

Hermon Laboratories Ltd. P.O.Box 23, Binyamina 30500, Israel Tel. +972 4628 8001 Fax. +972 4628 8277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC CFR 47 PART 15 Subpart C, section 15.231(a) FCC CFR 47 PART 15 Subpart B, section 15.109

FOR:

Rokonet Electronics Ltd. Universal transmitter Part numbers: RWT71M433USA, RWT71C433USA

This report is in conformity with ISO/ IEC 17025. The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	EUT general view	5
7	Transmitter tests according to FCC 47CFR part 15 subpart C requirements	6
7.1	Periodic operation requirements	6
7.2	Field strength of emissions	11
7.3	Occupied bandwidth test	
7.4	Antenna requirements	
7.5	Radiated emission measurements	
8	APPENDIX A Test equipment and ancillaries used for tests	
9	APPENDIX B Measurement uncertainties	
10	APPENDIX C Test facility description	
11	APPENDIX D Specification references	
12	APPENDIX E Abbreviations and acronyms	
13	APPENDIX F Test equipment correction factors	

1 Applicant information

Client name:	Rokonet Electronics Ltd.
Address:	14 Hachoma street, Rishon Le Zion, 75655, Israel
Telephone:	+972 3963 7777
Fax:	+972 3961 6584
E-mail:	david@rokonet.co.il
Contact name:	Mr. David Kartoun

2 Equipment under test attributes

Product name: Universal transmi	
Part number:	RWT71M433USA
Receipt date:	4/16/2006

3 Manufacturer information

Rokonet Risco Group
14 Hachoma street, Rishon Le Zion, 75655, Israel
+972 3963 7777
+972 3961 6584
david@riscogroup.com
Mr. David Kartoun

4 Test details

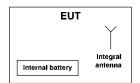
Project ID:	17062
Location:	Hermon Laboratories Ltd. P.O.Box 23, Binyamina 30500, Israel
Test started:	4/16/2006
Test completed:	5/10/2006
Test specifications:	FCC Part 15, subpart C, §15.231(a); subpart B, §15.109

5 Tests summary

Test	Status
Transmitter characteristics	
Section 15.231(a), Periodic operation requirements	Pass
Section 15.231(b), Field strength of emissions	Pass
Section 15.231(c), Occupied bandwidth	Pass
Section 15.207(a), Conducted emission	Not required
Section 15.203, Antenna requirement	Pass
Unintentional emissions	
Section 15.107, Conducted emission at AC power port	Not required
Section 15.109, Radiated emission, Class B	Pass
Section 15.111, Conducted emission at receiver antenna port	Not required

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. A. Lane, test engineer	May 10, 2006	-file
Reviewed by:	Ms. N. Averin, certification engineer	May 11, 2006	af-
Approved by:	Mr. M. Nikishin, EMC and radio group leader	May 14, 2006	ff b


6 EUT description

6.1 General information

The EUTs are universal transmitters, part numbers RWT71M433USA and RWT71C433USA. The transmitters operate at 433.92 MHz. Each transmitter is equipped with an integral antenna and is powered from 3 VDC internal lithium battery.

According to customer declaration of identity dated 27.04.2006, the radio part of both transmitters is identical. The only difference is the following: RWT71M433USA transmitter is additionally equipped with a magnet. Therfore only the universal transmitter, part number RWT71M433USA was tested.

6.2 Test configuration

6.3 EUT general view

Test specification:	Section 15.231(a), Periodic operation requirements				
Test procedure:	Supplier declaration	Supplier declaration			
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33		
Temperature: 21 °C	Air Pressure: 1014 hPa	Relative Humidity: 38 %	Power Supply: 3 VDC		
Remarks:					

7 Transmitter tests according to FCC 47CFR part 15 subpart C requirements

7.1 Periodic operation requirements

7.1.1 General

The EUT was verified for compliance with periodic operation requirements listed below:

- Continuous transmissions such as voice, video and the radio control of toys are not permitted;
- A manually operated transmitter shall employ switch that will automatically deactivate the transmitter within not more than 5 seconds of being released;
- A transmitter activated automatically shall cease transmission within 5 seconds after activation;
- Periodic transmissions, excluding polling or supervision transmissions, at regular predetermined intervals are not permitted;
- Polling or supervision transmissions, including data, to determine system integrity in security or safety applications shall not last longer than 2 seconds per hour.

The rationale for compliance with the above requirements was test results and supplier declaration. The summary of results is provided in Table 7.1.1.

7.1.2 Test procedure for transmitter shut down test

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1.
- **7.1.2.2** The spectrum analyzer center frequency was adjusted to the EUT carrier, span set to zero and video triggered for transmission.
- 7.1.2.3 The transmitter was activated automatically.
- **7.1.2.4** The transmission time was captured as shown in the associated plots.

7.1.3 Test procedure for measurements of polling / supervision transmission duration

- 7.1.3.1 The EUT was set up as shown in Figure 7.1.1.
- **7.1.3.2** The spectrum analyzer center frequency was adjusted to the EUT carrier, span set to zero and video triggered for transmission.
- **7.1.3.3** The transmission time was captured and shown in Tables 7.1.2, 7.1.3 and the associated plots.

Figure 7.1.1 Setup for transmitter shut down test

Test specification: Section 15.231(a), Periodic operation requirements					
Test procedure:	Supplier declaration	Supplier declaration			
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33		
Temperature: 21 °C	Air Pressure: 1014 hPa	Relative Humidity: 38 %	Power Supply: 3 VDC		
Remarks:			•		

Table 7.1.1 Periodic operation requirements

Requirement	Rationale	Verdict
Continuous transmissions are not permitted	Supplier declaration	Comply
A manually operated transmitter shall be deactivated within not more than 5 seconds of switch being released	NA	NA
Transmitter activated automatically shall cease transmission within 5 seconds	Plot 7.1.2	Comply
Periodic transmissions at regular predetermined intervals are not permitted	Supplier declaration	Comply
Total duration of polling or supervision transmissions shall not exceed 2 seconds per hour	Tables 7.1.2, 7.1.3	Comply

Table 7.1.2 Total duration of supervision transmission according to measurements

Pulse duration, ms	Number of pulses within 1 hour	Supervision transmission, s	Supervision transmission (within 1 hour) limit, s	Margin, s	Verdict
0.825	1280	1.056	2	0.944	Comply

