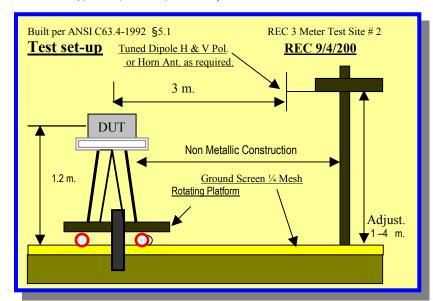
5.1 TEST DATA

Equivalent Isotropic Radiated Power (EI.R.P.)

Radiated Measurements @ 3-meters:

Supply Voltage: 27.0 vdc Modulation PCS CDMA

Antenna ETS 1 to 18 GHz S/N: 6751


FREQ. (MHz)	Level (dBm)	AFCL (dB)	POL (H/V)	Height (m)	Azimuth (0 angle)	F/S (μV/m)	Margin (dBm)	EIRP (W)
1931.25	6.94	27.5	Н	1.7	48	$11.8 E^6$	46.21	41.8
1960.00	6.8	27.6	Н	1.65	51	11.75 E ⁶	46.17	41.42
1988.75	6.65	27.7	Н	1.55	47	11.68 E ⁶	46.12	40.93

Notes:

- 1. The bandwidth is set per $\S24.238$ (RBW = 3 MHz, VBW = 3 MHz).
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. <-135 dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and the worse-case are reported.
- 6. The EUT is placed 3 m. away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = $10 \text{ Log}_{10} (((r(\mu V/m)/1 \times 10^6)^2/30.0/1 \times 10^7)^3)$ EIRP (dBm) = $10 \text{ Log}_{10} [(3 \times FS/1 \times 10^6)^2/(30.0) \times 1000]$

EIRP (Watts) = $\{(3 \times FS)/1 \times 10^6\}^2 / 30.0\}$

Test Date: 9/3/02

6.1 TEST DATA

Radiated Measurements

6.2 Field Strength of SPURIOUS Radiation for Base Station

Operating Frequency 1931.25 MHz (Base)

Channel 0025 LOW

Measured Maximum Output Power 24.5 Watts (43.89 dBm)

40.18 Watts (EIRP)

Modulation CDMA (internal)

Distance 3-meters

Limit $43 + \text{Log}_{10}(W) = 56.89 \text{ dBc}$

Antenna ETS Horn 1 to 18 GHz s/n 6751

FREQ.	LEVEL	AFCL	POL	F/S	EIRP		EIRP W
(MHz)	(dBm)	(dB)	(H/V)	(µV/m)	(dBm)	(dBc)	P sig
3862.5	- 88.5	32.5	Н	354.81	-44.23	-90.27	3.78 E ⁻⁸
5793.75	-113.5	34.8	Н	26.00	-66.93	-112.9	2.03 E ⁻¹⁰
7725.00	-118.6	37.6	Н	19.95	-69.22	-115.3	1.19 E ⁻¹⁰
9656.25	-121.5	38.1	Н	15.14	-71.63	-117.7	6.87 E ⁻¹¹
11587.50	-116.5	39.0	Н	29.85	-65.73	-111.8	2.67 E ⁻¹⁰
	< -135						

NOTES:

- 1. The bandwidth is set per §24.238.
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20 dB below the limit.
- 4. < -135 dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and worst-cases are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = $10 \text{Log}_{10}(((r(mV/m)1 \times 10^6)^2/30.0/1 \times 10^{-3})^2/30.0/1 \times 10^{-3})$

EIRP (dBm) = $10 \text{Log}_{10}[(3 \text{ x FS/1 x } 10^6)^2/(30.0) \text{ x } 1000]$

EIRP (Watts) = $[3 \times FS)/1 \times 10^{6}]^{2}/30.0$

7.
$$dBc = 10Log_{10} \frac{P_{sig}}{P_{tx}}$$

Test Report - Com Dev FCC Part 24 Certification

Test Date: 9/3/02

6.1 Test Data (Continued)

Radiated Measurements

6.3 Field Strength of SPURIOUS Radiation Base Station

Operating Frequency 1960.00 MHz (Base)

Channel 0600 (middle)

