

RADIO TEST REPORT

Test Report No. 15106908H-D-R1

Customer	Audio-Technica Corporation
Description of EUT	HANDHELD TRANSMITTER
Model Number of EUT	ATW-T220cS
FCC ID	JFZT220CS
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	June 28, 2024
Remarks	-

Representative test engineer	Approved by
PRQUERI	S. Matsuyama
Shousei Hamaguchi Engineer	Satofumi Matsuyama Engineer
	ACCREDITED CERTIFICATE 5107.02
	d is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15106908H-D-R1 Page 2 of 31

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in SECTION 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 15106908H-D

This report is a revised version of 15106908H-D. 15106908H-D is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	15106908H-D	May 31, 2024	-
(Original)			
1	15106908H-D-R1	June 28, 2024	SECTION 2.1
			-Corrected the test date.
			April 10 to 18, 2024 → April 11 to 18, 2024
			SECTION 3.2
			-Corrected the specification for RF output power in the table.
			FCC: Section 15.236 (d) (1) (2)
			→FCC: Section 15.236 (d) (1)
			-Deleted FCC Part 15.203 Antenna requirement.
			SECTION 4
			*The details of Operating mode(s)
			-Corrected the modulation for necessary bandwidth in the table.
			See SECTION 8 → See SECTION 7
			-Deleted the below sentence in the table.
			*The isolator of RF filter circuit is consisted of passive component. It does not contain non-linear component.
			Therefore the test was performed on lowest, near middle and highest frequency that was chosen from
			available frequency band.
			SECTION 6
			-Corrected the sentence of frequency stability.
			[Frequency stability]
			The power supply set to 100 % nominal setting, raise EUT operating temperature to 50 deg. C.
			Record the frequency of the EUT.
			Repeat measurements at each 10 deg. C decrement to -30 deg. C. EUT power supply was varied between 85 % and 115 % of nominal and the frequency of the EUT was
			recorded when temperature is 20 deg. C. The additional test was performed at battery end point voltage.
			→
			[Frequency stability]
			The power supply set to 100 % nominal setting, raise to the maximum operating temperature of the EUT.
			Record the frequency of the EUT.
			Repeat measurements at each 10 deg. C decrement up to minimum operating temperature of EUT.
			EUT power supply was 100 % of nominal and the frequency of the EUT was recorded when temperature is
			20 deg. C. The additional test was performed at battery end point voltage.
			APPENDIX 1
			Field strength of spurious radiation
			-Added Field strength of spurious radiation (Plot data, Worst case).

Test Report No. 15106908H-D-R1 Page 3 of 31

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	5
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of EUT during testing	g
SECTION 5: Field strength of spurious radiation	
SECTION 6: Antenna Terminal Tests	
SECTION 7: Necessary bandwidth	
APPENDIX 1: Test data	
RF Output Power	14
Occupied Bandwidth	
Necessary bandwidth	18
Field strength of spurious radiation	20
Frequency stability	24
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	29
Field strength of spurious radiation	
Worst Case Position	
Antenna terminals Conducted	31

Test Report No. 15106908H-D-R1 Page 5 of 31

SECTION 1: Customer Information

Company Name	Audio-Technica Corporation
Address	2-46-1 Nishi-naruse, Machida, Tokyo 194-8666, Japan
Telephone Number	+81-42-739-9121
Contact Person	Hirohisa Yamamoto

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	HANDHELD TRANSMITTER
Model Number	ATW-T220cS
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	April 1, 2024
Test Date	April 11 to 18, 2024

2.2 Product Description

General Specification

Rating	DC 3.0 V (Battery (2 x Alkaline AA Batteries))
Operating temperature	5 deg. C to 45 deg. C

Radio Specification

Radio type	Transmitter
Modulation type	FM
Necessary bandwidth	110 kHz = 2M + 2D
	where M: Maximum modulation frequency = 15 kHz
	D: Peak deviation = 40 kHz
Declared Channel	200 kHz
Bandwidth (B)	
Frequency of operation	508.125 MHz to 526.825 MHz
RF power	10 mW, 30 mW
Antenna gain	0 dBi max

Test Report No. 15106908H-D-R1 Page 6 of 31

SECTION 3: Test specification, procedures & results

3.1 **Test Specification**

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.236 Operation of wireless microphones in the bands 54-72 MHz,
	76-88 MHz, 174-216 MHz, 470-608 MHz and 614-698 MHz.

^{*} Also the EUT complies with FCC Part 15 Subpart B.

