

Engineering Test Report No. 2202994-02				
Report Date	May 30, 2023			
Manufacturer Name	Accutech Security			
Manufacturer Address	10125 S 52nd Street			
	Franklin, WI 53132			
Test Item Name	Patient Egress Monitoring Controller			
Model No.	LC1400T			
Date Received	May 18, 2023			
Test Dates	May 18 & 19, 2023			
Specifications	FCC "Code of Federal Regulations" Titl Innovation, Science, and Economic Dev	velopment Canada, RSS-GEN		
	Innovation, Science, and Economic Dev			
	Elite Electronic Engineering, Inc.	FCC Reg. Number: 269750		
Test Facility	1516 Centre Circle,	IC Reg. Number: 2987A		
	Downers Grove, IL 60515	CAB Identifier: US0107		
Signature	Tylar Jappy			
Tested by	Tylar Jozefczyk			
Signature	Raymond J. Kloude,			
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894			
PO Number	P028437			
of our name or trademark, with respect to the test sat of the quality or characteri specifically and expressly upon the information that material error or omission specifically address the iss	is permitted only with our prior written permiss mples identified herein. The results set forth in stics of the lot from which a test sample was t noted. Our report includes all of the tests requivou you provided to us. You have 60 days from da caused by our negligence, provided, however sue you wish to raise. A failure to raise such is	eport to or for any other person or entity, or use assion. This report sets forth our findings solely in this report are not indicative or representative taken or any similar or identical product unless uested by you and the results thereof based ate of issuance of this report to notify us of any r, that such notice shall be in writing and shall assue within the prescribed time shall constitute is conducted and the correctness of the report		
This report shall not be rep	produced, except in full, without the written ap	proval of Elite Electronic Engineering Inc.		
conditions which meet or e Innovation, Science, and E Development Canada, RS test dates specified. Any	Economic Development Canada, RSS-GEN, a S-102 test specifications. The data presented	ederal Regulations" Title 47 Part 15, Subpart C, and Innovation, Science, and Economic d in this test report pertains to the EUT on the o the EUT subsequent to the specified test date		

will serve to invalidate the data and void this certification. This report must not be used to claim product certification,

approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	.3
2.	Introduction	
2.1.	Scope of Tests	.4
2.2.	Identification of the EUT	
3.	Power Input	.4
4.	Grounding	.4
5.	Support Equipment	.4
6.	Interconnect Leads	
7.	Modifications Made to the EUT	.4
8.	Mode of Operation	.4
8.1.	Tx	.5
9.	Test Specifications	.5
10.	Test Plan	
11.	Deviation, Additions to, or Exclusions from Test Specifications	.5
12.	Laboratory Conditions	.5
13.	Summary	.5
14.	Sample Calculations	.6
15.	Statement of Conformity	
16.	Certification	.6
17.	Photographs of EUT	.7
18.	Equipment List	.9
19.	Block Diagram of Test Setup	10
20.	Transmitter Conducted Emissions	11
21.	Occupied Bandwidth (99%)	19
22.	Spurious Radiated Emissions	21
23.	Pulse Nerve Stimulation	26
24.	Scope of Accreditation	60

1. Report Revision History

Revision	Date	Description
-		Initial Release of Engineering Test Report No. 2202994-02

2. Introduction

2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on the Accutech Security Patient Egress Monitoring Controller (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was manufactured and submitted for testing by Accutech Security located in Franklin, WI.

2.2. Identification of the EUT

The EUT was identified as follows:

EUT Identification			
Product Description	Patient Egress Monitoring Controller		
Model/Part No.	LC1400T		
Serial No.	N/A		
Size of EUT	13.25" x 2.50" x 2.25"		
Software/Firmware Version	2.0		
Antenna Type	Ferrite with windings and tuning circuit		
Antenna Gain (dBi) ¹	6		
Occupied Bandwidth (99% CBW)	1.29kHz		
Emission Classification	N/A		
FCC ID Number	FCC ID: JM7-HWHY-662022		
ISED Certification Number	IC: 2683A-662022		
Note 1 – Antenna gain is supplied by the manufacturer and Elite is not responsible for the accuracy of the antenna gain.			

The EUT listed above was used throughout the test series.

3. Power Input

The EUT obtained 15VDC power via an AC/DC Wall Wart Power Adapter, which receives 120VAC 60Hz power.

4. Grounding

The EUT was not connected to ground.

5. Support Equipment

The EUT was submitted for testing along with the following support equipment:

Item	Description
Laptop	Used to put EUT into the correct transmitter frequency

6. Interconnect Leads

The following interconnect cable was submitted with the test item:

Item	Description
22/6 Conductor	Connected to keypad connection/door contact connection

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Mode of Operation

The EMC tests were performed with the EUT operating in the test mode described below.

8.1. Tx

The EUT was powered on and set to transmit at 137kHz.

9. Test Specifications

The tests were performed to selected portions of, and in accordance with, the test specifications:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart C "Intentional Radiators"
- ANSI C63.4-2014 "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz"
- ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- Radio Standards Specifications RSS-Gen Issue 5, Amendment 2 (February 2021) "General Requirements for Compliance of Radio Apparatus"
- Radio Standards Specifications RSS-102 Issue 5, Amendment 1 (February 2021) "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)"
- Radio Standards Specifications SPR-002 Issue 2 (October 2022) "Supplementary Procedure for Assessing Compliance of Equipment Operating from 3 kHz to 10 MHz with RSS-102"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Accutech Security and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Innovation, Science, and Economic Development Canada, RSS-GEN, Innovation, Science, and Economic Development Canada, RSS-102, and ANSI C63.10-2013 specifications.

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

The ambient parameters of the laboratory during testing were as follows:

Ambient Parameters	Value
Temperature	23.9°C
Relative Humidity	28%
Atmospheric Pressure	1018.6mb

13. Summary

The following EMC tests were performed and the results are shown below:

Test Description	Requirements	Test Method	Result
Transmitter Conducted Emissions	FCC 15.207 RSS-GEN Section 8.8	ANSI C63.10:2013	Conforms
Occupied Bandwidth (99%)	RSS-GEN Section 6.7	ISED RSS-GEN	Conforms
Spurious Radiated Emissions	FCC 15.209 RSS-GEN Section 8.9	ANSI C63.10:2013	Conforms
Pulse Nerve Stimulation	RSS-102 Section 4	SPR-002	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL $(dB\mu V) = MTR (dB\mu V) + CF (dB)$.

