ONE WORLD OUR APPROVAL



# Limited Test report

# 351607-1TRFWL

Date of issue: July 12, 2018

Applicant:

Alcatel Lucent

Product:

# Point-to-Point Microwave Radio

Model: 9558HC Model variant: N/A

FCC ID: JF6-9558HC

IC Registration number: 6933B-9558HC

Specifications:

- FCC 47 CFR Part 15 Subpart E, §15.407 partial (§15.407(b)(4) requirements only) Unlicensed National Information Infrastructure Devises
- RSS-247, Issue 2, Section 6, February 2017- partial (Sec. 6.2.4(2) requirements only)
   Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area
   Network (LE-LAN) Devices

www.nemko.com

Nemko USA Inc., a testing laboratory, is accredited by NVLAP. The tests included in this report are within the scope of this accreditation



NVLAP Code 200116-0

351607-1TRFWL



#### Test location

| Company name:   | Nemko USA Inc.                                                   |
|-----------------|------------------------------------------------------------------|
| Address:        | 2210 Faraday Ave, Suite 150                                      |
| City:           | Carlsbad                                                         |
| Province:       | California                                                       |
| Postal code:    | 92008                                                            |
| Country:        | USA                                                              |
| Telephone:      | +1 760 444 3500                                                  |
| Website:        | www.nemko.com                                                    |
| FCC Site Number | Test Firm Registration Number: 392943 Designation Number: US5058 |
| ISED Test Site  | 2040B-3                                                          |

| Tested by:   | Nikolay Shtin, Senior Wireless Engineer                           |
|--------------|-------------------------------------------------------------------|
| Reviewed by: | Juan Manuel Gonzalez, EMC & Wireless Business Development Manager |
| Date:        | July 12, 2018                                                     |
| Signature:   | Advine                                                            |

### Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

#### Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.



# Table of contents

| Table of  | Table of contents                                                   |    |  |  |
|-----------|---------------------------------------------------------------------|----|--|--|
| Section 1 | . Report summary                                                    | .4 |  |  |
| 1.1       | Applicant and manufacturer                                          | .4 |  |  |
| 1.2       | Test specifications                                                 | .4 |  |  |
| 1.3       | Test methods                                                        | .4 |  |  |
| 1.4       | Statement of compliance                                             | .4 |  |  |
| 1.5       | Exclusions                                                          | .4 |  |  |
| 1.6       | Test report revision history                                        | .4 |  |  |
| Section 2 | 2. Summary of test results                                          | .5 |  |  |
| 2.1       | FCC Part 15 Subpart C, general requirements test results            | .5 |  |  |
| 2.2       | FCC Part 15 Subpart E, test results                                 | .5 |  |  |
| 2.3       | RSS-Gen, Issue 4, test results                                      | .5 |  |  |
| 2.4       | IC RSS-247, Issue 2, test results                                   | .6 |  |  |
| Section 3 | e. Equipment under test (EUT) details                               | .7 |  |  |
| 3.1       | Sample information                                                  | .7 |  |  |
| 3.2       | EUT information                                                     | .7 |  |  |
| 3.3       | Technical information                                               | .7 |  |  |
| 3.4       | Product description and theory of operation                         | .7 |  |  |
| 3.5       | EUT exercise details                                                | .7 |  |  |
| 3.6       | EUT setup diagram                                                   | .7 |  |  |
| 3.7       | EUT sub assemblies and support equipment                            | .8 |  |  |
| Section 4 | I. Engineering considerations                                       | .9 |  |  |
| 4.1       | Modifications incorporated in the EUT                               | .9 |  |  |
| 4.2       | Technical judgment                                                  | .9 |  |  |
| 4.3       | Deviations from laboratory tests procedures                         | .9 |  |  |
| Section 5 | j. Test conditions                                                  | 10 |  |  |
| 5.1       | Atmospheric conditions1                                             | 10 |  |  |
| 5.2       | Power supply range1                                                 | 10 |  |  |
| Section 6 | 6. Measurement uncertainty                                          | 11 |  |  |
| 6.1       | Uncertainty of measurement1                                         | 11 |  |  |
| Section 7 | v. Test equipment                                                   | 12 |  |  |
| 7.1       | Test equipment list                                                 | 12 |  |  |
| Section 8 | 3. Testing data                                                     | 13 |  |  |
| 8.1       | FCC 15.407(a)(3)(5) Power Limits (PSD)1                             | 13 |  |  |
| 8.2       | FCC 15.407(b) and RSS-247 6.2.4.2 Spurious (out-of-band) emissions1 | 15 |  |  |
| Section 9 | 9. Block diagrams of test set-ups                                   | 26 |  |  |
| 9.1       | Conducted emissions set-up                                          | 26 |  |  |