Procedures and results 3.2

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207	-	N/A	*1)
RF Output Power	ANSI C63.10:2013 Clause 11.9.2.3	FCC: Section 15.236 (d) (1)	See data.	Complied	Conducted
Occupied Bandwidth	ANSI C63.10:2013 Clause 6.9	FCC: Section 15.236 (f) (1) (2)	See data.	Complied	Conducted
Necessary bandwidth	EN 300 422-1 V1.4.2 Clause 8.3 KDB 206256 IV (d)	FCC: Section 15.236 (g)	See data.	Complied	Conducted
Field strength of spurious radiation	EN 300 422-1 V1.4.2 Clause 8.4 KDB 206256 IV (d)	FCC: Section 15.236 (g)	8.1 dB 4668.98 MHz, Horizontal	Complied	Radiated
Frequency stability	ANSI C63.10:2013 Clause 6.8	FCC: Section 15.236 (f) (3)	See data.	Complied	Conducted

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593. In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Therefore, this EUT complies with the requirement.

^{*1)} The test was not performed on since the EUT does not have AC Power ports.

Test Report No. 15106908H-D-R1 Page 7 of 31

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Field strength of spurious radiation (EUT height: 1.5 m)		Calculated
(Measurement Distance 3 m)		Uncertainty (+/-)
25 MHz to 200 MHz	dB	6.0
200 MHz to 1000 MHz	dB	3.9
1 GHz to 12.75 GHz	dB	4.7

Antenna Terminal Conducted tests

ltem	Unit	Calculated Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg.C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

Test Report No. 15106908H-D-R1 Page 8 of 31

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance		
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m		
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m		
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m		
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-		
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m		
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-		
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-		
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-		
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-		
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-		
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-		
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-		
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-		
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-		
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-		
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-		
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m		
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-		

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

Test Report No. 15106908H-D-R1 Page 9 of 31

SECTION 4: Operation of EUT during testing

Operating Mode(s) 4.1

Mode	Remarks*
Transmitting (Tx)	-
*Transmitting duty was 100 % on all tests	

Transmitting duty was 100 % on all tests.

*Power of the EUT was set by the software as follows;

Power Setting: 10mW, 30mW

Ver1.0 Software:

(Date: 2024.04 01, Storage location: EUT memory)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

*The details of Operating mode(s)

Test Item	Tested frequen	су	Power setting	Modulation	Remarks
RF power output	508.125 MHz	(Low)	10 mW,	None	-
	518.775 MHz	(Mid)	30 mW	(No modulation)	
	526.825 MHz	(High)			
Occupied	508.125 MHz	(Low)	10 mW,	1 dBV,	-
Bandwidth	518.775 MHz	(Mid)	30 mW	2.5 kHz tone *2)	
	526.825 MHz	(High)			
Necessary	508.125 MHz	(Low)	10 mW,	See SECTION 7.	-
bandwidth	518.775 MHz	(Mid)	30 mW		
	526.825 MHz	(High)			
Field strength of	508.125 MHz	(Low)	30 mW *1)	None	-
spurious radiation	518.775 MHz	(Mid)	ŕ	(No modulation)	
	526.825 MHz	(High)			
Frequency stability	508.125 MHz	(Low)	30 mW *1)	None	-
	518.775 MHz	(Mid)	,	(No modulation)	
	526.825 MHz	(High)			

^{*1)} After the comparison between 10 mW and 30 mW as pre-check, test was performed with worst case 30 mW setting.

^{*2)} When modulated by a 2.5 kHz tone at an input level 16 dB greater than that necessary to produce 50 percent modulation.

Test Report No. 15106908H-D-R1 Page 10 of 31

4.2 Configuration and peripherals

* Setup was taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial Number	Manufacturer	Remark
Α	HANDHELD	ATW-T220cS	No.9	Audio-Technica	EUT
	TRANSMITTER			Corporation	

Test Report No. 15106908H-D-R1 Page 11 of 31

SECTION 5: Field strength of spurious radiation

Test Procedure

1) EUT was placed on a platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. Test was made with the antenna positioned in both the horizontal and vertical planes of polarization.

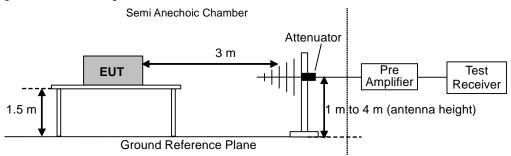
The Radiated Electric Field Strength has been measured in semi anechoic chamber at a distance of 3 m.

The measuring antenna height was varied between 1 to 4 m and the turn table was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

- Exchanged the EUT to the Substitution Antenna, the measurement was set for the same height 1.5 m as the EUT. The frequency below 1 GHz of the Substitution Antenna was used the Half wave dipole Antenna, which was tuned the measured frequency in 1). The frequency above 1 GHz of the Substitution Antenna was used Horn Antenna. The Substitution Antenna was connected to the Signal Generator, and the polarized electromagnetic radiation of the Substitution Antenna was matched with the one of the measuring Antenna, which was set with the Signal Generator to the measured frequency in 1). Then, we set with the Output power (CW) of the Signal Generator where the measuring electromagnetic field strength is equal to the measured value in 1) by means of varying the measuring antenna height between 1 to 4 m to obtain maximum receiving level. Its Output power of Signal Generator was recorded.
- 3) Effective radiated power was calculated by subtracting the cable loss and the attenuator loss connected between the Signal Generator and the Substitution Antenna from the Output power of the Signal Generator recorded in 2).

