

Hermon Laboratories Ltd. P.O.Box 23 Binyamina 30550, Israel Tel.+972 4628 8001 Fax.+972 4628 8277 e-mail: mail@hermonlabs.com

This report is in conformity with ISO/IEC 17025. The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation.

The test results relate only to the items tested. This test report must not be reproduced in any form except in full with the approval of Hermon Laboratories Ltd.

Contents

Contents	·	2
1 Proi	ect information	
2 Sum	umary of tests and requirements	
3 EUT	description	6
3.1	GENERAL	6
3.2	TRANSMITTER DESCRIPTION	6
4 Test	t results	7
4.1	BANDWIDTH OF EMISSION ACCORDING TO § 15.231 (C)	7
4.2	FIELD STRENGTH OF FUNDAMENTAL, § 15.231(B)(2)	8
4.3	FIELD STRENGTH OF SPURIOUS RADIATION, § 15.231(B)(3)	9
4.4	UNINTENTIONAL RADIATED EMISSIONS TEST ACCORDING TO §15.109	10
Appendix	x A - Plots x B - Photographs	11
Appendix	x B - Photographs	20
Appendix	x C - Test equipment used for tests	24
Appendix	x D - General information	25
TEST F	FACILITY DESCRIPTION	25
Abbre	VIATIONS AND ACRONYMS	25
SPECIF	FICATION REFERENCES	

1 Project information

Description of equipment under test

Test items Manufacturer Types (Models) Equipment FCC code

- : Door/window contact detector
- : Rokonet Electronics Ltd.
- : RWT71V2 : DSC
- Applicant information

Applicant's responsible person Company Address Postal code City Country Telephone number Telefax number

- : Mr. David Kartoun, Chief Technology Officer
- : Rokonet Electronics Ltd.
- : 14 Hachoma street
- : 75655
- : Rishon Lezion : Israel
- : +972 3961 6555
- :+972 3961 6584

Test performance

Project Number: Location Receipt date Test started Test completed Purpose of test Test specification(s) : 14926
: Hermon Laboratories
: December 16, 2001
: December 27, 2001
: January 20, 2002
Apparatus compliance verification in accordance with emission requirements 47CFR Part 15, subpart C, §15.231, §15.209, §15.205, and subpart B §15.109

2 Summary of tests and requirements

Parameter	Subclause	С	NC	NT	NA	Tested by	Date tested	Remarks
Transmitter characteristics, §15.231								
Periodic operation	15.231(a)	X						
Bandwidth of emission	15.231(c)	Х				Mr. M. Feldman, test engineer	January 20, 2002	
Field strength of fundamental	15.231(b)(2)	Х				Mr. M. Feldman, test engineer	December 27, 2001	
Field strength of spurious radiation	15.231(b)(3)	X				Mr. M. Feldman, test engineer	January 20, 2002	
Unintentional radiation, §15.107, §15.109								
Conducted emissions	15.107				Х			
Radiated emissions	15.109	х				Mr. M. Feldman, test engineer	December 27, 2001	
General conditions under §15.231, Periodic operation in the	e band 40.66 - 40	.70 MHz	and abo	ve 70 Mi	Ηz			
The intentional radiator does not operate in the restricted bands of operation.	15.205	X						
The intentional radiator has permanently attached antenna or antenna that uses a unique coupling to the intentional radiator.	15.203	X				Integral antenna		
No antenna other than that furnished by the responsible party can be used with the device.	15.203	X						
The intentional radiator has no standard antenna jack or electrical connector.	15.203				X			
The intentional radiator must be professionally installed.	15.203				X			
The Intentional radiator operates at 318.00 MHz.	15.231 (a)	X						
Intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc.	15.231 (a)	x						
Radio control of toys is not permitted.	15.231 (a)	X						
Continuous transmissions, such as voice or video, and data transmissions are not permitted.	15.231 (a)	X						5 (() 5

Hermon Laboratories Ltd. P.O.Box 23 Binyamina 30550, Israel Tel.+972 66288001 Fax.+972 66288277 e-mail: mail@hermonlabs.com

