

Emissions Testing
Performed
on the
Martec
2-Button Remote Transmitter
Model: 5036

To

FCC Part 15 Subpart C, 15.231

Date of Test: May 10, 2001

Page 1 of 24

Report Number: J20048167

Contact: Mr. Bernard Kasmir

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. No quotations from reports or use of Intertek Testing Services NA Inc. name is permitted except as expressly authorized by Intertek Testing Services NA Inc. in writing. This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Intertek Testing Services NA, Inc.

Table of Contents

TABLE OF CONTENTS	2
I – INTRODUCTION AND SUMMARY	3
II – TECHNICAL REQUIREMENTS	4
15.1 SCOPE	4
15.15 GENERAL TECHNICAL REQUIREMENTS	4
15.27 SPECIAL ACCESSORIES	5
15.31 MEASUREMENT STANDARDS	5
15.33 FREQUENCY RANGE OF MEASUREMENT	5
15.35 MEASUREMENT DETECTOR FUNCTIONS AND BANDWIDTH	5
15.37 TRANSITION PROVISIONS	5
15.105 INFORMATION TO THE USER	6
15.107 CONDUCTED LIMITS	6
15.201 CERTIFICATION	6
15.203 ANTENNA REQUIREMENTS	6
15.204 EXTERNAL RADIO AMPLIFIER	6
15.205 RESTRICTED BANDS OF OPERATION	6
15.207 CONDUCTED LIMITS	6
15.209 RADIATED EMISSION LIMITS; GENERAL REQUIREMENTS	7
15.231 PERIODIC OPERATION IN THE BAND 40.66-40.70 MHZ AND ABOVE 70 MHZ	7
2.201 EMISSION MODULATION AND TRANSMISSION CHARACTERISTICS	10
2.1041 MEASUREMENT PROCEDURES	10
2.1091 RADIOFREQUENCY RADIATION EXPOSURE EVALUATION: MOBILE DEVICES	10
2.1093 RADIOFREQUENCY RADIATION EXPOSURE EVALUATION: PORTABLE DEVICES	10
III - ATTESTATION	11
IV - SITE DESCRIPTION AND MEASUREMENT EQUIPMENT	12
V – SUMMARY OF EQUIPMENT UNDER TEST	14
VI - CONFIGURATION INFORMATION	15
VII - CONFIGURATION PHOTOGRAPHS	16
VIII - SAMPLE CALCULATION	19
IX - DATA TABLES	20
X - DUTY CYCLE (AVERAGE FACTOR)	21
XI - BANDWIDTH	24

Intertek Testing Services NA, Inc.

I – Introduction and Summary

TO: Mr. Bernard Kasmir
FROM: Nicholas Abbondante, Compliance Engineer
DATE: May 10, 2001
JOB #: J20048167

RE: Emissions Testing Performed on the 2-button Remote Transmitter, Model: 5036

On May 10, 2001 we tested the 2-button Remote Transmitter, Model: 5036 to determine if it was in compliance with the FCC Part 15, Subpart C, 15.231 for periodic transmitters. We found that the unit met the Part 15 requirements when tested as received.

A Prototype version of the sample was received on April 16th in good condition.

The following Table summarizes the results of testing.

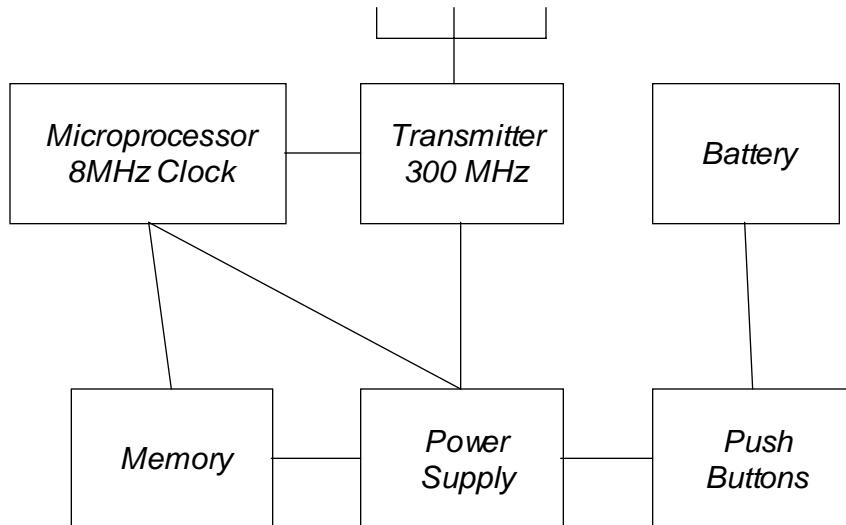
Test	Frequency (MHz)	Measurement	Requirement	Pass/Fail	Section of FCC Rules	Section of Test Report
Fundamental Field Strength	299.0	67.0 dB μ V/m	74.6 dB μ V/m	Pass	15.231	Table 1
Restricted Band & Spurious Emissions	1794.0	39.5 dB μ V/m	54.6 dB μ V/m	Pass	15.231 15.205	Table 1
Bandwidth	299	500 kHz	750 kHz	Pass	15.231	XI
Duty Cycle	N/A	23.9%	N/A	N/A	15.231	X