 For the usage of the Antenna (Horn Antenna) except for the Half wave dipole Antenna (2.15dBi) for the Substitution Antenna, the Effective radiated power was calculated by compensating the finite difference in the Antenna gain of the Half wave dipole Antenna, and Substitution Antenna.


Frequency	25 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

Frequency	25 MHz to 30 MHz	30 MHz to 1 GHz	Above 1 GHz								
Instrument used		Spectrum Analyzer									
Detector		QP RMS Average									
IF Bandwidth	RBW: 10 kHz	RBW: 100 kHz	RBW: 1 MHz								
	VBW: 30 kHz	VBW: 3 MHz									
Test Distance	3 m										

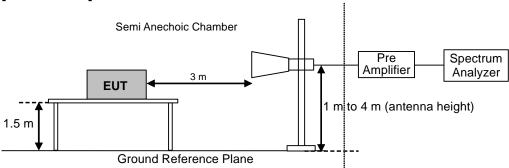

Test Report No. 15106908H-D-R1 Page 12 of 31

Figure 2: Test Setup

[25 MHz to 1 GHz]

[Above 1 GHz]

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 25 MHz to 6 GHz Test data : APPENDIX

Test result : Pass

Test Report No. 15106908H-D-R1 Page 13 of 31

SECTION 6: Antenna Terminal Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
				time			
RF power output	-	-	-	Auto	Average	-	Power Meter
							(Sensor: 50 MHz BW)
Occupied Bandwidth	Enough width to display emission skirts	1 to 5% of Occupied bandwidth	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
Frequency stability	-	-	-	-	-	-	Frequency Counter

^{*1)} The measurement was performed with Peak and Max Hold since the modulation method was FM.

[Frequency stability]

The power supply set to 100 % nominal setting, raise to the maximum operating temperature of the EUT. Record the frequency of the EUT.

Repeat measurements at each 10 deg. C decrement up to minimum operating temperature of EUT.

EUT power supply was 100 % of nominal and the frequency of the EUT was recorded when temperature is 20 deg. C. The additional test was performed at battery end point voltage.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX
Test result : Pass

SECTION 7: Necessary bandwidth

The tests were made with below setting connected to the antenna port.

[For Analog Modulation Device]

In accordance with section 8.3 of ETSI EN 300 422-1, a weighted noise source through a weighting filter based on ITU-R Recommendation BS.559-2 was applied to the audio input of transmitter. The transmitter RF output spectrums were measured at each channel using a receiving antenna and a spectrum analyzer with settings specified in the section 8.3.1 of ETSI EN 300 422-1. The input level of both white noise and filter to EUT was 2 dBV according to the following result.

	lim-8dB	lim	lim+12dB	Difference of Demodulation level lim-8dB and lim+12dB	White noise +Filter input level					
EUT input level	-18 dBV	-10 dBV 2 dBV			2 dBV					
Demodulation level	2.9 dBV	-	10.4 dBV	7.5 dB < 10 dB						
"lim" means "audio	"lim" means "audio limiting threshold" declared by manufacturer.									

Test data : APPENDIX Test result : Pass

^{*2)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz).

Test Report No. 15106908H-D-R1 Page 14 of 31

APPENDIX 1: Test data

RF Output Power

Test place Date Ise EMC Lab. No.6 Measurement Room April 12, 2024

24 deg. C / 49 % RH Temperature / Humidity Engineer Mode Shousei Hamaguchi

Power	Channel	Freq.	Reading	Cable	Atten.	Ant	Result		Limit	Margin	Remarks
Setting			Average	Loss	Loss	Gain	[EIRP]		[EIRP]		
		[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[mW]	[dB]	
	Low	508.125	-10.52	0.39	19.88	0.00	9.75	9.44	50	7.24	
10 mW	Mid	518.775	-10.61	0.40	19.88	0.00	9.67	9.27	50	7.32	
	High	526.825	-10.79	0.40	19.88	0.00	9.49	8.89	50	7.50	
	Low	508.125	-5.79	0.39	19.88	0.00	14.48	28.05	50	2.51	
30 mW	Mid	518.775	-5.79	0.40	19.88	0.00	14.49	28.12	50	2.50	
	High	526.825	-5.90	0.40	19.88	0.00	14.38	27.42	50	2.61	

