

849 NW STATE ROAD 45 NEW BERRY, FL 32669 USA PH: 888.472.2424 OR 352.472.5500 FAX: 352.472.2030 EMAIL: <u>INFO@TIMCOENGR.COM</u> HTTP://WWW.TIMCOENGR.COM

RF Exposure Evaluation Report

APPLI CANT	AUDIO TECHNICA CORPORATION
	2-46-1 NISHI-NARUSE
	MACHIDA
	TOKYO 194-8666 JAPAN
FCC I D	JFZCKS550BT
MODEL NUMBER	ATH-CKS550BT
PRODUCT DESCRI PTI ON	BT WIRELESS STEREO HEADSET
STANDARD APPLIED	CFR 47 Part 2.1091
PREPARED BY	CORY LEVERETT

We, TIMCO ENGINEERING, INC. would like to declare that the device has been evaluated in accordance with 47 CFR Part 2.1091 and meets the requirements.

The attached report shall not be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

GENERAL REMARKS

Attestations

This equipment has been evaluated in accordance with the standards identified in this report. To the best of my knowledge and belief, these evaluations were performed using the procedures described in this report.

I attest that the necessary evaluations were made, under my supervision, at:

Timco Engineering Inc. 849 NW State Road 45 Newberry, FL 32669

Authorized Signatory Name:

Cory Leverett

Engineering Project Manager

Date: 8/9/2016

RF Exposure Requirements

General information

Device type: WIRELESS STEREO HEADSET

<u>Antenna</u>

The manufacturer does not specify an antenna, but a typical antenna has a gain of 0 dBi.

Configuration	Antenna p/n	Туре	Max. Gain (dBi)
Chip	AHSBTM0602-B00	Chip	0.0

Operating configuration and exposure conditions:

The conducted output power is shown in the table below. Typical use qualifies for a maximum duty cycle factor of 100%.

MPE Calculation:

The minimum separation distance is calculated as follows:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power density: $P_d(mW/cm^2) = \frac{E^2}{3770}$

The limit for general uncontrolled exposure environment is shown in FCC rule Part 1.11310, Table 1.

		F Exposure Gui							
4.3.1. Standa	lone SAR test	exclusion consid	derations						
100 MHz to	6 GHz at sepa	aration distance	e less than or equal t	to 50 mm					
SAR Test Excl	usion Calcula	tor for Portable	e Devices						
Insert values	in yellow high	nlighted boxes	to determine SAR Ex	clusion					
Max Powe	1.4 mW								
Min Separ	5 mm	When the	e minimum test sepa	aration dist	ance is < 5	mm, a dist	ance of 5	mm is appli	ied to
Frequency	2.48 GHz	determin	e SAR test exclusion	•					
Answer	0.4 Must	be less than o	r equal to 3.0 for SA	R Exclusion	l]			
	KDB 3	388624 D02Per	mit But Ask List v15,	Item II. A.	5.				
	PBA i	is required if:							
	Gene	eral Population:	The Answer is equa	to or great	ter than 24	(8x thresho	ld)		
	Cont	rolled Use: The	Answer is equal to o	r greater th	nan 60 (20x	threshold)			
	<u>and</u> ,	when published	RF exposure KDB pr	ocedures a	re <u>not</u> esta	blished for	SAR testing	g or when	
Please also n	ote the follow	ving: [FCC KDB	<i>quote]</i> These test ex	clusion cor	ditions are	based on s	ource-bas	ed time-]