

Г

RADIO TEST REPORT

Test Report No. 14983820H-A-R1

Customer	Audio-Technica Corporation
Description of EUT	Boundary Microphone Transmitter
Model Number of EUT	ATW-T1406
FCC ID	JFZT1406
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	February 13, 2024
Remarks	-

Representative Test Engineer	Approved By
Y Mosieja	S. Matsuyama
Yuta Moriya	Satofumi Matsuyama
Engineer	Engineer
	Hac-MRA Accredited
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed i	s outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	
	ge - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14983820H-A

This report is a revised version of 14983820H-A. 14983820H-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	14983820H-A	October 31, 2023	-
1	14983820H-A-R1	February 13, 2024	SECTION 2: Equipment Under Test (EUT) -Correction of Test Date September 27 to October 1, 2023 → September 27 to October 13, 2023
1	14983820H-A-R1	February 13, 2024	SECTION 5: Conducted Emission, SECTION 6: Radiated Spurious Emission, SECTION 7: Antenna Terminal Conducted Tests -Correction of following sentence. The test results and limit are rounded off to one decimal place, so some differences might be observed. → Test results are rounded off and limit are rounded down, so some differences might be observed.
1	14983820H-A-R1	February 13, 2024	APPENDIX 1: Test Data -Correction of test place for 99 % Occupied Bandwidth and 6 dB Bandwidth data No.4 Measurement room \rightarrow No.4 Preparation room -Correction of test place for Burst rate confirmation data No.4 Shielded Room / Semi Anechoic Chamber \rightarrow No.4 Semi Anechoic Chamber -Correction of Semi Anechoic Chamber for Radiated Spurious Emission (Reference Plot for band-edge) data No.1 \rightarrow No.4 -Correction of Semi Anechoic Chamber for all Radiated Spurious Emission data No4 \rightarrow No.4 -Correction of Semi Anechoic Chamber for all Radiated Spurious Emission data No4 \rightarrow No.4 -Correction of Semi Anechoic Chamber for all Radiated Spurious Emission data No4 \rightarrow No.4 -Correction of scale of graph for Plot data of Radiated Spurious Emission.
1	14983820H-A-R1	February 13, 2024	APPENDIX 2: Test Instruments -Deletion of Local ID: MAT91.

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SA, S/A SG	Signal Generator
	• •	SVSWR	Site-Voltage Standing Wave Ratio
Freq.	Frequency		
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

CONTENTS

PAGE

SECTION 1:	Customer Information	5
SECTION 2:	Equipment Under Test (EUT)	
SECTION 3:	Test Specification, Procedures & Results	
SECTION 4:	Operation of EUT during testing	
SECTION 5:	Conducted Emission	
SECTION 6:	Radiated Spurious Emission	
SECTION 7:	Antenna Terminal Conducted Tests	
	Test Data	
	ed Emission	
	ccupied Bandwidth and 6 dB Bandwidth	
	m Peak Output Power	
	Output Power	
	d Spurious Emission	
	ed Spurious Emission	
Power D	Density	29
	Test Instruments	
	Photographs of Test Setup	
	ed Emission	
	d Spurious Emission	
	Terminal Conducted Tests	
7 11 10 11 10		

SECTION 1: Customer Information

Company Name	Audio-Technica Corporation
Address	2-46-1 Nishi-naruse, Machida, Tokyo 194-8666, Japan
Telephone Number	+81-42-739-9121
Contact Person	Hirohisa Yamamoto

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date - SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Boundary Microphone Transmitter
Model Number	ATW-T1406
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	September 26, 2023
Test Date	September 27 to October 13, 2023

2.2 **Product Description**

General Specification

Rating	DC 3.7 V (Li-ion Battery), DC 5 V (USB charge)
Operating temperature	5 deg. C to 40 deg. C

Radio Specification

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Type	PIFA
Antenna Gain	Antenna 1: 0.12 dBi
	Antenna 2: 0.12 dBi

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C				
	The latest version on the first day of the testing period				
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators				
	Section 15.207 Conducted limits				
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,				
	and 5725-5850 MHz				

* Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	22.79 dB,	Complied	-
Emission	6. Standard test methods		0.34465 MHz, L, AV	-	
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)			
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)	-		
Maximum	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Peak	15.247	15.247(b)(3)			
Output Power	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247				
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)	-		
Spurious	FCC: KDB 558074 D01	FCC: Section15.247(d)	3.7 dB	Complied	Conducted
Emission	15.247		12010.0 MHz,		(below 30 MHz)/
Restricted	Meas Guidance v05r02		AV, Vertical		Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			(above 30 MHz)
		RSS-Gen 8.9			*1)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593. * In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Part regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Conducted emission

Item	Frequency Range	Unit	Calculated Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	dB	3.7
	0.15 MHz to 30 MHz	dB	3.3