Calculation formula: Result = Reading + Cable Loss + Atten. Loss + Ant Gain

Test Report No. 15106908H-D-R1 Page 15 of 31

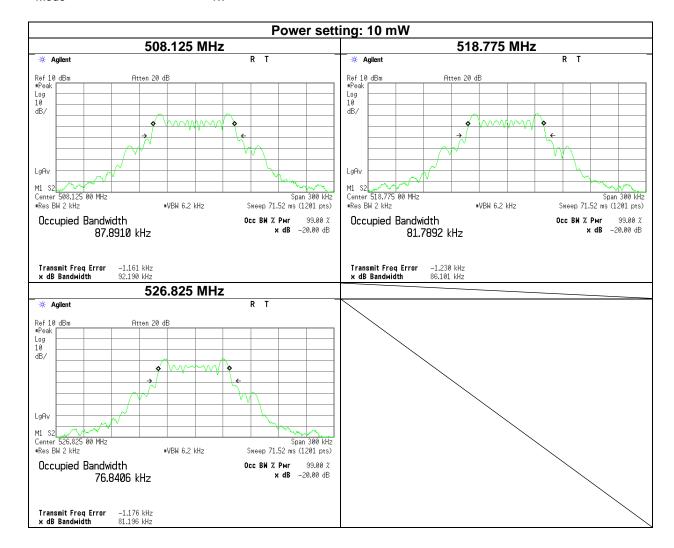
Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Date April 11, 2024
Temperature/ Humidity 21 deg. C / 48 % RH
Engineer Shousei Hamaguchi

Mode T

Power	Channel	Freq.	99% Occupied	Limit	Margin
Setting	Orianino	1 104.	Bandwidth	Liitiik	iviaigiii
_		[MHz]	[kHz]	[kHz]	[kHz]
	Low	508.125	87.8910	200	112.1090
10 mW	Mid	518.775	81.7892	200	118.2108
	High	526.825	76.8406	200	123.1594
	Low	508.125	87.8323	200	112.1677
30 mW	Mid	539.000	81.7478	200	118.2522
	High	526.825	76.8260	200	123.1740

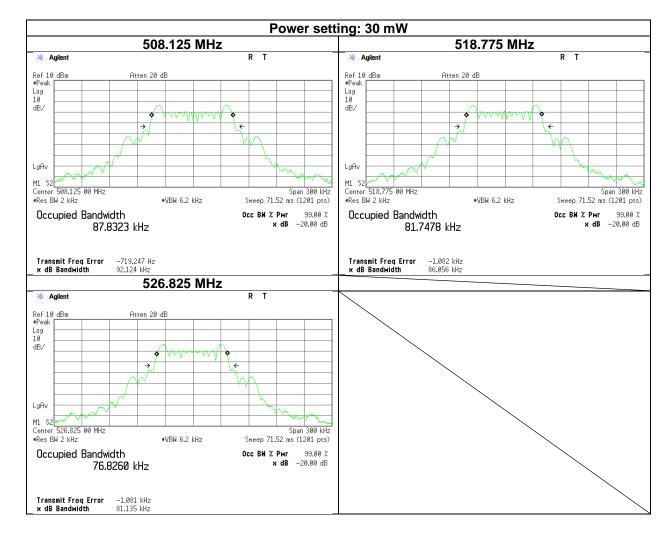

Test Report No. 15106908H-D-R1 Page 16 of 31

Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Date April 11, 2024
Temperature/ Humidity 21 deg. C / 48 % RH
Engineer Shousei Hamaguchi

Mode 7

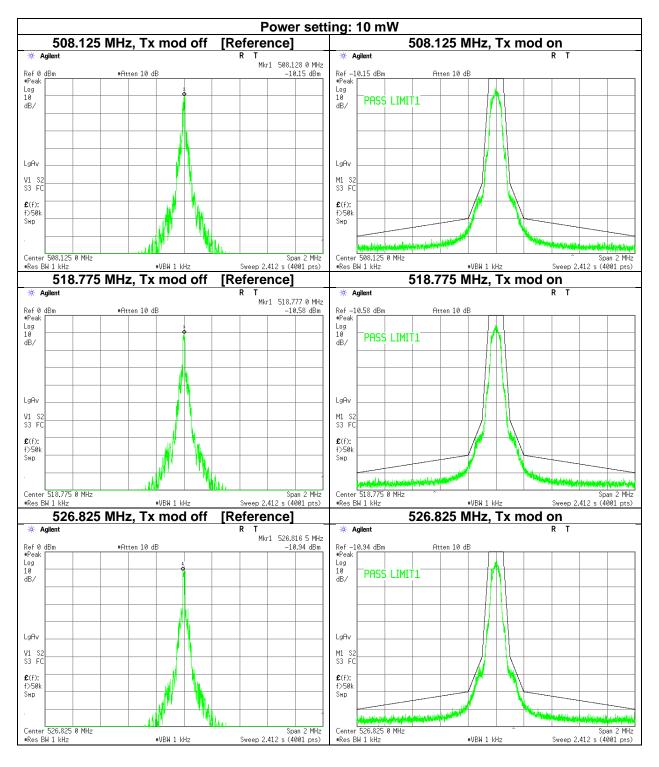

Test Report No. 15106908H-D-R1 Page 17 of 31

Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Date April 11, 2024
Temperature/ Humidity 21 deg. C / 48 % RH
Engineer Shousei Hamaguchi

