	Hermon Labs	GORE-3	589	11/02		
0604	Antenna Biconilog Log-Periodic/T Bow- Tie, 26 - 2000 MHz	EMCO	3141	9611-1011	12/02		
0787	Transient limiter	Hewlett Packard	11947A-8ZE	3107A01877	11/02		
1003	Cable coaxial, M17/164, 10 m	Hermon Labs	C17164-10	161	11/02		
1004	Cable coaxial, ANDREW PSWJ4, 6 m	Hermon Labs	ANDREW-6	163	12/02		

Correction factor Line impedance stabilization network Model ANS-25/2 Electro-Metrics

Frequency, kHz	Correction Factor
10	4.9
15	2.86
20	1.83
25	1.25
30	0.91
35	0.69
40	0.53
50	0.35
60	0.25
70	0.18
80	0.14
90	0.11
100	0.09
125	0.06
150	0.04

The correction factor dB is to be added to the meter readings (dB/µV) of the interference analyzer or spectrum analyzer.

Antenna Factor Active Loop Antenna Model 6502 S/N 2857

Frequency, MHz	Antenna Factor, dB
0.009	-32.8
0.010	-33.8
0.020	-38.3
0.050	-41.1
0.075	-41.3
0.100	-41.6
0.150	-41.7
0.250	-41.6
0.500	-41.8
0.750	-41.9
1.000	-41.4
2.000	-41.5
3.000	-41.4
4.000	-41.4
5.000	-41.5
10.000	-41.9
15.000	-41.9
20.000	-42.2
25.000	-42.8
30.000	-44.0

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V)$ meter)

Antenna Factor Biconilog Antenna EMCO Model 3141 Ser.No.1011

Frequency, MHz	Antenna Factor, dB(1/m)	Frequency, MHz	Antenna Factor, dB(1/m)
26	7.8	940	24.0
28	7.8	960	24.1
30	7.8	980	24.5
40	7.2	1000	24.9
60	7.1	1020	25.0
70	8.5	1040	25.2
80	9.4	1060	25.4
90	9.8	1080	25.6
100	9.7	1100	25.7
110	9.3	1120	26.0
120	8.8	1140	26.4
130	8.7	1160	27.0
140	9.2	1180	27.0
150	9.8	1200	26.7
160	10.2	1200	26.5
170	10.2	1220	26.5
180	10.4	1240	26.5
190	10.4	1280	26.6
200	10.6	1300	27.0
220	11.6 12.4	1320	27.8
240		1340	28.3
260	12.8	1360	28.2
280	13.7	1380	27.9
300	14.7	1400	27.9
320	15.2	1420	27.9
340	15.4	1440	27.8
360	16.1	1460	27.8
380	16.4	1480	28.0
400	16.6	1500	28.5
420	16.7	1520	28.9
440	17.0	1540	29.6
460	17.7	1560	29.8
480	18.1	1580	29.6
500	18.5	1600	29.5
520	19.1	1620	29.3
540	19.5	1640	29.2
560	19.8	1660	29.4
580	20.6	1680	29.6
600	21.3	1700	29.8
620	21.5	1720	30.3
640	21.2	1740	30.8
660	21.4	1760	31.1
680	21.9	1780	31.0
700	22.2	1800	30.9
720	22.2	1820	30.7
740	22.1	1840	30.6
760	22.3	1860	30.6
780	22.6	1880	30.6
800	22.0	1900	30.6
820	22.9	1900	30.7
		1920	
840	23.1		30.9
860	23.4	1960	31.2
880	23.8	1980	31.6
900	24.1	2000	32.0
920	24.1		

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V)$ meter).

Cable Coaxial, GORE A2P01POL118, 2.3 m, model:GORE-3, s/n 176 (HL 0589) + Cable Coaxial, ANDREW PSWJ4, 6m, model: ANDREW-6, s/n 163 (HL 1004) Calibration data