Radiated emission

Measurement distance	Frequency Range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz		dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	4.8
		Vertical	dB	5.0
	200 MHz to 1000 MHz	Horizontal	dB	5.1
		Vertical	dB	6.2
10 m	30 MHz to 200 MHz	Horizontal	dB	4.8
		Vertical	dB	4.8
	200 MHz to 1000 MHz	Horizontal	dB	4.9
		Vertical	dB	5.0
3 m	1 GHz to 6 GHz		dB	4.9
	6 GHz to 18 GHz		dB	5.2
1 m	10 GHz to 26.5 GHz		dB	5.5
	26.5 GHz to 40 GHz		dB	5.4
10 m	1 GHz to 18 GHz		dB	5.3

Antenna Terminal Conducted Tests

Item	Unit	Calculated
		Uncertainty (+/-)
Antenna Terminated Conducted Emission / Power Density / Burst Power	dB	3.28
Adjacent Channel Power (ACP)	dB	2.27
Bandwidth (OBW)	%	0.96
Time Readout (Time span upto 100 msec)	%	0.11
Time Readout (Time span upto 1000 msec)	%	0.11
Time Readout (Time span upto 60 sec)	%	0.02
Power Measurement (Power meter)	dB	1.50
Frequency Readout (Frequency counter)	ppm	0.67
Frequency Readout (Spectrum analyzer frequency readout function)	ppm	1.61
Temperature (Constant temperature bath)	deg. C	0.78
Humidity (Constant temperature bath)	%RH	2.80
Modulation Characteristics	%	6.93
Frequency for Mobile	ppm	0.08

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

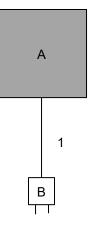
Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power	10 m
chamber			source room	
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, No.4, and No.5 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing


4.1 Operating Mode(s)

*The Details of Operating Mode(s)

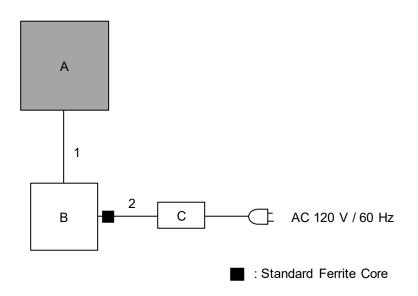
Test Item		Operating Mode	Tested Antenna	Tested Frequency	
Conducted Emission,		Tx Transmitting	Antenna 1 *1)	2402 MHz *2)	
Radiated Spurious	Emission (Below 1 GHz)				
Maximum Peak Ou	tput Power	Tx Transmitting	Antenna 1	2402 MHz	
			Antenna 2	2441 MHz	
				2480 MHz	
6dB Bandwidth,		Tx Transmitting	Antenna 1*1)	2402 MHz	
99% Occupied Ban	dwidth,			2441 MHz	
Radiated Spurious	Emission (Above 1 GHz),			2480 MHz	
Power Density,					
Conducted Spuriou	Conducted Spurious Emission				
*1) After the compa	rison between Antenna 1 a	nd Antenna 2, test wa	as performed with th	ne antenna that	
had higher power a	s a representative.				
*2) The Frequency	was tested as a representa	tive, because it had t	he highest power at	antenna	
terminal test.					
*Power of the EUT	was set by the software as	follows;			
Power Setting:	4 dBm				
Software:	System20 Control				
(Date: September 27, 2023 Storage location: Driven by connected PC)					
*This setting of soft	ware is the worst case.				
Any conditions und	er the normal use do not ex	ceed the condition of	setting.		
In addition, end use	ers cannot change the settir	ngs of the output pow	er of the product.		

4.2 Configuration and Peripherals

Conducted Emission and Radiated Spurious Emission tests

AC 120 V / 60 Hz

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions. *As a result of comparing AC 120 V and AC 240 V at pre-check, conducted emission test was performed with AC 120 V of the worst voltage as representative.


Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Boundary Microphone	ATW-T1406	2300098	Audio-Technica	EUT
	Transmitter			Corporation	
В	AC Adapter	KSA0050500055D5U	-	Kuantech (Ktec)	-

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB Cable	1.5	Shielded	Shielded	-

Antenna Terminal Conducted tests

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Boundary Microphone	ATW-T1406	2300096	Audio-Technica	EUT *1)
	Transmitter			Corporation	
В	Laptop PC	X1 Carbon	R9-OH8TU 15/9	LENOVO	-
С	AC Adapter	ADLX45NCC2A	8SSA10E75794C 1SG59R0GHF	LENOVO	-

Description of EUT and Support Equipment

*1) The test was conducted with the EUT enclosure removed.

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB Cable	1.5	Shielded	Shielded	-
2	DC Cable	1.7	Unshielded	Unshielded	-
3	AC Cable	1.0	Unshielded	Unshielded	-

SECTION 5: Conducted Emission

Test Procedure and Conditions

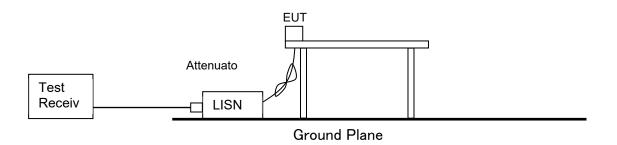
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.