# **Section 1.** Report summary

# 1.1 Applicant and manufacturer

| Company name    | Alcatel Lucent          |
|-----------------|-------------------------|
| Address         | 3400 West Plano Parkway |
| City            | Plano                   |
| Province/State  | Texas                   |
| Postal/Zip code | 75075                   |
| Country         | U.S.A.                  |

### 1.2 Test specifications

| FCC 47 CFR Part 15, Subpart E, Clause 15.407 | Unlicensed National Information Infrastructure Devises                                                                          |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| RSS-247, Issue 2                             | Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area<br>Network (LE-LAN) Devices |

# 1.3 Test methods

| 789033 D02 General UNII Test Procedures | Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------|
| New Rules v02r01 (December 14, 2017)    | Part 15, Subpart E                                                                                  |
| ANSI C63.10 v2013                       | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices      |

# 1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

### 1.5 Exclusions

None

# 1.6 Test report revision history

| Revision # | Details of changes made to test report                                |
|------------|-----------------------------------------------------------------------|
| 1TRF       | Original report issued                                                |
| 1R1TRF     | Customer limits maximum antenna size to 2 Ft antenna (29dBi max gain) |



# Section 2. Summary of test results

### 2.1 FCC Part 15 Subpart C, general requirements test results

| Part      | Test description          | Verdict           |
|-----------|---------------------------|-------------------|
| §15.31(e) | Variation of power source | Pass <sup>1</sup> |
| §15.203   | Antenna requirement       | Pass <sup>2</sup> |

Notes: <sup>1</sup>Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

<sup>2</sup>The EUT uses external antenna that will be professionally installed by the manufacturer or other responsible party.

### 2.2 FCC Part 15 Subpart E, test results

| Part                       | Test description                                                       | Verdict        |
|----------------------------|------------------------------------------------------------------------|----------------|
| §15.403(i)                 | Emission bandwidth                                                     | Not applicable |
| §15.407(a)(1)              | Power and density limits within 5.15–5.25 GHz band                     | Not applicable |
| §15.407(a)(2)              | Power and density limits within 5.25–5.35 GHz and 5.47–5.725 GHz bands | Not applicable |
| §15.407(a)(3) <sup>3</sup> | Power and density limits within 5.725–5.85 GHz band                    | Pass           |
| §15.407(b)(1)              | Undesirable emission limits for 5.15–5.25 GHz band                     | Not applicable |
| §15.407(b)(2)              | Undesirable emission limits for 5.25–5.35 GHz band                     | Not applicable |
| §15.407(b)(3)              | Undesirable emission limits for 5.47–5.725 GHz bands                   | Not applicable |
| §15.407(b)(4)              | Undesirable emission limits for 5.725–5.85 GHz band                    | Pass           |
| §15.407(b)(6) <sup>1</sup> | Conducted limits for U-NII devices using an AC power line              | Not tested     |
| §15.407(e) <sup>1</sup>    | Minimum 6 dB bandwidth of U-NII devices within the 5.725-5.85 GHz band | Not tested     |
| §15.407(g) <sup>4</sup>    | Frequency stability                                                    | Not tested     |
| §15.407(h)(1) <sup>2</sup> | Transmit power control (TPC)                                           | Not applicable |
| §15.407(h)(2) <sup>2</sup> | Dynamic Frequency Selection (DFS)                                      | Not applicable |

Notes: 1Results from previous testing of the EUT according to FCC Part 15.247 apply. See Test Report: 10220773RUS1 issued on 06-21-2012 by Nemko USA, Inc.

<sup>2</sup>DFS and TPC requirements are only applicable to 5.25–5.35 GHz and 5.47–5.725 GHz bands

<sup>3</sup> Calculated from Test Report: 10220773RUS1 issued on 06-21-2012 by Nemko USA, Inc. using rules from KDB 789033 (3)(F)(5)

<sup>4</sup> Per customer declaration this test was performed under the exact same device and reported data under section 1.2.4, § 101.107 Frequency tolerance page 67 of test report 3DB200010094QZZZA\_07.doc should be representative.

