		EST REP	URI	
8(175-20, Anny? Hwaseong-s	FEC Co., Ltd. /eong-dong) 406-gil sejaro, si, Gyeonggi-do, Korea /251, Fax:031-222-4252	Report No.: KST-I	FCR-210014(1)	KOSTEC Co., Ltr
1. Applicant				
• Name :	Audio-Technica Corpora	ation		
• Address :	2-46-1 Nishi-naruse, Ma	achida, Tokyo, 194	I-8666, Japan	
2. Test Item				
Product N	ame: STEREO TRANS	MITTER		
Model Nar	me: ATW-T3205DF2			
• Brand:	🕢 audio-tech	nica		
• FCC ID:	JFZT3205DF2			
3. Manufactur	er			
• Name :	Audio-Technica Corpora	ation		
• Address :	2-46-1 Nishi-naruse, Ma	achida, Tokyo, 194	-8666, Japan	
4. Date of Tes	st : 2021. 05. 25. ~ 202	21. 05. 27, 2021. 0	7.12.	
5. Test Metho	ANSI/TIA-603	E-2016 2015	art H-Low Power Aux	
6. Test Result	: Compliance			
7. Note: -				
Supplementar	v Information			
The device bea technical stand	ring the brand name and FC0 ards as indicated in the meas ecified in ANSI/TIA-603-E-201	urement report and		
and were made	e accuracy of data and all mea under Chief Engineer's supe and vouch for the qualificatio	rvision. We assume	full responsibility for the	
The r	results shown in this test repo This test repo		ample(s) tested unless OLAS accreditation.	otherwise stated.
A #6:	Tested by	1	Technical Manage	r
Affirmation	Name : Choo, Kwang-Ye	eol (Signature)	Name : Park, Gyeo	ong-Hyeon (Signature).
		/		
		2021. 07. 13		
		KOSTEC Co	., Ltd.	

Table of Contents

1. GENERAL INFORMATION	3
1.1 Test Facility	
1.2 Location	
1.3 Revision History of test report	4
2. EQUIPMENT DESCRIPTION	5
3. SYSTEM CONFIGURATION FOR TEST	6
3.1 Characteristics of equipment	6
3.2 Used peripherals list	6
3.3 Product Modification	
3.4 Operating Mode	
3.5 Test Setup of EUT	6
3.6 Table for Carrier Frequencies	7
3.7 Used Test Equipment List	8
4. SUMMARY TEST RESULTS	
5. MEASUREMENT RESULTS	
5.1 RF Output Power	11
5.2 Modulation Characteristics	
5.3 Occupied Bandwidth & Emission Mask	
5.4 Spurious Emission On Antenna Port	
5.5 Radiated Spurious Emissions	
5.6 Frequency Stability	

1. GENERAL INFORMATION

1.1 Test Facility

Test laboratory and address

KOSTEC Co., Ltd. 28(175-20,Annyeong-dong)406-gil sejaro, Hwaseong-si Gyeonggi-do, Korea Telephone Number: 82-31-222-4251 Facsimile Number: 82-31-222-4252

Registration information

KOLAS No.: KT232 RRA (National Radio Research Agency): KR0041 FCC Designation No.: KR0041 IC Designation No.: KR0041 VCCI Membership No.: 2005

1.2 Location

1.3 Revision History of test report

Rev.	Revisions	Effect page	Reviewed	Date
-	Initial issue	All	Park, Gyeong-Hyeon	2021. 05. 27.
1	Revise equipment description and re-test emission mask	5 Page, 25~30 Page	Park, Gyeong-Hyeon	2021. 07. 13.

2. EQUIPMENT DESCRIPTION

The product specification described herein was declared by manufacturer. And refer to user's manual for the details.

Equipment Name	STEREO TRANSMITTER
Model No	ATW-T3205DF2
Type of Equipment	Licensed Broadcast Transmitter Fixed to Face (UHF Wireless Microphone)
Intended Operating Environment	General Population/Uncontrolled Exposure
Serial Number	Proto type
Primary User Functions of EUT	One-Way Wireless Voice Communication
RF Output Power Rating	50 mW (High) / 10 mW (Low)-Selectable
Operating Frequency Range	470 MHz ~ 608 MHz
RF Output Impedance	50 Ω
Channel Spacing	25 kHz
Modulation	FM for analog voice
Occupied Bandwidth (99%)	105 kHz
Emission Designation	105KF3E
Power Source	Adaptor: Input/100~240Vac, Output/12 Vdc 1 A
Hardware Version	TP2
Software Version	MCU:0.0.6 / FPGA : 0.2.0
Antenna Description	Whip Antenna, Max 1.298 dBi
FCC ID	JFZT3205DF2
Remark	The above DUT's information was declared by manufacturer. Please refer to the specifications or user manual for more detailed description.

3. SYSTEM CONFIGURATION FOR TEST

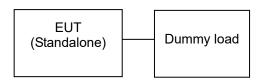
3.1 Characteristics of equipment

The Equipment Under Test (EUT) use for Fixed type UHF Wireless Microphone

3.2 Used peripherals list

Description	Model No.	Serial No.	Manufacture	Remark
AC ADAPTER AD-SC1210AO	KSAS0121200100VU	P#9277-01660B	Audio-technica	-

3.3 Product Modification


N/A

3.4 Operating Mode

Constantly transmitting with a modulated and unmodulated carrier at maximum power on the low, middle and high channels. Radiated emissions tests were performed with antenna ports terminated.

3.5 Test Setup of EUT

The measurements were taken in continuous transmit mode.

3.6 Table for Carrier Frequencies

Modulation Type	Tested Channel	Channel separation (kHz)	Test freq. (MHz)
	Low		470.125
Analog	Mid	25	539.000
	High		607.875

