

Description of equipment unde	er test
Test items Manufacturer Trade Mark Type (Model)	Transmitter, FCC ID:JE4WT71 ROKONET Electronics Ltd. NOVA 71 RW-T71
Applicant information	
Applicant's representative Responsible person Company Address P.O. Box Postal code City Country Telephone number Telefax number	Mr. Semion Resman, project manager Mr. Marcos Szhafir, marketing manager technical support ROKONET Electronics Ltd. 14 Hachoma St. NA 75655 Rishon Lezion Israel 011 972 3961 6555 011 972 3961 6584
Test performance	
Project Number Location of the test Test started Test completed Purpose of test Test specification(s)	13311 Hermon Laboratories, Binyamina, Israel March 8, 1999 March 9, 1999 The EUT certification in accordance with CFR 47, part 2, §2.1033 FCC part 15 subpart C §15.231, §15.209 subpart B, §15.109
Hermon Laboratories accreditation by A2LA. Through this report a point is used as the decimal s This report is in conformity with EN 45001 and ISC The test results relate only to the items tested.	et methods and the standards that are listed in the scope of reparator and the thousands are counted with a comma. 9 GUIDE 25. • form except in full, with the approval of Hermon Labs Ltd.

Table of contents

1	GEI	NERAL INFORMATION	4
	1.1	ABBREVIATIONS AND ACRONYMS	4
	1.2	SPECIFICATION REFERENCES	5
	1.3	EUT DESCRIPTION	5
	1.4	STATEMENT OF MANUFACTURER	6
2	TES	T FACILITY DESCRIPTION	7
	2.1	GENERAL	7
	2.2	EQUIPMENT CALIBRATION	7
	2.2.	<i>Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements</i>	7
	2.3	LABORATORY PERSONNEL	8
	2.4	STATEMENT OF QUALIFICATION	8
3	RAI	DIATED EMISSION MEASUREMENTS	9
	3.1	FIELD STRENGTH OF EMISSIONS ACCORDING TO § 15.231 (B)	9
	3.1.	I Specified limits at 3 m distance	9
	3.1.2	2 Test procedure and results	9
	3.2	BANDWIDTH OF EMISSION ACCORDING TO § 15.231 (C)	20
	3.2.	l Specified limits	20
	3.2.2	2 Test procedure and results	20
	3.3	PERIODIC OPERATION REQUIREMENT §15.231(A)(1), (2)	22
	3.4	UNINTENTIONAL RADIATED EMISSIONS TEST ACCORDING TO §15.109	23
	3.4.	Definition of the test	23
	3.4.2	2 The test set-up configuration	23
4	SUN	IMARY AND SIGNATURES	26
A	PPENI	DIX A - TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	27
A	PPENI	DIX B-TEST EQUIPMENT CORRECTION FACTORS	28

1 General information

1.1 Abbreviations and acronyms

The following abbreviations and acronyms are applicable to this test report:

AVRG BW dB dBm dB(μV) dB(μV/m)	average (detector) bandwidth decibel decibel referred to one milliwatt decibel referred to one microvolt decibel referred to one microvolt per meter
DC	direct current
EMC	electromagnetic eompatibility
EUT	equipment under test
GHz	gigahertz
Н	height
HL	Hermon Laboratories
Hz	hertz
IF	intermediate frequency
kHz	kilohertz
L	length
m	meter
mm	millimeter
MHz	megahertz
msec	millisecond
NA	not npplicable
NARTE	National Association of Radio and Telecommunications Engineers, Inc.
QP	quasi-peak (detector)
RBW	resolution bandwidth
RF	radio frequency
RE	radiated emission
V	volt
W	watt

1.2 Specification references

CFR 47 part 15: October 1998	Radio Frequency Devices.				
ANSI C63.2:06/1987	American National Standard for Instrumentation- Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.				
ANSI C63.4:1992	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.				

1.3 EUT description

The EUT (NOVA 71) is a supervised general purpose transmitter, operating at 318 MHz, that can be connected to magnetic contacts (door/window protection) or to other sensors. It operates together with Rokonet's programmable receivers and is powered by a standard 3-volt lithium battery.