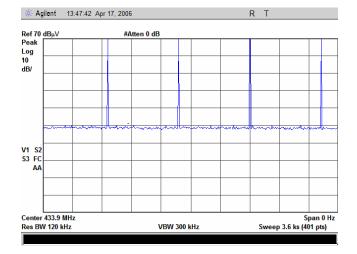
Table 7.1.3 Total duration of supervision transmission according to supplier declaration

Pulse duration, ms	Number of pulses within 1 hour	Supervision transmission, s	Supervision transmission (within 1 hour) limit, s	Margin, s	Verdict
0.75	1248	0.936	2	1.064	Comply

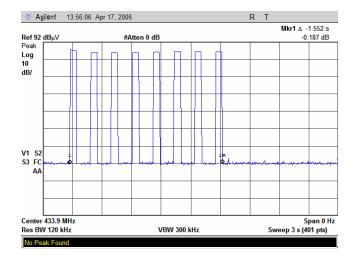
Note 1: Alarm and supervision transmissions are identical.

Note 2: The EUT is equipped with a transmitter IC manufactured by Melexis. To verify that the EUT complies with standard requiremens, total duration of transmissions was calculated according to measurements results and according to supplier declaration (Operational description).

Reference numbers of test equipment used

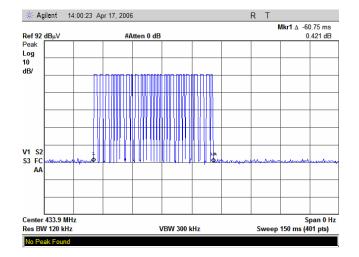

HL 2780					
Full description	in airran in Ann	andix A			

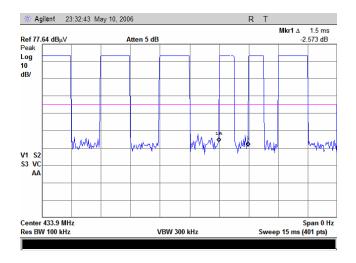
Full description is given in Appendix A.



Test specification:	Section 15.231(a), Perio	Section 15.231(a), Periodic operation requirements			
Test procedure:	Supplier declaration	Supplier declaration			
Test mode:	Compliance	Verdict: PASS			
Date & Time:	5/10/2006 23:36:20 PM	Verdict: PASS			
Temperature: 21 °C	Air Pressure: 1014 hPa	Relative Humidity: 38 %	Power Supply: 3 VDC		
Remarks:					

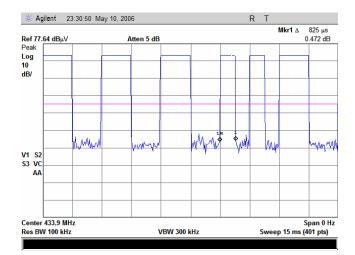
Plot 7.1.1 Polling / supervision transmission within 1 hour


Plot 7.1.2 Number of bursts within one transmission



Test specification:	Section 15.231(a), Perio	Section 15.231(a), Periodic operation requirements			
Test procedure:	Supplier declaration	Supplier declaration			
Test mode:	Compliance	Verdict: PASS			
Date & Time:	5/10/2006 23:36:20 PM	verdict.	PA33		
Temperature: 21 °C	Air Pressure: 1014 hPa	Relative Humidity: 38 %	Power Supply: 3 VDC		
Remarks:					

Plot 7.1.3 Burst duration


Plot 7.1.4 Pulse period

Test specification:	Section 15.231(a), Periodic operation requirements			
Test procedure:	Supplier declaration			
Test mode:	Compliance	Verdict: PASS		
Date & Time:	5/10/2006 23:36:20 PM	Verdict: PASS		
Temperature: 21 °C	Air Pressure: 1014 hPa	Relative Humidity: 38 %	Power Supply: 3 VDC	
Remarks:				

Plot 7.1.5 Pulse duration

Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions			
Test procedure:	ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS			
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33		
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC		
Remarks:					

7.2 Field strength of emissions

7.2.1 General

This test was performed to measure field strength of fundamental and spurious emissions from the EUT. Specification test limits are given in Table 7.2.1 and Table 7.2.2.

Fundamental frequency, MHz	Field strength at 3 m, dB(μV/m)		
i unuamentai nequency, wiiz	Peak	Average	
433.92	100.8	80.8	

	Field strength at 3 m, dB(μV/m)					
Frequency, MHz	Within restricted bands			Outside restricted bands		
	Peak	Quasi Peak	Average	Peak	Average	
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**			
0.090 – 0.110	NA	108.5 – 106.8**	NA			
0.110 - 0.490	126.8 – 113.8	NA	106.8 - 93.8**			
0.490 – 1.705		73.8 – 63.0**				
1.705 – 30.0*		69.5		80.8	60.8	
30 – 88	NA	40.0	NA	00.0	00.0	
88 – 216	INA	43.5	IN/A			
216 – 960		46.0				
960 - 1000		54.0				
Above 1000	74.0	NA	54.0			

*- The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows:

 $\lim_{S_2} = \lim_{S_1} + 40 \log (S_1/S_2),$

where S_1 and S_2 – standard defined and test distance respectively in meters.

**- The limit decreases linearly with the logarithm of frequency.

<u>Note 1</u>: The fundamental emission limit in dB(μ V/m) was calculated as follows:

 $Lim_{AVR} = 20 \times \log(56.81818 \times F - 6136.3636)$ - within 130 – 174 MHz band;

 $Lim_{AVR} = 20 \times \log(41.6667 \times F - 7083.3333)$ - within 260 – 470 MHz band,

where F is the carrier frequency in MHz.

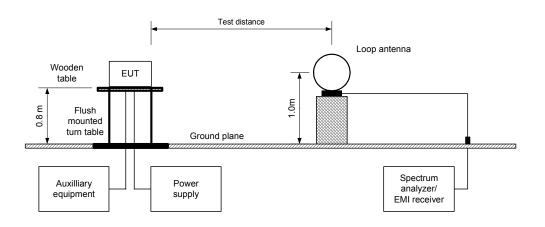
The limit for spurious emissions was 20 dB lower than fundamental emission limit.

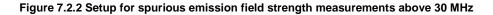
The above limits provided in terms of average values, peak limit was 20 dB above the average limit.