For Radiated Emissions:

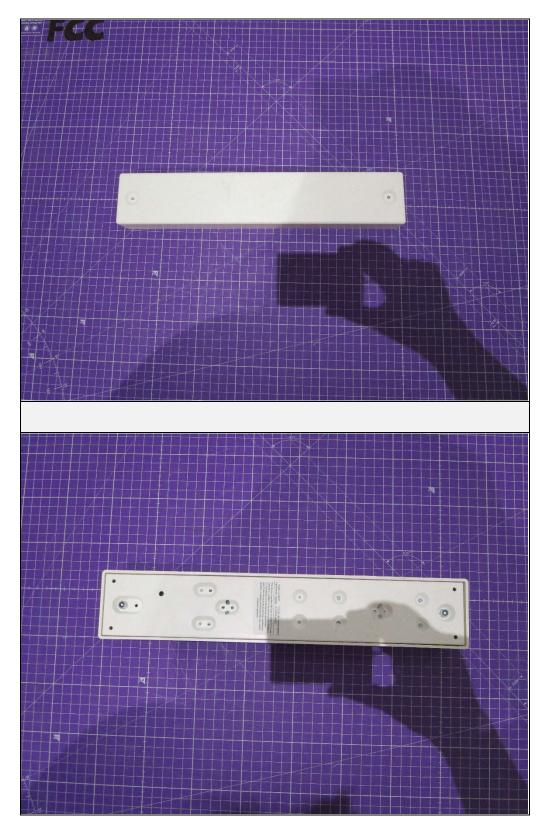
The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS $(dB\mu V/m) = MTR (dB\mu V) + AF (dB/m) + CF (dB) + (- PA (dB)) + DC (dB)$

To convert the Field Strength dB μ V/m term to μ V/m, the dB μ V/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in μ V/m terms.

Formula 2: FS (μ V/m) = AntiLog [(FS (dB μ V/m))/20]

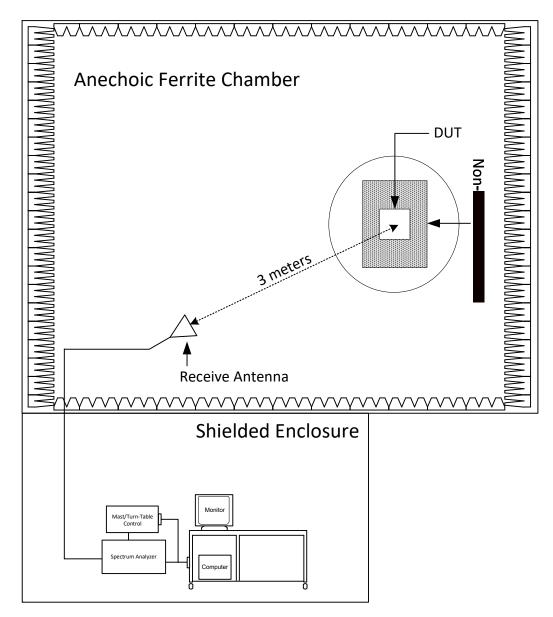
15. Statement of Conformity


The Accutech Security Patient Egress Monitoring Controller (Model No. LC1400T, Serial No. N/A) did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Innovation, Science, and Economic Development Canada, RSS-GEN, and Innovation, Science, and Science

16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Innovation, Science, and Economic Development Canada, RSS-GEN, and Innovation, Science, and Economic Development Canada, RSS-102 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT


18. Equipment List

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW14	PREAMPLIFIER	PLANAR	PE2-35-120- 5R0-10-12-SFF	PL22671	1-20GHz	9/21/2022	9/21/2023
CDY0	WORKSTATION	ELITE	WORKSTATION		WINDOWS 7	N/A	
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
GRB0	1MHZ, LISN SIGNAL CHECKER	ELITE	LISNCHKR1M	1	1MHZ	12/6/2022	12/6/2024
GSD6	SIGNAL GENERATOR	ROHDE & SCHWARZ	SMB100A	115255	9KHZ-6GHZ	8/25/2022	8/25/2023
NLC2	5" LOOP ANTENNA	EMCO	7603	9907-2217	0.03-50KHZ	NOTE 1	
NLS0	24" ACTIVE LOOP ANTENNA	EMCO	6502	89979	10KHZ-30MHZ	4/4/2023	4/4/2025
PEHP0	COMPACT E/H FIELD METER	NARDA	EHP-200AC	180ZX30180	3KHZ-30MHZ	2/27/2023	2/27/2025
PLF1	CISPR16 50UH LISN	ELITE	CISPR16/70A	001	.15-30MHz	4/7/2023	4/7/2024
PLF3	CISPR16 50UH LISN	ELITE	CISPR16/70A	003	.15-30MHz	4/7/2023	4/7/2024
R23P	ROOM 23			001		CNR	
R29F	3M ANECHOIC CHAMBER NSA	EMC TEST SYSTEMS	3M ANECHOIC		30MHZ-18GHZ	3/25/2022	5/25/2023
RBG2	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101591	2HZ-44GHZ	4/10/2023	4/10/2024
RBG4	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	103007	2HZ-44GHZ	12/8/2022	12/8/2023
T1N5	10DB 20W ATTENUATOR	NARDA	766-10		DC-4GHZ	1/5/2022	1/5/2024
VBR8	CISPR EN FCC CE VOLTAGE.exe					N/A	
VBV2	CISPR EN FCC ICES RE.EXE	ELITE	CISPR EN FCC ICES RE.EXE			N/A	
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1		I/O	
XLTK	5W, 50 OHM TERMINATION	JFW INDUSTRIES	50T-052		DC-2GHZ	1/5/2022	1/5/2024

N/A: Not Applicable I/O: Initial Only CNR: Calibration Not Required NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. Transmitter Conducted Emissions

Test Information		
Manufacturer	Accutech Security	
Product	Patient Egress Monitoring Controller	
Model No.	LC1400T	
Serial No.	N/A	
Mode	Тх	

Test Setup Details		
Setup Format	Tabletop	
Height of Support	N/A	
Type of Test Site	Semi-Anechoic Chamber	
Test Site Used	R29F	
Notes		

Measurement Uncertainty				
Measurement Type	Expanded Measurement Uncertainty			
Conducted disturbance (mains port) (150 kHz – 30 MHz)	2.7			

Requirements
All radio frequency voltages on the power lines for any frequency or frequencies of an intentional radiator
shall not exceed the limits in the following table:

Transmitter Conducted Emissions Limits					
Frequency of Emission (MHz)	Conducted Limits (dBµV)				
	Quasi-peak	Average			
0.15 – 0.5	66 to 56*	56-46*			
0.5 – 5	56	46			
5 – 30	60	50			
* The lower limit shall apply at the transition frequencies.					

Procedure

The interference on each power lead of the EUT was measured by connecting the measuring equipment to the appropriate meter terminal of the Line Impedance Stabilization Network (LISN). The meter terminal of the LISN not under test was terminated with 50 ohms.