The RF section consists of a key on/off transmitter (oscillator), buffer, output amplifier and a loop high 'Q' (about 60) resonant antenna.

The information transmitted by the RF part will depend upon which position of the contact was detected (open or closed, being this alarm or restore according to the set-up).

1.4 Statement of manufacturer

I, Marcos Szhafir, marketing manager of ROKONET Electronics Ltd., declare that the transmitter RW-T71, FCC ID:JE4WT71 was tested on March 8 and 9, 1999 by Hermon Laboratories and which this test report applies to, is identical of the equipment that will be marketed.

The term identical means identical within the variations that can be expected to arise as a result of quantity production technique.

Marcos Szhafir, marketing manager technical support ROKONET Electronics Ltd.

Rolle Signature:

Date: <u>June 9, 1999</u>

2 Test facility description

2.1 General

Tests were performed at Hermon Laboratories, which is a fully independent, private EMC, Safety and Telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), listed by Industry Canada for radiated measurements (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-809 for anechoic chamber, C-845 for conducted emissions site), assessed by NMi Certin B.V. (Netherlands) for a number of EMC, Telecommunications and Safety standards, and Accredited by AMTAC (UK) for safety of Medical Devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO GUIDE 25/EN 45001 for EMC, Telecommunications and Product Safety Information Technology Equipment (Certificate No. 839.01).

Address:	PO Box 23, Binyamina 30550, Israel.
Telephone:	+972-6-628-8001
Fax:	+972-6-628-8277

Person for contact: Mr. Alex Usoskin, testing and QA manager.

2.2 Equipment calibration

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error. The standards and instruments used in the calibration system conform to the present requirements of MIL-STD-45662A. The laboratory standards are calibrated by the third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements.

2.2.1 Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

ſ	Conducted emissions with LISN	9 kHz to 30 MHz: ± 2.1 dB
	Radiated emissions in the open field test site at 10 m measuring distance	Biconilog antenna: ±3.2 dB Log periodic antenna: ±3 dB Biconical antenna: ±4 dB
	Radiated emissions in the anechoic chamber at 3 m measuring distance	Biconilog antenna: ±3.2 dB

Laboratory personnel 2.3

The three people of Hermon Laboratories that have participated in measurements and documentation preparation are: Dr. Edward Usoskin - C.E.O., Mr. Michael Nikishin, test engineer, and Mrs. Marina Cherniavsky - certification engineer.

Dr. E. Usoskin is an EMC specialist and M. Cherniavsky is a telecommunication engineer certified by the National Association of Radio and Telecommunications Engineers (NARTE, USA.).

The Hermon Laboratories' personnel that participated in this project have more than 100 vears combined experience time in EMC measurements and electronic products design.

Statement of qualification 2.4

The test measurement data supplied in this test measurement report having been received by me, is hereby duly certified. The following is a statement of my qualifications:

I am an engineer, graduated from university in 1996 with an MScEE degree, have obtained 2 years experience in EMC measurements and have been with Hermon Laboratories since 1998.

Name: Mr. Michael Nikishin Position: test engineer

Signature: Date:

_____ June 3, 1999

I hereby certify that this test measurement report was prepared by me and is hereby duly certified. The following is a statement of my qualifications.

I am an engineer, graduated from University in 1971, with an MScEE degree, have obtained 26 years experience in electronic products design and development and have been with Hermon Laboratories since 1991. Also, I am a Telecommunication Class II engineer certified by the National Association of Radio and Telecommunications Engineers, Inc. (USA.), the certificate no. is E2-03410.

Name: Mrs. Marina Cherniavsky

Signature

Position: certif. engineer

Date:

June 3, 1999

I hereby certify that this test measurement report was prepared under my direction and that to the best of my knowledge and belief, the facts set in the report and accompanying technical data are true and correct.

The following is a statement of my qualifications.

I have a Ph.D. degree in electronics, have obtained more than 42 years of experience in EMC measurements and electronic product design and have been with Hermon Laboratories since 1986.

Also, I am an EMC engineer certified by the National Association of Radio and Telecommunications Engineers, Inc. (USA). The certificate no. is EMC-000623-NE, Senior Member.

Name: Dr. Edward Usoskin Position: C.E.O.