The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement Range	: 0.15 MHz to 30 MHz
Test Data	: APPENDIX
Test Result	: Pass

Figure 1: Test Setup

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

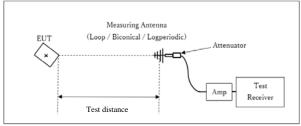
The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

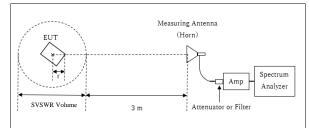
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn


In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

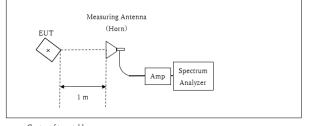
20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Test Receiver Spectrum Analyzer		Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			11.12.2.5.2	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	


Figure 2: Test Setup

Below 1 GHz

× : Center of turn table


1 GHz to 10 GHz

r : Radius of an outer periphery of EUT

× : Center of turn table

10 GHz to 26.5 GHz

× : Center of turn table

The test was made on EUT at the normal use position.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

Distance Factor: $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 4.0 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.0 m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB *Test Distance: 1 m

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	10 kHz	30 kHz				

*1) Peak hold was applied as Worst-case measurement.

*2) Reference data

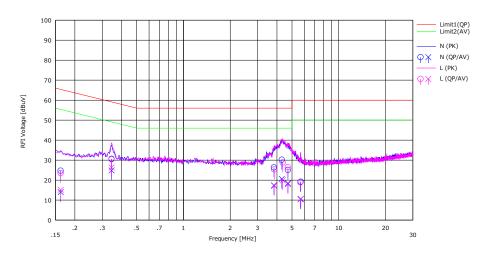
*3) Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

*4) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

*5) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.


Test Data	: APPENDIX
Test Result	: Pass

APPENDIX 1: Test Data

Conducted Emission

Test place	Ise EMC Lab. No.4 Semi Anechoic Chamber
Date	October 1, 2023
Temperature / Humidity	23 deg. C / 54 % RH
Engineer	Yuta Moriya
Mode	Tx 2402 MHz Antenna 1

Limit : FCC_Part 15 Subpart C(15.207)

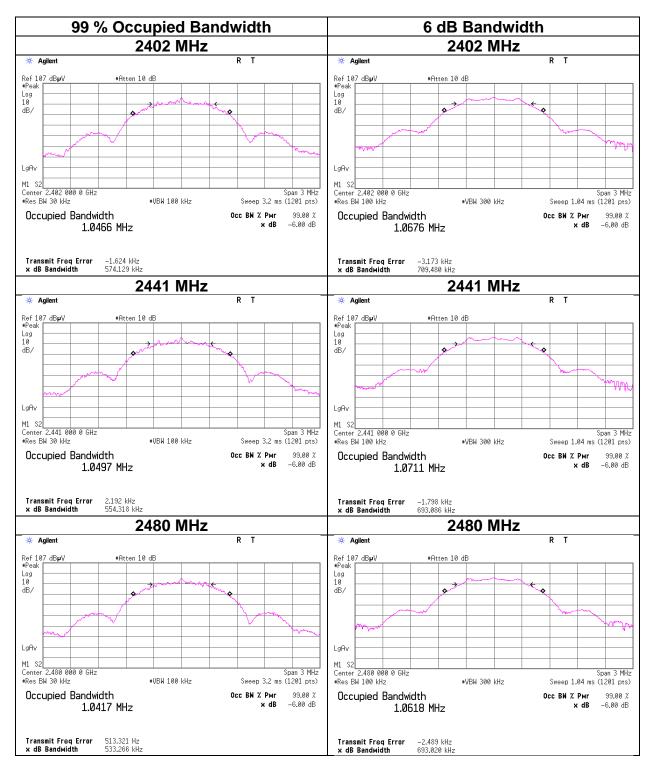

	Erre	Rea	ding	LISN	LOSS	Res	ults	Lir	nit	Ma	rgin		
No.	Freq.	(QP)	(AV)	LISIN	LUSS	(QP)	(AV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.16190	11.41	0.74	0.15	13.13	24.69	14.02	65.37	55.37	40.68	41.35	Ν	
2	0.34465	17.33	11.56	0.14	13.15	30.62	24.85	59.09	49.09	28.47	24.24	Ν	
3	3.82600	12.64	3.72	0.31	13.38	26.33	17.41	56.00	46.00	29.67	28.59	Ν	
4	4.30300	16.42	6.87	0.35	13.40	30.17	20.62	56.00	46.00	25.83	25.38	Ν	
5	4.70800	11.30	4.58	0.38	13.42	25.10	18.38	56.00	46.00	30.90	27.62	Ν	
6	5.69800	5.29	-3.37	0.45	13.46	19.20	10.54	60.00	50.00	40.80	39.46	Ν	
7	0.16190	10.17	1.88	0.16	13.13	23.46	15.17	65.37	55.37	41.91	40.20	L	
8	0.34465	17.06	12.99	0.16	13.15	30.37	26.30	59.09	49.09	28.72	22.79	L	
9	3.84400	11.62	3.43	0.33	13.38	25.33	17.14	56.00	46.00	30.67	28.86	L	
10	4.35700	15.03	6.15	0.37	13.40	28.80	19.92	56.00	46.00	27.20	26.08	L	
11	4.70800	12.59	4.17	0.40	13.42	26.41	17.99	56.00	46.00	29.59	28.01	L	
12	5.66200	4.92	-3.52	0.47	13.46	18.85	10.41	60.00	50.00	41.15	39.59	L	

CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place	Ise EMC Lab. No.4 Preparation room
Date	September 28, 2023
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Tomoya Sone
Mode	Tx Antenna 1

Frequency	99% Occupied	6dB Bandwidth	Limit for
	Bandwidth		6dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
2402	1046.6	0.709	> 0.5000
2441	1049.7	0.693	> 0.5000
2480	1041.7	0.693	> 0.5000

99 % Occupied Bandwidth and 6 dB Bandwidth

Maximum Peak Output Power

Test place	Ise EMC Lab. No.4 Preparation room
Date	September 27, 2023
Temperature / Humidity	23 deg. C / 61 % RH
Engineer	Tomoya Sone
Mode	Тх

Antenna	1				Con	ducted Po	ower		e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Result Limit N		Margin	Antenna	Result		Limit		Margin		
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-3.37	1.42	9.74	7.79	6.01	30.00	1000	22.21	0.12	7.91	6.18	36.02	4000	28.11
2441	-3.51	1.44	9.75	7.68	5.86	30.00	1000	22.32	0.12	7.80	6.03	36.02	4000	28.22
2480	-3.91	1.46	9.75	7.30	5.37	30.00	1000	22.70	0.12	7.42	5.52	36.02	4000	28.60

Antenna	2				Conducted Power e.i.r.p. for RSS-247									
Freq.	Reading	Cable	Atten.	Result Limit		Margin	Antenna	Result		Lir	nit	Margin		
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-3.43	1.46	9.74	7.77	5.98	30.00	1000	22.23	0.12	7.89	6.15	36.02	4000	28.13
2441	-3.57	1.48	9.75	7.66	5.83	30.00	1000	22.34	0.12	7.78	6.00	36.02	4000	28.24
2480	-3.97	1.50	9.75	7.28	5.35	30.00	1000	22.72	0.12	7.40	5.50	36.02	4000	28.62

Sample Calculation:

Result = Reading + Cable Loss + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

*The equipment and cables were not used for factor 0 dB of the data sheets.

<u>Average Output Power</u> (Reference data for RF Exposure)

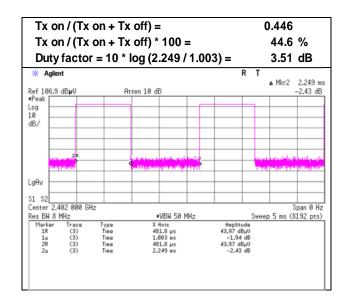
Test place	Ise EMC Lab. No.4 Preparation room
Date	September 27, 2023
Temperature / Humidity	23 deg. C / 61 % RH
Engineer	Tomoya Sone
Mode	Тх

Antenna 1

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Result		
		Loss	Loss	(Time a	verage)	factor	(Burst power average		
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[dBm]	[mW]	
2402	-7.00	1.42	9.74	4.16	2.61	3.51	7.67	5.85	
2441	-7.07	1.44	9.75	4.12	2.58	3.51	7.63	5.79	
2480	-7.54	1.46	9.75	3.67	2.33	3.51	7.18	5.22	

Antenna 2

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	sult
		Loss	Loss	(Time average)		factor	(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
2402	-7.06	1.46	9.74	4.14	2.59	3.51	7.65	5.82
2441	-7.20	1.48	9.75	4.03	2.53	3.51	7.54	5.68
2480	-7.62	1.50	9.75	3.63 2.31		3.51	7.14	5.18


Sample Calculation:

Result (Time average) = Reading + Cable Loss + Attenuator Loss Result (Burst power average) = Time average + Duty factor

*The equipment and cables were not used for factor 0 dB of the data sheets.

Burst rate confirmation

Test placeIse EMC Lab. No.4 Semi Anechoic ChamberDateSeptember 27, 2023Temperature / Humidity22 deg. C / 45 % RHEngineerYuta MoriyaModeTx

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Radiated Spurious Emission

Test place	lse EMC Lab.			
Semi Anechoic Chamber	No.4	No.4	No.4	No.4
Date	September 27, 2023	September 28, 2023	September 28, 2023	October 1, 2023
Temperature / Humidity	22 deg. C / 45 % RH	22 deg. C / 45 % RH	22 deg. C / 55 % RH	23 deg. C / 54 % RH
Engineer	Yuta Moriya	Yuta Moriya	Yuta Moriya	Yuta Moriya
-	(1 GHz to 10 GHz)	(10 GHz to 18 GHz)	(Above 18 GHz)	(Below 1 GHz)
Mode	Tx 2402 MHz Antenna 1	. ,	. ,	. ,