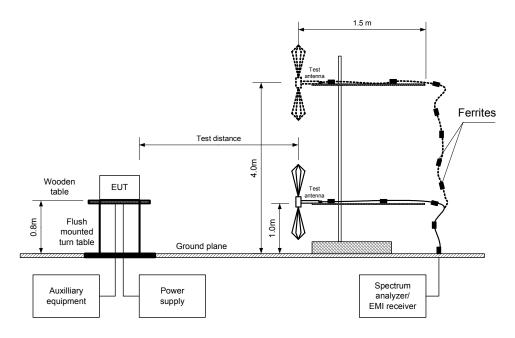
<u>Note 2</u>: The above field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

7.2.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and the performance check was conducted.
- **7.2.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- **7.2.2.3** The measurements were performed in three EUT orthogonal positions. The worst test results were found in EUT position "X" as recorded in Table 7.2.3, Table 7.2.5 and shown in the associated plots.


7.2.3 Test procedure for spurious emission field strength measurements above 30 MHz


- 7.2.3.1 The EUT was set up as shown in Figure 7.2.2, energized and the performance check was conducted.
- **7.2.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- **7.2.3.3** The measurements were performed in three EUT orthogonal positions. The worst test results were found in EUT position "X" as recorded in Table 7.2.3, Table 7.2.5 and shown in the associated plots.



Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions			
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date & Time:	5/10/2006 23:36:20 PM	Verdict: PASS			
Temperature: 22 °C	Air Pressure: 1012 hPa Relative Humidity: 42 % Power Supply: 3 VDC				
Remarks:					

Figure 7.2.1 Setup for spurious emission field strength measurements below 30 MHz

Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions			
Test procedure:	ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33		
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC		
Remarks:					

Table 7.2.3 Field strength of fundamental emission, spurious emissions outside restricted bands and within restricted bands at frequencies above 1 GHz

TEST DISTANCE: EUT POSITION: MODULATION: MODULATING SIGNAL:	3 m X-axis ^{Note1} OOK ID code			
TRANSMITTER OUTPUT POWER SE	TTINGS:	Maximum		
INVESTIGATED FREQUENCY RANG	E:	0.009 - 650	0 MHz	
DETECTOR USED:		Peak		
RESOLUTION BANDWIDTH:		1 kHz (9 kHz – 150 kHz)		
		9.0 kHz (15	50 kHz – 3	30 MHz)
		120 kHz (3	0 MHz – '	1000 MHz)
		1.0 MHz (a	bove 100	0 MHz)
VIDEO BANDWIDTH:		≥ Resolutio	on bandwi	dth
TEST ANTENNA TYPE:		Active loop	(9 kHz –	30 MHz)
		Biconilog (30 MHz –	1000 MHz)
		Double ridg	ged guide	(above 1000 MHz)

	Antenna		Azimuth,	Azimuth Peak field strength		Avr Average field strength					
F, MHz	Pol.	Height, m	degrees*	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	factor, dB	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Verdict
Fundame	ntal emi	ssion									
433.9	V	1.3	230	88.17	100.8	12.63	-9.5	78.67	80.8	-2.13	Pass
Spurious	Spurious emissions										
867.83	V	1.2	150	34.48	80.8	46.32	-9.5	24.98	60.8	-35.82	Pass

*- EUT front panel refers to 0 degrees position of turntable.

**- Margin = Measured emission - specification limit.

Table 7.2.4 Average factor calculation

Transmis	sion pulse	Transmission burst		Transmission train	Average factor,
Duration, ms	Period, ms	Duration, ms	Period, ms	duration, s	dB
0.825	1.5	60.75	188.5	1.787	-9.5

*- Average factor was calculated as follows

for pulse train longer than 100 ms: $Average \ factor = 20 \times \log_{10} \left(\frac{Pulse \ duration}{Pulse \ period} \times \frac{Burst \ duration}{100 \ ms} \times Number \ of \ bursts \ within \ 100 \ ms} \right)$

Note 1: The measurements were performed in three EUT orthogonal positions. The worst test results were found in EUT position "X".

Note 2: The EUT is equipped with a transmitter IC manufactured by Melexis. To verify that the EUT complies with standard requiremens, the average factor calculation was based on the worst case transmission between declared (Operational description) and measured.

Reference numbers of test equipment used

HL 0446	HL 0465	HL 0521	HL 0589	HL 0593	HL 0594	HL 0604	HL 1004
HL 1947	HL 1984	HL 2009					

Full description is given in Appendix A.

Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	- Verdict: PASS				
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33			
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC			
Remarks:						

Table 7.2.5 Field strength of emissions below 1 GHz within restricted bands

Frequency.	Peak	Measured	Quasi-peak		Antenna	Antenna	Turn-table		
				Biconilo	g (30 MHz – 100	0 MHz)		_	
TEST ANTENNA TYPE:			Active loop (9 kHz – 30 MHz)						
VIDEO BAND	NIDTH:			≥ Resolι	ution bandwidth	,			
					(30 MHz – 1000	,			
	<i>B</i> , () <i>B</i> (1) <i>B</i>	•		9.0 kHz (150 kHz - 30 MHz)					
RESOLUTION				1 kHz (9 kHz – 150 kHz)					
	DETECTOR USED:			Peak					
INVESTIGATE					1000 MHz				
TRANSMITTE		WER SETTIN	IGS [.]	Maximu	m				
MODULATING	MODULATING SIGNAL:			ID code					
	MODULATION:			OOK					
EUT POSITIO				X-axis [№]	te1				
TEST DISTAN	CE			3 m					

Po	Peak	Quasi-peak				Antenna	Turn-table		
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(µV/m)	Margin, dB*	Antenna polarization	height, m	position**, degrees	Verdict	
No spurious emissions were found.							Pass		

*- Margin = Measured emission - specification limit.

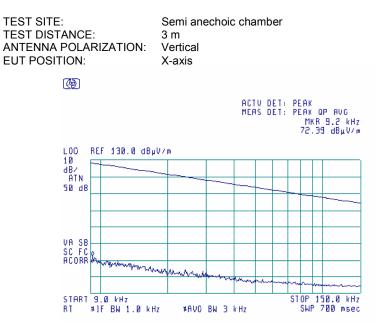
**- EUT front panel refer to 0 degrees position of turntable.