Signature: ______ Date: June 3, 1999

3 Radiated emission measurements

3.1 Field strength of emissions according to § 15.231 (b)

3.1.1 Specified limits at 3 m distance

Fundamental frequency	Field strength of fundamental	Field strength of spurious emissions	
MHz	dB (μV/m)	dB (µV/m)	
318	75.8	55.8	

3.1.2 Test procedure and results

The test was performed in the Hermon Labs anechoic chamber at 3 meters test distance, i.e. the distance between measuring antenna and EUT boundary. The EUT was placed on the wooden turntable, as shown in Figure 3.1 and Photographs 3.1.1, 3.1.2. The EUT was operated in continuous transmitting mode and measured in three orthogonal axes during the testing. All the transmitter modes of operation were tested. The frequency range from 30 MHz up to 10th harmonic was investigated.

Biconilog and double ridged guide antennas were used. To find maximum radiation the turntable was rotated 360°, measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

The peak detector with RBW = 120 kHz at frequencies below 1 GHz and RBW = 1 MHz, VBW = 3 MHz above 1 GHz was used in course of measurements. The test results were recorded into Table 3.1. The pulse train duration measurements for average factor calculation are shown in Plots 3.1.1 to 3.1.6.

Average factor is equal to

20 log (T_{on} x duty cycle)/100 = {59 x (0.8 + 1.58/1.56 + 3.08)} / 100 = -10.4 dB, where

 T_{on} = 59 msec – the transmitter is activated for 59 msec (transmitting burst) and the period of this activation is equal to 215 msec as shown in Plots 3.1.1, 3.1.2.

Each 59 msec transmitting burst consists of two pulse trains:

1) 0.8 msec transmitting (on) time with 1.56 msec period, see Plots 3.1.3, 3.1.4;

2) 1.58 msec transmitting (on) time with 3.08 msec period, see Plots 3.1.5, 3.1.6.

Reference numbers of test equipment used

HL 0041	HL 0275	HL 0465	HL 0521	HL 0593	HL 0594	HL 0604
HL 0815	HL 0816	HL 1175				

Full description is given in Appendix A.

Table 3.1

Radiated emission measurements - test results (Field strength of fundamental frequency and spurious)

TEST SPECIFICATION: COMPANY: EUT: DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: FCC part 15 subpart C § 15.231 ROKONET Electronics Ltd. Transmitter RW-T71 March 8, 1999 46% 23°C

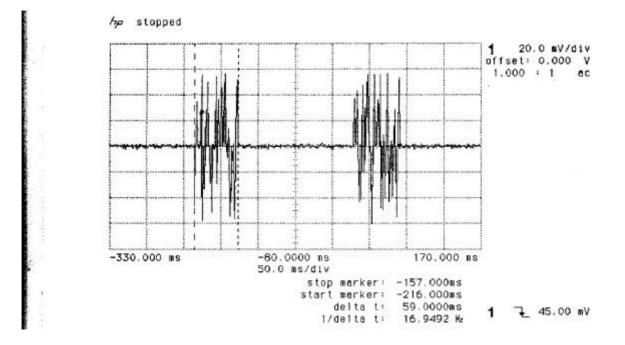
MEASUREMENTS PERFORMED AT 3 METRES DISTANCE

Frequency	Ant. Type	Ant. Pol.	Resolution Bandwidth	Video Bandwidth	Measured Emissions	Average Factor	Specified Limit	Spec. Margin	Pass/ Fail
MHz			MHz	MHz	dΒ (μV/m)	dB	dB (μV/m)	dB	
318.009	BL	V	0.12	0.30	68.14	-10.4	75.8	18.06	Pass
636.017	BL	V	0.12	0.30	58.48	-10.4	55.8	7.72	Pass
954.025	BL	V	0.12	0.30	52.48	-10.4	55.8	13.72	Pass
1272.009	DRG	н	1	3.0	46.05	-10.4	55.8	20.15	Pass
1590.029	DRG	V	1	3.0	54.51	-10.4	54.0	9.89	Pass
1908.034	DRG	V	1	3.0	52.89	-10.4	55.8	13.31	Pass
2226.035	DRG	Н	1	3.0	54.43	-10.4	54.0	9.97	Pass
2544.065	DRG	V	1	3.0	51.83	-10.4	55.8	14.37	Pass