In summary, this report confirms that the Model: 5036 is compliant with the FCC Part 15, Subpart C, 15.231 requirements when production units conform to the initial sample. Please address all questions and comments concerning this report to Nicholas Abbondante, Compliance Engineer.

II – Technical Requirements

15.1 Scope

The 2-Button Remote Transmitter, Model: 5036, is a transmitter used to generate signals for use in garage door opener applications. It operates at 300 MHz.


15.15 General Technical Requirements

The 5036 transmitter is a two-button transmitter used to generate signals for use in garage door opener applications. Activating each push-button generates a command code for activation of doors.

A 12-volt battery powers this device. The power supply generates operating voltage for the electronics. Activating a button turns on the power supply. The microprocessor then generates a code that activates the transmitter, which sends pulsed signals. Maximum clock for the microprocessor is 8MHz. All of the circuitry is contained on a single printed circuit board.

For the purpose of FCC test requirements, the transmitter was wired to transmit continuously.

A system block diagram shows described functions and the microprocessor crystal clock frequency, which is 8 MHz.

Intertek Testing Services NA, Inc.

15.27 Special Accessories

No special accessories are necessary for the Model: 5036 to meet the compliance requirements.

15.31 Measurement Standards

The measurement procedures as specified by ANSI C63.4:1992 were used to test this device. See Section IV of the test report for a detailed description of the test site and the measurement equipment.

Please note that the transmitter was tested in a stand-alone configuration.

15.33 Frequency range of measurement

The device was scanned for spurious and harmonic emissions from 30 MHz to the 10th harmonic of the fundamental emission.

15.35 Measurement detector functions and bandwidth

The following table illustrates the detector functions and bandwidth used to test the device.

Frequency Range	Measurement Detector	Measurement Bandwidth
450 kHz to 30 MHz	Quasi-Peak	9 kHz
30 MHz to 1000 MHz	Quasi-Peak Peak*	120 kHz 120 kHz
1000 MHz to 10 th harmonic	Peak*	1 MHz

The quasi-peak detector meets the requirements of CISPR 16.

*An averaging factor was used because the device operates with a 20.39% duty cycle. Peak measurements were performed on the transmitter fundamental and spurious emissions that did not fall within restricted bands in accordance with 15.205.

15.37 Transition Provisions

Transition provisions were not applied to the device. The device is not a receiver. The device does not operate in the band 902-905 MHz.

Intertek Testing Services NA, Inc.

15.105 Information to the user.

The device is not a Class B digital device. Labeling requirements are those necessary for a Subpart C transmitter.

15.107 Conducted limits.

The 5036 transmitter uses a battery as a power supply, and therefore does not need to be tested to conducted limits.

15.201 Certification

The device is required to be certified in accordance with Part 2 of the FCC rules, Subpart J.

15.203 Antenna Requirements

The antenna is part of the device circuit board, and may not be removed without destroying the integrity of the device.

15.204 External Radio Amplifier

The device is not an amplifier.

15.205 Restricted bands of operation

The maximum measured field strength allowable by 15.231 is higher than that allowed by 15.209. All unwanted emissions from the transmitter, within restricted bands, were compared to the general limits in 15.209.