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP/PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin	Remark
[Hori/Vert]	[MHz]	(QP/PK) [dBuVI	(AV) [dBuVI	fdB/m1	[dB]	[dB]	[dB]	(QP/PK) [dBuV/m]	(AV) [dBuV/m]	(QP/PK) [dBuV/m]	(AV) [dBuV/m]	(QP/PK) [dB]	(AV) [dB]	
Hori.	30.6	23.3	[]	18,4	7.1	32.1	()	16.7	[]	40.0	[]	23.4	()	
Hori.	51.0	23.3		10.4	7.3	32.1	-	8.8	-	40.0	-	31.2		
Hori.	147.0	21.7		14.9	8.3	32.0		12.9		43.5		30.6		
Hori.	300.0	23.4		13.8	9.7	32.0		14.8		46.0		31.2		
Hori.	500.0	21.6		17.9	10.8	32.2		18.1		46.0		28.0		
Hori.	900.0	20.2		22.1	12.4	31.1	-	23.6		46.0	-	22.5		
Hori.	2390.0	46.7	34.0	27.8	5.5	32.0	3.5	48.0	38.8	73.9	53.9	25.9	15.1	*1)
							0.0						-	· ·
Hori.	4804.0	40.4	32.2	31.3	7.6	31.2	-	48.2	39.9	73.9	53.9	25.7	14.0	Floor noise
Hori.	7206.0	43.2	34.3	36.4	8.8	32.4	-	56.1	47.2	73.9	53.9	17.8	6.7	Floor noise
Hori.	9608.0	41.8	32.3	38.0	9.3	32.5	-	56.6	47.1	73.9	53.9	17.3	6.8	Floor noise
Hori.	12010.0	48.5	40.6	39.1	-2.0	32.8	3.5	52.9	48.5	73.9	53.9	21.0	5.4	
Hori.	16814.0	42.8	35.1	40.1	-0.6	32.5	-	49.8	42.2	73.9	53.9	24.1	11.7	Floor noise
Vert.	30.6	24.0	-	18.4	7.1	32.1	-	17.4	-	40.0	-	22.7	-	
Vert.	51.0	40.0	-	10.8	7.3	32.1	-	26.1	-	40.0	-	13.9	-	
Vert.	147.0	27.4	-	14.9	8.3	32.0	-	18.6	-	43.5	-	24.9	-	
Vert.	300.0	22.9	-	13.8	9.7	32.0	-	14.3	-	46.0	-	31.7	-	
Vert.	500.0	21.6	-	17.9	10.8	32.2	-	18.1	-	46.0	-	28.0	-	
Vert.	900.0	20.2	-	22.1	12.4	31.1	-	23.6	-	46.0	-	22.5	-	
Vert.	2390.0	47.5	34.4	27.8	5.5	32.0	3.5	48.8	39.2	73.9	53.9	25.2	14.7	*1)
Vert.	4804.0	40.5	32.3	31.3	7.6	31.2	-	48.3	40.1	73.9	53.9	25.6		Floor noise
Vert.	7206.0	43.3	34.3	36.4	8.8	32.4	-	56.2	47.1	73.9	53.9	17.7	6.8	Floor noise
Vert.	9608.0	42.2	32.3	38.0	9.3	32.5	-	56.9	47.1	73.9	53.9	17.0		Floor noise
Vert.	12010.0	50.3	42.4	39.1	-2.0	32.8	3.5	54.7	50.2	73.9	53.9	19.2	3.7	
Vert.	16814.0	42.2	34.9	40.1	-0.6	32.5	-	49.2	42.0	73.9	53.9	24.7	11.9	Floor noise

Result (QP (PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Dutyfactor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

20dBc Data Sheet

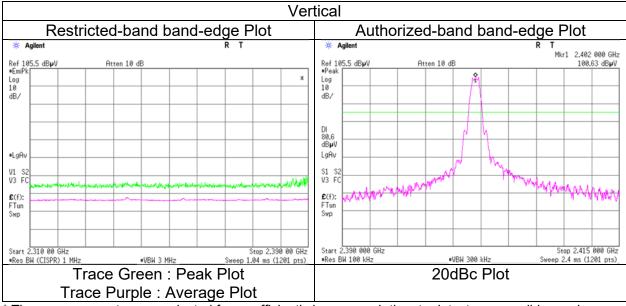
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	99.7	27.8	5.5	32.0	101.0	-	-	Carrier
Hori.	2400.0	49.0	27.8	5.5	32.0	50.3	81.0	30.6	
Hori.	14412.0	43.1	40.7	-1.1	32.3	50.4	81.0	30.6	
Vert.	2402.0	100.6	27.8	5.5	32.0	101.9	-	-	Carrier
Vert.	2400.0	49.0	27.8	5.5	32.0	50.2	81.9	31.7	
Vert.	14412.0	45.2	40.7	-1.1	32.3	52.5	81.9	29.5	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 10 GHz

 1 GHz - 10 GHz
 20log (4 m / 3.0 m) = 2.5 dB

 10 GHz - 26.5 GHz
 20log (1.0 m / 3.0 m) = -9.5 dB


Radiated Spurious Emission (Reference Plot for band-edge)

Tx 2402 MHz Antenna 1

Test placeIse EMC Lab.Semi Anechoic ChamberNo.4DateSeptember 27, 2023Temperature / Humidity22 deg. C / 45 % RHEngineerYuta Moriya(1 GHz to 10 GHz)