### 2.3 RSS-Gen, Issue 4, test results

| Part               | Test description                                                         | Verdict        |
|--------------------|--------------------------------------------------------------------------|----------------|
| 6.65               | Occupied Bandwidth                                                       | Not tested     |
| 7.1.2 <sup>2</sup> | Receiver radiated emission limits                                        | Not applicable |
| 7.1.3 <sup>2</sup> | Receiver conducted emission limits                                       | Not applicable |
| 8.8 <sup>1</sup>   | Power Line Conducted Emissions Limits for License-Exempt Radio Apparatus | Not tested     |
| 8.114              | Frequency stability                                                      | Not applicable |

Notes: <sup>1</sup>Results from previous testing of the EUT according to FCC Part 15.247 apply. See Test Report: 10220773RUS1 issued on 06-21-2012 by Nemko USA, Inc.

<sup>2</sup>According to sections 5.2 and 5.3 of RSS-Gen, Issue 4: if EUT does not have a stand-alone receiver neither scanner receiver, then its exempt from receiver requirements.

<sup>3</sup>According to section 8.11 of RSS-Gen, Issue 4: if the frequency stability of the licence-exempt radio apparatus is not specified in the applicable standard (RSS), measurement of the frequency stability is not required.

<sup>4</sup> Per customer declaration this test was performed under the exact same device and reported data under section 1.2.4, § 101.107 Frequency tolerance page 67 of test report 3DB200010094QZZA\_07.doc should be representative.

<sup>5</sup> Per customer declaration this test was performed under the exact same device and reported data under section 1.2.2 should be representative (test report 3DB200010094QZZZA\_07.doc section 1.2.2 page 16 with QAM 4/128/256 with 30 MHz BW )

Report reference ID: 351607-1TRFWL



### 2.4 IC RSS-247, Issue 2, test results

| Castian                | To a description                                                                                                    | Mandlat        |
|------------------------|---------------------------------------------------------------------------------------------------------------------|----------------|
| Section                | lest description                                                                                                    | verdict        |
| 6.1 (1) <sup>1</sup>   | Types of Modulation                                                                                                 | Pass           |
| 6.2.1 (1)              | Power limits for 5150–5250 MHz band                                                                                 | Not applicable |
| 6.2.2 (1)              | Power limits for 5250–5350 MHz band                                                                                 | Not applicable |
| 6.2.3 (1)              | Power limits for 5470–5600 MHz and 5650–5725 MHz bands                                                              | Not applicable |
| 6.2.4 (1) <sup>2</sup> | Power limits for 5725–5850 MHz band                                                                                 | Not tested     |
| 6.2.4 (1) <sup>2</sup> | Minimum 6 dB bandwidth                                                                                              | Not tested     |
| 6.2.1 (2)              | Unwanted emission limits for 5150–5250 MHz band                                                                     | Not applicable |
| 6.2.2 (2)              | Unwanted emission limits for 5250–5350 MHz band                                                                     | Not applicable |
| 6.2.2 (2)              | TPC requirements for devices with a maximum e.i.r.p. greater than 500 mW                                            | Not applicable |
| 6.2.2 (3)              | e.i.r.p. at different elevations restrictions for 5250–5350 MHz band                                                | Not applicable |
| 6.2.3 (2)              | Unwanted emission limits for 5470–5600 MHz and 5650–5725 MHz bands                                                  | Not applicable |
| 6.2.4 (2)              | Unwanted emission limits for 5725–5850 MHz band                                                                     | Pass           |
| 6.3                    | Dynamic Frequency Selection (DFS) for devices operating in the bands 5250–5350 MHz, 5470–5600 MHz and 5650–5725 MHz | Not applicable |

Notes: <sup>1</sup>The EUT employs digital modulations M-QAM.

<sup>2</sup>Results from previous testing of the EUT according to FCC Part 15.247 apply. See Test Report: 10220773RUS1 issued on 06-21-2012 by Nemko USA, Inc.