- 1) The EUT was operated in the Tx mode.
- 2) Measurements were first made on the 120VAC high line.
- 3) The frequency range from 150kHz to 30MHz was broken up into smaller frequency sub-bands.
- 4) Conducted emissions measurements were taken on the first frequency sub-band using a peak detector.
- 5) The data thus obtained was then searched by the computer for the highest levels. Any emissions levels that were within 10dB of the average limit were then measured again using both a quasi-peak detector and an average detector. (If no peak readings were within 10dB of the average limit, quasi-peak and average readings were taken on the highest emissions levels measured during the peak detector scan.)
- 6) Steps (4) and (5) were repeated for the remainder of the frequency sub-bands until the entire frequency range from 150kHz to 30MHz was investigated. The peak trace was automatically plotted. The plot also shows quasi-peak and average readings that were taken on discrete frequencies. A table showing the quasi-peak and average readings was also generated. This tabular data compares the quasi-peak and average conducted emissions to the applicable conducted emissions limits. The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL ($dB\mu V$) = MTR ($dB\mu V$) + CF (dB)

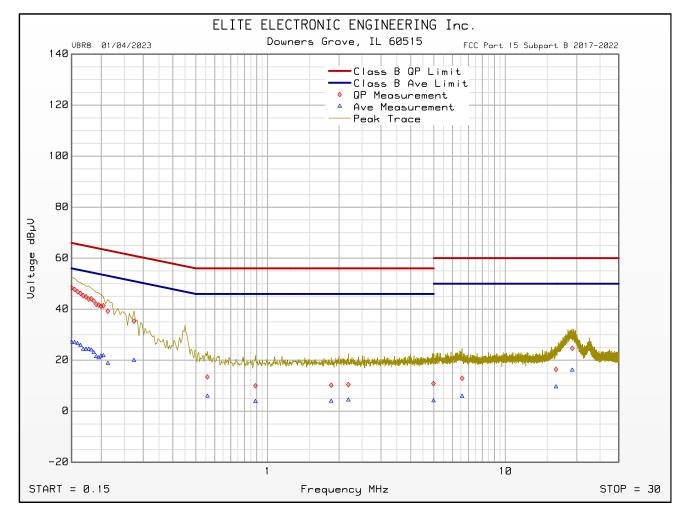
7) Steps (3) through (6) were repeated on the 120VAC return line.

FCC Part 15 Subpart B 2017-2022 Conducted Emissions Test Significant Emissions Data

VBR8 01/04/2023

Manufacturer	: ACCUTECH
Model	: LC1400T
DUT Revision	: 1.0
Serial Number	:
DUT Mode	: TX @ 137KHZ
Line Tested	: 120VAC 60HZ HIGH LINE
Scan Step Time [ms]	: 30
Meas. Threshold [dB]	: -10
Notes	: None
Test Engineer	: T. Jozefczyk
Limit	: Class B
Test Date	:May 18, 2023 01:43:22 PM
Data Filter	: Up to 80 maximum levels detected with 6 dB level excursion threshold over 10 dB margin below limit

Freq MHz	Quasi-peak Level dBµV	Quasi-peak Limit dBµV	Excessive Quasi-peak Emissions	Average Level dBµV	Average Limit dBµV	Excessive Average Emissions
0.150	48.4	66.0		27.0	56.0	
0.275	35.3	61.0		19.9	51.0	
0.559	13.4	56.0		5.9	46.0	
0.889	10.0	56.0		3.8	46.0	
1.853	10.2	56.0		4.0	46.0	
2.187	10.4	56.0		4.4	46.0	
4.985	10.8	56.0		4.0	46.0	
6.584	12.9	60.0		5.9	50.0	
16.335	16.4	60.0		9.5	50.0	
19.117	24.6	60.0		16.1	50.0	



FCC Part 15 Subpart B 2017-2022 Conducted Emissions Test

Cumulative Data

VBR8 01/04/2023

Manufacturer Model		ACCUTECH LC1400T
DUT Revision		1.0
Serial Number	:	
DUT Mode	:	TX @ 137KHZ
Line Tested	:	120VAC 60HZ HIGH LINE
Scan Step Time [ms]	:	30
Meas. Threshold [dB]	:	-10
Notes	:	None
Test Engineer	:	T. Jozefczyk
Limit	:	Class B
Test Date	:	May 18, 2023 01:43:22 PM

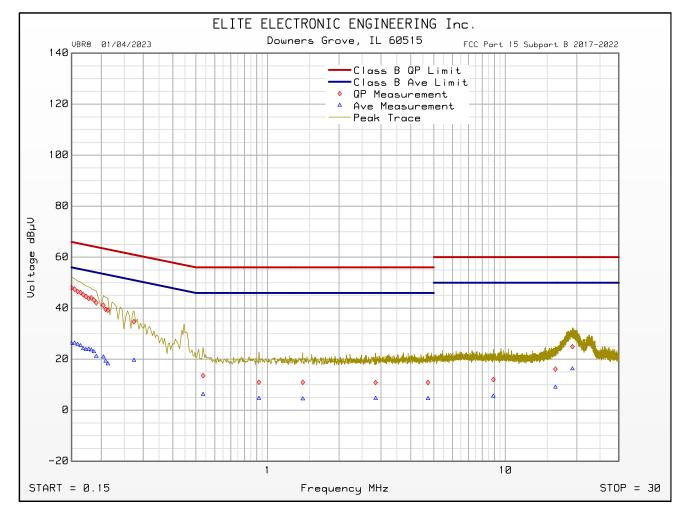
Emissions Meet QP Limit Emissions Meet Ave Limit

FCC Part 15 Subpart B 2017-2022 Conducted Emissions Test Significant Emissions Data

VBR8 01/04/2023

Manufacturer	: ACCUTECH
Model	: LC1400T
DUT Revision	: 1.0
Serial Number	:
DUT Mode	: TX @ 137KHZ
Line Tested	: 120VAC 60HZ NEUTRAL LINE
Scan Step Time [ms]	: 30
Meas. Threshold [dB]	: -10
Notes	: None
Test Engineer	: T. Jozefczyk
Limit	: Class B
Test Date	:May 18, 2023 01:37:54 PM
Data Filter	: Up to 80 maximum levels detected with 6 dB level excursion threshold over 10 dB margin below limit

Freq MHz	Quasi-peak Level dBµV	Quasi-peak Limit dBµV	Excessive Quasi-peak Emissions	Average Level dBµV	Average Limit dBµV	Excessive Average Emissions
0.150	48.0	66.0		26.2	56.0	
0.275	34.7	61.0		19.6	51.0	
0.536	13.5	56.0		6.2	46.0	
0.921	11.0	56.0		4.6	46.0	
1.408	10.9	56.0		4.4	46.0	
2.849	10.8	56.0		4.6	46.0	
4.729	10.9	56.0		4.5	46.0	
8.906	12.0	60.0		5.5	50.0	
16.245	16.1	60.0		9.0	50.0	
19.148	24.9	60.0		16.2	50.0	



FCC Part 15 Subpart B 2017-2022 Conducted Emissions Test

Cumulative Data

VBR8 01/04/2023

Manufacturer Model		ACCUTECH LC1400T
DUT Revision	:	1.0
Serial Number	:	
DUT Mode	:	TX @ 137KHZ
Line Tested	:	120VAC 60HZ NEUTRAL LINE
Scan Step Time [ms]	:	30
Meas. Threshold [dB]	:	-10
Notes	:	None
Test Engineer	:	T. Jozefczyk
Limit	:	Class B
Test Date	:	May 18, 2023 01:37:54 PM

Emissions Meet QP Limit Emissions Meet Ave Limit

21. Occupied Bandwidth (99%)

EUT Information				
Manufacturer Accutech Security				
Product Patient Egress Monitoring Controller				
Model No. LC1400T				
Serial No. N/A				
Mode	Тх			

Test Setup Details				
Setup Format Tabletop				
Height of Support N/A				
Measurement Method Radiated				
Type of Test Site Semi-Anechoic Chamber				
Test Site Used R29F				
Type of Antenna Used Loop (or equivalent)				
Notes				

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3

Procedure

The EUT was setup inside the chamber. The EUT was allowed to transmit continuously. The resolution bandwidth (RBW) was set to 1% to 5% of the actual occupied / x dB bandwidth, the video bandwidth (VBW) was set 3 times greater than the RBW, and the span was set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency.