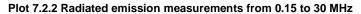
Table 7.2.6 Restricted bands

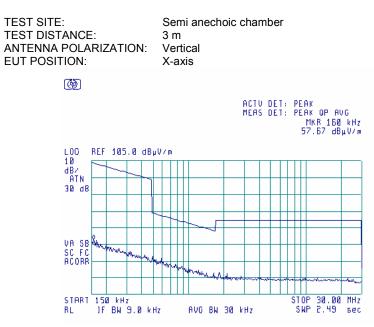
MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2655 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 38.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	AD076 20.0

Note 1: The measurements were performed in three EUT orthogonal positions. The worst test results were found in EUT position "X".

Reference numbers of test equipment used

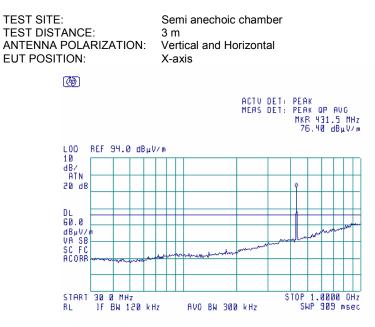

HL 0446	HL 0465	HL 0521	HL 0589	HL 0593	HL 0594	HL 0604	HL 1004
HL 1947	HL 1984	HL 2009					

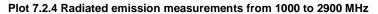

Full description is given in Appendix A.



Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33			
Temperature: 22 °C	Air Pressure: 1012 hPa	Air Pressure: 1012 hPa Relative Humidity: 42 % Power Supply: 3 VDC				
Remarks:						

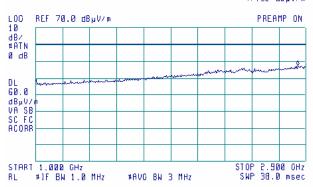
Plot 7.2.1 Radiated emission measurements from 9 to 150 kHz



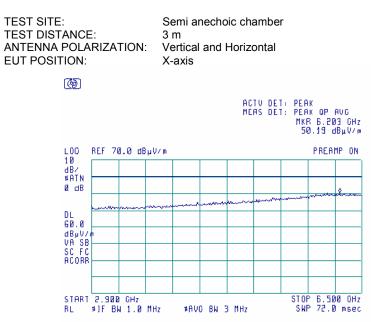


Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33			
Temperature: 22 °C	Air Pressure: 1012 hPa	Air Pressure: 1012 hPa Relative Humidity: 42 % Power Supply: 3 VDC				
Remarks:						

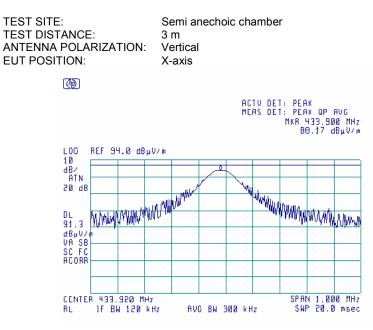
Plot 7.2.3 Radiated emission measurements from 30 to 1000 MHz

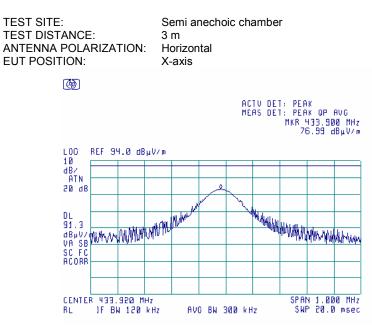


Ø


ACTU DET: PEAK Meas det: PEAK op avg Mkr 2.843 GHz 47.32 dBµV/m

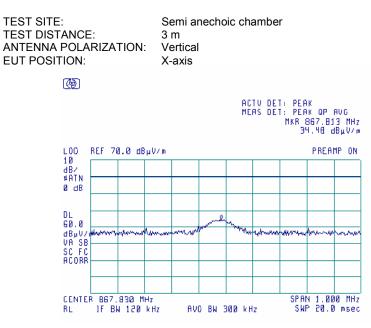
Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33			
Temperature: 22 °C	Air Pressure: 1012 hPa	Air Pressure: 1012 hPa Relative Humidity: 42 % Power Supply: 3 VDC				
Remarks:						

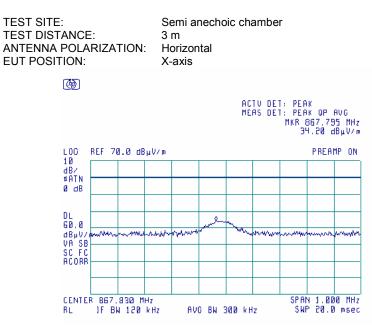

Plot 7.2.5 Radiated emission measurements from 2900 to 6500 MHz



Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions				
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33			
Temperature: 22 °C	Air Pressure: 1012 hPa	Air Pressure: 1012 hPa Relative Humidity: 42 % Power Supply: 3 VDC				
Remarks:						

Plot 7.2.6 Radiated emission measurements at the fundamental frequency

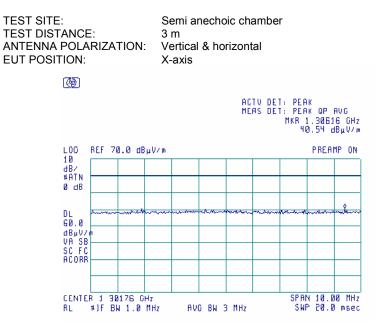




Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions		
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS	
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33	
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC	
Remarks:			•	

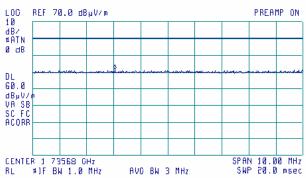
Plot 7.2.8 Radiated emission measurements at the second harmonic frequency

Plot 7.2.9 Radiated emission measurements at the second harmonic frequency



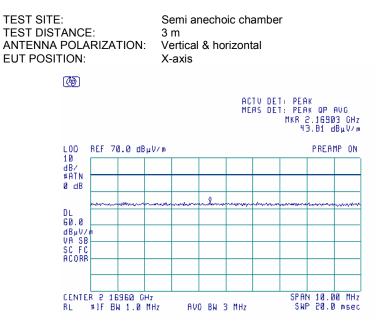
۲

Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions		
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS	
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33	
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC	
Remarks:			•	