# **Section 3.** Equipment under test (EUT) details

### 3.1 Sample information

| Receipt date           | April 11, 2018 |
|------------------------|----------------|
| Nemko sample ID number | N/A            |

# 3.2 EUT information

| Product name   | 9558HC   |
|----------------|----------|
| Model          | 9558HC   |
| Model variant  | N/A      |
| Serial numbers | 001, 004 |

# 3.3 Technical information

| 6933B                                                                                                       |
|-------------------------------------------------------------------------------------------------------------|
|                                                                                                             |
| 2040B-3                                                                                                     |
| RSS-247 Issue 2, May 2017                                                                                   |
| 5725–5850 MHz                                                                                               |
| 5730.5 MHz                                                                                                  |
| 5844.5 MHz                                                                                                  |
| N/A                                                                                                         |
| 0.986 W (29.94 dBm)                                                                                         |
| N/A                                                                                                         |
| 27.3                                                                                                        |
| N/A                                                                                                         |
| M-QAM                                                                                                       |
| W7D                                                                                                         |
| N/A                                                                                                         |
| -48 VDC                                                                                                     |
| The EUT uses unique external antenna that is professionally installed. Antenna nominal peak gain is 29 dBi. |
|                                                                                                             |

<sup>1</sup> Per customer declaration this test was performed under the exact same device and reported data under section 1.2.2 should be representative (test report 3DB200010094QZZZA\_07.doc section 1.2.2 page 16 with QAM 4/128/256 with 30 MHz BW )

# 3.4 Product description and theory of operation

EUT is a Alcatel Lucent Point-to-Point Microwave Radio which is a part of the Alcatel-Lucent 9500 Microwave Packet Radio (MPR) platform enabling the smooth transformation of transport networks from circuit to IP backhaul, thus seamlessly transporting TDM, ATM, IP and Ethernet over a Carrier Ethernet infrastructure.

# 3.5 EUT exercise details

EUT is configured via TCP/IP (Ethernet) using Nokia Wavence Web Interface. Once ethernet connection with the EUT is established, corresponding Radio settings were selected to set the EUT in continues transmission mode using channel, modulation and bandwidth.

# 3.6 EUT setup diagram

Report reference ID: 351607-1TRFWL





Figure 3.6-1: Setup diagram

# 3.7 EUT sub assemblies and support equipment

### Table 3.7-1: EUT sub assemblies

| Description                    | Brand name | Model/Part number | Serial number |
|--------------------------------|------------|-------------------|---------------|
| Point-to-Point Microwave Radio | Nokia      | 9558HC            | 001           |
| Point-to-Point Microwave Radio | Nokia      | 9558HC            | 004           |

### Table 3.7-2: Support equipment

| Description              | Brand name     | Model/Part number | Serial number | Rev. |
|--------------------------|----------------|-------------------|---------------|------|
| Support Laptop           | Dell           | Latitude 7480     | DJPFMH2       | -    |
| Fuse panel               | Noran Tel      | N250110-N/0803    | S-124024      | -    |
| Microwave service switch | Alcatel Lucent | 3DB18485DAAA01    | VG143660014   | -    |
| Rectifier                | GE Energy      | 150027891         | S1:1          | -    |



# Section 4. Engineering considerations

# 4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

### 4.2 Technical judgment

None

# 4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.



# Section 5. Test conditions

# 5.1 Atmospheric conditions

| Temperature       | 15–30 °C      |
|-------------------|---------------|
| Relative humidity | 20–75 %       |
| Air pressure      | 860–1060 mbar |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

# 5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.



# Section 6. Measurement uncertainty

# 6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

| Test name                         | Measurement uncertainty, dB |
|-----------------------------------|-----------------------------|
| All antenna port measurements     | 0.55                        |
| Conducted spurious emissions      | 1.13                        |
| Radiated spurious emissions       | 3.78                        |
| AC power line conducted emissions | 3.55                        |

# Section 7. Test equipment

# 7.1 Test equipment list

| Table 7.1-1: Equipment list |                             |                                 |           |           |           |
|-----------------------------|-----------------------------|---------------------------------|-----------|-----------|-----------|
| Equipment                   | Manufacturer                | Model no.                       | Asset no. | Cal cycle | Next cal. |
| EMC Test Receiver           | Rohde & Schwarz             | ESU 40                          | E1121     | 1 yr.     | 7/28/2018 |
| Spectrum Analyzer           | Rohde & Schwarz             | FSV40                           | E1120     | 1 yr.     | 7/27/2018 |
| Highpass filter             | Wainwright Instruments GMBH | WHKX10-5850-6500-<br>18000-40SS | N/A       |           | VOU       |
| Notch filter 5.15-5.85 GHz  | Micro-Tronics               | BRM50716-01                     | E1140     |           | VOU       |
| Highpass filter 15-26 GHz   | SAGE Millimeter Inc.        | SCF-15312340-42KFKF-H1          | E1157     |           | VOU       |
| Highpass filter 22-40 GHz   | SAGE Millimeter Inc.        | SCF-22318340-28KFKF-H1          | E1158     |           | VOU       |
| Attenuator 10 dB            | Mini-Circuits               | BW-K10-2W44+                    | -         |           | VOU       |
| Attenuator 6 dB             | Mini-Circuits               | BW-K6-2W44+                     | -         |           | VOU       |
| Attenuator 3 dB             | Mini-Circuits               | BW-K3-2W44+                     | -         |           | VOU       |