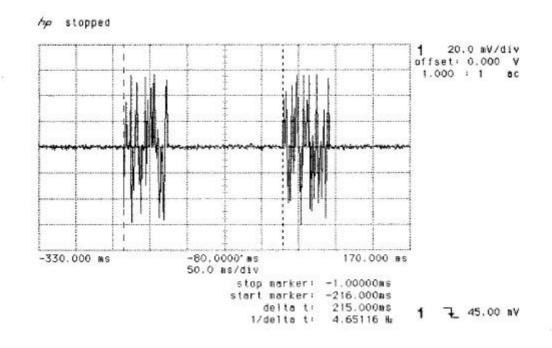
Notes to table:

Peak detector was used. Radiated emission $dB(\mu V/m)$ = measured result { $dB(\mu V)$ }+ average factor (dB). Specified limit is in accordance with §15.231(b) and §15.205

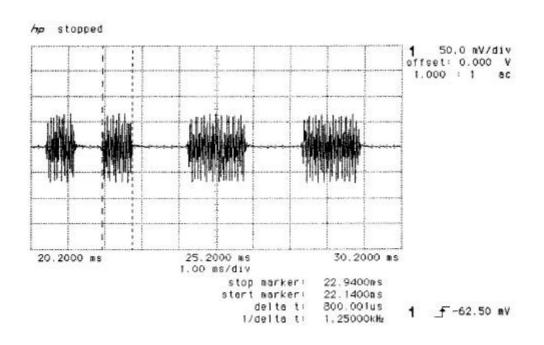
Table abbreviations:

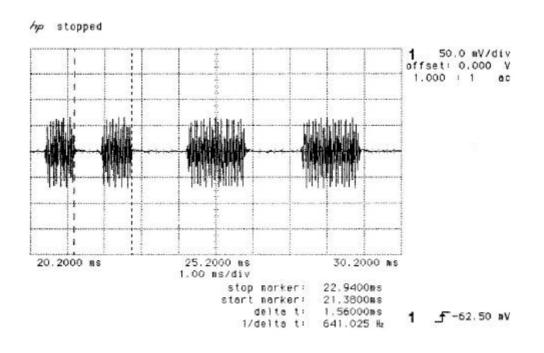

Ant. Type – antenna type (BL-biconilog, DRG – double ridged guide) Ant. Pol. – antenna polarization (V-vertical, H- horizontal) Spec. Margin = Specification Margins = dB below (negative if above) specification limit.

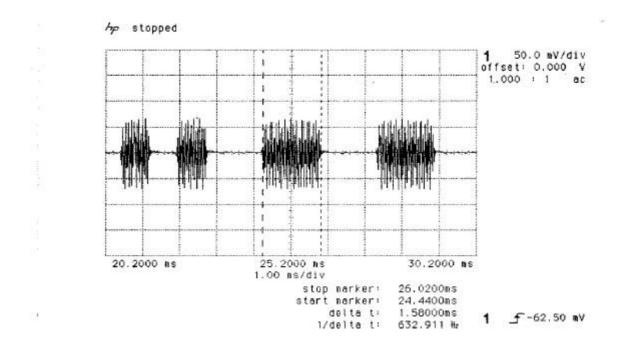
Test performed by: Mr. Michael Nikishin, test engineer


Hermon Labs

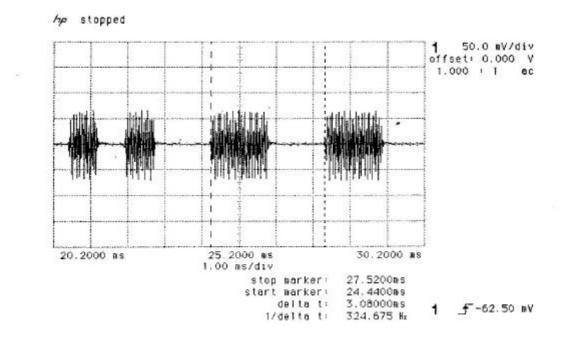
Plot 3.1.1 Average factor measurement Pulse train duration = 59 msec