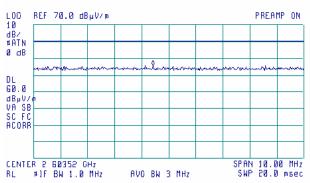

Plot 7.2.10 Radiated emission measurements at the third harmonic frequency

Plot 7.2.11 Radiated emission measurements at the forth harmonic frequency

TEST DISTANCE: 3 m	nechoic chamber I & horizontal
--------------------	-----------------------------------

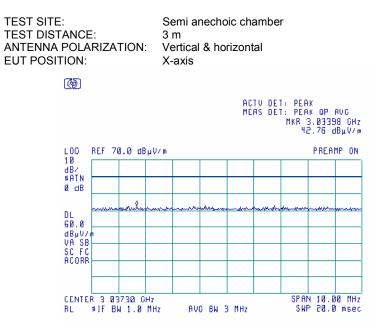

ACTV DET: PEAK MERS DET: PEAK OP AVG MKR 1.73373 GHz 41.43 dBµV/m

Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions		
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS	
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33	
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC	
Remarks:			•	

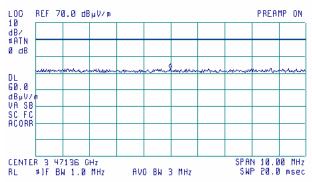

Plot 7.2.12 Radiated emission measurements at the fifth harmonic frequency

Plot 7.2.13 Radiated emission measurements at the sixth harmonic frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical & horizontal
EUT POSITION:	X-axis
()	

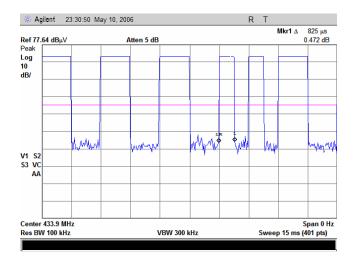

ACTV DET: PEAK MEAS DET: PEAK OP AVG MKR 2.60295 CHz 45.79 dBµV/m

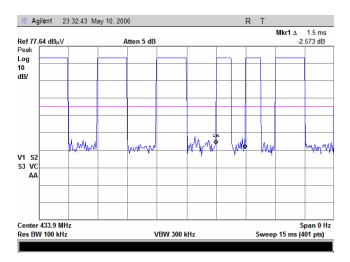
Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions		
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS	
Date & Time:	5/10/2006 23:36:20 PM	verdict.	FA33	
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC	
Remarks:				


Plot 7.2.14 Radiated emission measurements at the seventh harmonic frequency

Plot 7.2.15 Radiated emission measurements at the eighth harmonic frequency

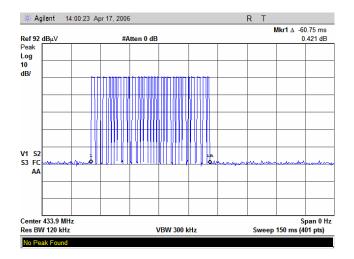
TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical & horizontal
EUT POSITION:	X-axis
C)	


ACTU DET: PEAK MEAS DET: PEAK OP AVG MKR 3.47134 GHz 42.49 dBµV/m



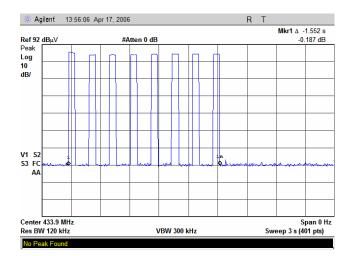
Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions		
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS	
Date & Time:	5/10/2006 23:36:20 PM	veruict.	FA33	
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC	
Remarks:				

Plot 7.2.16 Transmission pulse duration


Plot 7.2.17 Transmission pulse period

Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions		
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS	
Date & Time:	5/10/2006 23:36:20 PM	veruict.	FA33	
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC	
Remarks:				

Plot 7.2.18 Transmission burst duration


Plot 7.2.19 Transmission burst period

Test specification:	Section 15.231(b), Field s	Section 15.231(b), Field strength of emissions		
Test procedure:	ANSI C63.4, Section 13.1.4	ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict:	PASS	
Date & Time:	5/10/2006 23:36:20 PM	veruict.	FA33	
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC	
Remarks:		•	•	

Plot 7.2.20 Transmission train duration

Test specification:	Section 15.231(c), Occupi	Section 15.231(c), Occupied bandwidth		
Test procedure:	ANSI C63.4, Section 13.1.7			
Test mode:	Compliance	Verdict:	PASS	
Date & Time:	4/18/2006 11:28:27 AM	verdict.	FA33	
Temperature: 23 °C	Air Pressure: 1009 hPa	Relative Humidity: 38 %	Power Supply: 3 VDC	
Remarks:				

7.3 Occupied bandwidth test

7.3.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.3.1. The test results are provided in Table 7.3.2 and associated plot.

Table 7.3.1 Occupied bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points*, dBc	Maximum allowed bandwidth, % of the carrier frequency
70 - 900	20.0	0.25
Above 900	20.0	0.50

*- Modulation envelope reference points provided in terms of attenuation below modulated carrier.

7.3.2 Test procedure

- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.
- 7.3.2.2 The EUT was set to transmit modulated carrier.
- **7.3.2.3** The transmitter occupied bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.3.2 and associated plot.

Figure 7.3.1 Occupied bandwidth test setup

1025.5

Pass

Test specification:	Section 15.231(c), Occup	Section 15.231(c), Occupied bandwidth				
Test procedure:	ANSI C63.4, Section 13.1.7					
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	4/18/2006 11:28:27 AM	verdict.	PA33			
Temperature: 23 °C	Air Pressure: 1009 hPa	Relative Humidity: 38 %	Power Supply: 3 VDC			
Remarks:	·	· · · · · ·				

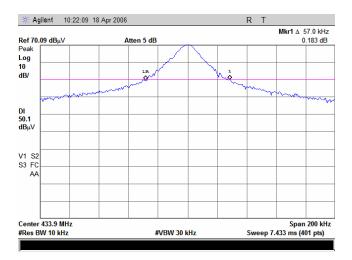
Table 7.3.2 Occupied bandwidth test results

MODULATING SIGNAL: Carrier frequency, Occupied	d bandwidth, kHz	ID code Limit	kHz	Margin, kHz	Verdict
DETECTOR USED: RESOLUTION BANDWIDTH: VIDEO BANDWIDTH: MODULATION ENVELOPE REFI MODULATION:	ERENCE POINT	Peak hold 10 kHz 30 kHz TS: 20 dBc OOK			

Reference numbers of test equipment used

57

	HL 2780								
--	---------	--	--	--	--	--	--	--	--


0.25

1082.5

Full description is given in Appendix A.