Note: NCR - no calibration required, VOU - verify on use





# Section 8. Testing data

### 8.1 FCC 15.407(a)(3)(5) Power Limits (PSD)

### 8.1.1 Definitions and limits

#### FCC:

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Note to paragraph (a)(3): The Commission strongly recommends that parties employing U-NII devices to provide critical communications services should determine if there are any nearby Government radar systems that could affect their operation.

(5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

#### ISED:

#### 6.2.4.1 Power limits

For equipment operating in the band 5725-5850 MHz, the minimum 6 dB bandwidth shall be at least 500 kHz.

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

### 8.1.2 Test summary

Test performed under Test Report No.: 10220773RUS1 issued on 06-21-2012 by Nemko USA, Inc.

### 8.1.3 Calculation based on Rules from KDB 789033 (3)(F)(5)

#### Maximum Power Spectral Density (PSD)

The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission. Refer to III.A for additional guidance for devices that use channel aggregation. 1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in II.E.2. for meas uring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...." (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable:

a) If Method SA-2 or SA-2 Alternative was used, add 10 log (1/x), where x is the duty cycle, to the peak of the spectrum.

b) If Method SA-3 Alternative was used and the linear mode was used in II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

4. The result is the Maximum PSD over 1 MHz reference bandwidth.

Report reference ID: 351607-1TRFWL

Testing data FCC 15.407(a)(3)(5) and RSS-247 6.2.4.1 Power Limits (PSD) FCC Part 15 Subpart E and RSS-247 Issue 2



5. For devices operating in the bands 5.15–5.25 GHz, 5.25–5.35 GHz, and 5.47–5.725 GHz, the preceding procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in Section 15.407(a)(5). For devices operating in the band 5.725–5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW  $\geq$  1/T, where T is defined in II.B.I.a).

b) Set VBW  $\geq$  3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (<500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle. Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the II.F.5.c) and II.F.5.d), since RBW=100 kHz is available on nearly all spectrum analyzers.

| Modulation | F                    | m)                  |                       |                |                |
|------------|----------------------|---------------------|-----------------------|----------------|----------------|
|            | Frequency/BW,<br>MHz | Measured<br>@100KHZ | Calculated<br>@500KHz | Limit<br>(dBm) | Margin<br>(dB) |
| 4-QAM      | 5740.5 (5MHZ)        | 17.38               | 24.37                 | 30             | 5.63           |
| 4-QAM      | 5740.5(10MHz)        | 17.15               | 24.14                 | 30             | 5.86           |
| 4-QAM      | 5740.5(30MHz)        | 13.16               | 20.15                 | 30             | 9.85           |
| 128-QAM    | 5740.5 (5MHZ)        | 17.91               | 24.9                  | 30             | 5.1            |
| 256-QAM    | 5740.5(10MHz)        | 13.48               | 20.47                 | 30             | 9.53           |
| 256-QAM    | 5740.5(30MHz)        | 8.38                | 15.37                 | 30             | 14.63          |
| 4-QAM      | 5794.5(5MHz)         | 18.85               | 25.84                 | 30             | 4.16           |
| 4-QAM      | 5794.5(10MHz)        | 16.55               | 23.54                 | 30             | 6.46           |
| 4-QAM      | 5794.5(10MHz)        | 13.27               | 20.26                 | 30             | 9.74           |
| 128-QAM    | 5794.5(5MHz)         | 18.01               | 25                    | 30             | 5              |
| 256-QAM    | 5794.5(10MHz)        | 13.97               | 20.96                 | 30             | 9.04           |
| 4-QAM      | 5844.5(5MHz)         | 19.75               | 26.74                 | 30             | 3.26           |
| 4-QAM      | 5844.5(10MHz)        | 16.18               | 23.17                 | 30             | 6.83           |
| 4-QAM      | 5844.5(30MHz)        | 11.8                | 18.79                 | 30             | 11.21          |
| 128-QAM    | 5844.5(5MHz)         | 18.57               | 25.56                 | 30             | 4.44           |
| 256-QAM    | 5844.5(10MHz)        | 12.81               | 19.8                  | 30             | 10.2           |
| 256-QAM    | 5844.5(30MHz)        | 8.34                | 15.33                 | 30             | 14.67          |