Parameter	Subclause	С	NC	NT	NA	Tested by	Date tested	Remarks
A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.	15.231 (a) (1)				X			
A transmitter activated automatically shall cease transmission within 5 seconds after activation.	15.231 (a) (2)	Х						
Periodic transmissions at regular predetermined intervals are not permitted.	15.231 (a) (3)	Х						
The intentional radiator is used for polling or supervision transmissions to determine system integrity of transmitters used in security or safety applications are allowed if the periodic rate of transmission does not exceed one transmission of not more than one second duration per hour for each transmitter.	15.231 (a) (3)	x						
The intentional radiators employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.	15.231 (a) (4)	X						
NOTE: C: The parameter is compliant with the requirements. NC: The parameter is not compliant with the requirements. NT: The parameter is not tested. NA: The test of this parameter is not applicable.					· · · · · · ·			

Tests performed by:Mr. M. Feldman, test engineerImage: Compared by:Test report prepared by:Mrs. M. Cherniavsky, certification engineerCherniavskyTest report approved by:Mr. M. Nikishin, EMC group leaderImage: CherniavskyDr. E. Usoskin, C.E.O.Marce

3 EUT description

3.1 General

The EUT, RWT71V2, is a door/window contact detector which provides alarm and supervisory codes transmission to a base station by RF link at 318 MHz. The device is powered by a single internal 3 V lithium battery, its clocks generate 4 MHz and 9.9375 MHz, the data rate is 666 bps.

3.2 Transmitter description

Operating frequency:		318.00	318.00 MHz				
Maximum rated output	power						
At transmitter perman	ent external 50 Ω rf output connector (dBm)	NA	NA				
Effective radiated pov	ver (for equipment with integral antenna) (dBm)	- 14.7 dBm (0.0	34 mW)				
Transmitter duty cycle							
Tx on		31.92 msec					
Modulation							
Amplitude							
Frequency							
Other (specify): on/off ke	ying (pulse modulation)						
Can the transmitter be operated	ne transmitter be operated without modulation		Х	no			
Transmitter power sour	се						
Battery	Nominal rated voltage (VDC)	3.0					
Lithium	· · · · ·						
DC	Nominal rated voltage (VDC)		NA				
AC mains	Nominal rated voltage (VAC)		NA				
Is there common power sourc	e for transmitter and receiver	yes		no			
Antenna type							
Antenna type							
Integral							

4 Test results

4.1 Bandwidth of emission according to § 15.231 (c)

METHOD OF MEASUREMENT: DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: MODULATION: DETECTOR USED: ANSI 63.4 §13.1.7 January 20, 2002 49% 23 °C Pulse Peak

Carrier frequency MHz	Occupied bandwidth,	Limit,	Reference to plot in Annex A
	MHz	MHz	
318	0.575	0.795	No.1
Measurement uncertainty		0.21 ppm	

The maximum allowed occupied bandwidth was calculated as 0.0025 of the center frequency.

TEST PROCEDURE

The spectrum trace data around transmitter fundamental frequency was obtained with the spectrum analyzer in "Max Hold" mode. The bandwidth value was determined between two points 20 dB down from the modulated carrier.

TEST EQUIPMENT USED:

HL 0465	HL 0521	HL 0593	HL 0594	HL 0604	

LIMIT § 15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

4.2 Field strength of fundamental, § 15.231(b)(2)

METHOD OF MEASUREMENT: DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: MODULATION: DETECTOR USED: ANSI 63.4 §13.1.5 December 27, 2001 45 % 22 °C Pulse Peak

		§ 15.231 (b)	§ 15.23	
The EUT complies with the requirements of		Х		

Frequency,	Measured field strength,	Average factor,	Result,	Specification limit,	Margin,	Reference to plot in Annex A
MHz	dB(mì/ /m)	dB	dB(mml∕/m	dB(m1//m)	dB	
318.030	80.53	-9.9	70.64	75.8	5.16	No.2
Measurement unce	ertainty, dB			+5.73 / -5.57		

LIMIT § 15.231 (b)

Fundamental frequency (MHz)	Field strength of fundamental (mV/m) @ 3 m
260 - 470	3,750 to 12,500

4.2.1 Average factor calculation, §15.35

Tx ON	Duty cycle	Average factor	Reference to plot in Annex A
31.92 msec	31.92/100	-9.9 dB	No. 3 - 5

TEST PROCEDURE

The EUT was tested, being placed on a wooden 80 cm height table in each of three orthogonal planes in turn. To find maximum radiation the turntable was rotated 360° , measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

TEST EQUIPMENT USED:

HL 0465 HL 0521 HL 0593	HL 0594 HL 0604	4
-------------------------	-----------------	---

4.3 Field strength of spurious radiation, § 15.231(b)(3)

METHOD OF MEASUREMENT:
DATE:
RELATIVE HUMIDITY:
AMBIENT TEMPERATURE:
TEST PERFROMED IN:
DISTANCE BETWEEN ANTENNA AND EUT:
DETECTOR USED:

ANSI 63.4 §13.1.4 January 20, 2002 37 % 22 °C Anechoic chamber 3 m (refer to Photographs No.1 to No.4 in Appendix B) Peak

The frequency spectrum was investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

The equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Limit @ 3 m = 55.8 dB(m)//m)

Antenna type: loop

Х

Frequency,	Antenna polarization	RBW,	VBW,	Radiated emission,	Limit @ 3 m,	Margin,	Ref. to plot in App. A
MHz	-	kHz	kHz	dB (m)//m)	dB(mi/ /m)	dB	
0.009 - 0.150	V, H	0.2	0.3	All emission	No.6		
0.150 - 30	V, H	9	30	All emissions were found below the limit			No.7
Measurement uncertainty, dB					±	4	

Antenna type: biconilog

Frequency,	Antenna polarization	RBW,	VBW,			Ref. to plot in App. A
MHz		kHz	kHz	dB (mì //m)	dB	
30 - 1000	V, H	120	300	All emissions were found below the limit		No.2
Measurement uncertainty, dB			+5.73	/ -5.57		

Antenna type: double ridged guide Frequency range 1000 – 3200 MHz

Frequency,	Antenna polarization	RBW,	VBW,	Radiated emission,	Limit @ 3 m,	Margin,	Ref. to plot in App. A
MHz		MHz	MHz	dB (mM//m)	dB(m1//m)	dB	
1271.8918	V, H	1	3	36.48	55.8	19.32	No.8
Measurement uncertainty, dB					+5.73	/ -5.57	

Notes to table:

RBW: resolution bandwidth VBW: video bandwidth **TEST PROCEDURE**

The EUT was tested, being placed on a wooden 80 cm height table in each of three orthogonal planes in turn. To find maximum radiation the turntable was rotated 360°, measuring antenna height was changed from 1 to 4 m in the range above 30 MHz, and the antennas polarization was changed from vertical to horizontal excluding the range below 30 MHz.

TEST EQUIPMENT USED:

HL 0041 HL 0465 HL 0521	HL 0593	HL 0594	HL 0604	HL 1915
-------------------------	---------	---------	---------	---------

4.4 Unintentional radiated emissions test according to §15.109

METHOD OF MEASUREMENT:	ANSI 63.4 §11.6 / ANSI 63.4 §12.1.4
DATE:	December 27, 2001
RELATIVE HUMIDITY:	45 %
AMBIENT TEMPERATURE:	23 °C
TEST PERFROMED IN:	Anechoic chamber
DISTANCE BETWEEN ANTENNA AND EUT:	3 m (refer to Photograph No.1 in Appendix B)
THE EUT WAS TESTED AS:	Table-top
FREQUENCY RANGE:	30 MHz – 1 GHz
DETECTOR TYPE:	Quasi-peak
RESOLUTION BANDWIDTH:	120 kHz
ANTENNA TYPE:	BICONILOG in vertical and horizontal polarization

The EUT highest used frequency (not including operating frequency), MHz	Upper frequency of measurement range, MHz
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

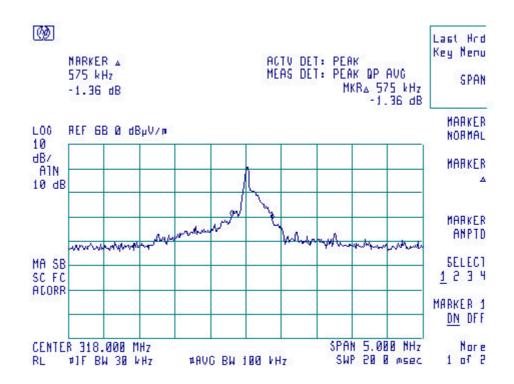
Frequency, MHz	Antenna polarization	Antenna height, m	Turntable position (°)	Radiated emissions, dB (m //m)	Specification limit, dB (m //m)	Margin, dB
	easured emissions		B below the spec			
7.01111						
Measurement un	certainty, dB			+5.73 / -5.57		