433.9

Plot 7.3.1 Occupied bandwidth test result

Test specification:	Section 15.203, Antenna	Section 15.203, Antenna requirement				
Test procedure:	Visual inspection / supplier de	Visual inspection / supplier declaration				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	4/26/2006 9:05:06 AM	verdict.	FA33			
Temperature: 22 °C	Air Pressure: 1012 hPa	Relative Humidity: 42 %	Power Supply: 3 VDC			
Remarks:						

7.4 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.4.1.

Table 7.4.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	Visual inspection	
The transmitter employs a unique antenna connector	NA	Comply
The transmitter requires professional installation	NA	

Photograph 7.4.1 Antenna assembly

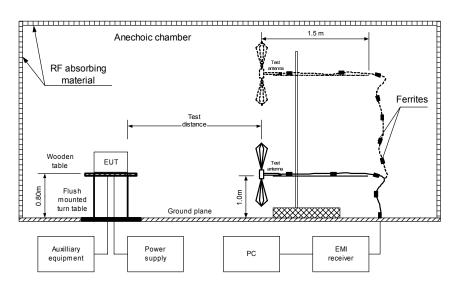
Test specification:	Section 15.109, Radiated	Section 15.109, Radiated emission, Class B				
Test procedure:	ANSI C63.4, Sections 11.6 an	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict: PASS				
Date & Time:	4/16/2006 4:09:52 PM	verdict.	FA33			
Temperature: 24 °C	Air Pressure: 1010 hPa	Relative Humidity: 40 %	Power Supply: 3 VDC			
Remarks:						

7.5 Radiated emission measurements

7.5.1 General

This test was performed to measure radiated emissions from the EUT enclosure. Specification test limits are given in Table 7.5.1.

Frequency,	Class B lim	it, dB(μV/m)	Class A limit, dB(μV/m)		
MHz	10 m distance	3 m distance	10 m distance	3 m distance	
30 - 88	29.5*	40.0	39.0	49.5*	
88 - 216	33.0*	43.5	43.5	54.0*	
216 - 960	35.5*	46.0	46.4	56.9*	
Above 960	43.5*	54.0	49.5	60.0*	


* The limit for test distance other than specified was calculated using the inverse linear distance extrapolation factor as follows: $\lim_{S_2} = \lim_{S_1} + 20 \log (S_1/S_2)$,

where S_1 and S_2 – standard defined and test distance respectively in meters.

7.5.2 Test procedure

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and the performance check was conducted.
- **7.5.2.2** The specified frequency range was investigated with biconilog antenna connected to EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- **7.5.2.3** The test results were recorded in Table 7.5.2 and shown in the associated plots.

Figure 7.5.1 Setup for radiated emission measurements in anechoic chamber

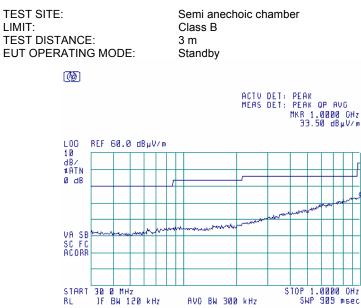
Test specification:	Section 15.109, Radiated	Section 15.109, Radiated emission, Class B					
Test procedure:	ANSI C63.4, Sections 11.6 ar	ANSI C63.4, Sections 11.6 and 12.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date & Time:	4/16/2006 4:09:52 PM	verdict.	PA33				
Temperature: 24 °C	Air Pressure: 1010 hPa	Relative Humidity: 40 %	Power Supply: 3 VDC				
Remarks:			· · · · · · · · · · · · · · · · · · ·				

Table 7.5.2 Radiated emission test results

EUT SET UP: LIMIT: EUT OPERATI TEST SITE: TEST DISTANO FREQUENCY DETECTOR US RESOLUTION	CE: RANGE: SED:	TABLE-TOP Class B Standby SEMI ANECHOIC CHAMBER 3 m 30 MHz – 1000 MHz PEAK : 120 kHz						
Frequency, MHz	Peak emission, dB(μV/m)	Quasi-peakAntenna polarizationAntenna height, mTurn-table position**, degrees					Verdict	
		1	No emissions	were found.				Pass
DETECTOR US	UENCY RANGE: 1000 MHz – 2900MHz CTOR USED: PEAK LUTION BANDWIDTH: 1000 kHz							
Frequency, MHz	Peak emission, dB(μV/m)	Measured emission, dB(μV/m)	Average Limit, dB(µV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict
		1	No emissions	were found.				Pass

*- Margin = Measured emission - specification limit. **- EUT front panel refer to 0 degrees position of turntable.

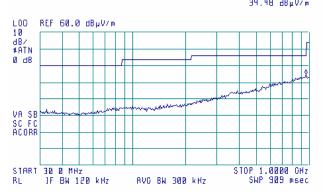
Reference numbers of test equipment used


HL 0465	HL 0521	HL 0589	HL 0593	HL 0594	HL 0604	HL 1004	HL 1947
HL 1984	HL 2009						

Full description is given in Appendix A.

Test specification:	Section 15.109, Radiated	Section 15.109, Radiated emission, Class B				
Test procedure:	ANSI C63.4, Sections 11.6 a	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date & Time:	4/16/2006 4:09:52 PM	verdict.	FA33			
Temperature: 24 °C	Air Pressure: 1010 hPa	Relative Humidity: 40 %	Power Supply: 3 VDC			
Remarks:	·					

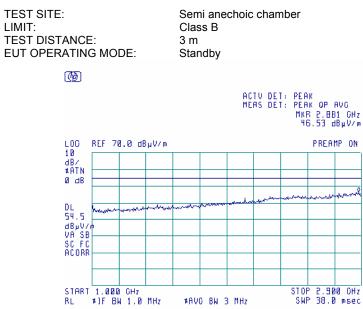
Plot 7.5.1 Radiated emission measurements in 30 - 1000 MHz range, vertical antenna polarization


Plot 7.5.2 Radiated emission measurements in 30 - 1000 MHz range, horizontal antenna polarization

AVO BW 300 kHz

TEST SITE:	Semi anechoic chamber
LIMIT:	Class B
TEST DISTANCE:	3 m
EUT OPERATING MODE:	Standby