The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was plotted using a 'screen dump' utility.

Test Details				
Manufacturer Accutech Security EUT Patient Egress Monitoring Controller				
				Model No. LC1400T
Serial No. N/A				
Mode	Тх			
Frequency Tested	137kHz			
Result	OBW = 1.29kHz			
Notes				

22. Spurious Radiated Emissions

EUT Information				
Manufacturer	Accutech Security			
Product	Patient Egress Monitoring Controller			
Model No.	LC1400T			
Serial No.	N/A			
Mode	Тх			

Test Setup Details				
Setup Format	Tabletop			
Height of Support	N/A			
Type of Test Site	Semi-Anechoic Chamber			
Test Site Used	R29F			
Type of Antennas Used	Loop (or equivalent)			
Notes	N/A			

Measurement Uncertainty				
	Expanded			
Measurement Type	Measurement			
	Uncertainty			
Radiated disturbance (electric field strength on an open area test site or alternative test	4.3			
site) (30 MHz – 1000 MHz)	4.0			

Requirements Per FCC 15.209(a), the emissions from an intentional radiator shall not exceed the field strength levels						
pecified in the following table:						
Frequency	Field Strength	Measurement Distance				
(MHz)	(microvolts/meter)	(meters)				
0.009 - 0.490	2400/F (kHz)	300				
0.490 - 1.705	2400/F (kHz)	30				
1.705 – 30	30	30				
30 – 88	100 ¹	3				
88 – 216	150 ¹	3				
216 – 960	200 ¹	3				
Above 960	500	3				
Note 1: Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54 – 72MHz, 76 – 88MHz, 174 – 216MHz, or 470 – 806MHz. However, operation within these frequency bands is permitted under other sections of this part.						

General Field Strength Limits at Frequencies below 30MHz						
Frequency	Magnetic Field Strength (H-Field) (μA/m)	Measurement Distance (m)				
9 – 490kHz ¹	6.37/F (kHz)	300				
490 – 1705kHz	63.7/F (kHz)	30				
1.705 – 30MHz 0.08 30						
Note 1: The emission limits for the ranges 9 – 90kHz and 110 – 490kHz are based on measurements employing a linear average detector.						

Procedure

All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

The measuring antenna was positioned at a 3 meter distance from the test item. The frequency range from 100kHz to 30MHz was investigated using a peak detector function with the active loop antenna in both the horizontal and vertical polarization. The maximum levels for each antenna polarization were plotted.

Final radiated emissions were performed at a test distance of 3 meters on all significant emissions found in the preliminary sweeps using the following methods:

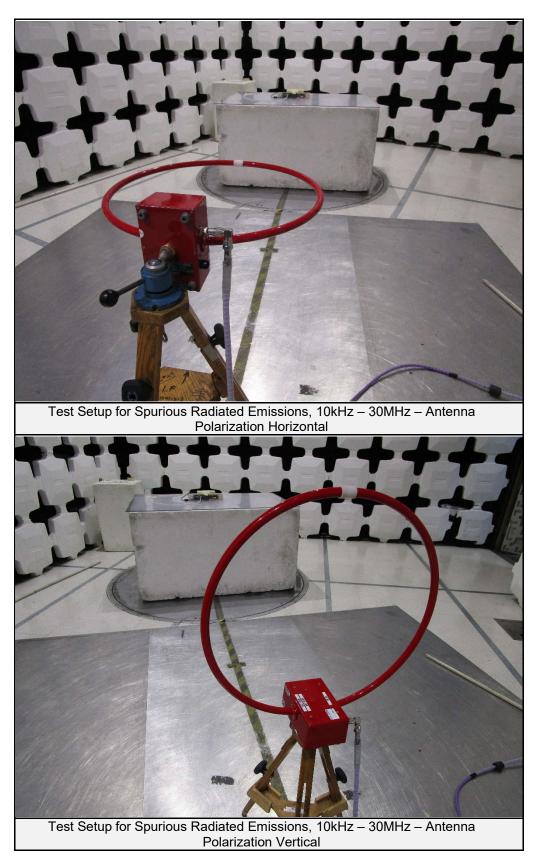
- Measurement from 100kHz to 150kHz were made using a peak detector with a 200Hz bandwidth and an active loop antenna, while measurements from 150kHz to 30MHz were made using a peak detector with a 9kHz bandwidth. (15.35(a) allows for the use of a peak detector to show compliance with the emissions limits as long as the correct bandwidth is used.)
- 2) Per 15.31(f)(2), for frequencies below 30MHz, measurements may be performed at a distance closer than that specified in the regulations. When performing measurements at a closer distance that specified, the results shall be extrapolated to the specified distance:
 - i. For this testing, the field strength at the fundamental was measured for 3 meters, 2 meters, and 1 meter test distances.
 - ii. The extrapolation factor (N) was determined from the formula below.

$$N = 20 \log \left(\frac{E_1/E_2}{d_1/d_2}\right)$$

Where:

N = distance extrapolation factor in dB/decade of distance.

- E_1 = field strength at measurement distance closest to the radiating source (μ V/m).
- E_2 = field strength at measurement distance farthest from the radiating source (μ V/m).
- d₁ = measurement distance closest to the radiating source.
- d_2 = measurement distance farthest from the radiating source.
- iii. The distance correction factor (DC) was then calculated using N.


$$DC = -N \log \left(\frac{d_{limit}}{d_{measure}} \right)$$

Where:

d_{limit} = distance specified for the limit. d_{measure} = distance for measurement.

- 3) The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external pre-amplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.
- 4) To ensure that maximum or worst case, emission levels were measured, the following steps were taken.
 - i. The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii. Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.