3.7 Used Test Equipment List

No.	Instrument	Model	S/N	Manufacturer	Next Cal Date	Cal interval	used
1	T & H Chamber	PL-3J	15003623	ESPEC CORP	2021.11.04	1 year	
2	T & H Chamber	SH-662	93000067	ESPEC CORP	2021.09.02	1 year	\boxtimes
3	T & H Chamber	SH-641	92006831	ESPEC CORP	2022.03.29	1 year	
4	Spectrum Analyzer	8563EC	3046A00527	Agilent Technology	2022.01.19	1 year	
5	Spectrum Analyzer	FSV30	104029	Rohde & Schwarz	2021.09.01	1 year	
6	Spectrum Analyzer	FSV30	20-353063	Rohde & Schwarz	2022.01.19	1 year	
7	Spectrum Analyzer	FSV40	101727	Rohde & Schwarz	2022.07.19	1 year	
8	Signal Analyzer	FSW43	101294	Rohde & Schwarz	2022.02.18	1 year	\boxtimes
9	Signal Analyzer	FSW85	101602	Rohde & Schwarz	2022.06.30	1 year	
10	EMI Test Receiver	ESCI7	100823	Rohde & Schwarz	2022.01.20	1 year	\boxtimes
11	EMI Test Receiver	ESI	837514/004	Rohde & Schwarz	2021.08.31	1 year	
12	Vector Signal Analyzer	89441A	3416A02620	Agilent Technology	2022.01.20	1 year	
13	Network Analyzer	8753ES	US39172348	AGILENT	2021.09.01	1 year	
14	EPM Series Power meter	E4418B	GB39512547	Agilent Technology	2022.01.19	1 year	
15	RF Power Sensor	E9300A	MY41496631	Agilent Technology	2022.01.19	1 year	
16	Microwave Frequency Counter	5352B	2908A00480	Agilent Technology	2022.01.19	1 year	
17	Audio Analyzer	8903B	3514A16919	Agilent Technology	2022.01.19	1 year	\boxtimes
18	Audio Telephone Analyzer	DD-5601CID	520010281	CREDIX	2022.01.18	1 year	
19	Modulation Analyzer	8901A	3041A05716	H.P	2022.01.18	1 year	
20	Digital storage Oscilloscope	TDS3052	B015962	Tektronix	2021.08.31	1 year	
21	ESG-D Series Signal Generator	E4436B	US39260458	Agilent Technology	2022.01.18	1 year	\boxtimes
22	Vector Signal Generator	SMBV100A	257557	Rohde & Schwarz	2022.01.18	1 year	
23	GNSS Signal Generator	TC-2800A	2800A000494	TESCOM CO., LTD.	2022.01.19	1 year	
24	Signal Generator	SMB100A	179628	Rohde & Schwarz	2022.05.04	1 year	\boxtimes
25	Signal Generator	N5173B	MY57280148	KEYSIGHT	2022.06.11	1 year	
26	SLIDAC	None	0207-4	Myoung sung Ele.	2022.01.20	1 year	
27	DC Power supply	DRP-5030	9028029	Digital Electronic Co.,Ltd	2022.01.20	1 year	
28	DC Power supply	E3610A	KR24104505	Agilent Technology	2022.01.19	1 year	
29	DC Power supply	UP-3005T	68	Unicon Co.,Ltd	2022.01.20	1 year	
30	DC Power Supply	SM 3004-D	114701000117	DELTAELEKTRONIKA	2022.01.19	1 year	
31	DC Power supply	6632B	MY43004005	Agilent Technology	2022.01.20	1 year	
32	DC Power Supply	6632B	MY43004137	Agilent Technology	2022.01.20	1 year	
33	Termination	1433-3	LM718	WEINSCHEL	2022.07.16	1 year	
34	Termination	1432-3	QR946	AEROFLEX/WEINSCHEL	2022.07.16	1 year	
35	Attenuator	24-30-34	BX5630	Aeroflex / Weinschel	2021.12.04	1 year	
36	Attenuator	8498A	3318A09485	HP	2022.01.19	1 year	
37	Step Attenuator	8494B	3308A32809	HP	2022.01.19	1 year	
38	RF Step Attenuator	RSP	100091	Rohde & Schwarz	2022.01.19	1 year	
39	Attenuator	18B50W-20F	64671	INMET	2022.01.19	1 year	
40	Attenuator	10 dB	1	Rohde & Schwarz	2022.05.04	1 year	
41	Attenuator	54A-10	74564	WEINSCHEL	2021.09.02	1 year	
42	Attenuator	56-10	66920	WEINSCHEL	2022.05.04	1 year	
43	Attenuator	48-30-33-LIM	BL5350	Weinschel Corp.	2022.07.16	1 year	
44	Power divider	11636B	51212	HP	2022.01.10	1 year	
45	3Way Power divider	KPDSU3W	00070365	KMW	2022.01.21	1 year	
46	4Way Power divider	70052651	173834	KRYTAR	2022.01.19	1 year	
40	3Way Power divider	1580	SQ361	WEINSCHEL	2022.01.19	1 year	
47	OSP	OSP120	101577	Rohde & Schwarz	2022.05.04	1 year	
40	White noise audio filter	ST31EQ	101902	SoundTech	2022.00.14	1 year	
49 50	Dual directional coupler	778D	17693	HEWLETT PACKARD	2022.01.19		
50		עטיי	11033	HEVILETT FACKARD	2022.01.19	1 year	

Report No.: KST-FCR-210014(1)

No.	Instrument	Model	S/N	Manufacturer	Next Cal Date	Cal interval	used
51	Dual directional coupler	772D	2839A00924	HEWLETT PACKARD	2022.01.19	1 year	
52	Band rejection filter	3TNF-0006	26	DOVER Tech	2022.01.19	1 year	
53	Band rejection filter	3TNF-0007	311	DOVER Tech	2022.01.19	1 year	
54	Band rejection filter	WTR-BRF2442-84NN	09020001	WAVE TECH Co.,LTD	2022.01.19	1 year	
55	Band rejection filter	WRCJV12-5695-5725-5825- 5855-50SS	1	Wainwright Instruments GmbH	2022.05.04	1 year	
56	Band rejection filter	WRCJV12-5120-5150-5350- 5380-40SS	4	Wainwright Instruments GmbH	2022.05.04	1 year	
57	Band rejection filter	WRCGV10-2360-2400-2500- 2540-50SS	2	Wainwright Instruments GmbH	2022.05.04	1 year	
58	Band rejection filter	CTF-155M-S1	001	RF One Electronics	2021.08.31	1 year	
59	Band rejection filter	CTF-435M-S1	001	RF One Electronics	2021.08.31	1 year	
60	Band rejection filter	CTF-5890M-70MS1	1	RF One Electronics	2022.01.19	1 year	
61	Highpass Filter	WHJS1100-10EF	1	WAINWRIGHT	2022.01.19	1 year	
62	Highpass Filter	WHJS3000-10EF	1	WAINWRIGHT	2022.01.19	1 year	
63	Highpass Filter	WHNX6-5530-7000-26500- 40CC	2	Wainwright Instruments GmbH	2022.05.04	1 year	
64	Highpass Filter	WHNX6-2370-3000-26500- 40CC	4	Wainwright Instruments GmbH	2022.05.04	1 year	
65	WideBand Radio Communication	4000 CMW500	102276	Rohde & Schwarz	2022.01.19	1 year	
	Tester WideBand Radio Communication			Rohde & Schwarz			
66	Tester WideBand Radio Communication	CMW500	117235		2022.01.19	1 year	
67	Tester(with CMX500)	CMW500	167157	Rohde & Schwarz	2022.04.09	1 year	
68	Bluetooth Tester	TC-3000B	3000B6A0166	TESCOM CO., LTD.	2022.01.18	1 year	
69	Loop Antenna	6502	9203-0493	EMCO	2023.05.31	2 year	\square
70	BiconiLog Antenna	3142B	1745	EMCO	2022.04.24	2 year	\square
71	Trilog-Broadband Antenna(R)	VULB 9168	9168-606	SCHWARZBECK	2022.09.21	2 year	
72	Biconical Antenna	VUBA9117	9117-342	Schwarz beck	2022.03.24	2 year	
73	Horn Antenna	3115	9605-4834	EMCO	2022.03.06	2 year	\boxtimes
74	Horn Antenna	QMS-00208	21909	STEATITE ANTENNA	2022.12.04	2 year	
75	Horn Antenna(R)	3117	00135191	ETS-LINDGREN	2022.04.29	2 year	
76	Horn Antenna	3115	2996	EMCO	2022.02.14	2 year	\square
77	Horn Antenna _(R)	BBHA 9170	9170-722	SCHWARZBECK	2022.05.12	2 year	
78	Horn Antenna	BBHA 9170	743	SCHWARZBECK	2023.01.21	2 year	
79	AMPLIFIER(A_10)	TK-PA6S	120009	TESTEK	2022.01.19	1 year	\square
80	AMPLIFIER(C_3)	TK-PA01S	200141-L	TESTEK	2021.09.23	1 year	
81	PREAMPLIFIER(C_3)	8449B	3008A02577	Agilent	2022.01.19	1 year	
82	RF PRE AMPLIFIER	SCU08F2	100762	Rohde & Schwarz	2021.12.04	1 year	
83	AMPLIFIER	TK-PA18	150003	TESTEK	2022.01.21	1 year	
84	AMPLIFIER	TK-PA1840H	160010-L	TESTEK	2022.01.21	1 year	
85	Horn Antenna	M19RH	T01	OML, Inc.	2022.05.29	2 year	
86	Horn Antenna	M19RH	R01	OML, Inc.	2022.05.29	2 year	
87	Horn Antenna	M12RH	T02	OML, Inc.	2022.05.29	2 year	
88	Horn Antenna	M12RH	R02	OML, Inc.	2022.05.29	2 year	
89	Horn Antenna	M08RH	T03	OML, Inc.	2022.05.29	2 year	
90	Horn Antenna	M08RH	R03	OML, Inc.	2022.05.29	2 year	
91	Horn Antenna	M05RH	T04	OML, Inc.	2022.05.29	2 year	
92	Horn Antenna	M05RH	R04	OML, Inc.	2022.05.29	2 year	
93	Horn Antenna	M03RH	T05	OML, Inc.	2022.05.29	2 year	
94	Horn Antenna	M03RH	R05	OML, Inc.	2022.05.29	2 year	
95	Harmonic Mixer	M12HWD	200529-1	OML, Inc.	2022.07.12	1 year	
96	Harmonic Mixer	M08HWD	200529-1	OML, Inc.	2022.07.12	1 year	
97	Harmonic Mixer	M05HWD	200529-1	OML, Inc.	2022.07.12	1 year	
98	Harmonic Mixer	M03HWD	200529-1	OML, Inc.	2022.07.12	1 year	
99	Source Module	S19MS-A	200529-1	OML, Inc.	2022.07.02	1 year	
100	Source Module	S12MS-A	200529-1	OML, Inc.	2022.07.02	1 year	
101	Source Module	S08MS-A	200529-1	OML, Inc.	2022.07.02	1 year	
102	Source Module	S05MS-A	200529-1	OML, Inc.	2022.07.02	1 year	
103	Source Module	S03MS-A	200529-1	OML, Inc.	2022.07.02	1 year	