Mode

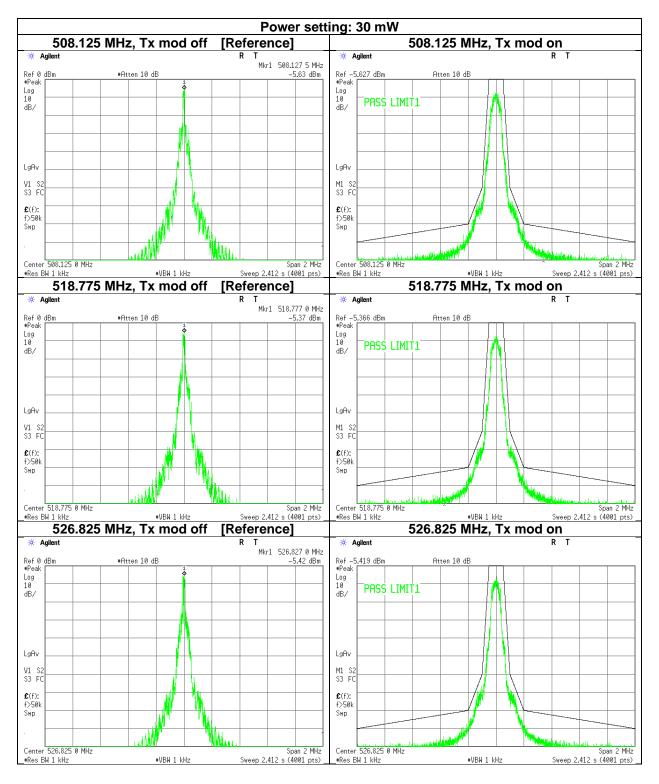


Test Report No. 15106908H-D-R1 Page 18 of 31

Necessary bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Date April 12, 2024 Temperature/ Humidity 24 deg. C / 49 % RH Engineer Shousei Hamaguchi Mode Τx



Test Report No. 15106908H-D-R1 Page 19 of 31

Necessary bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Date April 12, 2024 Temperature/ Humidity 24 deg. C / 49 % RH Engineer Shousei Hamaguchi Mode Τx

Test Report No. 15106908H-D-R1 Page 20 of 31

Field strength of spurious radiation

Test place Ise EMC Lab.

Semi Anechoic Chamber

Temperature / Humidity

Engineer

Mode

No.2 April 16, 2024 20 deg. C / 43 % RH Shousei Hamaguchi (Below 1 GHz)

Tx 508.125 MHz, 30mW

No.2 April 17, 2024 20 deg. C / 60 % RH

Kiyoshiro Okazaki (Above 1 GHz)

No.2 April 18, 2024 21 deg. C / 40 % RH Takafumi Noguchi (Above 1 GHz)

Frequency	RxS	A/TR	TxS	SG	Tx	Tx	Result		Limit	Margin		Horizontal		Vertical		Remarks
		ding	Rea	•	Cable	Ant.	(EF	· /	(ERP)			Rx Ant.	Turn	Rx Ant.		
[MHz]	Hori.	uV] Vert.	[dB Hori.	Vert.	Loss [dB]	Gain [dBi]	Hori.	Bm] Vert.	[dBm]	Hori.	Vert.	Height [cm]	Table [deg.]	Height [cm]	Table [deg.]	
3048.75	59.2	59.1	-45.1	-46.1	4.8	11.3	-40.8	-41.8	-30.0	10.8	11.8	100	107	112	252	
3556.88	53.4	54.0	-49.7	-49.5	5.2	12.3	-44.7	-44.5	-30.0	14.7	14.5	140	25	130	331	
4065.00	47.5	51.3	-53.6	-50.3	5.6	12.6	-48.7	-45.4	-30.0	18.7	15.4	119	333	111	30	
4573.13	56.5	51.6	-43.2	-47.8	6.0	12.6	-38.7	-43.3	-30.0	8.7	13.3	115	6	105	324	
5081.25	54.1	54.5	-43.1	-42.3	6.3	12.5	-39.0	-38.2	-30.0	9.0	8.2	167	101	101	316	

Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain - 2.15

Rx-ANTENNA: Biconical Antenna(25 MHz - 200 MHz), Logperiodic Antenna(200 MHz - 1000 MHz), Horn Antenna(1 GHz - the tenth harmonic) Tx-ANTENNA: 120 MHz tuned Dipole Antenna(30 MHz - 120 MHz), Dipole Antenna(120 MHz - 1000 MHz), Horn Antenna(1 GHz - the tenth harmonic)

Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

No signal detect.

Detector: 25 MHz to 30 MHz: Spectrum Analyzer RMS Average (RBW: 10 kHz / VBW: 30 kHz)

30 MHz to 1 GHz: Spectrum Analyzer RMS Average (RBW: 100 kHz / VBW: 300 kHz),

Above 1 GHz: Spectrum Analyzer RMS Average (RBW: 1 MHz / VBW: 3 MHz)

*Emissions were investigated up to the 10th harmonic of the fundamental.