	Test Details				
Manufacturer	Accutech Security				
EUT	Patient Egress Monitoring Controller				
Model No.	LC1400T				
Serial No.	N/A				
Mode	Тх				
Frequency Tested	137kHz				
Notes	Test Distance = 3 meters; N = 50.66				

Freq. (kHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Dist. Corr. (dB)	Total (dBµV/m)	Total (µV/m)	Limit (µV/m)	Specified Test Distance (meters)	Margin (dB)
137	Н	93.47		0.25	10.65	0.00	-101.32	3.06	1.42	17.52	300.00	-21.81
137	V	92.54		0.25	10.65	0.00	-101.32	2.13	1.28	17.52	300.00	-22.74
274	Н	43.67	Ambient	0.25	10.65	0.00	-101.32	-46.75	0.00	8.76	300.00	-65.60
274	V	42.98	Ambient	0.25	10.65	0.00	-101.32	-47.44	0.00	8.76	300.00	-66.29
411	Н	40.69	Ambient	0.25	10.70	0.00	-101.32	-49.67	0.00	5.84	300.00	-65.00
411	V	41.33	Ambient	0.25	10.70	0.00	-101.32	-49.03	0.00	5.84	300.00	-64.36
548	Н	37.45	Ambient	0.25	10.73	0.00	-50.66	-2.23	0.77	43.80	30.00	-35.06
548	V	37.69	Ambient	0.25	10.73	0.00	-50.66	-1.99	0.80	43.80	30.00	-34.82
685	Н	35.10	Ambient	0.25	10.72	0.00	-50.66	-4.59	0.59	35.04	30.00	-35.48
685	V	35.84	Ambient	0.25	10.72	0.00	-50.66	-3.85	0.64	35.04	30.00	-34.74
822	Н	33.81	Ambient	0.25	10.73	0.00	-50.66	-5.87	0.51	29.20	30.00	-35.18
822	V	34.04	Ambient	0.25	10.73	0.00	-50.66	-5.64	0.52	29.20	30.00	-34.95
959	Н	32.41	Ambient	0.25	10.75	0.00	-50.66	-7.25	0.43	25.03	30.00	-35.22
959	V	32.15	Ambient	0.25	10.75	0.00	-50.66	-7.51	0.42	25.03	30.00	-35.48
1096	Н	31.00	Ambient	0.25	10.77	0.00	-50.66	-8.64	0.37	21.90	30.00	-35.45
1096	V	31.07	Ambient	0.25	10.77	0.00	-50.66	-8.57	0.37	21.90	30.00	-35.38
1233	Н	30.12	Ambient	0.25	10.79	0.00	-50.66	-9.50	0.33	19.46	30.00	-35.28
1233	V	30.13	Ambient	0.25	10.79	0.00	-50.66	-9.49	0.34	19.46	30.00	-35.27
1370	Н	28.27	Ambient	0.25	10.80	0.00	-50.66	-11.33	0.27	17.52	30.00	-36.20
1370	V	28.75	Ambient	0.25	10.80	0.00	-50.66	-10.85	0.29	17.52	30.00	-35.72

Total (dB μ V/m) = Meter Reading + CBL Fac. + Ant. Fac. + Pre Amp

Test Details				
Manufacturer	Accutech Security			
EUT	Patient Egress Monitoring Controller			
Model No.	LC1400T			
Serial No.	N/A			
Mode	Тх			
Frequency Tested	137kHz			
Notes	Test Distance = 3 meters; N= 50.66			

Freq. (kHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dBS/m)	Pre Amp (dB)	Dist. Corr. (dB)	Total (dBµA/m)	Total (µA/m)	Limit (µAV/m)	Specified Test Distance (meters)	Margin (dB)
137	Н	93.47		0.25	-40.85	0.00	-101.32	-48.44	0.00	0.05	300.00	-21.79
137	V	92.54		0.25	-40.85	0.00	-101.32	-49.37	0.00	0.05	300.00	-22.72
274	Н	43.67	Ambient	0.25	-40.85	0.00	-101.32	-98.25	0.00	0.02	300.00	-65.58
274	V	42.98	Ambient	0.25	-40.85	0.00	-101.32	-98.94	0.00	0.02	300.00	-66.27
411	Н	40.69	Ambient	0.25	-40.80	0.00	-101.32	-101.17	0.00	0.02	300.00	-64.98
411	V	41.33	Ambient	0.25	-40.80	0.00	-101.32	-100.53	0.00	0.02	300.00	-64.34
548	Н	37.45	Ambient	0.25	-40.77	0.00	-50.66	-53.73	0.00	0.12	30.00	-35.04
548	V	37.69	Ambient	0.25	-40.77	0.00	-50.66	-53.49	0.00	0.12	30.00	-34.80
685	Н	35.10	Ambient	0.25	-40.78	0.00	-50.66	-56.09	0.00	0.09	30.00	-35.46
685	V	35.84	Ambient	0.25	-40.78	0.00	-50.66	-55.35	0.00	0.09	30.00	-34.72
822	н	33.81	Ambient	0.25	-40.77	0.00	-50.66	-57.37	0.00	0.08	30.00	-35.16
822	V	34.04	Ambient	0.25	-40.77	0.00	-50.66	-57.14	0.00	0.08	30.00	-34.93
959	Н	32.41	Ambient	0.25	-40.75	0.00	-50.66	-58.75	0.00	0.07	30.00	-35.20
959	V	32.15	Ambient	0.25	-40.75	0.00	-50.66	-59.01	0.00	0.07	30.00	-35.46
1096	Н	31.00	Ambient	0.25	-40.73	0.00	-50.66	-60.14	0.00	0.06	30.00	-35.43
1096	V	31.07	Ambient	0.25	-40.73	0.00	-50.66	-60.07	0.00	0.06	30.00	-35.36
1233	н	30.12	Ambient	0.25	-40.71	0.00	-50.66	-61.00	0.00	0.05	30.00	-35.26
1233	V	30.13	Ambient	0.25	-40.71	0.00	-50.66	-60.99	0.00	0.05	30.00	-35.25
1370	н	28.27	Ambient	0.25	-40.70	0.00	-50.66	-62.83	0.00	0.05	30.00	-36.18
1370	V	28.75	Ambient	0.25	-40.70	0.00	-50.66	-62.35	0.00	0.05	30.00	-35.70

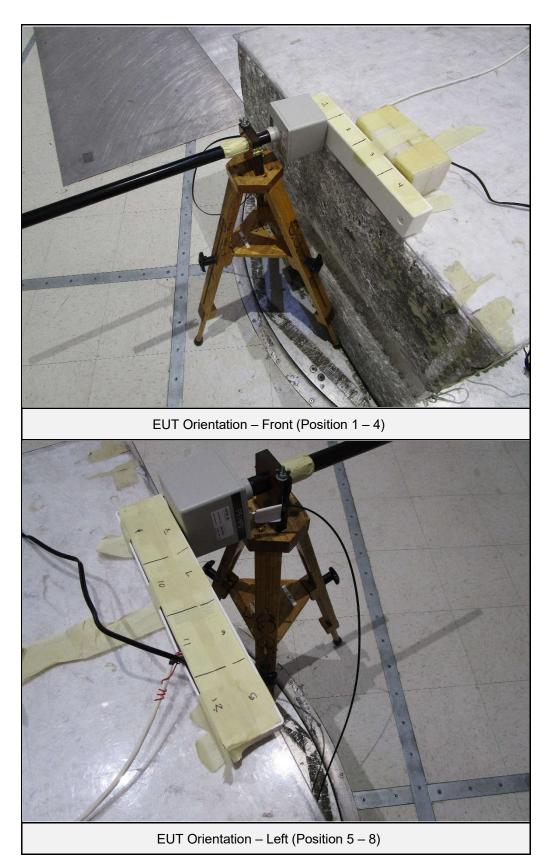
Total (dB μ V/m) = Meter Reading + CBL Fac. + Ant. Fac. + Pre Amp