Maximum Measured Output Power 25.0 Watts = 41.00 Watts EIRP (46.13 dBm)

Modulation Signal: CDMA (Internal)

Distance: 3 Meters

Limit: $43 + 10 \log_{10} (W) = -56.98 \text{ dBc}$

Antenna ETS 1 to 18 GHz s/n 6751

FREQ. (MHz)	LEVEL (dBm)	AFCL (dB)	POL (H/V)	F/S (µV/m)	EIRP (dBm)	(dBc)	EIRP W P _{SIG}
3920.00	-86.5	32.6	Н	451.86	-42.13	-88.3	6.13 E ⁻⁸
5880.00	-115.2	34.8	Н	26.60	-66.74	-112.86	2.12 E ⁻¹⁰
7840.00	-118.6	37.4	Н	19.50	-69.43	-115.55	1.14 E ⁻¹⁰
9800.00	-120.0	38.1	Н	17.99	-70.13	-116.26	9.71 E ⁻¹¹
11760.00	-135	39.5	Н	3.72	-83.03	-129.96	4.14 E ⁻¹²
	<-135						

NOTES:

- 1. The bandwidth is set per §24.238.
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20 dB below the limit.
- 4. < -135 dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and worst-cases are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = $10 \log_{10}(((r(mV/m)1 \times 10^6)^2/30.0/1 \times 10^{-3})^{-3})$

EIRP (dBm) = $10 \text{Log}_{10}[(3 \text{ x FS/1 x } 10^6)^2/(30.0) \text{ x } 1000]$

EIRP (Watts) = $[3 \times FS)/1 \times 10^{6}]^{2}/30.0$

7.
$$dBc = 10Log_{10} \frac{P_{sig}}{P_{tx}}$$

See 5.1 Test Data for REC Test Site

Radiated Measurements

6.4 Field Strength of SPURIOUS Radiation

Operating Frequency: 1988.75 MHz (Base)

Channel: 1175 (High)

Measured Output Power: 23.8 Watts = 39.032 Watts EIRP (45.91 dBm)

Modulation Signal: CDMA (Internal)

Distance: 3 Meters

Limit: $43 + 10 \log_{10} (W) = -56.76 \text{ dBc}$

Antenna: ETS 1-18 GHz s/n 6751

Test Report - Com Dev FCC Part 24 Certification

Test Date: 9/3/02

6.4 Field Strength of SPURIOUS Radiation (continued)

Freq. (MHz)	Level dBm	AFCL (dB)	POL (H / V)	F / S (μV/m)	EIRP (dBm)	(dBc)	EIRP W P _o (sig)
3977.50	- 98.2	32.7	Н	118.58	-53.73	- 99.64	4.24 E ⁻⁹
5966.25	-116.7	34.8	Н	17.99	-70.13	-116.04	9.71 E ⁻¹¹
7955.00	-118.2	37.4	Н	15.14	-71.63	-117.54	6.87 E ⁻¹¹
9943.75	-126.5	38.5	Н	8.91	-76.23	-122.14	2.38 E ⁻¹¹
11932.50	-122.5	39.4	Н	15.67	-71.33	-117.24	7.36 E ⁻¹¹
13921.25	-121.8	42.5	Н	34.27	-67.53	-113.43	1.77 E ⁻¹⁰
	<-135						

NOTES:

- 1. The bandwidth is set per §24.238.
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20 dB below the limit.
- 4. < -135 dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and worst-cases are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = $10Log_{10}(((r(mV/m)1 \times 10^6)^2/30.0/1 \times 10^{-3}$ EIRP (dBm) = $10Log_{10}[(3 \times FS/1 \times 10^6)^2/(30.0) \times 1000]$

EIRP (Watts) = $[3 \times FS)/1 \times 10^{6}]^{2}/30.0$

7. $dBc = 10Log_{10} \frac{P_{sig}}{P_{ty}}$

See 5.1 Test Data for REC Test Site

7.1 TEST DATA

7.2 Frequency Stability:

Test Date: 9/02/02

Operating Frequency: 10,000,000.0 Hz (osc.)