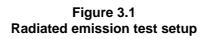


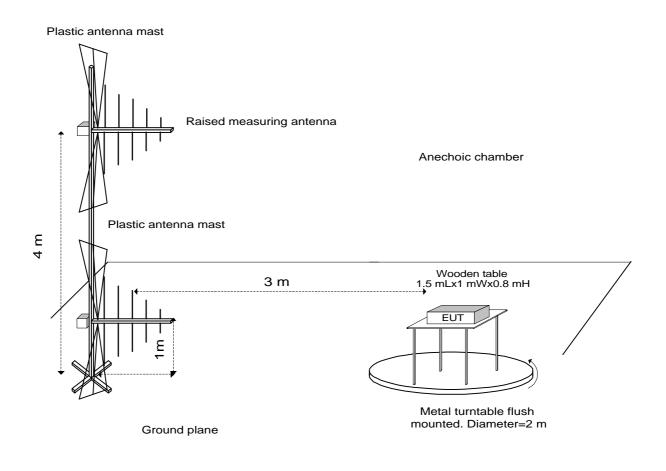

Plot 3.1.2 Pulse period measurement (215 msec)


Plot 3.1.3 Transmitting time measurement (0.8 msec)

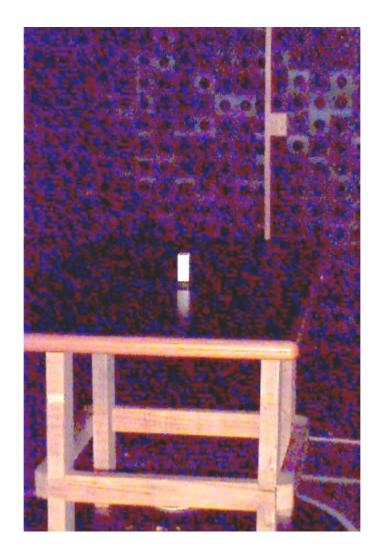
Plot 3.1.4 Pulse period measurement (1.56 msec)




Plot 3.1.5 Transmitting time measurement (1.58 msec)



Plot 3.1.6 Pulse period measurement (3.08 msec)


I est Report:RURFCC.13311.doc Date: June, 1999 FCC ID: JE4WT71

Photograph 3.1.1 Radiated emission measurements setup

Photograph 3.1.2 Radiated emission measurements setup

3.2 Bandwidth of emission according to § 15.231 (c)

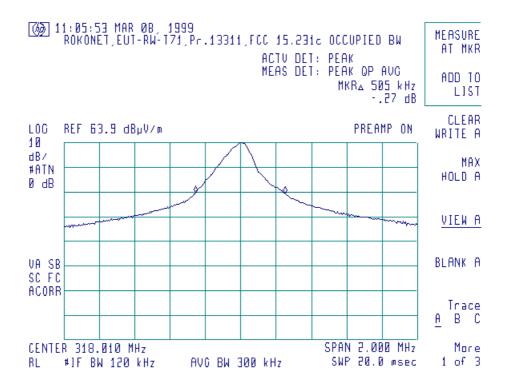
3.2.1 Specified limits

The bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

3.2.2 Test procedure and results

The maximum allowed occupied bandwidth was calculated as 0.0025 of the center frequency:

0.0025 x 318 MHz = 0.795 MHz


The spectrum trace data around transmitter fundamental frequency was obtained with the Spectrum Analyzer in "Max Hold" mode. The bandwidth value was determined between two points 20 dB down from the modulated carrier. The occupied bandwidth of 0.505 MHz was measured which is narrower than required 0.795 MHz. The test results are shown in Plot 3.2.1.

Reference numbers of test equipment used

HL 0275

Full description is given in Appendix A.

Plot 3.2.1 Emission bandwidth measurement results Occupied bandwidth = 0.505 MHz

3.3 Periodic operation requirement §15.231(a)(1), (2)

(1) The operation of the transmitter is as follows:

The microcontroller starts to operate consequent to a contact activation (open or close, according to the set-up).

There is a delay of about 10 msec (FAST mode) or 500 msec (SLOW mode) according to the jumper J2 set-up, then a signal is transmitted (about 1.2 sec).