No.	Parameter	SET, MHz	Measured, dB	Deviation, dB	Tolerance (Specification), dB	Meas. Uncert., dB	Notes
1	Insertion	30	0.33	-			
2	Loss	50	0.40	-			
3	I	100	0.57	-			
4	I	300	0.97	-			
5	I	500	1.25	-			
6	I	800	1.59	-			
7	I	1000	1.81	-			
8	I	1200	1.97	-	≤ 6.5	±0.12	
9	I	1400	2.15	-			
10	I	1600	2.28	-			
11	I	1800	2.43	-			
12	I	2000	2.61	-			
13		2200	2.75	-			
14	I	2400	2.89	-			
15	I	2600	2.97	-			
16	Insertion	2800	3.21	-	≤ 6.5	±0.12	
17	Loss	3000	3.32	-			
18	I	3300	3.47	-			
19	I	3600	3.62	-			
20	I	3900	3.84	-			
21	I	4200	3.92	-		±0.17	
22	I	4500	4.07	-			
23	1	4800	4.36	-	1		
24		5100	4.62	-			
25		5400	4.78	-			
26	Ī	5700	5.16	-			
27		6000	5.67	-			
28		6500	5.99	-			

Cable coaxial M17/164 Model: C17164-10, s/n 161 (HL 1003) Calibration data

No.	Parameter	SET, MHz	Measured, dB	Deviation, dB	Tolerance (Specification), dB	Meas. Uncert., dB	Notes
1	Insertion	30	0.41	-	≤ 12.5	±0.12	
2	Loss	50	0.52	-			
3		100	0.75	-			
4		300	1.45	-			
5		500	2.01	-			
6		800	2.71	-			
7		1000	3.14	-			
8		1200	3.56	-			
9	Ĭ	1400	3.93	-			
10		1600	4.31	-			
11		1800	4.63	-			
12		2000	4.97	-			
13		2200	5.32	-			
14		2400	5.65	-			
15		2600	6.01	-			
16	Insertion	2800	6.42	-	≤ 12.5	±0.12	
17	Loss	3000	6.76	-			
18		3300	7.12	-			
19		3600	7.53	-			
20		3900	7.95	-			
21		4200	8.32	-		±0.17	
22		4500	8.72	-			
23	I	4800	9.14	-			
24		5100	9.59	-]		
25		5400	10.00	-			
26		5700	10.49	-			
27		6000	11.07	-]		
28		6500	11.80	-			

Appendix D General information

Test facility description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private EMC, Safety and Telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, Telecommunications, Safety standards, and by AMTAC (UK) for safety of Medical Devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for Electromagnetic Compatibility, Product Safety, Telecommunications Testing and Environmental Simulation (for exact scope please refer to Certificate No. 839.01).

Address:PO Box 23, Binyamina 30550, Israel.Telephone:+972 4628 8001Fax:+972 4628 8277e-mailmail@hermonlabs.com

Person for contact: Mr. Alex Usoskin, QA manager.

Abbreviations and acronyms

The following abbreviations and acronyms are applicable to this test report:

AC	alternating current
AE	auxiliary equipment
cm	centimeter
dB	decibel
dBm	decibel referred to one milliwatt
dB(μV)	decibel referred to one microvolt
dB(µV/m)	decibel referred to one microvolt per meter
EMC	electromagnetic compatibility
EUT	equipment under test
GHz	gigahertz
Н	height
Hz	hertz
kHz	kilohertz
kV	kilovolt
L	length
LISN	line impedance stabilization network
m	meter
MHz	megahertz
NA	not applicable
QP	quasi-peak
RF	radio frequency
RE	radiated emission
rms	root mean square
S	second
V	volt
W	width

Specification references

47CFR part 15: 2001	Radio Frequency Devices
ANSI C63.2:96	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4:92	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

FCC Equipment codes and descriptions

CYY Communications Receiver used w/ P.15 transmitter DCD Part 15 Low Power transmitter Below 1705 kHz DSC Part 15 Security/Remote Control Transmitter DSR Part 15 Remote Control/Security Device Transceiver DSS Part 15 Spread Spectrum Transmitter DXX Part 15 Low Power Communication Device Transmitter EAV Part 15 Automatic Vehicle Identification System ETB Part 15 Cordless Telephone Base Transceiver Part 15 Cordless Telephone Remote Transceiver ETR ETS Part 15 Cordless telephone system FAP Part 15 Anti-Pilferage Device FDS Part 15 Field Disturbance Sensor GAT Part 15 Auditory Assistance Device (Transmitter) HID Part 15 TV Interface Device JBC Part 15 Class B Computing Device/ Personal Computer JBP Part 15 Class B Computing Device Peripheral PUB Part 15 Unlicensed PCS base station PUE Part 15 Unlicensed PCS portable Tx held to ear PUF Part 15 Unlicensed PCS portable Tx held to face PUT Part 15 Unlicensed PCS portable Tx worn on body