Mode

Horizontal Restricted-band band-edge Plot Authorized-band band-edge Plot Agile т Agilen Mkr1 2.402 000 GHz 99.67 dBµV Ref 104.6 dBµV •EmiPk Atten 10 dB Ref 104.6 dBµV •Peak Atten 10 dB Ŷ Log 10 dB/ * Log 10 dB/ DI 79.7 dB**µ**V LgAv •LgAv V1 S2 V3 FC S1 S2 V3 FC mann £(f): FTun £(f): J. N. N FTun Swp Swp Stop 2.390 00 GHz Sweep 1.04 ms (1201 pts) Start 2.310 00 GHz •Res BW (CISPR) 1 MHz Start 2.390 000 GHz Stop 2.415 000 GHz Sweep 2.4 ms (1201 pts) •Res BW 100 kHz •VBW 300 kHz_ •VBW 3 MHz Trace Green : Peak Plot 20dBc Plot Trace Purple : Average Plot

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Radiated Spurious Emission

Test place Ise EMC Lab. Semi Anechoic Chamber No.4 Date Temperature / Humidity Engineer Yuta Moriya

September 27, 2023 22 deg. C / 45 % RH (1 GHz to 10 GHz) Tx 2441 MHz Antenna 1

No.4 September 28, 2023 22 deg. C / 45 % RH Yuta Moriya (10 GHz to 18 GHz)

No.4 September 28, 2023 22 deg. C / 55 % RH Yuta Moriya (Above 18 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4882.0	40.2	32.3	31.4	7.6	31.1	-	48.0	40.2	73.9	53.9	25.9	13.8	Floor noise
Hori.	7323.0	43.2	34.1	36.6	8.8	32.4	-	56.2	47.1	73.9	53.9	17.7	6.8	Floor noise
Hori.	9764.0	41.8	32.5	38.4	9.3	32.6	-	56.9	47.7	73.9	53.9	17.0	6.3	Floor noise
Hori.	12205.0	45.9	37.3	39.0	-1.9	32.7	3.5	50.3	45.2	73.9	53.9	23.6	8.7	
Hori.	17087.0	42.9	34.1	40.8	-0.5	32.5	-	50.8	42.0	73.9	53.9	23.2	11.9	Floor noise
Vert.	4882.0	40.2	32.4	31.4	7.6	31.1	-	48.0	40.2	73.9	53.9	25.9	13.7	Floor noise
Vert.	7323.0	43.4	34.1	36.6	8.8	32.4	-	56.3	47.1	73.9	53.9	17.6	6.8	Floor noise
Vert.	9764.0	41.9	32.5	38.4	9.3	32.6	-	57.0	47.6	73.9	53.9	16.9	6.3	Floor noise
Vert.	12205.0	47.0	38.3	39.0	-1.9	32.7	3.5	51.4	46.2	73.9	53.9	22.5	7.7	
Vert.	17087.0	42.7	35.0	40.8	-0.5	32.5	-	50.6	42.8	73.9	53.9	23.3	11.1	Floor noise

Veril [170673] 42.7 33.0 40.6 7.3 22.5 50.8 42.6 7 Result (CP/VB) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GH2)- Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GH2)- Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *OP detector was used up to 1 GHz.

20dBc Data	Sheet								
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2441.0	97.5	27.8	5.5	32.0	98.7	-	-	Carrier
Hori.	14646.0	41.6	40.4	-1.0	32.3	48.7	78.7	30.1	
Vert.	2441.0	99.2	27.8	5.5	32.0	100.5	-	-	Carrier
Vert.	14646.0	50.4	40.4	-1.0	32.3	57.5	80.5	23.0	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB 10 GHz - 40 GHz

20log (1.0 m / 3.0 m) = -9.5 dB

Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.4 September 27, 2023 22 deg. C / 45 % RH Yuta Moriya (1 GHz to 10 GHz) Tx 2480 MHz Antenna 1

No.4 September 28, 2023 22 deg. C / 45 % RH Yuta Moriya (10 GHz to 18 GHz)

No.4 September 28, 2023 22 deg. C / 55 % RH Yuta Moriya (Above 18 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	59.8	43.7	27.7	5.5	32.0	3.5	61.1	48.5	73.9	53.9	12.8	5.4	*1)
Hori.	4960.0	40.4	32.6	31.6	7.6	31.1	-	48.5	40.6	73.9	53.9	25.4	13.3	Floor noise
Hori.	7440.0	43.2	33.1	36.8	8.8	32.5	-	56.3	46.2	73.9	53.9	17.6	7.7	Floor noise
Hori.	9920.0	41.1	32.5	38.6	9.3	32.7	-	56.3	47.7	73.9	53.9	17.6	6.2	Floor noise
Hori.	12400.0	42.1	34.5	38.7	-1.9	32.6	3.5	46.4	42.2	73.9	53.9	27.6	11.7	
Hori.	17360.0	42.6	34.9	42.8	-0.4	32.4	-	52.7	44.9	73.9	53.9	21.2	9.0	Floor noise
Vert.	2483.5	58.1	41.8	27.7	5.5	32.0	3.5	59.4	46.6	73.9	53.9	14.5	7.3	*1)
Vert.	4960.0	40.4	32.5	31.6	7.6	31.1	-	48.5	40.5	73.9	53.9	25.4	13.4	Floor noise
Vert.	7440.0	43.4	33.3	36.8	8.8	32.5	-	56.5	46.4	73.9	53.9	17.4	7.5	Floor noise
Vert.	9920.0	41.2	32.5	38.6	9.3	32.7	-	56.5	47.7	73.9	53.9	17.4	6.2	Floor noise
Vert.	12400.0	44.0	35.5	38.7	-1.9	32.6	3.5	48.2	43.2	73.9	53.9	25.7	10.7	
Vert.	17360.0	43.0	34.8	42.8	-0.4	32.4	-	53.0	44.8	73.9	53.9	20.9	9.1	Floor noise