4. SUMMARY TEST RESULTS

Description of Test	FCC Rule	Test report Clause	Used	Test Result	
RF Output Power	2.1046, 74.861(e)(1)(ii)	Clause 5.1	\boxtimes	Compliance	
Modulation Characteristics	2.1047(a), 74.861(e)(3)	Clause 5.2	\boxtimes	Compliance	
Occupied Bandwidth & Emission Mask	2.1049(c)(i), 74.861(e)(5)(6)(7)	Clause 5.3	\boxtimes	Compliance	
Spurious Emission On Antenna Port	2.1051, 74.861(e)(6)(iii)	Clause 5.4	\boxtimes	Compliance	
Radiated Spurious Emissions	2.1053, 74.861(e)(6)(iii)	Clause 5.5	\boxtimes	Compliance	
Frequency Stability	2.1055, 74.861(e)(4)	Clause 5.6	\boxtimes	Compliance	
Compliance/pass : The EUT complies with the essential requirements in the standard. Not Compliance : The EUT does not comply with the essential requirements in the standard. N/A : The test was not applicable in the standard.					

Procedure Reference

FCC CFR 47, Part 2 & 74 Subpart H-Low Power Auxiliary Stations ANSI/TIA-603-E-2016 ANSI C63.26-2015 ANSI C63.4-2014 KDB 206256 D01

5. MEASUREMENT RESULTS

5.1 RF Output Power

5.1.1 Standard Applicable [FCC §74.861(e)(1)(ii) & §2.1046]

According to \$74.861(e)(1)(ii) of the FCC Rules, for low power auxiliary station operating in the 470 MHz ~ 608 MHz, the power of the measured unmodulated carrier power and the output of the transmitter conducted power(antenna input power)may not exceed 250 mW.

5.1.2 Test Environment conditions

• Ambient temperature : (20 - 21) °C • Relative Humidity : (50 - 51) % R.H.

5.1.3 Measurement Procedure

The transmitter output was connected to the spectrum analyzer with an attenuator. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, If the power output is adjustable, measurements shall be made for the highest and lowest power levels.

The spectrum analyzer is set to the as follows :

- RBW : 1 MHz
- VBW : 3 MHz

5.1.4 Test setup

EUT	Attenuator	Spectrum Analyzer
		Analyzei

5.1.5 Measurement Result

Frequency [MHz]	Power Level	Conducted output Power [mW]	Limit [dBm]	Test Results
470.125	Low	8.68		Compliance
539.000	Low	5.26	250 mW	Compliance
607.875	Low	6.55		Compliance
470.125	High	46.25		Compliance
539.000	High	26.01	250 mW	Compliance
607.875	High	36.49		Compliance

5.2 Modulation Characteristics

5.2.1 Standard Applicable [FCC §Part 74.861(e)(3) §2.1047(a)]

According to §2.1047(a) of the FCC Rules, for Voice Modulated Communication Equipment, the frequency response of the audio modulating circuit over a range of 100 Hz to 5000 Hz shall be measured. For equipment required to have an audio low-pass filter, the frequency response of the filter, or of all circuity installed between the modulation limiter and the modulated stage shall be measured.

According to 974.861(e)(3) of the FCC Rules, any form of modulation may be used. A maximum deviation of ± 75 kHz is permitted when frequency modulation is employed.

CH spacing	Frequency deviation
25 kHz	75 kHz

Part 2.1047(a) A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

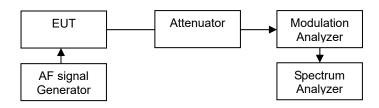
Audio frequency	Minimum Attenuation Rel. to 1 kHz Attenuation
3 - 20 kHz	60 log10(f/3) dB where f is in kHz
20 - 30 kHz	50 dB

5.2.2 Test Environment conditions

• Ambient temperature : (20 - 21) °C • Relative Humidity : (50 - 51) % R.H.

5.2.3 Measurement Procedure

Audio frequency response

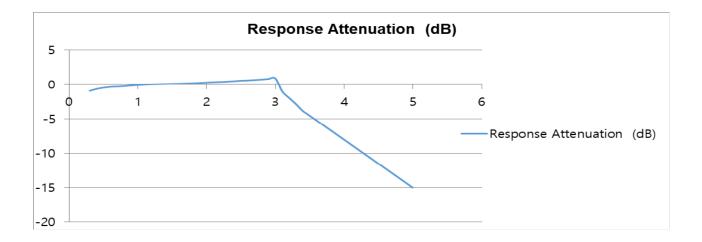

The audio input level needed for a particular percentage of modulation was measured in accordance with ANSI/TIA-603-E-2016. The audio input curves versus modulation are shown below. Curves are provided for audio input frequencies of 300, 1 000, 3 000 and 5 000 Hz.

Test frequency: Mid

Modulation Limit

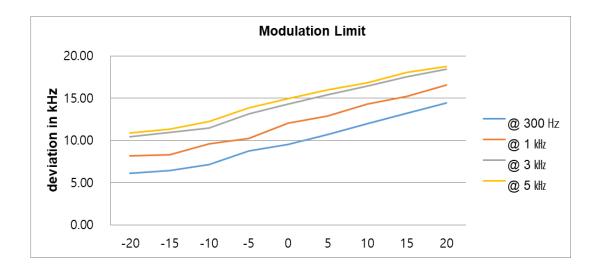
The carrier frequency deviation was measured with the tone adjust the audio input for 60 % of rated system deviation at 1 kHz using this level as a reference (0 dB) and vary the input level from –20 to +20 dB. Record the frequency deviation obtained as a function of the input level at frequencies 0.1, 0.5, 1.0, 3.0 and 5.0 kHz. The maximum deviation was recorded at each test condition.