Ø


ACTV DET: PEAK MEAS DET: PEAK OP AVG MKR 952.3 MHz 34.40 dBµV/m

Test specification:	Section 15.109, Radiated	Section 15.109, Radiated emission, Class B			
Test procedure:	ANSI C63.4, Sections 11.6 ar	ANSI C63.4, Sections 11.6 and 12.1.4			
Test mode:	Compliance	Verdict:	PASS		
Date & Time:	4/16/2006 4:09:52 PM	verdict.	LY22		
Temperature: 24 °C	Air Pressure: 1010 hPa	Relative Humidity: 40 %	Power Supply: 3 VDC		
Remarks:	· · ·				

Plot 7.5.3 Radiated emission measurements in 1000 - 2900 MHz range, vertical & horizontal antenna polarization

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal.	Due Cal.
0446	Antenna, Loop active, 10kHz-30MHz	EMCO	6502	2857	28-Jun-05	28-Jun-06
0465	Anechoic Chamber 9(L) x 6.5(W) x 5.5(H) m	HL	AC - 1	023	11-Nov-05	11-Nov-06
0521	EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz	Hewlett Packard	8546A	3617A 00319, 3448A002 53	26-Sep-05	26-Sep-06
0589	Cable Coaxial, GORE A2P01POL118, 2.3 m	HL	GORE-3	176	02-Dec-05	02-Dec-06
0593	Antenna Mast, 1-4 m Pneumatic	Madgesh	AM-F1	101	02-Feb-06	02-Feb-07
0594	Turn Table for anechoic chamber flush mount d=1.2 m Pneumatic	HL	TT-WDC1	102	26-Jan-06	26-Jan-07
0604	Antenna BiconiLog Log-Periodic/T Bow- TIE 26 - 2000 MHz	EMCO	3141	9611-1011	10-Jan-06	10-Jan-07
1004	Cable Coaxial , ANDREW PSWJ4 , 6m	HL	ANDREW -6	163	04-Dec-05	04-Dec-06
1947	Cable 18GHz, 6.5 m, blue	Rhophase Microwave Limited	NPS- 1803A- 6500-NPS	T4974	17-Oct-05	17-Oct-06
1984	Antenna, Double-Ridged Waveguide Horn, 1-18 GHz, 300 W, N-type	EMC Test Systems	3115	9911-5964	03-Mar-06	03-Mar-07
2009	Cable RF, 8 m	Alpha Wire	RG-214	C-56	02-Dec-05	02-Dec-06
2780	EMS analyzer, 100 Hz to 26.5 GHz	Agilent Technologies	E7405A	MY451024 6	11-Jun-05	11-Jun-06

9 APPENDIX B Measurement uncertainties

Test description	Expanded uncertainty
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 10 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.0 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.1 dB
Montinel a clerimetica	Double ridged horn antenna: \pm 5.3 dB
Vertical polarization	Biconilog antenna: ± 5.5 dB
	Biconical antenna: ± 5.5 dB
	Log periodic antenna: ± 5.6 dB
	Double ridged horn antenna: ± 5.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
Vertical polarization	Double ridged horn antenna: \pm 5.3 dB
	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Duty cycle, timing (Tx ON / OFF) and average	
factor measurements	± 1.0 %
Occupied bandwidth	± 8.0 %

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error. The standards and instruments used in the calibration system conform to the present requirements of ISO/IEC 17025 (or alternately ANSI/NCSL Z540-1). The laboratory calibrates its measurement standards by a third party (traceable to NIST, USA) on a regular basis according

The laboratory calibrates its measurement standards by a third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements. The Hermon Labs EMC measurements uncertainty is given in the table above. Person for contact: Mr. Alex Usoskin, QA manager.

10 APPENDIX C Test facility description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, telecommunications, environmental, safety standards, and by AMTAC (UK) for safety of medical devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01).

Address:	P.O. Box 23, Binyamina 30500, Israel.
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, QA manager.

11 APPENDIX D Specification references

FCC 47CFR part 15: 2005	Radio Frequency Devices.
ANSI C63.2: 1996	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4: 2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

12

APPENDIX E Abbreviations and acronyms

A AC	ampere alternating current
A/m	ampere per meter
AM	amplitude modulation
AVRG	average (detector)
BB	broad band
cm	centimeter
dB	decibel
dBm	decibel referred to one milliwatt
dB(μV)	decibel referred to one microvolt
dB(µV/m)	decibel referred to one microvolt per meter
dB(μA)	decibel referred to one microampere
dBΩ	decibel referred to one Ohm
DC	direct current
EIRP	equivalent isotropically radiated power
ERP	effective radiated power
EUT F	equipment under test
GHz	frequency gigahertz
GND	ground
H	height
HL	Hermon laboratories
Hz	hertz
ITE	information technology equipment
k	kilo
kHz	kilohertz
LISN	line impedance stabilization network
LO	local oscillator
m	meter
MHz	megahertz
min	minute
mm	millimeter
ms	millisecond
μs NA	microsecond
NA NB	not applicable narrow band
NT	not tested
OATS	open area test site
Ω	Ohm
PCB	printed circuit board
PM	pulse modulation
PS	power supply
ppm	part per million (10-6)
QP	quasi-peak
RE	radiated emission
RF	radio frequency
rms	root mean square
Rx	receive
s T	second
i Tx	temperature transmit
V	volt
V VA	volt-ampere
WB	wideband