TEST PROCEDURE

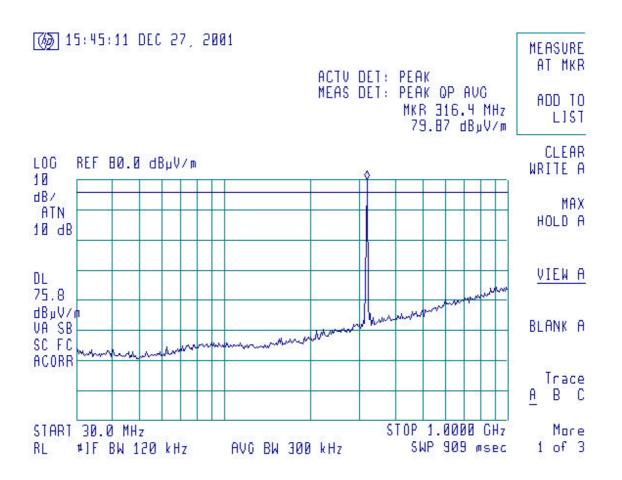
The EUT was placed on a wooden 80 cm height table. To find maximum radiation the turntable was rotated 360° , measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

TEST EQUIPMENT USED:

HL 0465 HL 0521 HL 0593 HL 0594	HL 0604	

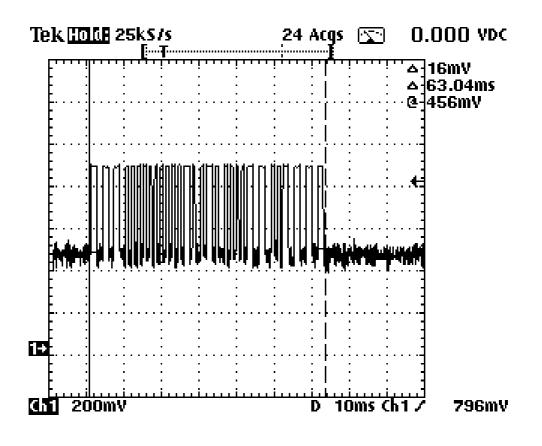

LIMIT (§ 15.109)

Frequency, MHz	Class B equipment @ 3 m dB(m)//m)
30 - 88	40
88 - 216	43.5
216 - 960	46
960 - 5000	54

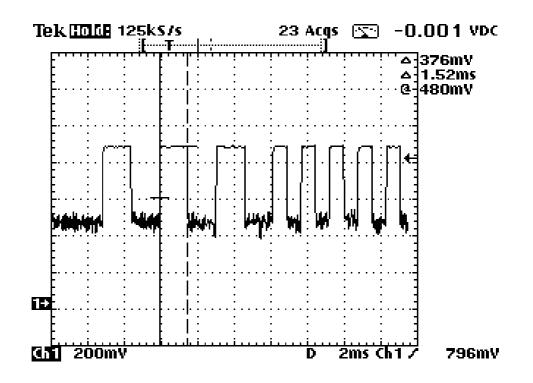


Appendix A - Plots

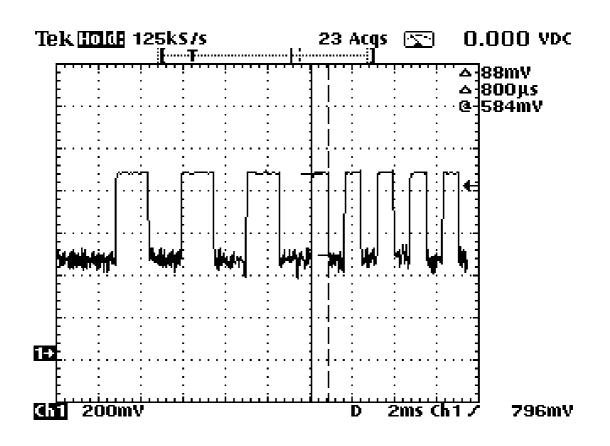
Plot No.1 Occupied bandwidth measurement test result