5.2.4 Test setup



5.2.5 Measurement Result

• Audio frequency response


Audio Frequency	Response Attenuation	Audio Frequency	Response Attenuation
(Hz)	(dB)	(Hz)	(dB)
300	-0.87	2 800	0.72
400	-0.59	2 900	0.79
500	-0.41	3 000	0.88
600	-0.29	3 100	-0.96
700	-0.25	3 200	-1.91
800	-0.19	3 300	-2.83
900	-0.11	3 400	-3.87
1 000	-0.03	3 500	-4.56
1 200	0.08	4 000	-8.17
1 400	0.13	5 000	-15.53
1 600	0.18	-	-
1 800	0.25	-	-
2 000	0.35	-	-
2 100	0.41	-	-
2 200	0.44	-	-
2 300	0.49	-	-
2 400	0.55	-	-
2 500	0.63	-	-
2 600	0.66	-	-
2 700	0.72	-	-

Modulation Limit

Audio input Level		Frequency De	eviation (kHz)		Limit
(dB)	@ 300 Hz	@ 1 kHz	@ 3 kHz	@ 5 kHz	(kHz)
-20	6.12	8.15	10.41	10.87	75
-15	4.45	8.32	10.92	11.32	75
-10	7.17	9.58	11.48	12.21	75
-5	8.76	10.20	13.17	13.84	75
0	9.51	12.06	14.30	14.97	75
5	10.70	12.89	15.38	16.01	75
10	12.01	14.30	16.40	16.80	75
15	13.20	15.20	17.50	18.20	75
20	14.40	16.56	18.40	18.73	75

5.3 Occupied Bandwidth & Emission Mask

5.3.1 Standard Applicable [FCC §74.861(e)(5)(6) & §2.1049(c)(1)]

With radiotelephone transmitters, according to \$2.1049(c)(1) of the FCC Rules, "other than single sideband or independent sideband transmitter-when modulated by a 2500 Hz tone at an input level 16 dB greater than that necessary to produce 50 percent modulation. The input level shall be established at the frequency of maximum response of the audio modulation circuit." According to \$74.861(e)(5) & \$74.861(e)(6) of FCC Rules,

(5) the operating bandwidth shall not exceed 200 kHz

(6) (i) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB;

(ii) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB;

(iii) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10log₁₀ (mean output power in watts) dB;

(7) Analog emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in section 8.3.1.2 of the European Telecommunications Institute Standard ETSI EN 300 422-1 v1.4.2 (2011-08), Electromagnetic compatibility and Radio spectrum Matters (ERM); Wireless microphones in the 25 MHz to 3 GHz frequency range; part 1: Technical characteristics and methods of measurement. Digital emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in section 8.3.2.2 (Figure 4) of the European Telecommunications Institute Standard ETSI EN 300 422-1 v1.4.2 (2011-08), Electromagnetic compatibility and Radio spectrum Matters (ERM); Wireless microphones in the 25 MHz to 3 GHz frequency range; part 1: Technical characteristics and methods of measurement. Buyond one 25 MHz to 3 GHz frequency range; part 1: Technical characteristics and methods of measurement. Beyond one megahertz below and above the carrier frequency, emissions shall comply with the limits specified in section 8.4 of ETSI EN 300 422-1 v1.4.2 (2011-08). The requirements of this paragraph (e)(7) shall not apply to applications for certification of equipment in these bands until nine months after release of the Commission's Channel Reassignment Public Notice, as defined in §73.3700(a)(2) of this chapter.

5.3.2 Test Environment conditions

• Ambient temperature : (20 - 21) °C • Relative Humidity : (50 - 51) % R.H.

5.3.3 Measurement Procedure

<u>Occupied Bandwidth</u>

The EUT was modulated by 2.5 kHz Sine wave audio signal, The level of the audio signal employed is 16 dB greater than that necessary to produce 50 % of rated system deviation. Rated system deviation is 75 kHz.

The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.

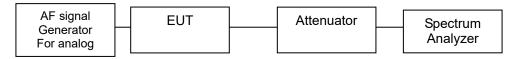
Measure the maximum width of the emission that is 26 dB down from the peak of the emission. The 99 % occupied bandwidth is the frequency bandwidth of the signal power at the 99 % channel power of occupied bandwidth.

The spectrum analyzer is set to the as follows :

- RBW : 1 kHz
- VBW : >3 x RBW
- Detector function : peak
- Trace : max hold

• Emission Mask

Voice Modulation Through a Voice Input Port @ 2.1049(c)(1)


The transmitter was modulated by a 2.5 kHz tone signal at an input level 16 dB greater than that required to produce 50 % modulation (e.g.: \pm 75 kHz peak deviation at 1 kHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

The spectrum analyzer is set to the as follows

- RBW = 1 kHz
- VBW: >3 x RBW"

5.3.4 Test setup

5.3.5 Measurement Result

Frequency [MHz]	Power Level	99 % Bandwidth [kHz]	Limit [kHz]	Test Results
470.125	Low	101.99		Compliance
539.000	Low	101.99	≤200	Compliance
607.875	Low	101.88		Compliance
470.125	High	102.09		Compliance
539.000	High	102.24	≤200	Compliance
607.875	High	102.25		Compliance

* Emission Designator :


- Calculated Emission : 2M + 2D = (2 x 2.5 kHz) + (2 x 50 kHz) = 105kF3E

5.3.6 Test Plot

99 % band width / Power level: Low

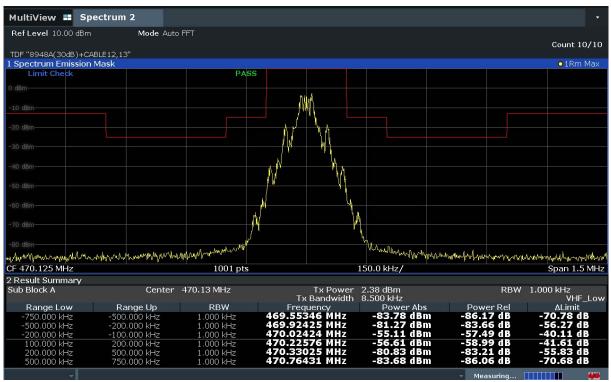
CH Low : 470.125 MHz

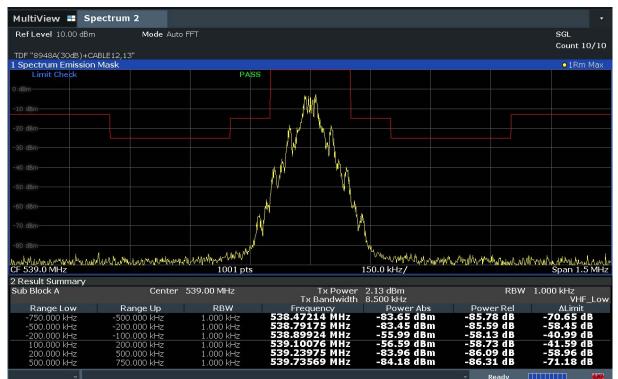
This report shall not be reproduced except in full without the written approval of KOSTEC Co., Ltd,