23. Pulse Nerve Stimulation

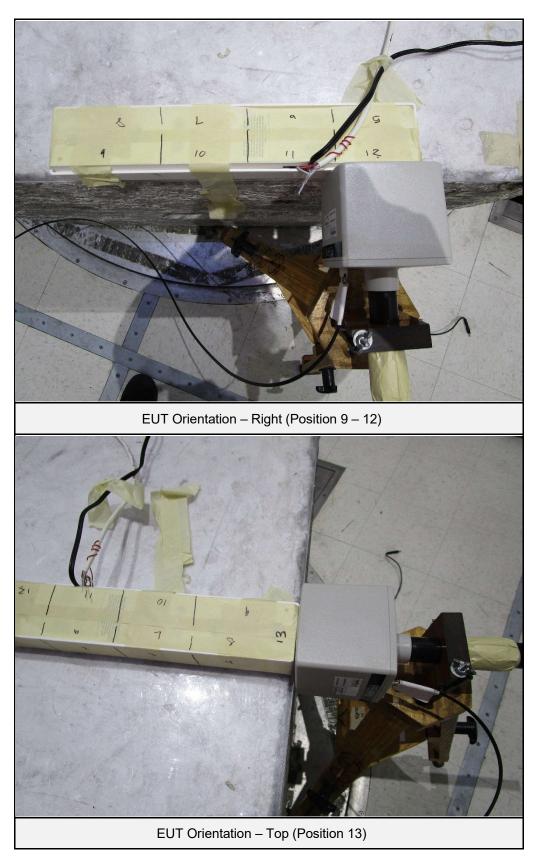
EUT Information				
Manufacturer	Accutech Security			
Product	Patient Egress Monitoring Controller			
Model No.	LC1400T			
Serial No.	N/A			
Mode	Тх			

	Test Setup Details
Setup Format	Tabletop
Height of Support	N/A
Type of Test Site	Semi-Anechoic Chamber
Test Site Used	R29F
Field Strength Limit	170 V/m rms (Controlled Environment) 180 A/m rms (Controlled Environment)
Distance Limit	0cm
Notes	Data for Electric Field Measurements can be found on pages 30 through 44. Data for Magnetic Field Measurements can be found on pages 45 through 59.

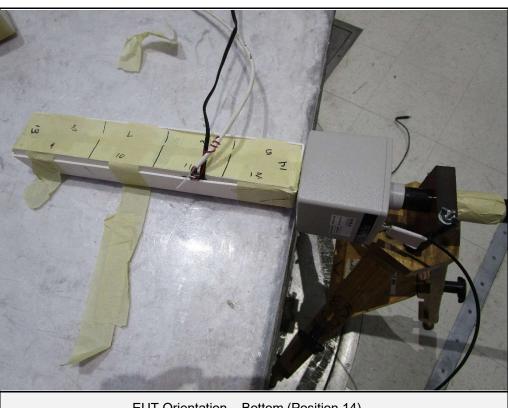
Requirement


Per RSS-Gen, licensed and license-exempt radio apparatus must meet the radio frequency exposure compliance requirements of RSS-102.

Per Table 6 of RSS-102, the RF field strength limits for a transmitter operating in the frequency range of 3kHz to 10MHz and in a controlled use environment shall not exceed 170V/m rms and 180 A/m rms based on nerve stimulus.


Procedure

- 1) Per Section 6.1 of SPR-002, the direct measurement against the RSS-102 nerve stimulation limits method was used. The maximum measured field strength was located and compared to the limits of RSS-102.
- 2) The guidance of Annex E.4 of SPR-002 for wall-mounted devices was used.
- 3) The measurement probe was mounted at a height of 80cm and placed 0cm away.
- 4) The EUT was scanned over the probe with orientation focused on the area where the body would come into contact with the EUT. This shall be considered the compliance distance.
- 5) The maximum measured fiend strength readings were recorded and compared to the limits of RSS-102.



EUT Orientation – Bottom (Position 14)

RSS-102: Radio Frequency (RF) Exposure Compliance Test Test Group Summary

Manufacturer	: Accutech
Model Number	: LC1400T
Serial Number	: N/A
Mode	: Tx
Test personnel	: Tylar Jozefczyk
Results	: The Emissions were Compliant
Date	: 5/22/2023 10:37:37 AM

Side Tested	Maximum Frequency Range	Maximum Peak Frequency	Maximum Peak Emissions (V/m)	Field Strength Limit (V/m)	Excessive Emissions
P1	3kHz – 300kHz	0.003MHz	31.776	170	
P2	3kHz – 300kHz	0.003MHz	31.592	170	
P3	3kHz – 300kHz	0.003MHz	31.442	170	
P4	3kHz – 300kHz	0.003MHz	31.4	170	
P5	3kHz – 300kHz	0.003MHz	31.653	170	
P6	3kHz – 300kHz	0.003MHz	31.727	170	
P7	3kHz – 300kHz	0.003MHz	31.568	170	
P8	3kHz – 300kHz	0.003MHz	31.5	170	
P9	3kHz – 300kHz	0.003MHz	31.573	170	
P10	3kHz – 300kHz	0.003MHz	31.427	170	
P11	3kHz – 300kHz	0.003MHz	31.532	170	
P12	3kHz – 300kHz	0.003MHz	31.694	170	
P13	3kHz – 300kHz	0.003MHz	31.476	170	
P14	3kHz – 300kHz	0.003MHz	31.73	170	

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400T : N/A : Tx : P1 : 3kHz – 30 : 31.776 V/i : Tylar Joze : 5/22/2023	m @ 0.003MHz	pliant				V/m
							200
						· · · · · · · · · · · · · · · · · · ·	20
			à				
							2
humm	mmmmmm	harmont	Mumpmon		munu	har	0.2
- March Baller March	200 production of the second	portal and the second	Warnangerfortymmen	<u>konsispin</u>	Manupapara	Mark Market Market	0.02
0.003 MHz			F Center:0.152 MHz				0.3 MHz

	: LC1400T : N/A : Tx : P1 : 300kHz – ⁻ : 0.1695 V/n : Tylar Jozef : 5/22/2023	n @ 0.425MHz			V/m
					200
					 20
					2
Marca and				 A	0.2
0.3 MHz		Contraction Collingation	F Center:5.150 MHz		0.02

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400T : N/A : Tx : P2 E 1 : 3kHz – 30 : 31.592 V/r : Tylar Joze : 5/22/2023	m @ 0.003MHz					V/m
							200
							20
			Λ				
						2	2
<u>k</u>			4				
1							0.2
Commun	mm	formany	humphann	h	mym	mm	Amm
W W W W W W	Mannahma	Markow abur David	MANNANANANAN	noonjegnini	ontracinfr www	www.www.wk	() have 0.02
0.003 MHz			F Center:0.152 MHz				0.30 MHz