See section 15.35 for explanation of how detector functions were used during testing. All measurements outside of restricted bands were measured using a peak detector and the calculated average factor was applied to the measurements. The requirement that peak emissions not exceed average is met mathematically.

15.207 Conducted limits

The device derives its power only from a 12 volt battery. Line conducted emissions tests were not performed.

Intertek Testing Services NA, Inc.

15.209 Radiated emission limits; general requirements

All unwanted emissions from the transmitter, within restricted bands, were compared to the general requirements.

15.231(a) Periodic operation in the band 40.66-40.70 MHz and above 70 MHz

Requirement Summary

Requirement	How the Device Meets the requirement	Deviations	Pass /Fail
Frequency Range: 40.66 - 40.7 MHz and above 70 MHz.	The device operates at one frequency 300MHz. This is within the specified band and not within a restricted band.	None	Pass
Periodic Operation?	The device is a periodic transmitter	None	Pass
Control Signal?	The control signal identifies the transmitter and the door.	None	Pass
Radio Control of a toy?	The device does not operate a toy	None	Pass
Continuous Data Transmission?	The device does not continuously transmit voice, video or data	None	Pass
Manually Operated transmitter that employs a switch to auto-shut-off before 5 seconds of being released.	The device is a manually operated transmitter. When the button on the casing is pressed. Once one of the buttons is unpressed the transmission stops.	None	Pass
A transmitter activated automatically shall cease transmission within 5 seconds	Not applicable, not automatic transmissions	None	Pass
Periodic transmission at regular pre-determined intervals is not permitted	Not applicable, no periodic transmission at pre-determined intervals. The device is activated manually.	None	Pass
Polling and Supervision transmission of safety and security devices to determine system integrity is one	No polling or supervisory transmissions	None	Pass

Intertek Testing Services NA, Inc.

transmission that is less than 1 second per hour.			
Employed for radio control during an emergency (fire, security, safety of life)	The device is not used for any emergency situations	None	Pass

Intertek Testing Services NA, Inc.

(b) Field Strength Requirements

Note: The requirements of Section 15.205 are in addition to the following requirements.

Frequency Range (MHz)	Fundamental Field Strength at 3 meters* (μV/m)	Spurious Emissions At 3 meters** (***)(μV/m)
40.66 to 40.70	2,250	225
70 to 130	1,250	125
130 to 174	1,250 to 3,750 **	125 to 375 **
174 to 260	3,750	75
260 - 470	3750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

* Measured with an average detector or alternatively with Quasi-Peak detector

** linear interpolation

*** Based on the fundamental frequency

The Fundamental field strength limit is calculated as follows:

The frequency is 300MHz, therefore using the frequency range 260 to 470 MHz (Limit is 3,750 to 12,500 μV) the limit is 74.6 dBuV/m. The spurious and harmonic emission limit is 20 dB lower than the fundamental.

Field Strength Measurement Summary

Requirement	Frequency	Measured Value	Required Value	Data Location	Pass /Fail
Fundamental Field Strength	299.0 MHz	67.0	74.6	p.20	Pass
Worst-case Spurious Emission	1794.0 MHz	39.5	54.6	p.20	Pass

(c) Bandwidth Requirements - Shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Bandwidth Summary

Frequency	Requirement	Measured	Resolution	Data	Pass
-----------	-------------	----------	------------	------	------

Intertek Testing Services NA, Inc.

y (MHz)	(Bandwidth must be less than)	Value	on Bandwidt h	Location	/Fail
299	750 kHz	500 kHz	120 kHz	p.24	Pass

(d) For devices operating within the frequency band 40.66 - 40.70 MHz, the bandwidth of the emission shall be confined within the band edges and the frequency tolerance of the carrier shall be + 0.01%. This frequency tolerance shall be maintained for a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

This device does not operate between 40.66-40.70 MHz.

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) and may be employed for any type of operation, including operation prohibited in paragraph (a)

This device meets the requirements of paragraph (a).

Test Method Justifications

For maximizing emissions, the system was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed.

The EUT was mounted on a non-conductive box to allow the engineer to manipulate the EUT in the three orthogonal axes.

The unit was operated standalone and placed in the center of the turntable.

The device was powered from a new, fully charged 12V battery.

For simplicity of testing, the unit was wired to transmit continuously.

Intertek Testing Services NA, Inc.