CH High : 607.875 MHz

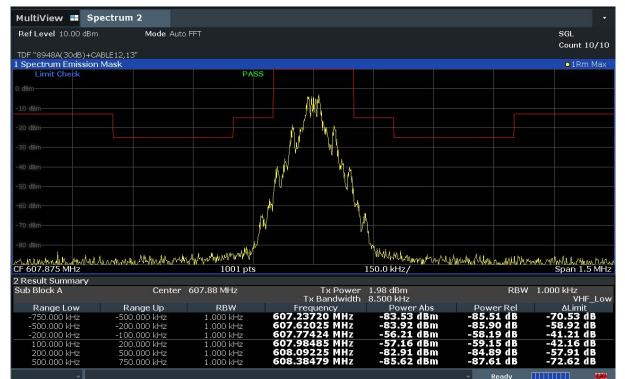
99 % band width / Power level: High

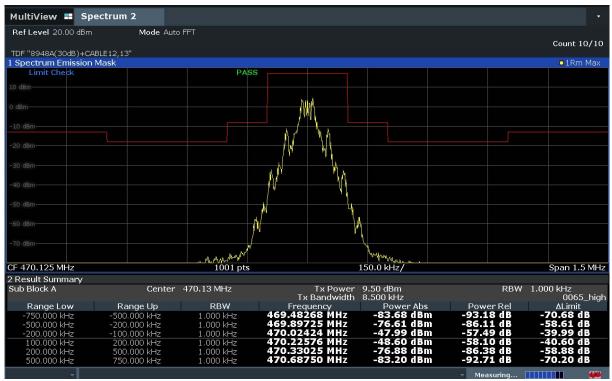
CH Low : 470.125 MHz

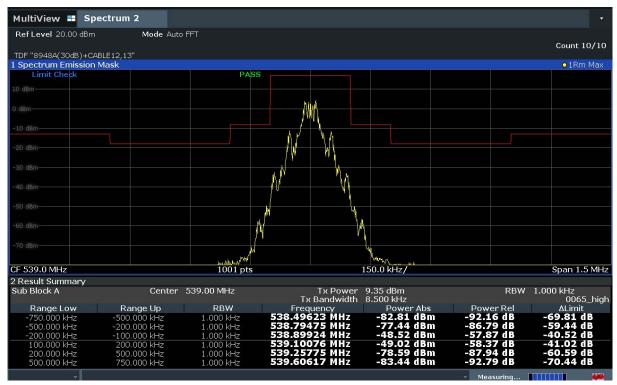

CH High : 607.875 MHz



Emission Mask 1 / Power level: Low

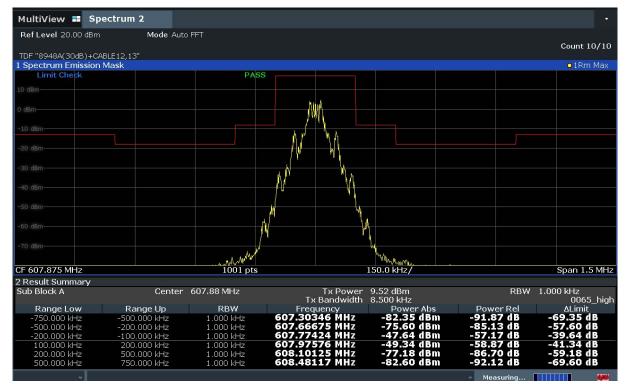

CH Low : 470.125 MHz

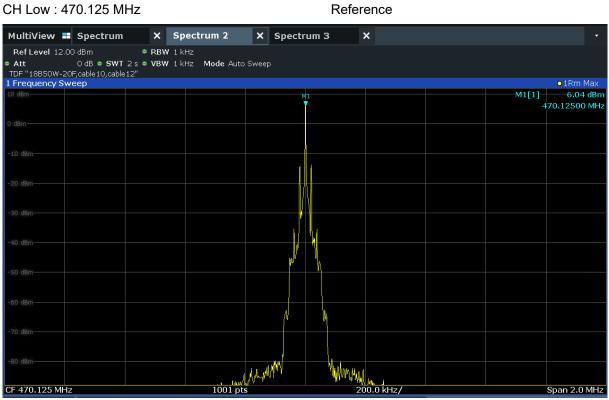

CH High : 607.875 MHz



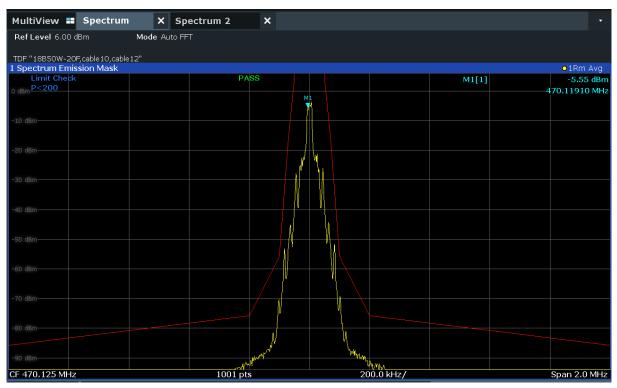
Emission Mask 1 / Power level: High

CH Low : 470.125 MHz

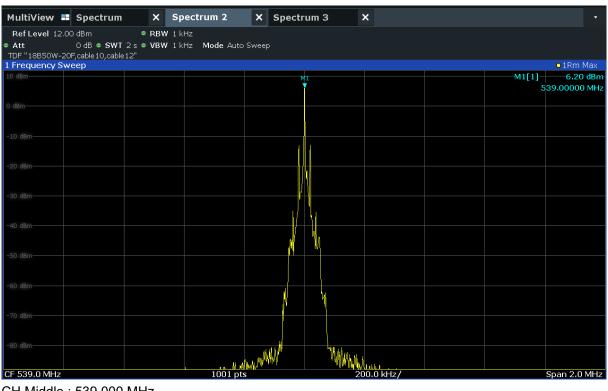


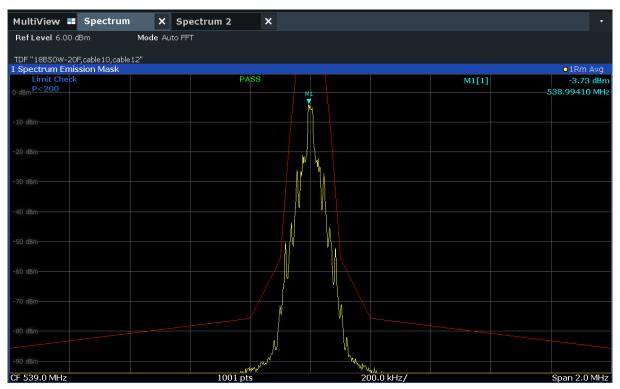

Report No.: KST-FCR-210014(1)