Table 8.1-1: Power Spectrum Density



### 8.2 FCC 15.407(b) and RSS-247 6.2.4.2 Spurious (out-of-band) emissions

### 8.2.1 Definitions and limits

#### FCC:

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed

near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(7) The provisions of § 15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

#### ISED:

Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following:

a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;

b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;

c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and

d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

### 8.2.2 Test summary

| Test date:     | May 1-2 and July 5-6, 2018 | Temperature:       | 22 °C     |
|----------------|----------------------------|--------------------|-----------|
| Test engineer: | Nikolay Shtin              | Air pressure:      | 1002 mbar |
| Verdict:       | Pass                       | Relative humidity: | 41 %      |

### 8.2.3 Observations, settings and special notes

- The spectrum was searched from 30 MHz to 40 GHz.
- EUT was set to transmit with 100 % duty cycle.
- The out-of-band emissions were verified using worst-case channel bandwidth of 5 MHz, all available bandwidths (5 MHz, 10 MHz and 30 MHz) were evaluated near the band-edges.
- In order to reduce the receiver noise floor, the measurements in the range from 1 GHz to 4.5 GHz were performed using a 5.15-5.85 GHz Notch filter.
- To avoid the saturation of the test receiver, a combination of the 5-15-5.85 GHz Notch and 6.4-18 GHz Highpass filters was used for the measurements in the 6.4-18 GHz range. Measurements above 18 GHz were performed using 15-26 GHz and 22-40 GHz Highpass filters.
- Below 6.4 GHz, an offset of 40.5dBm was used. This offset corresponds to the nominal peak gain of 8Ft antenna that was considered as the worstcase antenna in the original filling. As per the manufacturer's declaration the EUT use has been restricted to a smaller 2 Ft antenna having nominal gain of 29 dBi.
- Note: Per manufacturers declaration the antenna gains, as summarized in table 8.2.1, were used as the offset for all spurious emissions from 6.4 to 40 GHz.
- Note: The band edge measurements were already completed and since the lower antenna gain would result in a 11.5 dB improvement in the results no new retest was considered necessary.

|              |             | Table 8.2.1 2Ft an | tenna gain at the harm | ionic frequencies |         |         |
|--------------|-------------|--------------------|------------------------|-------------------|---------|---------|
| Frequency    | 5.7 GHz     | 11.4GHz            | 17.1GHz                | 22.8GHz           | 28.5GHz | 34.2GHz |
| Harmonic     | Fundamental | 2                  | 3                      | 4                 | 5       | 6       |
| Antenna gain | 29 dBi      | 30.0dBi            | 25.4dBi                | 25.1dBi           | 23.5dBi | 22.3dBi |

• Additional TDF correction factor was used to account for the losses in the test cable, attenuator and Notch/High-pass filters.



Spectrum analyser for peak conducted measurements below 1 GHz:

| Resolution bandwidth: | 100 kHz  |
|-----------------------|----------|
| Video bandwidth:      | 300 kHz  |
| Detector mode:        | Peak     |
| Trace mode:           | Max Hold |

Spectrum analyzer for peak conducted measurements above 1 GHz:

| Resolution bandwidth: | 1 MHz    |
|-----------------------|----------|
| Video bandwidth:      | 3 MHz    |
| Detector mode:        | Peak     |
| Trace mode:           | Max Hold |

#### 8.2.4 Test data







Figure 8.2-3: - Conducted spurious emissions 4.5-5.68 GHz, 5 MHz Channel BW, Low channel







Figure 8.2-4: Conducted spurious emissions 5.68-5.725 GHz, 5 MHz Channel BW, Low channel





Figure 8.2-5: Conducted spurious emissions 4.5-5.68 GHz, 30 MHz Channel BW, Low channel



Date: 1.MAY.2018 19:08:00

Figure 8.2-7: - Lower band edge emissions at 5725 MHz, 30 MHz Channel BW, Low channel

Note: Limit is 27 dBm. EUT complies.

Offset of 50.5dBm (40.5 dBi to simulate the antenna gain and 10 dBm from setup losses) +TDF (for cable loss) were added.