(2) The transmitter does not transmit automatically, except for the supervision signal.

(3) For the supervision signal, the supervision code is sent every 65 minutes, and the transmission time is about 1.2 sec.

3.4 Unintentional radiated emissions test according to §15.109

3.4.1 Definition of the test

This test was performed to measure radiated emissions from the incorporated digital device of the EUT and also to verify the EUT full compliance with §15.109.

3.4.2 The test set-up configuration

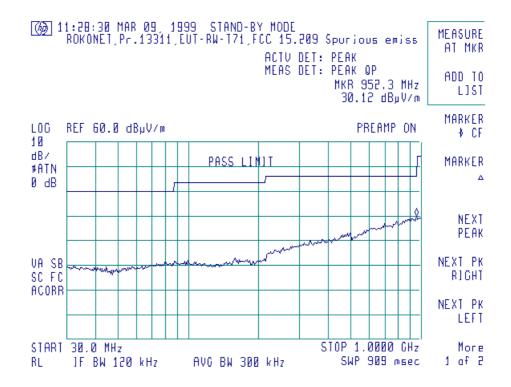
The radiated emissions measurements of the EUT incorporated digital device were performed in the anechoic chamber at 3 meters measuring distance in the frequency range from 30 MHz to 2 GHz. The EUT was placed on the wooden table as shown in Figure 3.1. The biconilog antenna was used. To find maximum radiation the turntable was rotated 360°, the measuring antenna height changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

The measurements were performed with the EMI receiver settings:

from 30 MHz to 1 GHz RBW=120 kHz, peak detector;

from 1 GHz up to 2 GHz RBW = 1 MHz, VBW = 3 MHz, peak detector.

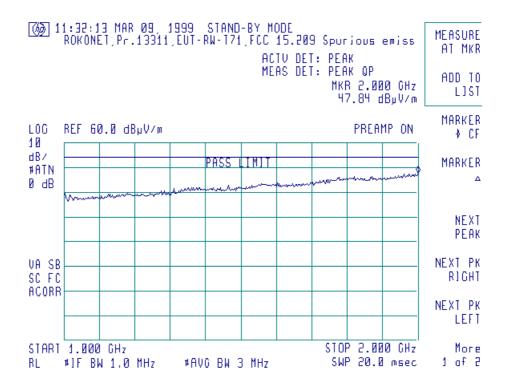
The results of measurements are shown in Plots 3.4.1, 3.4.2. All the found emissions were at least 15 dB below specified limit.


Reference numbers of test equipment used

HL 0275	HL 0465	HL 0521	HL 0593	HL 0594	HL 0604	HL 0815
HL 0816	HL 1175					

Full description is given in Appendix A.

Plot 3.4.1


Test Specification: §15.109 Radiated emissions of digital incorporated device

Plot 3.4.2

Test Specification: §15.109 Radiated emissions of digital incorporated device

4 Summary and signatures

The transmitter RW-T71, FCC ID:JE4WT71 was found to be in compliance with the requirements of FCC part 15 subpart C §§ 15.231, 15.209 and subpart B §15.109.

Test performed by:

Mr. Michael Nikishin, test engineer

Approved by:

Dr. Edward Usoskin, C.E.O.

ff b Mooner_

Responsible person from ROKONET Electronics Ltd.