CH High : 607.875 MHz

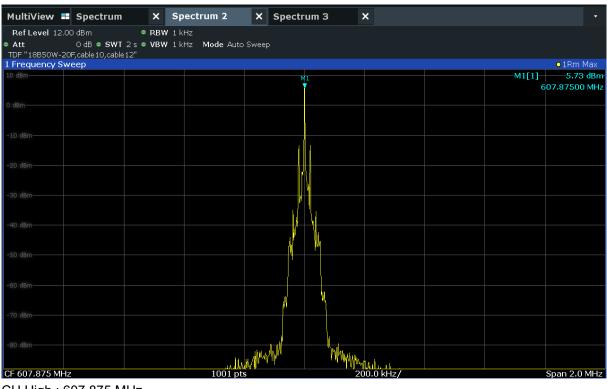


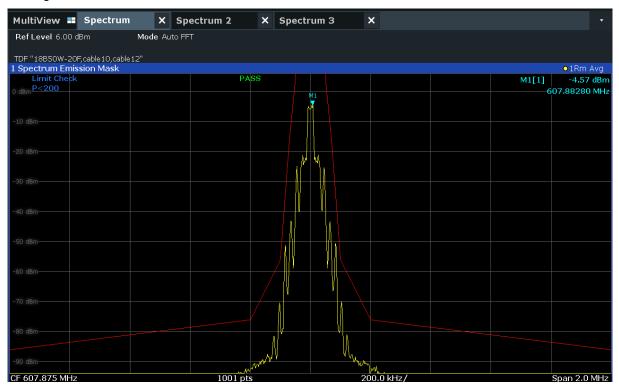
Emission Mask 2 / Power level: Low


CH Low : 470.125 MHz



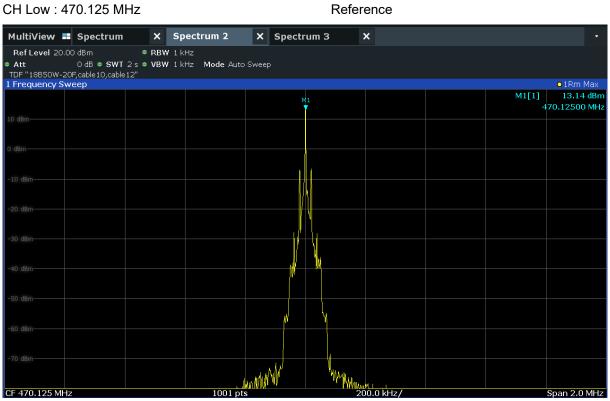
CH Middle : 539.000 MHz





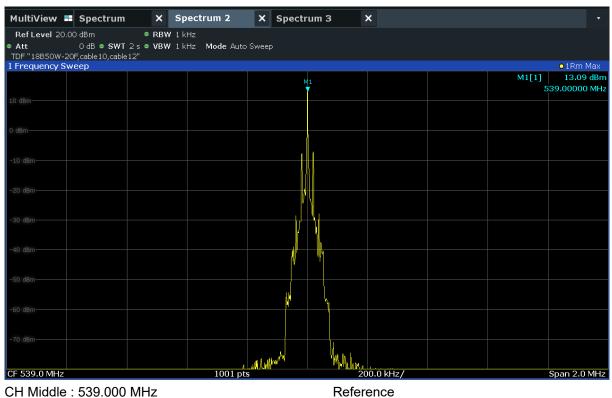
CH High : 607.875 MHz

Reference



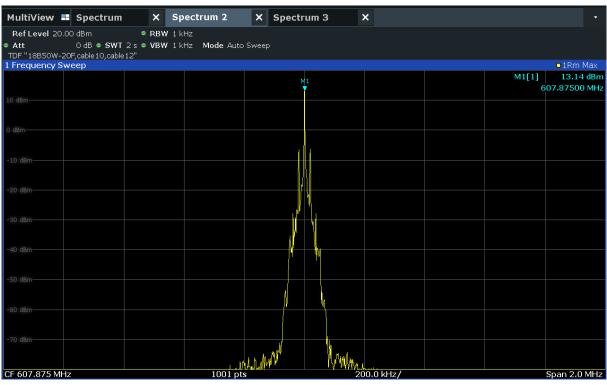
CH High : 607.875 MHz

Emission Mask 2 / Power level: High

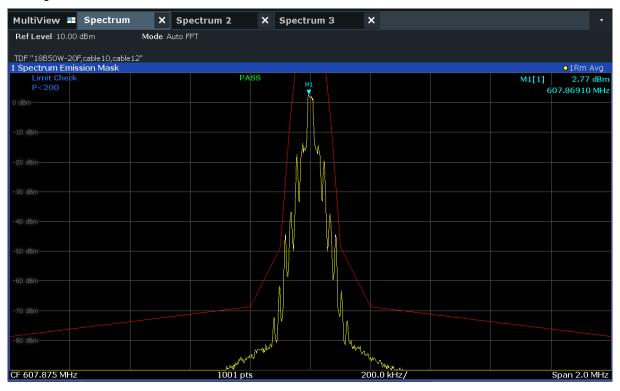

CH Low : 470.125 MHz

MultiView 🖬 Spectrum	×	Spectrum 2	× Spect	trum 3	×		•
RefLevel 10.00 dBm	Mode Aut	to FFT					
TDF "18B50W-20F,cable10,cable1	2"						
1 Spectrum Emission Mask							O1Rm Avg
Limit Check P<200		PASS	5			M1[1]	1.71 dBm
				M1			470.12500 MHz
0 dBm-							
-10 dBm-							
-20 dBm			I (
-30 dBm-							
-40 dBm-							
-50 dBm							
-70 dBm			N _				
-80 dBm		N.M. W. MAN	nt m	"hw	why Wiray.		
CF 470.125 MHz		1001 pts			200.0 kHz/		Span 2.0 MHz

CH Middle : 539.000 MHz



MultiView
Spectrum
X Spectrum 2 × X Spectrum 3 Ref Level 10.00 dBm $Mode \ \, {\sf Auto} \ \, {\sf FFT}$ TDF "18B50W-20F,cable10,cable12" 1 Spectrum Emission Mask o1Rm Avg Limit Check M1[1] 2.45 dBm 539.00780 MHz k 200.0 kHz/ Span 2.0 MHz CF 539.0 MHz 1001 pts



CH High : 607.875 MHz

Reference

CH High : 607.875 MHz

5.4 Spurious Emission On Antenna Port

5.4.1 Standard Applicable [FCC §74.861(e)(6)(iii), §2.1051]

According to §2.1051 of the FCC Rules, the radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions, which are attenuated more than 20 dB below the permissible value, need not be specified

According to §74.861(e)(6) of the FCC Rules, the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

(iii) On any frequency removed from the operating frequency by more than 250 percent up to and including 250 percent of the authorized bandwidth: at least 43 plus 10log₁₀(output power in watts) dB.

5.4.2 Test Environment conditions

• Ambient temperature : (20 - 21) °C • Relative Humidity : (50 - 51) % R.H.

5.4.3 Measurement Procedure

The carrier was modulated 100 % using a 2 500 Hz tone. The spectrum was scanned from the lowest frequency generated to at least the 10th harmonic of the fundamental. The measurements were made in accordance with standard ANSI/TIA-603-E-2016. The RBW = 100 kHz, VBW = 300 kHz and the span set to 10.0 MHz and the spectrum was scanned from 30 MHz to the 10th harmonic of the fundamental. Above 1 GHz the resolution bandwidth was 1 MHz and the VBW = 3 MHz and the span to 50 MHz.

5.4.4 Test setup

Refer 5.3.4

5.4.5 Measurement Result

See the 5.4.6 Test plots

5.4.6 Test Plot

Below 1GHz / Power level: Low

CH Low : 470.125 MHz

MultiView = Spectrum	n 2						
Ref Level 32.51 dBm	 RBW 100 kHz 9.7 ms VBW 300 kHz 	Mode Auto Sweep					SGL Count 10/10
1 Frequency Sweep							●1Pk Max
30 dBm						D2[1]	-65.88 dB
							387.610 MHz
20 dBm						M1[1]	8.97 dBm
							539.230 MHz
			M1				
			7				
-10 dBm-							
-30 dBm							
			4				
warnateropper production or production	mmprographiland	ball Antonia Maring have	appril manager and	hardly have stopped and	Mahmart Marth	and the manufacture of the start of the star	white propheting Apple
A south a function for fail or day to				Markey Mr. with 1		1	
30.0 MHz	10()1 pts	97	.0 MHz/			1.0 GHz
	100	71 pt3	,		Ready		25.05.2021