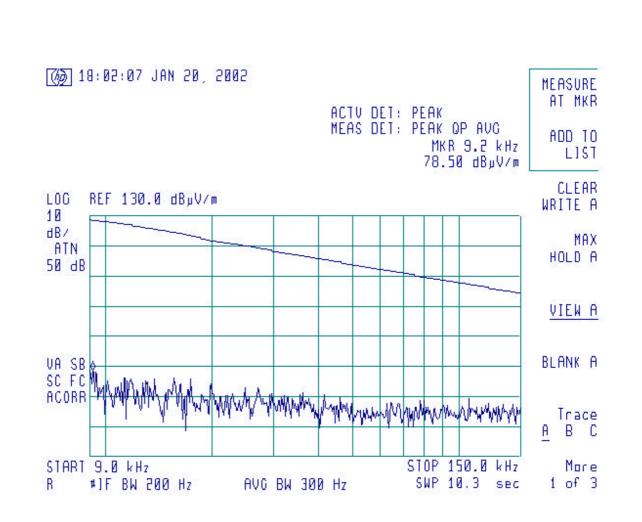


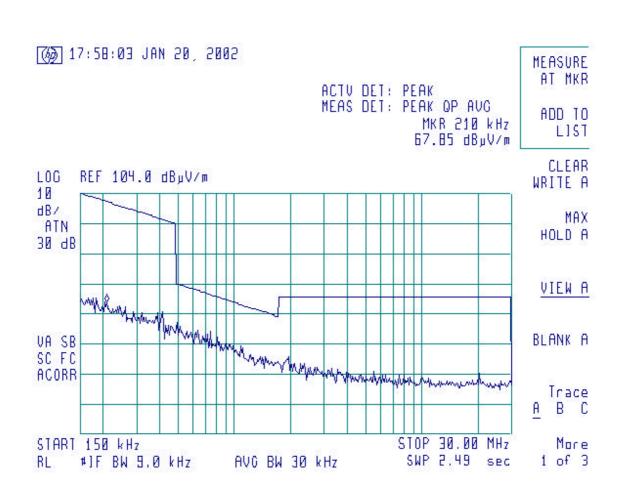
Plot No.2 Field strength of fundamental test result



Plot No.3 Tx on (duty cycle) measurement test result

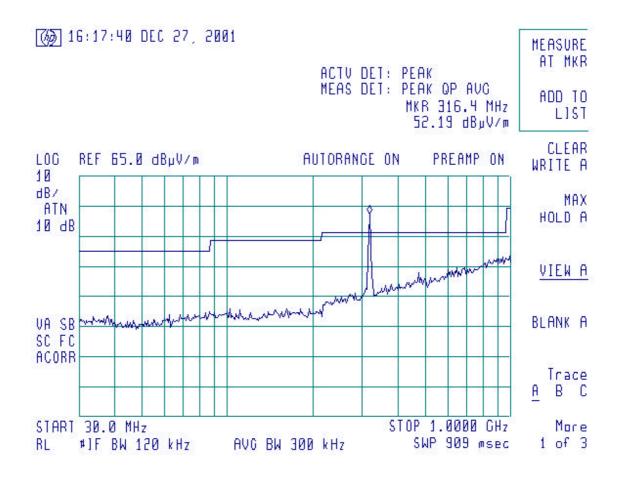

11 x 1.52 ms = 16.72 ms 19 x 0.8 ms = 15.2 ms Tx on = 31.92 ms Average factor = 20 log 31.9/100 = -9.9 dB


Plot No.4 Tx on (duty cycle) measurement test result


Plot No.5 Tx on (duty cycle) measurement test result

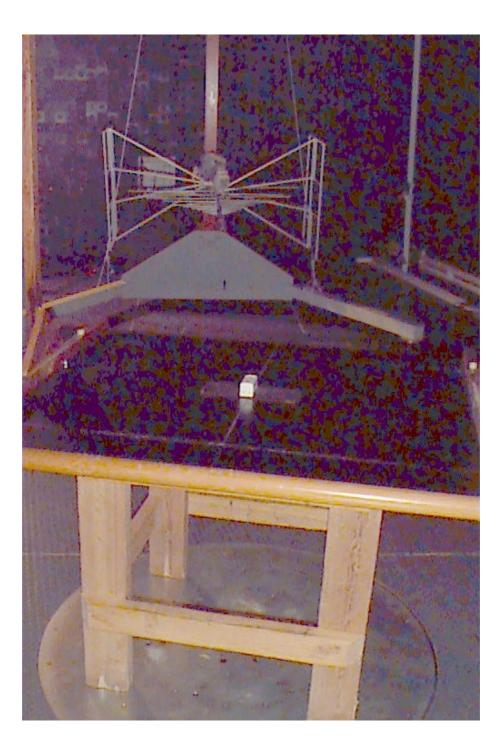
Plot No.6 Spurious emissions test results