Test Report No. 15106908H-D-R1 Page 21 of 31

Field strength of spurious radiation

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 Date April 16, 2024

Temperature / Humidity 20 deg. C / 43 % RH Engineer Shousei Hamaguchi

(Below 1 GHz) Mode Tx 518.775 MHz, 30mW No.2 No.2 April 17, 2024 April 18, 2024

20 deg. C / 60 % RH Kiyoshiro Okazaki (Above 1 GHz)

21 deg. C / 40 % RH Takafumi Noguchi (Above 1 GHz)

Frequency	/ RxSA/TR		Tx	SG	Tx	Tx	Re	sult	Limit	Margin Horizontal Vertical		tical	Remarks			
	Rea	ding	Rea	ding	Cable	Ant.	(EF	RP)	(ERP)			Rx Ant.	Turn	Rx Ant.	Turn	
	[dB	uV]	[dB	Bm]	Loss	Gain	[dE	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
[MHz]	Hori.	Vert.	Hori.	Vert.	[dB]	[dBi]	Hori.	Vert.		Hori.	Vert.	[cm]	[deg.]	[cm]	[deg.]	
3631.43	51.6	51.3	-51.6	-52.6	5.3	12.3	-46.7	-47.7	-30.0	16.7	17.7	102	28	148	304	
4150.20	50.7	51.9	-50.6	-50.2	5.6	12.7	-45.7	-45.3	-30.0	15.7	15.3	169	35	118	3	
4668.98	57.3	51.1	-42.5	-49.4	6.0	12.5	-38.1	-45.0	-30.0	8.1	15.0	102	22	108	324	
5187.75	53.3	49.4	-44.7	-49.4	6.3	12.8	-40.4	-45.1	-30.0	10.4	15.1	136	5	208	41	

Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain - 2.15

Rx-ANTENNA: Biconical Antenna(25 MHz - 200 MHz), Logperiodic Antenna(200 MHz - 1000 MHz), Horn Antenna(1 GHz - the tenth harmonic)
Tx-ANTENNA: 120 MHz tuned Dipole Antenna(30 MHz - 120 MHz), Dipole Antenna(120 MHz - 1000 MHz), Horn Antenna(1 GHz - the tenth harmonic)

Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

NS: No signal detect.

Detector: 25 MHz to 30 MHz: Spectrum Analyzer RMS Average (RBW: 10 kHz / VBW: 30 kHz)

30~MHz to 1~GHz: Spectrum Analyzer RMS Average (RBW: $100~\text{kHz}\,/$ VBW: 300~kHz),

Above 1 GHz: Spectrum Analyzer RMS Average (RBW: 1 MHz / VBW: 3 MHz)

*Emissions were investigated up to the 10th harmonic of the fundamental.

Test Report No. 15106908H-D-R1 Page 22 of 31

No.2

Field strength of spurious radiation

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date April 16, 2024
Temperature / Humidity 20 deg. C / 43 % RH
Engineer Shousei Hamaguchi

(Below 1 GHz) Tx 526.825 MHz, 30mW

usei Hamaguchi Kiyoshiro Okazaki
ow 1 GHz) (Above 1 GHz)

No.2

April 17, 2024 April 18, 2024
20 deg. C / 60 % RH 21 deg. C / 40 % RH
Kiyoshiro Okazaki (Above 1 GHz) Takafumi Noguchi (Above 1 GHz)

Frequency	y RxSA/TR		Tx	SG	Tx	Tx	Re	sult	Limit	Margin Horizontal		Ver	tical	Remarks		
	Rea	ding	Rea	ding	Cable	Ant.	(EF	RP)	(ERP)			Rx Ant.	Turn	Rx Ant.	Turn	
	[dB	uV]	[dB	m]	Loss	Gain	[dE	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
[MHz]	Hori.	Vert.	Hori.	Vert.	[dB]	[dBi]	Hori.	Vert.		Hori.	Vert.	[cm]	[deg.]	[cm]	[deg.]	
3160.95	50.6	50.7	-52.0	-51.0	4.9	11.4	-47.6	-46.6	-30.0	17.6	16.6	133	32	110	221	
3687.78	48.3	49.7	-54.4	-53.7	5.3	12.3	-49.6	-48.9	-30.0	19.6	18.9	121	24	112	324	
4214.60	53.9	53.9	-46.8	-47.2	5.7	12.7	-41.9	-42.3	-30.0	11.9	12.3	122	335	143	29	
4741.43	52.5	NS	-47.3	-	6.1	12.5	-43.0	-	-30.0	13.0	-	101	16	-	-	
5268.25	55.4	47.0	-43.2	-49.7	6.4	13.2	-38.5	-45.0	-30.0	8.5	15.0	119	6	166	56	

Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain - 2.15

Rx-ANTENNA: Biconical Antenna(25 MHz - 200 MHz), Logperiodic Antenna(200 MHz - 1000 MHz), Horn Antenna(1 GHz - the tenth harmonic)
Tx-ANTENNA: 120 MHz tuned Dipole Antenna(30 MHz - 120 MHz), Dipole Antenna(120 MHz - 1000 MHz), Horn Antenna(1 GHz - the tenth harmonic)

Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

NS: No signal detect.