Note: The manufacturer restricted the maximum gain of the antenna to 29dBi after testing was completed. Since the band edge was compliant using a 40.5dBi antenna at 23.27dBm the new result would be 11.77 using a 29dBi antenna.



Figure 8.2-6: Conducted spurious emissions 5.68-5.724 GHz, 30 MHz Channel BW, Low channel

#### Section 8 Test name Specification









Figure 8.2-10: Conducted spurious emissions 6.4-18 GHz, 5 MHz Channel BW, Low channel



Figure 8.2-9: Conducted spurious emissions 5.85-6.4 GHz, 30 MHz Channel BW, Low channel



Figure 8.2-11: Conducted spurious emissions @ 11.481 GHz, 5 MHz Channel BW, Low channel





Figure 8.2-12: Conducted spurious emissions 15.62 GHz, 5 MHz Channel BW, Low channel



Figure 8.2-14: Conducted spurious emissions @ 17.455 GHz, 5 MHz Channel BW, Low channel



Figure 8.2-13: - Conducted spurious emissions @ 17.2215 GHz, 5 MHz Channel BW, Low channel



Figure 8.2-15: Conducted spurious emissions 18-26 GHz, 5 MHz Channel BW, Low channel





Figure 8.2-16: Conducted spurious emissions @ 22.962 GHz, 5 MHz Channel BW, Low channel



Figure 8.2-18: - Conducted spurious emissions @ 27.335 GHz, 5 MHz Channel BW, Low channel



Figure 8.2-17: - Conducted spurious emissions 26-40 GHz, 5 MHz Channel BW, Low channel



Figure 8.2-19: Conducted spurious emissions @ 28.7025 GHz, 5 MHz Channel BW, Low channel

#### Section 8 Test name Specification



Figure 8.2-20: Conducted spurious emissions 30-1000 MHz, 5 MHz Channel BW, High channel



Figure 8.2-22: - Conducted spurious emissions 4.5-5.725 GHz, 5 MHz Channel BW, High channel



Figure 8.2-21: Conducted spurious emissions 1-4.5 GHz, 5 MHz Channel BW, High channel



Figure 8.2-23: Conducted spurious emissions 4.5-5.725 GHz, 30 MHz Channel BW, High channel







Figure 8.2-24: Conducted spurious emissions 5.850-5.890 GHz, 30 MHz Channel BW, High channel



Date: 30.APR.2018 14:15:59

Figure 8.2-26: -- Upper band edge emissions at 5.850 GHz, 30 MHz Channel BW, High channel

### Note: Limit is 27 dBm. EUT complies.

Offset of 50.5dBm (40.5 dBi to simulate the antenna gain and 10 dBm from setup losses) +TDF (for cable loss) were added.

Note: The manufacturer restricted the maximum gain of the antenna to 29dBi after testing was completed. Since the band edge was compliant using a 40.5dBi antenna at 25.7 dBm the new result would be 14.20 dBm using a 29dBi antenna.



Figure 8.2-25: Conducted spurious emissions 5.851-5.890 GHz, 5 MHz Channel BW, High channel





Figure 8.2-27: -Conducted spurious emissions 5.89-6.4 GHz, 5 MHz Channel BW, High channel



Figure 8.2-29: -Conducted spurious emissions @ 11.669 GHz, 5 MHz Channel BW, High channel



Figure 8.2-28: Conducted spurious emissions 6.4-18 GHz, 5 MHz Channel BW, High channel



Figure 8.2-30: Conducted spurious emissions @ 17.5035 GHz, 5 MHz Channel BW, High channel





Figure 8.2-31: Conducted spurious emissions 18-26 GHz, 5 MHz Channel BW, High channel



Figure 8.2-33: - Conducted spurious emissions 26-40 GHz, 5 MHz Channel BW, High channel



Figure 8.2-32: Conducted spurious emissions @ 23.338 GHz, 5 MHz Channel BW, High channel



Figure 8.2-34: Conducted spurious emissions @ 27.685 GHz, 5 MHz Channel BW, High channel

Section 8 Test name Specification





Figure 8.2-35: - Conducted spurious emissions @ 31.64 GHz, 5 MHz Channel BW, High channel



Figure 8.2-36: Conducted spurious emissions @ 35.007 GHz, 5 MHz Channel BW, High channel



# Section 9. Block diagrams of test set-ups

# 9.1 Conducted emissions set-up