Channel: Master Oscillor placed in oven

Reference Voltage: 3.7 vdc

Deviation Limit: $\pm 0.00025\%$ or 2.5 ppm

Measured with TEK Counter: Model DC-508

Test Report - Com Dev FCC Part 24 Certification Test Date: 9/02/02

7.1 TEST DATA - Continued

7.2 Frequency Stability, continued

Voltage (%)	Pwr (vdc)	Temp (*C)	Frequency (Hz)	Deviation (%)	Dev. (ppm)
100%	3.7	+25°	10,000,00		-0-
		Ref.	0.0	0.000000	
100%		-30		_	5
			9,999,995.	0.00005	
			0		
100%		-20		_	4
			9,999,996.	0.00004	
			0		
100%		-10		-0.00003	3
			9,999,997.		
			0		
100%		-0-	10,000,00	+0.00007	+.3
			3.0		
100%		+10	10,000,00	+0.00003	+.3
			3.0		
100%		+20	10,000,00		+.2
			2.0	+0.00002	
100%		+25	10,000,00	+0.00000	-0-
			0.0		

100%		+30	10,000,00	+0.00002	+.2
			2.0		
100%		+40	10,000,00	+0.00003	+.3
			3.0		
100%		+50	10,000,00	+0.00004	+.4
			4.0		
100%	4.8	+60	10,000,00		+.6
			6.0	+0.00006	
=====	=====	======	========	=======	======
				=	
85%		+25	10,000,00		0.0
	3.15		0.0	0.000000	
115%		+25	10,000,00		0.0
	4.26		0.0	0.000000	
Batt. End	2.8	25	10,000,00		0.0
Voltage			0.0	0.000000	

Note:

See Graph Exhibit # TT attached!

8.1 Plots of Emissions

Contained in this New attachment are Emission Plots of the Spectrum Analyzer (Angilent E4407B) taken during Spectrum Measurements for Spurious Emissions, Harmonics, Band Edges and Occupied Bandwidth. (Previously Filed with FCC) Three (3) Meter Test site Measurements are included in this report.

Norwood J. Patterson
Norwood J. Patterson
December 29, 2002

Test Report - Com Dev FCC Part 24 Certification Test Date: 9/02/02

9.1 Test Equipment Use with this project.

Exhibit 9.1Pages 12 – 14 COM DEV/REC 9/12/02

9.2 EQUIPMENT USED FCC §2.947(d)

COM DEV "Access Point Base Station" (AP)

<u>No.</u>	Description	Make & Model	Cal. Date	Serial No.
1.	Spectrum Analyzers	TEK 492/01/02/03 Fc 50 kHz to 60 GHz	9/2003	
		Agilent (HP) E4407B	9/2003	US4024323
		options (100 Hz to		
		26.5 GHz)		
		(Track generator&		
		Pre-amplifier dc to 3 GHz)		
		<i>3</i> (311 <i>2</i>)		
2.	Frequency Standard	Sections 8131 RX	10/2003	
		Locked to		
		NBS, WWVB of		
		Ft. Collins, Co.		
3.	RF Attenuators	HP 8495B 11 dB		117161
		HP 8494B 1 db		11716
		HP 8498A dc to 18 GHz		0072
		HP 11581A Set		20312,
				019806,
				34123 &
				31245
		Weinschell 48-30-43		AN7909
		de to 18 GHz		F-(-71
		Weinschell SMA		E6671
		Set .1 to 20 dB 3300		
4.	Calibrated Antennas	Ailtech Horn 94627-1	12/2003	0122
		Ailtech Horn 94626-1	12/2003	0122
		Stoddard Discone AT570		REC 1.9
		GHz ground plane	10/2003	REC-1.9
		Dipole AH (1to 1.0 GHz)	12/2003	128-134
		ETS Horn (1 to 18 GHz)	12/2003	6721
		ETS Horn (1 to 18 GHz)	12/2003	6751
5.	RF Radiation	NARDA Test Set 8718	10/2003	
		with Probes		
		300 kHz to 40 GHz		
		"Power Density Meter"		