Mode

Detector: 25 MHz to 30 MHz: Spectrum Analyzer RMS Average (RBW: 10 kHz / VBW: 30 kHz)

30 MHz to 1 GHz: Spectrum Analyzer RMS Average (RBW: 100 kHz / VBW: 300 kHz),

Above 1 GHz: Spectrum Analyzer RMS Average (RBW: 1 MHz / VBW: 3 MHz)

*Emissions were investigated up to the 10th harmonic of the fundamental.

Test Report No. 15106908H-D-R1 Page 23 of 31

Field strength of spurious radiation (Plot data, Worst case)

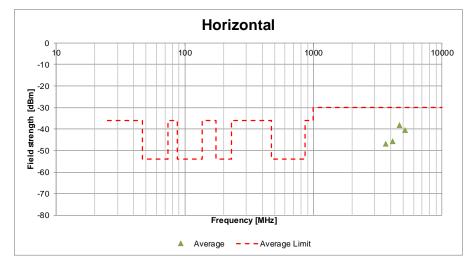
Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

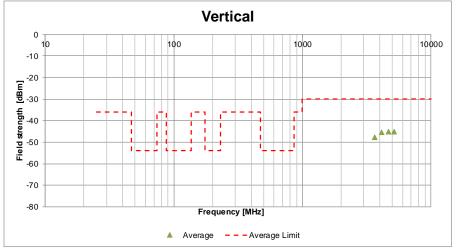
Mode

echoic Chamber

No.2

April 16, 2024


20 deg. C / 43 % RH


Shousei Hamaguchi
(Below 1 GHz)

Tx 518.775 MHz, 30mW

Ise EMC Lab.

No.2 April 17, 2024 20 deg. C / 60 % RH Kiyoshiro Okazaki (Above 1 GHz) No.2 April 18, 2024 21 deg. C / 40 % RH Takafumi Noguchi (Above 1 GHz)

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15106908H-D-R1 Page 24 of 31

Frequency stability

Test place Ise EMC Lab. No.6 Measurement Room

Date April 12, 2024
Temperature / Humidity 24 deg. C / 49 % RH
Engineer Shousei Hamaguchi
Mode Tx 508.125 MHz, 30mW

Varying Temperature

Test co	ondition	Tested	Measured	Frequency	Result	Limit
Temp.	Voltage	frequency	frequency	error		
[deg. C]	[deg. C] [V]		[MHz]	[MHz]	[%]	[+/- %]
45	3.00	508.125	508.121957	-0.003043	-0.00060	0.005
35	3.00	508.125	508.122793	-0.002207	-0.00043	0.005
25	3.00	508.125	508.123995	-0.001005	-0.00020	0.005
15	3.00	508.125	508.125112	0.000112	0.00002	0.005
5	5 3.00		508.125844	0.000844	0.00017	0.005

Calculation formula: Frequency error = Measured frequency - Tested frequency Result [%] = Frequency error / Tested frequency * 100

Varying Supply Voltage

ſ	Test condition		Tested	Measured	Frequency	Result	Limit	Remarks
	Temp.	Voltage	frequency	frequency	error			
	[deg. C]	[V]	[MHz]	[MHz]	[MHz]	[%]	[+/- %]	
	20	3.00	508.125	508.124559	-0.000442	-0.00009	0.005	Battery Power
	20	2.40	508.125	508.124567	-0.000433	-0.00009	0.005	Battery End Point

Calculation formula: Frequency error = Measured frequency - Tested frequency Result [%] = Frequency error / Tested frequency * 100

Test Report No. 15106908H-D-R1 Page 25 of 31

Frequency stability

Test place Ise EMC Lab. No.6 Measurement Room

Date April 12, 2024
Temperature / Humidity 24 deg. C / 49 % RH
Engineer Shousei Hamaguchi
Mode Tx 518.775 MHz, 30mW

Varying Temperature

Test co	ondition	Tested	Measured	Frequency	Result	Limit
Temp.	Voltage	frequency	frequency	error		
[deg. C]	[V]	[MHz]	[MHz]	[MHz]	[%]	[+/- %]
45	3.00	518.775	518.771764	-0.003236	-0.00062	0.005
35	3.00	518.775	518.772784	-0.002216	-0.00043	0.005
25	3.00	518.775	518.773933	-0.001067	-0.00021	0.005
15	3.00	518.775	518.775068	0.000068	0.00001	0.005
5	3.00	518.775	518.775875	0.000875	0.00017	0.005

Calculation formula: Frequency error = Measured frequency - Tested frequency Result [%] = Frequency error / Tested frequency * 100

Varying Supply Voltage

Test condition		Tested	Measured	Frequency	Result	Limit	Remarks
Temp.	Voltage	frequency	frequency	error			
[deg. C]	[V]	[MHz]	[MHz]	[MHz]	[%]	[+/- %]	
20	3.00	518.775	518.774541	-0.000459	-0.00009	0.005	Battery Power
20	2.40	518.775	518.774601	-0.000399	-0.00008	0.005	Battery End Point