 vert
 173600
 43.0
 34.8
 42.8
 -0.4
 32.4
 53.0
 44.8
 //

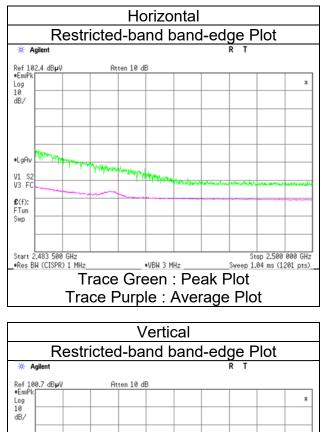
 Result (GP / RPG and reg + Art Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
 Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Dutyfactor

 *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).
 *O Pdetector was used up to 1 GHz

 *10 Not Out of Band emission(Leakage Power)
 *10

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark			
		(PK)	Factor									
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]				
Hori.	2480.0	97.4	27.7	5.5	32.0	98.6	-	-	Carrier			
Hori.	14880.0	41.8	39.6	-0.9	32.3	48.2	78.6	30.4				
Vert.	2480.0	95.9	27.7	5.5	32.0	97.2	-	-	Carrier			
Vert.	Vert. 14880.0 48.4 39.6 -0.9 32.3 54.8 77.2 22.4											
Result = Re	Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)											


1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB Distance factor:

Radiated Spurious Emission (Reference Plot for band-edge)

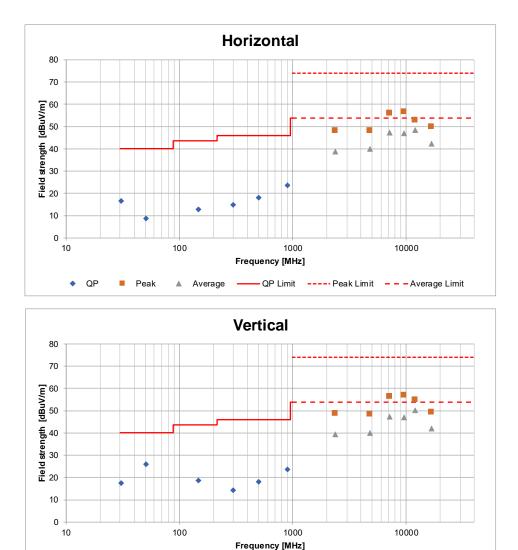
Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.4 September 27, 2023 22 deg. C / 45 % RH Yuta Moriya (1 GHz to 10 GHz) Tx 2480 MHz Antenna 1

 Ref 100.7 dByW
 Atten 10 dB

 Io
 Io


 Io
 Io

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place	lse EMC Lab.			
Semi Anechoic Chamber	No.4	No.4	No.4	No.4
Date	September 27, 2023	September 28, 2023	September 28, 2023	October 1, 2023
Temperature / Humidity	22 deg. C / 45 % RH	22 deg. C / 45 % RH	22 deg. C / 55 % RH	23 deg. C / 54 % RH
Engineer	Yuta Moriya	Yuta Moriya	Yuta Moriya	Yuta Moriya
	(1 GHz to 10 GHz)	(10 GHz to 18 GHz)	(Above 18 GHz)	(Below 1 GHz)
Mode	Tx 2402 MHz Antenna	1		

*These plots data contain sufficient number to show the trend of characteristic features for EUT.

- QP Limit ---- Peak Limit - - - Average Limit

Average

QP

Peak

Conducted Spurious Emission

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.4 Preparation room October 13, 2023 24 deg. C / 47 % RH Tomoya Sone Tx 2402 MHz Antenna 1