Plot No.7 Spurious emissions test results



(6) 1	0:50:i	26 JAN	15, 1	2002		AC Me	TV DEI AS DEI	I: PEA Mkf	К ОР 3 1,23	AVG 7Ø GHz 1BµV∕m	MEASURE At MKR ADD to List
LOG 10	REF 6	5.0 dl	BµV∕m						PREA	MP ON	CLEAR WRITE A
dB≠ ≇ATN Ø dB		9			1.4.00.00	and the second second	www.	Wayne war	magn alla	man	MAX <u>Hold A</u>
	-harmannah	- Marine	marila	man							VIEW A
MA SB SC FC ACORR											BLANK A
RCONN									8 8		Trace <u>A</u> B C
START Rl		0 GHz W 1.0	MHz	I ≉AV	G BW :	I 3 MHz		STOF SWF		00 GHz I msec	More 1 of 3

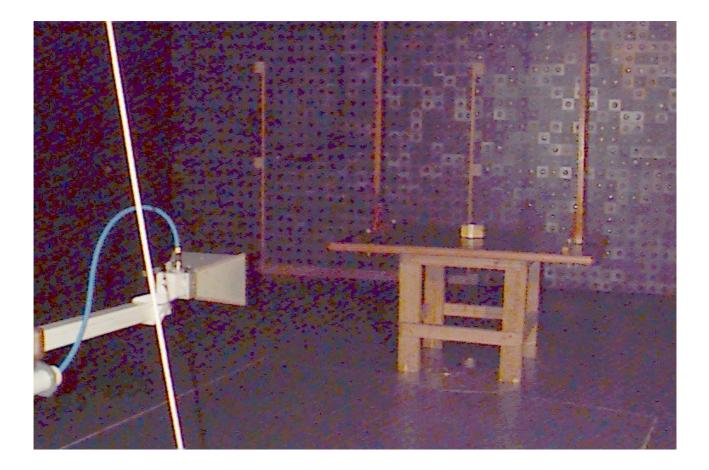
Plot No.8 Spurious emissions test results



Plot No.9 Unintentional radiated emissions test results

Appendix B - Photographs

Photograph No.1 Radiated emissions measurement test setup



Photograph No.2 Radiated emissions measurement test setup

Photograph No.3 Radiated emissions measurement test setup

Photograph No.4 Radiated emissions measurement test setup

Appendix C - Test equipment used for tests

HL Serial No.	Description	Ma	Due Calibration		
		Name	Model No.	Serial No.	Month/ year
0041	Double ridged guide antenna, 1-18 GHz	Electro-Metrics	RGA 50/60	2811	3/03
0465	Anechoic chamber 9 (L) x 6.5 (W) x 5.5 (H) m	Hermon Labs	AC-1	023	11/02
0521	Spectrum analyzer with RF filter section (EMI receiver 9 kHz - 6.5 GHz)	Hewlett Packard	8546A	0319	9/02
0593	Antenna mast, 1-4 m/ 1-6 m pneumatic	Hermon Labs	AM-F1	101	2/03 Check
0594	Turntable for anechoic chamber, flush mounted, d=1.2 m, pneumatic	Hermon Labs	WDC1	102	1/03 Check
0604	Antenna biconilog log- periodic/T Bow-Tie, 26 - 2000 MHz	EMCO	3141	9611-1011	1/03
1915	Active receiving loop antenna, 1 kHz – 30 MHz	EMC test systems	6507	1457	6/02
1947	Cable 18 GHz, 6.5 m, blue	Rhophase Microwave Ltd.	NPS-1803A- 6500-NPS	T4974	10/02

Appendix D - General information

Test facility description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private EMC, Safety and Telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, Telecommunications, Safety standards, and by AMTAC (UK) for safety of Medical Devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for Electromagnetic Compatibility, Product Safety, Telecommunications Testing and Environmental Simulation (for exact scope please refer to Certificate No. 839.01).

Address:PO Box 23, Binyamina 30550, Israel.Telephone:+972 4628 8001Fax:+972 4628 8277e-mailmail@hermonlabs.com

Person for contact: Mr. Alex Usoskin, QA manager.

Abbreviations and acronyms

The following abbreviations and acronyms are applicable to this test report:

AC	alternating current
bps	bit per second
cm	centimeter
dB	decibel
dBm	decibel referred to one milliwatt
dB(μV)	decibel referred to one microvolt
dB(µV/m)	decibel referred to one microvolt per meter
EMC	electromagnetic compatibility
EUT	equipment under test
GHz	gigahertz
Н	height
Hz	hertz
kHz	kilohertz
kV	kilovolt
L	length
m	meter
MHz	megahertz
NA	not applicable
QP	quasi-peak
RF	radio frequency
RE	radiated emission
rms	root mean square
S	second
V	volt
W	width

Specification references

47CFR part 15: 2001	Radio Frequency Devices
ANSI C63.2:96	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4:92	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.