Calculation formula: Frequency error = Measured frequency - Tested frequency Result [%] = Frequency error / Tested frequency * 100

Test Report No. 15106908H-D-R1 Page 26 of 31

Frequency stability

Test place Ise EMC Lab. No.6 Measurement Room

Date April 12, 2024
Temperature / Humidity 24 deg. C / 49 % RH
Engineer Shousei Hamaguchi
Mode Tx 526.825 MHz, 30mW

Varying Temperature

Test co	ondition	Tested	Measured	Frequency	Result	Limit
Temp.	Voltage	frequency	frequency	error		
[deg. C]	[V]	[MHz]	[MHz]	[MHz]	[%]	[+/- %]
45	3.00	526.825	526.821692	-0.003308	-0.00063	0.005
35	3.00	526.825	526.822912	-0.002088	-0.00040	0.005
25	3.00	526.825	526.823902	-0.001098	-0.00021	0.005
15	3.00	526.825	526.824548	-0.000452	-0.00009	0.005
5	3.00	526.825	526.825905	0.000905	0.00017	0.005

Calculation formula: Frequency error = Measured frequency - Tested frequency Result [%] = Frequency error / Tested frequency * 100

Varying Supply Voltage

Test condition		Tested	Measured	Frequency	Result	Limit	Remarks
Temp.	Voltage	frequency	frequency	error			
[deg. C]	[V]	[MHz]	[MHz]	[MHz]	[%]	[+/- %]	
20	3.00	526.825	526.824524	-0.000476	-0.00009	0.005	Battery Power
20	2.40	526.825	526.824700	-0.000300	-0.00006	0.005	Battery End Point

Calculation formula: Frequency error = Measured frequency - Tested frequency Result [%] = Frequency error / Tested frequency * 100

Test Report No. 15106908H-D-R1 Page 27 of 31

APPENDIX 2: Test instruments

Test Equipment

Test Item	Equipme LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-190	07/11/2023	12
RE	141279	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S303	03/04/2024	12
RE	141317	Coaxial Cable	UL Japan	-	-	09/12/2023	12
RE	141369	Band Pass Filter	M-City	BPF0950-01	UL0002	02/09/2024	12
RE	141427	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103B+ BBA9106	08031	07/11/2023	12
RE	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	254	10/17/2023	12
RE	141514	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	01611	06/22/2023	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/01/2023	12
RE	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	02/17/2024	12
RE	141594	Pre Amplifier	Keysight Technologies Inc		2944A10150	02/17/2024	12
RE	141892	Signal Generator	Keysight Technologies Inc	E8257D	US49280311	11/24/2023	12
RE	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/26/2024	12
RE	142004	AC2_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	12/12/2023	24
RE	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	214065	Microwave cable	Huber+Suhner	SF-126E/11PC35/ 11PC35/10000	550489/126E	01/22/2024	12
RE	220646	Attenuator	Huber+Suhner	6806_N-50-1	-	03/12/2024	12
RE	240023	Microwave Cable	Huber+Suhner	SF126E/ 11PC35/11PC35/ 1000MM,5000MM	537060/126E / 537075/126E	09/08/2023	12
RE	242978	High Pass Filter 1-13 GHz	Pasternak	PE87FL1018	D.C. 2215	02/02/2024	12
RE	244707	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202102	01/25/2024	12
AT	141171	Attenuator (20dB) _DC-1GHz_N	Weinschel Corp	MODEL 1	BG0143	12/06/2023	12
AT	141174	Attenuator (20dB) (above1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-120	901247	01/15/2024	12
AT	141414	Microwave Cable	Junkosha	MWX221	1207S407	08/01/2023	12
AT	141429	Temperature and Humidity Chamber	Espec	PL-2KP	14015723	08/09/2023	12
AT	141498	Microwave Counter	ADVANTEST	R5373	120100309	07/24/2023	12
AT	141558	Digital Tester (TRUE RMS MULTIMETER)	Fluke Corporation	115	17930030	05/29/2023	12
AT	141810	Power Meter	Anritsu Corporation	ML2495A	824014	12/12/2023	12
AT	141832	Power sensor	Anritsu Corporation	MA2411B	738174	12/12/2023	12
AT	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/26/2024	12
AT	142764	Radiocomunication Service Monitor	Rohde & Schwarz	CMS54	829000/009	10/06/2023	12
AT	184490	Microwave Cable	Murata Manufacturing Company, Ltd.	MXHS83QE3000	-	09/12/2023	12
AT	244712	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202106	01/25/2024	12
ΑT	89845	Audio Analyzer	AUDIO PRECISION	APx525	APX2-27079	10/17/2023	12

Test Report No. 15106908H-D-R1 Page 28 of 31

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Field strength of spurious radiation AT: Antenna Terminal Conducted