Manufacturer Model Number Mode Side Tested Freq Range Max Peak Test personne Date Results	: LC140 : N/A : Tx : P2 E 2 : 300kH; : 0.1521 : Tylar J : 5/22/20	0T z – 10MHz V/m @ 0.42	AM	t				V/m
	1							
								200
		5			2		<u>.</u>	20
							<u>.</u>	
	0	6			2		<u>.</u>	2
Am			my	hanne	······	mm	mun	0.2
and another water	and when here	- and account of the second	and march	proversion	Accordance	mannah	tocompanyor	0.02
								0.02
0.3 MHz		1.	F Center:	5.150 MHz				10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400T : N/A : Tx : P3 E 1 : 3kHz – 30 : 31.442 V/r : Tylar Joze : 5/22/2023	m @ 0.003MHz	pliant					Vm:
								200
								20
				8				2
	mm		Artifician Autom	mmmm	mm	mm	Jump	0.2
0.003 MHz	and the second of the second	Abawowadaday	F Center:0.152 MHz	annoutber And	Margan	Zanadudana	0.3 M	0.02 Hz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400T : N/A : Tx : P3 E 2 : 300kHz – : 0.164 V/m : Tylar Joze : 5/22/2023	n @ 0.45MHz	npliant				V/m
							200
							20
							2
							0.2
Mindan		Contraction of the second	Marin Marine M Marine Marine M	ner work	Arrent	valante parts	0.02
0.3 MHz			F Center:5.150 MHz				10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results 29.7 kHz/Div	: LC1400T : N/A : Tx : P4 E 1 : 3kHz – 30 : 31.4 V/m (: Tylar Joze : 5/22/2023	@ 0.003MHz							V/m
									200
									200
		<u></u>						<u>c</u>	20
			\wedge						2
									Z
		and and the stand			where we have a second	10000000000000000000000000000000000000	www.	A	0.2
0.003 MHz		and that and and have	F Center:0	*** * *	No. 1 JANNA WARA	WWW AVM	A MI A HUL AND	.3 N	0.02 4Hz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personne Date Results	: LC14 : N/A : Tx : P4 E : 300k : 0.230 : Tylai : 5/22	400T 2 Hz – 10I 66 V/m (Jozefcz /2023 10	⊉ 0.3MH :yk ::37:30 A						V/m
	1							0	
									200
								<u></u>	
								<u>.</u>	20
									2
									0.2
Man and the second		more source and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second s		www.	Amaral	Lanna and the second se	0.02
0.3 MHz				F Center:	i.150 MHz				10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results 23.7 kHz/Div	: LC : N/A : Tx : P5 : 3kF : 31.0 : Tyla : 5/2	1400T E 1 Iz – 300 653 V/m ar Jozefi 2/2023 1	@ 0.003	M	t				V/m
	1								
									200
		3							20
	ă.		3	A	2				2
Ŋ				$-\Lambda$					
Many mayor	20000	LAMAC MARKY	Marrie Marrie	and boy	www.	Mat Marcall	Man Market	CAR MARCHA	0.2
0.003 MHz	ELLE.	and a	2000 . 1 23	F Center:	0.152 MHz	527.18 249.9		and an long and	0.3 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: L(: N/ : T> : P! : 30 : 0. : Ty : 5/	C1400T (A 5 E 2)0kHz – 1 1649 V/m /lar Jozef 22/2023	n @ 0.475 czyk 10:37:31 A		t				V/m
	1					-			
									200
									20
		s				1.2			2
						-			
Mans and any as	And the			nczódrawyw		Martan Martan	horacon	hanna the	0.2
0.3 MHz				F Center:	5.150 MHz				0.02

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400T : N/A : Tx : P6 E 1 : 3kHz – 30 : 31.727 V/ : Tylar Joze : 5/22/2023	m @ 0.003MHz	pliant				V/m	
							20	D
							20)
			1					
4							2	
<u> </u>							0.2	2
hannan	Man Martin Martin	mannen	Water March 1000	mm	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Anno	
111 ach ach ann an Al	MY Waters and	Paranti di Maranti (1900-ta	Martanaliti	acanadas	advalaatina d	halban in Mantha	0.0	2
0.003 MHz	1		F Center:0.152 MHz	-1.	_		0.300 MHz	

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personner Date Results	er : L er : N : - : C el : -	LC1400T N/A Tx P6 E 2 300kHz – 1).1697 V/m	n @ 0.45N [:] czyk 10:37:33 <i>P</i>	٨M	t				V/m
								0	
									200
·									
									20
									2
									2
									0.2
Ahmen	~~~~	and some has	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			man	Lunger and the second	
· • · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Merry w and	and the A	1 Mar Charles	www.caskiew	Charles March		and a start of the	0.02
0.3 MHz				F Center:	5.150 MHz				10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400T : N/A : Tx : P7 E 1 : 3kHz – 300 : 31.568 V/r : Tylar Joze : 5/22/2023	n @ 0.003MHz	oliant				V/m	
						2	20	n
								0
			<u>}</u>				20	I.
							2	
		www.www.ch.		CANAMA CON		www.	0.2	:
0.003 MHz	mathin marthalin and the	www.www.	F Center:0.152 MHz	h lla abala z z h	vanan kun di Alika manga	he Marchine as	0.0 0.3 MHz	2

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC : N/ : Tx : P7 : 30 : 0. : Ty : 5/	C1400T A Z E 2 00kHz – 1 1544 V/m dar Jozef 22/2023	n @ 0.475l	M	:				V/m
								0	
									200
						-			
			<u> </u>		2	(p		2	20
						-			
					24				2
						-			
Marchan	v v v v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A summer and	Crow Charles			and the second	brobacciness	0.2
0.3 MHz				F Center:	5.150 MHz				10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400T : N/A : Tx : P8 E 1 : 3kHz – 300 : 31.5 V/m (: Tylar Joze : 5/22/2023	D 0.003MHz	pliant				٧/m
							200
							200
							20
							2
						Λ	0.2
han manager and	www.	Mondayopoort	han appropriet	mmmmy my			0.02
0.003 MHz	n better b	. V	F Center:0.152 MHz			0.3 1	

Side Tested Freq Range	er : L er : N : 7 : 6 : 6 : 6 : 6 : 6	-C1400T N/A Fx P8 E 2 300kHz – 1).222 V/m	@ 0.3MHz czyk 10:37:36 A	M	t			V/m
		1					9.	
								200
					2-			20
								2
Manacarat	*****	un footstaat	www.			www.www.		0.2
0.3 MHz				F Center:	5.150 MHz			10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results 29.7 kHz/Div	: LC1400T : N/A : Tx : P9 E 1 : 3kHz – 300 : 31.573 V/n : Tylar Joze : 5/22/2023	n @ 0.003MHz	ant		V/m
					200
		A			20
и. И					2
hunner	mmm	mmm			0.2
0.003 MHz	aran hin ha faith	FC	enter: 0.152 MHz	CAMPA/CONVINIONOSCIMI	0.02 0.30 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400T : N/A : Tx : P9 E 2 : 300kHz - : 0.2135 V : Tylar Joz : 5/22/2023	- 10MHz /m @ 0.3MI efczyk	٩M	t				V/m
			1	0			0	
			1					200
					-			
								20
			r					
			0	r.	- p		<u>,</u>	2
					-		0	
Man and and and and and and and and and a	Company Chatter and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			anolyper who the	www.	WCMMM20222	0.2
0.3 MHz			F Center:	5.150 MHz				0.02 10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results		_C1400T N/A Tx P10 E 1 3kHz – 300 31.427 V/n	n @ 0.003 fczyk 10:37:18 <i>F</i>	١M		t				v/a 1	m
								1			
								-			200
		6			<u>^</u>	2-					20
		0					2				2
1											-
Murran prom	Marth	Marian	man man		1	taana fu funitaa	Mar Mar Composition	manne	ALAN OR OF OUR OWNER	Antom	0.2
0.003 MHz	ara ne	nato sofficial de	107 DN 101		F Center	:0.152 MHz	an to Li			0.3 MH:	