Part 2

2.201 Emission Modulation and transmission characteristics

The emission designator is determined as follows:

Bandwidth is measured to be: 500 kHz. This gives 5K00.

The transmitter is a pulse-type circuit which is pulsed at a set frequency and for a set duration. Therefore the first symbol is: L.

There is a single channel of quantized digital information without the use of a modulating sub-carrier. Therefore the second symbol is: 1.

There pulse carries data. Therefore the third symbol is: D.

The emissions designator is:

5K00L1D

2.1041 Measurement Procedures

Only the measurement procedures of Part 15 are required for this device. The device was not evaluated to the requirements of 2.1046 through 2.1057.

2.1091 Radiofrequency radiation exposure evaluation: Mobile Devices

The device does not meet the definition of a Mobile Device.

2.1093 Radiofrequency radiation exposure evaluation: Portable Devices

This is not a portable device (That is it is not intended to operate within 20 cm of a persons body). The device does not fall under any of the categories that require routine RF exposure measurements and is therefore exempt from the requirements of this section.

Intertek Testing Services NA, Inc.

III - Attestation

LABORATORY MEASUREMENTS

Pursuant To Part 15, Subpart C For Intentional Radiators

Company Name: Martec Access Products
Address: 240 Sheffield Street
Mountainside NJ 07092
(908) 233-0691

Model: 5036

Date of Test(s): May 10, 2001

Test Site Location: INTERTEK TESTING SERVICES NA INC.
70 Codman Hill Road
Boxborough, MA 01719

Site: 2

I attest to the accuracy of this report:

Signature

Nicholas Abbondante
Testing Performed By

Engineer
Title

Signature

Michael S. Ogunleye
Reviewer

Senior Project Engineer
Title

Intertek Testing Services NA, Inc.

IV - Site Description and Measurement Equipment

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C, General Requirements.

A. **Test Set-Up:** The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 (1992).

1. The test site is a Plastic/Fiberglass structure with a groundplane. The site has attenuation characteristics which meet the requirements of ANSI C63.4 (1992). Information on the site has been filed with the FCC as required by Rule 2.948. The address of the site is 70 Codman Hill Road, Boxborough, MA 01719.
2. Power to the site is nominal line voltage of 117 V_{AC} and 230 V_{AC}, 60 Hz.
3. The equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the groundplane. During the radiated emissions test, the turntable is rotated 360 degrees and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The antenna height and polarization are also varied during the search for maximum signal levels. The height of the antenna is varied from one meter to four meters. Body-worn, hand-held and small portable devices are mounted on a non-conductive box and emissions are investigated on three orthogonal axis.
4. Detector function for radiated emissions is in peak or quasi-peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings according to the following formula:
Averaging Factor in dB = 20 LOG (duty cycle)
The time period over which the duty cycle is measured is 100 msec. The worst-case (highest percentage on) duty cycle is used and described specifically in the data section. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix 465 Oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities.
5. Antennas used below 1000 MHz were EMCO Model 3142 Biconolog Antennas and Compliance Design Inc. Model A100 tuned Dipole Antennas. For measurements between 1000 MHz and 18000 MHz above 1 GHz, an EMCO Model: 3115 Horn Antenna is used. The Antennas used are listed in the Test Equipment Summary in Section 6.

Intertek Testing Services NA, Inc.

6. The field strength measuring equipment used included:

Description	Manufacturer	Model	Serial #	Cal Due
Spectrum Analyzer	Agilent	E7405A	US40240205	11/28/2001
Receiver Set w/RF Filter	HEWLETT PACKARD	85422E	3520A00125	11/21/2001
Horn Antenna	EMCO	3115	9610-4980	11/01/2001
Antenna	EMCO	3142	9711-1225	01/11/2002

7. The frequency range to be scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency, or 40 GHz, whichever is lower. For line-conducted emissions, the range scanned is 450 kHz to 30 MHz.

8. The EUT is warmed up for 15 minutes prior to the test. AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new battery is used.

9. Conducted measurements were made as described in ANSI C63.4 (1992). An IF bandwidth of 9 kHz is used, and peak or quasi-peak detection is employed.

10. The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater below 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application No. 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report. Above 1000 MHz, a bandwidth of 1 MHz is generally used.

11. Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the forbidden bands and above 1 GHz (where no preamplifier is used), signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

12. For measurements made in the 9 kHz to 30 MHz range, a distance of 30 meters was used unless a good signal-to-noise ratio could not be obtained. In that case, a closer distance was used and that distance is so marked in the data table.

Intertek Testing Services NA, Inc.

V – Summary of Equipment Under Test

1 Manufacturer:	Martec Access Products 240 Sheffield Street Mountainside NJ 07092 (908) 233-0691
	Contact: Bernard Kasmir
2 Grantee:	Martec Access Products 240 Sheffield Street Mountainside NJ 07092 (908) 233-0691
	Contact: Bernard Kasmir
3 Model No.:	5036
4 Trade Name:	2-button Remote Transmitter
5 Serial No.:	2000975A (assigned by ITS for tracking purposes)
6 Date of Test:	5/10/01
7 Frequencies to which device can be tuned:	300 MHz
8 Can customer tune device?	No
9 Detailed description of operation pursuant to 15.209:	See 15.209
10 Applicable emissions limits:	15.205, 15.209, 15.231

Intertek Testing Services NA, Inc.

VI - Configuration Information

Equipment Under Test: Transmitter

Model: 5036

Serial No.: 2000975A (assigned by ITS for tracking purposes)

FCC Identifier: None assigned as of this report; intended FCC ID is JCQMK-5036

Support Equipment:
None

Cables:

QTY	Description	Shield Description	Hood Description	Length (m)
-----	-------------	--------------------	------------------	------------

None

VII - Configuration Photographs

Worst-Case Radiated Emissions

EUT PC Board, Front and Back

EUT Outer Casing, Front and Back

VIII - Sample Calculation

The following is how net field strength readings were determined:

$$NF = RF + AF + CF + PF + DF$$

Where,

NF = Net Reading in $\text{dB}\mu\text{V}/\text{m}$

RF = Reading from receiver in $\text{dB}\mu\text{V}$

AF = Antenna Correction Factor in $\text{dB}(1/\text{m})$

CF = Cable Correction Factor in dB

AVF = Duty Cycle Correction Factor in dB

DF = Distance Factor in dB (using 20 dB/decade), from 3 to 1 meters 10.5 dB was added for measurements performed at 1 meter

To convert from $\text{dB}\mu\text{V}/\text{m}$ to $\mu\text{V}/\text{m}$ or mV/m the following was used:

$$UF = 10^{(NF / 20)}$$

Where,

UF = Net Reading in $\mu\text{V}/\text{m}$

Example:

For the fundamental field strength measurement at 8.4 (distance = 3 meters) see table [1].

$$NF = RF + AF + CF + AVF + DF = 62.9 + 13.7 + 2.1 + (-10.0) + 0.0 = 68.7 \text{ dB}\mu\text{V}/\text{m}$$

$$UF = 10^{(68.7 \text{ dB}\mu\text{V} / 20)} = 2722.7 \mu\text{V}/\text{m}$$

Intertek Testing Services NA, Inc.

IX - Data Tables

Intertek Testing Services

Radiated Emissions / Interference

Table 1

Company: Martec Access Products
Model: 5086
Job No.: J20048167
Date: 05/10/01
Standard: FCC15.231