Test Report - Com Dev FCC Part 24 Certification 9/12/02

9.2 Equipment Used, continued

6. Frequency Counters Agilent E53150A 10/2003

		(10 Hz to 20 GHz) Lock with 10 MHz to WWVB Ft. Collins, Co. TEK 508 HP 5342 10 Hz to 18 GHz	12/2003 11/2003	
7.	Power	HP 435B (100 kHz to 26.5 GHz) HP 3150A (Resolution 01 kHz to 20 GHz)	10/2003	7679
		Agilent 53150A 50 (100 MHz to 20 GHz) (Res. 1 Hz at 1.0 GHz)	8/2003	US01324
		HP434 Calorimetric Power Meter dc to 12.4 GHz	11/2003	02890
8.	Power Sensors	For HP 435B HP 8481a (.01 to 18 GHz) HP 8484a (.01 to 18 GHz)	12/23003 12/2003 12/2003	7679 0699 6537
9.	RF Signal Generator	HP 8640B HP 8656A Spectrum 8131 HP 618 (TS621)	10/2003 12/2003 11/2003 8/2003	A01904 A00479 CAQI
		HP 616a (TS403) TEK TR503 Agilent E 82510 A (250 kHz to 20 GHz) Output Level 0 to 20 dBm.)	8/2003 9/1003 5/2003	B010267 US40131
		Tracking Generator with the Agilent S/A E4407B	5/2003	
10.	Frequency Dubler	HP 11721A		0395
11.	Power Supplies	HP 6269B (4 ea.)		
12.	Digital Volt Meters	TEK TM503 B119131 TEK DM501A BO245746		
13.	Directional Couplers	BIRD 4275-020 BIRD 4274-025		
14.	RF Loads	SMA 50 Ω Weinschell TEK 50 Ω 011-0123-00 GR 874-W50B GR 50 Ω 874		

Test Report - Com Dev FCC Part 24 Certification

Test Date: 90/6/02

9.1 **Equipment Used, continued**

15.	RF Cables	Various Lengths RG 55 13' Andrew FSJ1		
16.	Receiver	WWVB Spectrum 8163 (Part of Frequency Standard)	10/2003	
17.	RF Mixers	TEK PN016-0631-03 (18 to 26.5 GHz)		
18.	RF Power Density	Narda Model 8718	8/2003	s/n 01226
		Narda Probe model 8722B	8/2003	s/n 14002
		Narda Probe model 98723	8/2003	s/n 05012

Procedures Used US & Canada:

IS-856 IS-2000 Rev. A

(CDMA 2000 Series)

IS-138-A OST-55

OST-65 SS133

TRC-49 SP-510

IS-95 EIA 603-A-2-2001

Standards are replaced, as new "updated" Standards become available

10.1 Sample Calculations

A. EIRP Calculation

Signal level μ V/m @ 3 meters = $Log_{10}^{-1} (-15+107+AFCL)$

$$= \ Log_{10}^{-1} \frac{(-15+107+32.5)}{20}$$

 $= 1,678,804.0 \,\mu\text{V/m} @ 3 \,\text{meters}$

A.1 Sample Calculation (relative to a 1/2 λ dipole)

EIRP (dBm) =
$$10 \text{ Log }_{10} (((r(\mu V/m)/1x10^6)^2/30.E^3))$$

EIRP (dBm) =
$$10 \text{ Log } 10 (((3(1,678,804.4)/1E106)^2/30.0E^3))$$

$$EIRP (dBm) = -30.729 = .845 Watts$$

Note: AFCL = Antenna factor adjusted for cable loss.

B. Emission Designator

CDMA Sample

2M + 2DK

CDMA BW = 1.25 MHz

F = Frequency Modulation

G = Composite digital information

W = Combination (Audio/Data)

Emission Designator = 1M25F9W (See test oscillogram Exhibit D attached)

C. Decibels Below Carrier (dBc)

 $dBc = 10 Log_{10} (P_{sig} / P_{Tx})$

dBc = $10 \text{ Log}_{10} (2.3\text{E}^{-7} / .960) = -66.21$

Test Report - Com Dev FCC Part 24 Certification

Test Date: 9/12/02

11.0 Conclusion

REC Lab.

The data contained in this report shows that the AP data transmitter

FCC ID: JJA-90010000xx is capable of complying with the FCC Rules, Regulations and Policies with specific application of Parts 2 and 24. No changes were made to the device to make it comply. It was tested just as Com Dev delivered the unit to

Norwood J. Patterson, 12/29/2002

Engineering Consultant