CH High : 607.875MHz

MultiView 🔳	Spectrum	2							•
Ref Level 32.51		● RBW							SGL
TDF "8948A(30dB)	+CABLE12,13"		300 kHz Mode	Auto Sweep					Count 10/10
1 Frequency Swee	ер								o1Pk Max
							D2	LT]	-63.85 dB 205.430 MHz
							M1	[1]	7,45 dBm
								1.43	608.030 MHz
-40 dBm									
					1. 1.16.			D2	
Marth Shart water of good of the	When mar Alla a	when when when when	April Mary Angel Mary	alumanuturant	Man Man Marker	holomhally have a series of the	martermarthile	httere particular particular by	my shuddhely shall p
	1 1 1 1 1 K					Prove and			
30.0 MHz			1001 pt	\$	9	7.0 MHz/			1.0 GHz

Above 1GHz / Power level: Low

CH Low : 470.125 MHz

MultiView 📑 Spectrum 2	2						•
Ref Level 32.51 dBm	• RBW 1 MHz						SGL
 Att 0 dB SWT 1 TDF "8948A(30dB)+CABLE12,13" 	s • VBW 3 MHz Mode Aut	o Sweep					Count 10/10
1 Frequency Sweep							o1Pk Max
						M1[1]—-40.70 dBm
							6.57740 GHz
20 dBm							
-10 dBm-							
SPURIOUS LINE ABS 002							
-40 dBm							M1
			a second and the second	the way when the		manuferender	mound
a had when a when man when a more has	Margarahan Marka Marka Maka ana ana ana	munnighterming	www.handlen.handle	hours hours	noutermentatives	when the stand of the stand	
1.0 GHz	1001 pt	s	60	0.0 MHz/			7.0 GHz
*	1001 pt				Ready		25.05.2021

CH High : 607.875 MHz

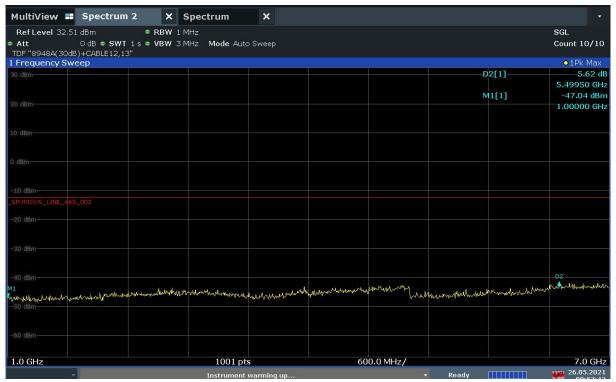
MultiView 📰 Spectrum	2								
Ref Level 32.51 dBm	• RBW 1 M							SGL	
 Att 0 dB • SWT TDF "8948A(30dB)+CABLE12,13 	1s● VBW 3M 3"	Hz Mode Auto	o Sweep					Count 10/10	
IFrequency Sweep									
30 dBm						M1	[1]	-41.50 dBm	
								6.68530 GHz	
20 dBm									
10 dBm									
0 dBm-									
-10 dBm									
_SPURIOUS_LINE_4BS_002									
-20 dBm									
20 000									
-30 dBm-									
-40 dBm								M1	
and an and the second and a second	mannamahan	montenter	we shake provident	we shall we and some	ment warmy	manymoundant	at an and a second and and	yn yn gerllen an glydd	
-50 dBm-									
-60 dBm-									
-00 ubm									
1.0.6Hz		1001 pt		60	0.0.1417/			7.0.647	

* Above 1GHz, no radiated spurious signals were detected at less than 6 dB for operating channels.

Below 1GHz / Power level: High

CH Low : 470.125 MHz

MultiView 📰 Spectrum 2	:								•
Ref Level 32.51 dBm • Att 0 dB SWT 9.7	 RBW 10 7 ms VBW 30 		Auto Sweep						Count 10/10
TDF "8948A(30dB)+CABLE12,13" 1 Frequency Sweep									o1Pk Max
30 dBm							D2	[1]	-69.29 dB
									-66.860 MHz
							M1	[1]	14.82 dBm
20 dBm				м					539.230 MHz
10 dBm-									
-40 dBm									
to dom									
-50 dBm-			50						
Mounderstowed rank market	Mr. Marhoushamore	her mathematic parts	D2	andal	Mulman	mender the hand the second	manuthan	mannahad	moundbarrow
-60 dBm-									
30.0 MHz		1001 pts			07	7.0 MHz/			1.0 GHz


CH High : 607.875 MHz

MultiView 📑 Spectrum 2					
Ref Level 32.51 dBm • RE	W 100 kHz				SGL
● Att 0 dB SWT 9.7 ms ● VB	W 300 kHz Mode Aut	to Sweep			Count 10/10
TDF "8948A(30dB)+CABLE12,13" 1 Frequency Sweep					●1Pk Max
30 dBm			D2	[1]	-70.60 dB
					-518.430 MHz
			MI	[1]	14.64 dBm
20 dBm-		M			608.030 MHz
		Ţ			
10 dBm					
0 dBm					
-10 dBm					
-20 dBm-					
-20 ubm					
-30 dBm-					
-40 dBm-					
-50 dBm					
		م السلام الم			
Way when a share the second	annourses to such and the spread of	WWWWWWWWWWWWWWW	and a more production of the and the second	white when when the second	white white the second s
30.0 MHz	1001 pts	97	'.0 MHz/		1.0 GHz

Above 1GHz / Power level: High

CH Low : 470.125 MHz

MultiView 🔳	Spectrum 2							•
Ref Level 32.51	dBm • RB	W 1 MHz						SGL
	OdB ● SWT 1s ● VBN	N 3 MHz Mode Aut	o Sweep					Count 10/10
TDF "8948A(30dB) 1 Frequency Sweet								• 1Pk Max
30 dBm						M1	[1]	-40.84 dBm
SU GBIT							1.43	1.08090 GHz
20 dBm								
10 dBm-								
TO UDIT								
0 dBm								
-10 dBm								
SPURIOUS LINE ABS								
_SPORIOUS_LINE_ABS_								
-20 dBm								
-30 dBm								
-30 uBm-								
M1								
-👽 0 dBm								
	numeround and	American Marcines & also	1 wanter markers	en motion bear	parrowing .	يفينيسا بأم	montal and the second of the	Junit many more him
-50 dBm	WWWW SHAND AND AND AND AND AND AND AND AND AND		When work for the of the second		(Maynet	how have been a service of the servi		
-so ubm								
-60 dBm								
1.0 GHz		1001 p	ts	60	0.0 MHz/			7.0 GHz

CH High : 607.875 MHz

MultiView 📰 Spectrum 2							•
RefLevel 32.51 dBm Att 0 dB • SWT 1 s	• RBW 1 MHz s • VBW 3 MHz Mode Auto	Swoon					SGL Count 10/10
TDF "8948A(30dB)+CABLE12,13"	S VDW STATIZ MOULE AULO	o Sweep					
1 Frequency Sweep							o1Pk Max
30 dBm-					M1	[1]	-41.02 dBm
							1.21880 GHz
20 dBm							
10 dBm							
0 dBm							
-10 dBm-							
SPURIOUS_LINE_4BS_002							
-20 dBm							
-20 dBm-							
-30 dBm-							
-40 dym							
www.unander.an.ander.on	n. Las Ashill When the way of a start of the	Michael	- darmangender	man my		with marine powerly	whetenderman
-50 dBm	Lafe at a starter white the start of the sta	Wanner		When	white out to have		
-60 dBm-							
10.047	1001 ptg		60	0.0 MH=/			7 0 GHz

* Above 1GHz, no radiated spurious signals were detected at less than 6 dB for operating channels.