		9 kH	z to 1	50	kHz							150) kH	z to	30	MH:	z		
* A	gilent					RΤ			* A	gilent							RΤ		
Ref -5 Peak Log		#Atten 1	0 dB					9.59 kHz 7.33 dBm	Ref -5 Peak Log	-		#At	ten 10 d	B					175 kHz 8.28 dBm
10 dB/							D	Coupled	10 dB/									DO	Coupled
LgAv									, LgAv	Narylad yn llwy	ut when my	industry to the	roinnuteday	harmunderholan	alay	a aberto anad	Practical da anda	e fan	1. Jan Hall Minister
S1 S2 M3 FS		NA MARTIN AND AND AND AND AND AND AND AND AND AN	enterlarigetationspo	form legarite	alallugu/	erila anglika	de haaf faan haaf f	photoper printer and	S1 S2 M3 FS										
£ (f): f<50k FFT									€(f): FTun Swp										
	1.00 kHz W 200 Hz		#VBW 620	Hz		Sweep 2		50.00 kHz 201 pts)		50 kHz W 10 kH:				#VBW 30	kHz	:	Sweep 28		1.000 MHz 201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.59	-97.33	0.01	9.84	2.0	1	-85.5	300	6.0	-24.2	47.9	72.1	
175.00	-88.28	0.02	9.84	2.0	1	-76.4	300	6.0	-15.2	22.7	37.9	

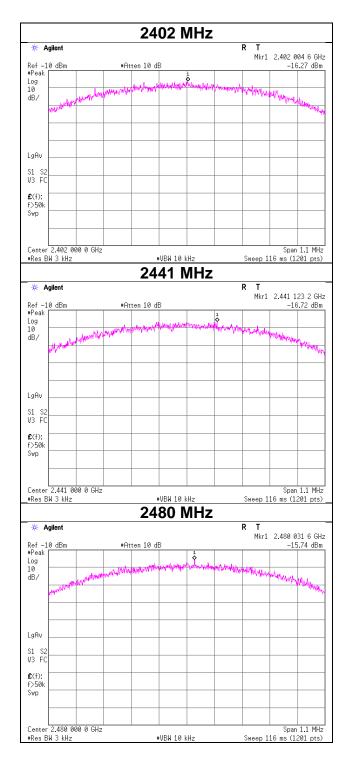
E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Power Density

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.4 Preparation room September 28, 2023 23 deg. C / 51 % RH Tomoya Sone Tx Antenna 1


Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2402	-16.27	1.42	9.74	-5.11	8.00	13.11
2441	-16.72	1.44	9.75	-5.53	8.00	13.53
2480	-15.74	1.46	9.75	-4.53	8.00	12.53

Sample Calculation:

Result = Reading + Cable Loss + Attenuator Loss

*The equipment and cables were not used for factor 0 dB of the data sheets.

Power Density

APPENDIX 2: Test Instruments

Test Equipment (1/2)

	Equipme Local ID	LIMS	Description	Manufacturer	Model	Serial	Last Calibration	Cal Int
						D 1 ((T 0	Date	10
AT	MAT-10		Attenuator(10dB)	Weinschel Corp	2	BL1173	11/10/2022	12
AT	MAT-89	141419	Attenuator	Weinschel Associates	WA56-10	56100305	05/18/2023	12
AT	MCC-238	184491	Microwave Cable	Murata Manufacturing Company, Ltd.	MXHS83QE3000	-	09/12/2023	12
AT	MCC-239	184492	Microwave Cable	Murata Manufacturing Company, Ltd.	MXHS83QE3000	-	09/12/2023	12
AT	MCC-240	195231	Microwave Cable	Huber+Suhner	SF102D/11PC24/ 11PC24/1000mm	537062/126E	02/15/2023	12
AT	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	01/18/2023	12
AT	MOS-42	192303	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0014	12/17/2022	12
AT	MPM-12	141809	Power Meter	Anritsu Corporation	ML2495A	825002	05/26/2023	12
AT	MPSE-17	141830	Power sensor	Anritsu Corporation	MA2411B	738285	05/26/2023	12
AT	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/16/2023	12
CE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
CE	MAEC-04	142011	AC4_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2022	24
CE	MAT-64	141290	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	12/22/2022	12
CE	MCC-113	141217	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM141/ 421-010/ sucoform141-PE/ RFM-E121(SW)	-/04178	06/27/2023	12
CE	MJM-29	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
CE	MLS-23	141357	LISN(AMN)	Schwarzbeck Mess- Elektronik OHG	NSLK8127	8127-729	07/05/2023	12
CE	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	01/18/2023	12
CE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/13/2023	12
CE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2022	24
RE	MAEC-04- SVSWR	142017	AC4_Semi Anechoic Chamber (SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/14/2023	24
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/01/2023	12
RE	MBA-05		Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	VHA 91031302	08/10/2023	12
RE	MCC-265	234602	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/1000M,5000M	537063/126E / 537074/126E	03/16/2023	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	11/18/2022	12
RE	MHA-17		Horn Antenna 15-40GHz	Schwarzbeck Mess-	BBHA9170	BBHA9170307	08/09/2023	12
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	557	05/17/2023	12
RE	MHF-25	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/04/2023	12

Test Item	Local ID	LIMS	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MJM-29	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	MLA-21	141265	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-190	07/11/2023	12
RE	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	01/18/2023	12
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/13/2023	12
RE	MPA-12	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/05/2022	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	04/05/2023	12
RE	MSA-03	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	03/13/2023	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12

Test Equipment (2/2)

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

- AT: Antenna Terminal Conducted test
- CE: Conducted Emission
- **RE: Radiated Emission**