Mr. Marcos Szhafir, marketing manager

APPENDIX A - Test equipment and ancillaries used for tests

HL Serial No.	Serial No.	Description	Manufacturer	Model No.	Due Calibr.
0041	2811	Double Ridged Guide Antenna, 1-18 GHz	Electro-Metrics	RGA 50/60	8/99
0181	3950	Oscilloscope, Digitizing, 100 MHz	Hewlett Packard	54501A	11/99
0275	040	Table non-metallic, 1.5 x 1.0 x 0.8 m	Hermon Labs	WT-1	3/00 Check
0465	023	Anechoic Chamber 9 (L) x 6.5 (W) x 5.5 (H) m	Hermon Labs	AC-1	10/99
0507	0162	Spectrum Analyzer, 9 kHz - 1.8 GHz	Hewlett Packard	8591A	4/00
0521	0319	Spectrum Analyzer with RF filter section (EMI Receiver 9 kHz – 6.5 GHz)	Hewlett Packard	8546A	7/99
0593	101	Antenna Mast, 1-4 m/ 1-6 m, pneumatic	Hermon Labs	AM-F1	4/00 Check
0594	102	Turntable for Anechoic Chamber, flush mounted, d=1.2 m, pneumatic	Hermon Labs	WDC1	11/99
0604	1011	Antenna Log-Periodic/T Bow-Tie, 26 – 2000 MHz	EMCO	3141	12/99
0815	151	Cable, coax, RG-214, 7.3 m, N-type connectors, inside anechoic chamber	Hermon Labs	C214-7	8/99
0816	152	Cable, coax, RG-214, 8 m, N-type connectors, outside anechoic chamber	Hermon Labs	C214-8	8/99
1175		Microwave 5 m cable	GORE	84C01C0224 5.2	2/00

APPENDIX B-Test equipment correction factors Antenna factor at 3m calibration

Antenna factor at 3m calibration Biconilog antenna EMCO model 3141 Ser.No.1011

Frequency, MHz	Antenna Factor, dB(1/m)	Frequency, MHz	Antenna Factor, dB(1/m)
26	7.8	940	24.0
28	7.8	960	24.1
30	7.8	980	24.5
40	7.2	1000	24.9
60	7.1	1020	25.0
70	8.5	1040	25.2
80	9.4	1060	25.4
90	9.8	1080	25.6
100	9.7	1100	25.7
110	9.3	1120	26.0
120	8.8	1140	26.4
130	8.7	1160	27.0
140	9.2	1180	27.0
150	9.8	1200	26.7
160	10.2	1200	26.5
170	10.2	1240	26.5
180	10.4	1240	26.5
<u>190</u> 200	10.3	1280	26.6 27.0
	10.6	1300	
220	11.6	1320	27.8
240	12.4	1340	28.3
260	12.8	1360	28.2
280	13.7	1380	27.9
300	14.7	1400	27.9
320	15.2	1420	27.9
340	15.4	1440	27.8
360	16.1	1460	27.8
380	16.4	1480	28.0
400	16.6	1500	28.5
420	16.7	1520	28.9
440	17.0	1540	29.6
460	17.7	1560	29.8
480	18.1	1580	29.6
500	18.5	1600	29.5
520	19.1	1620	29.3
540	19.5	1640	29.2
560	19.8	1660	29.4
580	20.6	1680	29.6
600	21.3	1700	29.8
620	21.5	1720	30.3
640	21.2	1740	30.8
660	21.4	1760	31.1
680	21.9	1780	31.0
700	22.2	1800	30.9
720	22.2	1820	30.7
740	22.1	1840	30.6
760	22.3	1860	30.6
780	22.6	1880	30.6
800	22.0	1900	30.6
820	22.9	1900	30.7
		1920	
840	23.1		30.9
860	23.4	1960	31.2
880	23.8	1980	31.6
900	24.1	2000	32.0
920	24.1		

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V)$ /meter).

Antenna factor Double ridged guide antenna Electro-Metrics, model RGA-50/60 Ser.No.2811

Frequency, MHz	Antenna Factor, dB(1/m)	
1000	24.3	
1500	25.4	
2000	28.4	
2500	29.2	
3000	30.5	
3500	31.6	
4000	33.7	
4500	32.2	
5000	34.5	
5500	34.5	
6000	34.6	
6500	35.3	
7000	35.5	
7500	35.9	
8000	36.6	
8500	37.3	
9000	37.7	
9500	37.7	
10,000	38.2	
10,500	38.5	
11,000	39.0	
11,500	40.1	
12,000	40.2	
12,500	39.3	
13,000	39.9	
13,500	40.6	
14,000	41.1	
14,500	40.5	
15,000	39.9	
15,500	37.8	
16,000	39.1	
16,500	41.1	
17,000	41.7	
17,500	45.1	
18,000	44.3	

Antenna factor dB(1/m) is to be added to receiver meter reading in $dB(\mu V)$ to convert it into field intensity in $dB(\mu V/meter)$