13 APPENDIX F Test equip

Test equipment correction factors

Antenna factor Active loop antenna Model 6502, S/N 2857

Frequency, MHz	Magnetic antenna factor, dB	Electric antenna factor, dB
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.8
0.750	-41.9	9.7
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.2
4.000	-41.4	10.1
5.000	-41.5	10.1
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)
26	7.8	560	19.8	1300	27.0
28	7.8	580	20.6	1320	27.8
30	7.8	600	21.3	1340	28.3
40	7.2	620	21.5	1360	28.2
60	7.1	640	21.2	1380	27.9
70	8.5	660	21.4	1400	27.9
80	9.4	680	21.9	1420	27.9
90	9.8	700	22.2	1440	27.8
100	9.7	720	22.2	1460	27.8
110	9.3	740	22.1	1480	28.0
120	8.8	760	22.3	1500	28.5
130	8.7	780	22.6	1520	28.9
140	9.2	800	22.7	1540	29.6
150	9.8	820	22.9	1560	29.8
160	10.2	840	23.1	1580	29.6
170	10.4	860	23.4	1600	29.5
180	10.4	880	23.8	1620	29.3
190	10.3	900	24.1	1640	29.2
200	10.6	920	24.1	1660	29.4
220	11.6	940	24.0	1680	29.6
240	12.4	960	24.1	1700	29.8
260	12.8	980	24.5	1720	30.3
280	13.7	1000	24.9	1740	30.8
300	14.7	1020	25.0	1760	31.1
320	15.2	1040	25.2	1780	31.0
340	15.4	1060	25.4	1800	30.9
360	16.1	1080	25.6	1820	30.7
380	16.4	1100	25.7	1840	30.6
400	16.6	1120	26.0	1860	30.6
420	16.7	1140	26.4	1880	30.6
440	17.0	1160	27.0	1900	30.6
460	17.7	1180	27.0	1920	30.7
480	18.1	1200	26.7	1940	30.9
500	18.5	1220	26.5	1960	31.2
520	19.1	1240	26.5	1980	31.6
540	19.5	1260	26.5	2000	32.0
540	19.5	1280	26.6	2000	32.0

Antenna factor Biconilog antenna EMCO, model 3141, serial number 1011

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Double-ridged wave guide horn antenna Model 3115, S/N 9911-5964

Frequency, MHz	Antenna factor, dB(1/m)		
1000.0	24.7		
1500.0	25.7		
2000.0	27.6		
2500.0	28.9		
3000.0	31.2		
3500.0	32.0		
4000.0	32.5		
4500.0	32.7		
5000.0	33.6		
5500.0	35.1		
6000.0	35.4		
6500.0	34.9		
7000.0	36.1		
7500.0	37.8		
8000.0	38.0		
8500.0	38.1		
9000.0	39.1		
9500.0	38.3		
10000.0	38.6		
10500.0	38.2		
11000.0	38.7		
11500.0	39.5		
12000.0	40.0		
12500.0	40.4		
13000.0	40.5		
13500.0	41.1		
14000.0	41.6		
14500.0	41.7		
15000.0	38.7		
15500.0	38.2		
16000.0	38.8		
16500.0	40.5		
17000.0	42.5		
17500.0	45.9		
18000.0	49.4		

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

No.	Frequency, MHz	Cable loss, dB	Tolerance (Specification), dB	Measurement uncertainty, dB
1	30	0.33		
2	50	0.40		
3	100	0.57		
4	300	0.97		
5	500	1.25		
6	800	1.59		
7	1000	1.81		
8	1200	1.97	≤ 6.5	±0.12
9	1400	2.15		
10	1600	2.28		
11	1800	2.43		
12	2000	2.61		
13	2200	2.75		
14	2400	2.89		
15	2600	2.97		
16	2800	3.21	≤ 6.5	±0.12
17	3000	3.32		
18	3300	3.47		
19	3600	3.62		
20	3900	3.84		
21	4200	3.92		±0.17
22	4500	4.07		
23	4800	4.36		
24	5100	4.62]	
25	5400	4.78		
26	5700	5.16]	
27	6000	5.67]	
28	6500	5.99		

Cable loss Cable coaxial, GORE A2P01POL118, 2.3 m, model GORE-3, serial number 176, HL 0589 + Cable coaxial, ANDREW PSWJ4, 6 m, model: ANDREW-6, serial number 163, HL 1004

Frequency,	Insertion loss,		
GHz	dB		
0.03	0.30		
0.05	0.38		
0.10	0.53		
0.20	0.74		
0.30	0.91		
0.40	1.05		
0.50	1.18		
0.60	1.29		
0.70	1.40		
0.80	1.50		
0.90	1.59		
1.00	1.68		
1.10	1.77		
1.20	1.86		
1.30	1.94		
1.40	2.01		
1.50	2.08		
1.60	2.16		
1.70	2.22		
1.80	2.29		
1.90	2.36		
2.00	2.42		
2.10	2.48		
2.20	2.54		
2.30	2.60		
2.40	2.66		
2.50	2.71		
2.60	2.77		
2.70	2.83		
2.80	2.89		
2.90	2.95		
3.10	3.06		
3.30	3.17		
3.50	3.28		
3.70	3.39		
3.90	3.51		
4.10	3.62		
4.30	3.76		
4.50	3.87		
4.70	4.01		
4.90	4.10		
5.10	4.21		
5.30	4.31		
5.50	4.43		
5.70	4.45		
5.90	4.71		
0.80	ד./ ו		

Cable 18 GHz, 6.5 m, blue, model NPS-1803A-6500-NPS, serial number T4974, HL 1947 Calibration data

Frequency, GHz	Insertion loss, dB		
6.10	4.87		
6.30	4.95		
6.50	4.94		
6.70	4.88		
6.90	4.87		
7.10	4.83		
7.30	4.85		
7.50	4.86		
7.70	4.91		
7.90	4.96		
8.10	5.03		
8.30	5.08		
8.50	5.13		
8.70	5.21		
8.90	5.22		
9.10	5.34		
9.30	5.35		
9.50	5.52		
9.70	5.51		
9.90	5.66		
10.10	5.70		
10.30	5.78		
10.50	5.79		
10.70	5.82		
10.90	5.86		
11.10	5.94		
11.30	6.06		
11.50	6.21		
11.70	6.44		
11.90	6.61		
12.10	6.76		
12.40	6.68		
13.00	6.66		
13.50	6.81		
14.00	6.90		
14.50	6.90		
15.00	6.97		
15.50	7.17		
16.00	7.28		
16.50	7.27		
17.00	7.38		
17.50	7.68		
18.00	7.92		

No.	Frequency, MHz	Cable loss, dB	Tolerance (Specification), dB	Measurement uncertainty, dB
1	1	0.10		
2	10	0.14		
3	30	0.25		
4	50	0.34		
5	100	0.53		
6	300	0.99		
7	500	1.31		
8	800	1.73		
9	1000	1.98		
10	1100	2.11	NA	±0.12
11	1200	2.21		
12	1300	2.35		
13	1400	2.46		
14	1500	2.55		
15	1600	2.68		
16	1700	2.78		
17	1800	2.88		
18	1900	2.98		
19	2000	3.09		

Cable loss RF cable 8 m, model RG-214, serial number C-56, HL 2009