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC14 : N/A : Tx : P10 E : 300kł : 0.200 : Tylar : 5/22/2	00T E 2 Hz – 10MHz 9 V/m @ 0.4	9 AM	t			¥/m
			1				200
	0						 20
							2
Mymandin	Work W		Same and the second	the second second	and the total	new of the second	0.2
0.3 MHz			F Center	:5.150 MHz			0.02 10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results 29.7 kHz/Div	: LC1400T : N/A : Tx : P11 E 1 : 3kHz – 30 : 31.532 V/ : Tylar Joze : 5/22/2023	m @ 0.003MHz					V/m	
							20	10
			Λ				20	ð
1			Δ				2	ł
harmon and			hunder				0.2	2
0.003 MHz	n hur With M	anna Annani Mainan a	F Center:0.152 MHz	hordhunned	an where the	r Oger Marser	0.0 0.30 MHz	2

Manufacturer Model Number Mode Side Tested Freq Range Max Peak Test personne Date Results	r : L : N : T : F : C : C I : T	LC1400T N/A Tx P11 E 2 800kHz – 1).1855 V/m	n @ 0.425 ^f czyk 10:37:20 <i>f</i>	٩M	t			V/m
		1			2	-		
								200
								20
					24	· .		 2
		-						
Anton		har warden		un and a star		and have used ha	www.com	 0.2
0.3 MHz				F Center:	5.150 MHz			10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400T : N/A : Tx : P12 E 1 : 3kHz – 30 : 31.694 V/ : Tylar Joze : 5/22/2023	m @ 0.003MHz	bliant			V/m
	1					
						200
						20
		(\			
4	0					2
Y,						
Managenthan	Maria Maria	harmont	www.www.	Mar Marine Mar	A month and the	0.2
0.003 MHz		Ŷ	F Center:0.152 MHz	6 V: Y .D		0.300 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC : N/ : Tx : P1 : 30 : 0. ⁻ : Ty : 5/2	2 E 2 0kHz – 1 1674 V/m lar Jozef 22/2023 1	@ 0.425	M	:				V/m
									200
	K)								20
	1								
									2
Mana		And current	water the second	2 martine from the second		Algebra Alex	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.	0.2
0.3 MHz				F Center:	5.150 MHz				0.02 10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results 23.7 kHz/Div	_C1400T V/A Tx P13 E 1 3kHz – 300 31.476 V/m	n @ 0.003 czyk 10:37:23 /	١M		t				V/m
									200
									200
				A-					20
									0.2
Mannan	pawanaham			10			Work Workson		1542524
	t it di di	1			1		 V W I	V	0.02
0.003 MHz				F Center	:0.152 MHz		 	0.31	MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400 : N/A : Tx : P13 E 2 : 300kHz : 0.1328 V : Tylar Jo : 5/22/202	T – 10MHz //m @ 0.475	٩M				V/m
							200
					-		20
	<u></u>				2 2		2
Markan Marking	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and and and and		Now And	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 10000000	0.2
0.3 MHz			F Center:5.	150 MHz			10 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results 29.7 kHz/Div	: LC1400T : N/A : Tx : P14 E 1 : 3kHz – 300 : 31.73 V/m : Tylar Joze : 5/22/2023	@ 0.003MHz	iant				۷/m 	n
								200
								200
						s		20
								2
								0.2
Mar Decil phones	wanter water	1 Josephederorden	harden and states	an and the second	and the second	And all the second	Barran	0.02

Side Tested Freq Range	: LC1400T : N/A : Tx : P14 E 2 : 300kHz – : 0.1458 V/r	n @ 0.475ľ fczyk 10:37:24 A	M	:				VJm
								200
								20
					-	-		
							C.	2
					-			
Altonoprovi	Martin Martin	and the second	more the second		Marbocantre			0.2
0.3 MHz			F Center:	5.150 MHz				0.02

RSS-102: Radio Frequency (RF) Exposure Compliance Test Test Group Summary

Manufacturer	: Accutech Security
Model Number	: LC1400T
Serial Number	: N/A
Mode	: Tx
Test personnel	:Tylar Jozefczyk
Results	: The Emissions were Compliant
Date	: 5/22/2023 10:37:38 AM

Side Tested	Maximum Maximum Frequency Peak Range Frequency		Maximum Peak Emissions (A/m)	Field Strength Limit (A/m)	Excessive Emissions
P1	3kHz – 300kHz	0.003MHz	15.945	180	
P2	3kHz – 300kHz	0.003MHz	15.918	180	
P3	3kHz – 300kHz	0.003MHz	15.916	180	
P4	3kHz – 300kHz	0.003MHz	15.959	180	
P5	3kHz – 300kHz	0.003MHz	16.059	180	
P6	3kHz – 300kHz	0.003MHz	16.027	180	
P7	3kHz – 300kHz	0.003MHz	15.993	180	
P8	3kHz – 300kHz	0.003MHz	15.998	180	
P9	3kHz – 300kHz	0.003MHz	15.995	180	
P10	3kHz – 300kHz	0.003MHz	15.963	180	
P11	3kHz – 300kHz	0.003MHz	15.984	180	
P12	3kHz – 300kHz	0.003MHz	15.982	180	
P13	3kHz – 300kHz	0.003MHz	16.018	180	
P14	3kHz – 300kHz	0.003MHz	16.034	180	

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	: LC1400T : N/A : Tx : P1 : 3kHz – 30 : 15.945 A/r : Tylar Joze : 5/22/2023	0kHz n @ 0.003MH: fczyk 10:37:26 AM				A/m
	1					
	1					
						200
	1					
		<u>a</u> a				20
		a				2
			\wedge			
4			[]			0.2
1						0.2
A A A A A A A A A A A A A A A A A A A	AND ALL	1000 Marchall	Aronana and	ANNA AND AND	MANSAN ANTANA	0.02
0.003 MHz	West In a second a second	ALL	F Center:0.152 MHz			0.3 MHz

Manufacturer Model Number Serial Number Mode Side Tested Freq Range Max Peak Test personnel Date Results	_C1400T N/A Tx P1 300kHz – 1).9387 A/n	10MHz n @ 0.3Mł fczyk 10:37:26 4	٩M	:			RSS-102 Controlle	d Environment UL2	A/m
									1
									- 60
	0								6
								-	ů
	0								0.6
A						_		_	
					2				0.06
- Change									0.006
0.3 MHz			F Center:	5.150 MHz			AND PROCESSION	10	0 MHz