5.5 Radiated Spurious Emissions

5.5.1 Standard Applicable [FCC §74.861(e)(6)(iii)& §2.1053]

According to §2.1053 of the FCC Rules, measurements shall be made to detect spurious emission that may be radiated directly from the cabinet, control circuits, power leads, or intermediated circuit elements under normal condition of installation and operation. Information submitted shall include the relative radiated power of spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from a half wave dipole antenna.

According to §74.861(e)(6)of the FCC Rules, the mean power of emissions shall be attenuated below the mean out power of the transmitter in accordance with the following schedule:

(iii) On any frequency removed from the operating frequency by more than 250 percent up to and including 250 percent of the authorized bandwidth: at least 43 plus 10log₁₀(output power in watts) dB.

5.5.2 Test Environment conditions

• Ambient temperature : (20 - 21) °C • Relative Humidity : (50 - 51) % R.H.

5.5.3 Measurement Procedure

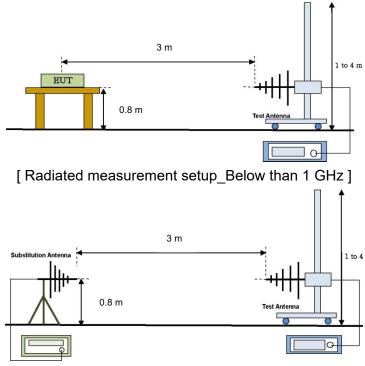
The EUT was setup according to ANSI/TIA 603E-2016 for compliance to FCC 47CFR part 74 requirements.

As a below test procedure ($1 \sim 3$), The result value of measurement is performed to condition of the below; The EUT will operate in continuous transmission mode during the time necessary to perform the measured of the frequency. Substitution method was performed to determine the actual P_{erp} (or P_{eirp}) emission levels of the EUT.

The following test procedure as below;

The test is performed in a fully pyramidal chamber to determine the accurate frequencies, after maximum emissions level will be checked on a test chamber and measuring distance is 3 m from EUT to test antenna.

- ① The EUT was set on with continuous transmission mode and placed on a 0.8 meter high non-conductive table on the chamber.
- ⁽²⁾ The test antenna is used on Bi-Log antenna at above 30 MHz, and used on Horn antenna at 1 GHz and then the measurements are repeated with the test antenna for vertical and horizontal polarization. The output of the test antenna will be connected to a measuring receiver, and it is set to tuned over the required standard measuring frequency range.
- ③ At each frequency at which a relevant spurious component is detected, the test antenna will be raised and lowered through the specified range of heights until an maximum signal level is detected on the measuring receiver.
- ④ The EUT is position x, y, z axis on rotating through 360 degrees in the horizontal plane, until the Max. signal level is detected by the measuring receiver.
- (5) The receiver is scanned from requested measuring frequency band and then the maximum meter reading is recorded. The radiated emissions were measured with requested standard specification (detector and resolution bandwidth etc.)
- ⁽⁶⁾ The EUT was then removed and replaced with substitution antenna .The center of the antenna was approximately at the same location as the center of the EUT, and calibrated for the frequency of the spurious component detected.
- ⑦ Signal generator output port connected with substitution antenna input port. If necessary, may use shield cable between signal generator and substitution antenna
- ⑧ The frequency of the calibrated signal generator is set to frequency of the spurious component detected, and the input attenuator setting of the measuring receiver was adjust in order to increase the sensitivity of



the measuring receiver, if necessary

- In test antenna was raised and lowered through the specified range of heights to ensure that maximum signal is received.
- 10 The input signal to the substitution antenna was be adjusted until an equal or a known related level to that detected from the transmitter is obtained on the measuring receiver.
- (1) The input signal to the substitution antenna was be recorded as a power level and corrected for any change of input attenuator setting of the measuring receiver
- 1 The measure of P_{erp}(or P_{eirp}) the spurious components is the larger of the two power levels recorded for each spurious component at the input to the substitution antenna, corrected for the gain of the substitution antenna, if necessary.
- 13 It is correction to signal generator's offset value. In this case of P_{erp}(or P_{eirp}) shall calculated as follow as formula;
- Perp(or Peirp) = Signal generator level (dBm) Cable loss(dB) + Standard Antenna gain

The measurement frequency range from 30 MHz - 10th Harmonic of fundamental was investigated.

5.5.4 Test Setup

[Effective Radiated Power measurement setup]

* Above the test antenna is used on Horn antenna at above 1 GHz.

Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Radiated Emission measurement: Below 1 GHz: 3.62 dB (CL: Approx 95 %, k=2)

Above 1 GHz: 4.18 dB (CL: Approx 95 %, k=2)

5.5.5 Measurement Result

The following frequencies were selected based on the antenna radiated results, the worst case are presented.

(30 MHz ~ 7 GHz)								
The worst test results high channel 607.875 MHz								
Frequency SG. Level [MHz] [dBm]	SG. Level	ANT.Gain [dBd]	Cable Loss [dB]	P. Mea	Limit	Margin	Polarity	
	[dBm]			[dBm]	[dBm]	[dB]		
799.96	-39.73	-2.20	1.49	-43.42	-13.00	30.42	Н	
875.80	-42.80	-3.95	1.49	-48.24	-13.00	35.24	Н	
The worst test results high channel 607.875 MHz								
Frequency [MHz]	SG. Level [dBm]	ANT.Gain	Cable Loss [dB]	P. Mea	Limit	Margin	Polarity	
				[dBm]	[dBm]	[dBm]		
-	-	-	-	-	-13.00	-	-	

* Above 1GHz, no radiated spurious signals were detected at less than 6 dB for operating channels

5.6 Frequency Stability

5.6.1 Standard Applicable [FCC §74.861(e)(4) & §2.1055]

According to §2.1055 of the FCC Rules, the frequency stability shall be measure with variation of ambient temperature from -30° C to +50° C, and according to FCC 2.1055(d)(1), the frequency stability shall be measured with reducing primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

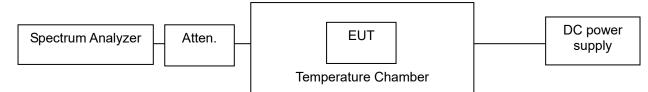
According to §74.861(e)(4) of the FCC Rules, the frequency tolerance of the transmitter shall be 0.005 percent.

5.6.2 Test Environment conditions

• Ambient temperature : (20 - 21) °C • Relative Humidity : (50 - 51) % R.H.

5.6.3 Measurement Procedure

EUT connect to Spectrum analyzer, test is performed in T&H chamber.


These measurements shall also be performed at normal and extreme test conditions.

• Test Method : ANSI/TIA-603-E-2016, clause 2.2.2 for frequency stability tests

-Frequency stability with respect to ambient temperature

-Frequency stability when varying supply voltage

5.6.4 Test setup

5.6.5 Measurement Result

- Operating frequency : 539.000 MHz

- Channel : mid

Temp(℃)	Power Supply	Measured Frequency (MHz)	Frequency error (Hz)	Frequency error (%)	Test Results		
50		539.000 152	152	0.000028	Compliance		
40		538 999 938	-62	-0.000012	Compliance		
30		538.999 864	-136	-0.000025	Compliance		
20		539.000 168	168	0.000031	Compliance		
10	DC 12 (V _{nom})	539.000 171	171	0.000032	Compliance		
0		538.999 952	-48	-0.000009	Compliance		
-10		539.000 132	149	0.000024	Compliance		
-20		539.000 103	103	0.000019	Compliance		
-30		539.000 146	146	0.000027	Compliance		
Nom Temperature	DC 10.2 (V _{min})	539.000 169	169	0.000031	Compliance		
Nom Temperature	DC 13.8 (V _{max})	539.000 164	164	0.000030	Compliance		
Limit	0.005%						