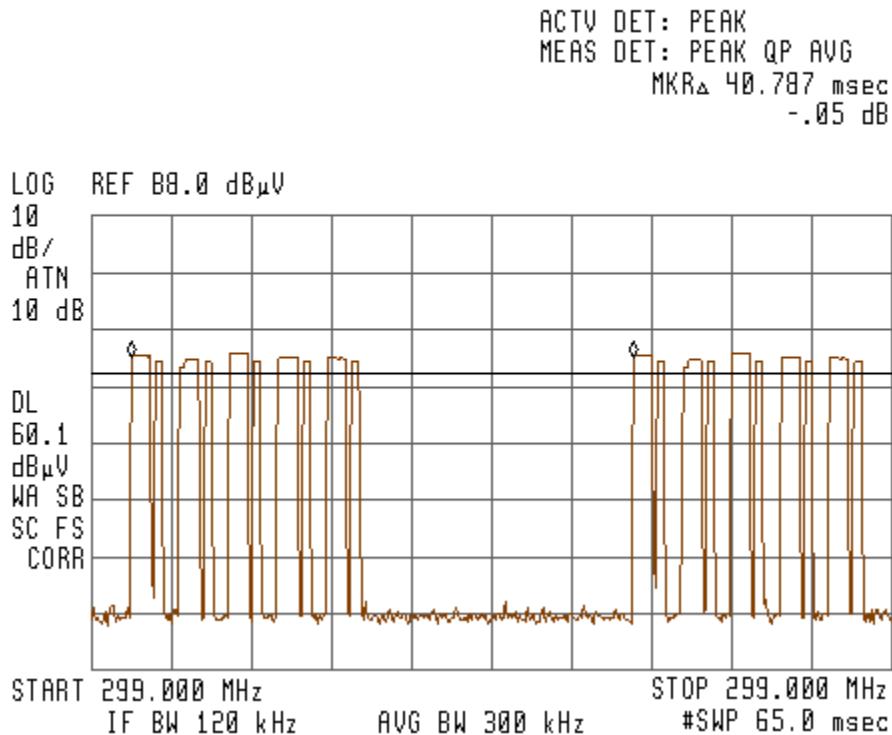
Tested by: Nicholas Abbondante
Location: Site 2C
Detector: HP8542E, Agilent E7405A
Antenna: LOG4, HORN8
PreAmp: None
Cable(s): 2C, 3 METER, PRIMAR

Notes: Average values for comparison to limits were obtained by applying a duty cycle average factor to peak readings.

Distance: 3 meters

Art. Pd. (V/H)	Frequency MHz	Reading dB(µV)	Antenna Factor dB(1/m)	Cable Loss dB	Duty Cycle Average Factor, dB	Distance Factor dB	Net dB(µV/m)	Limit dB(µV/m)	Margin dB
H	299.000	64.1	13.2	21	124	0.0	67.0	74.6	-7.6
H	598.000	18.4	20.3	3.3	124	0.0	29.6	54.6	-25.0
H	897.000	16.0	24.0	4.3	124	0.0	31.9	54.6	-22.7
H	1196.000	16.9	25.9	5.2	124	0.0	35.6	54.6	-19.0
H	1495.000	16.2	26.7	6.4	124	0.0	36.8	54.6	-17.8
H	1794.000	16.8	27.9	7.2	124	0.0	39.5	54.6	-15.1

Peak
Peak
Peak
Peak
Peak
Peak


X - Duty Cycle (Average Factor)

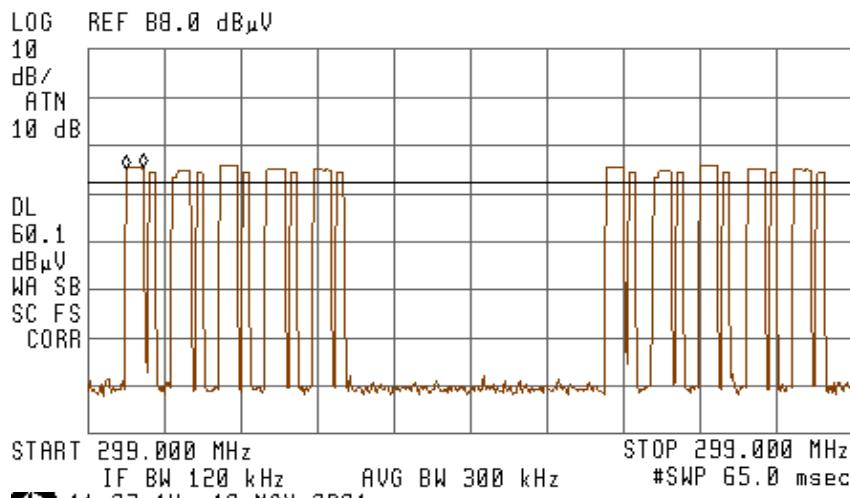
The average factor is subtracted from peak readings to compare emissions readings to average limits. The average factor is calculated from duty cycle measurements from the following plots. The average factor is $20 \log(\text{ON-TIME/PERIOD})$ of the emission. If the period is longer than 100 milliseconds then 100 milliseconds is used for the period. Average factor is determined using the worst-case duty cycle.

Model 5036 Duty Cycle Derivation

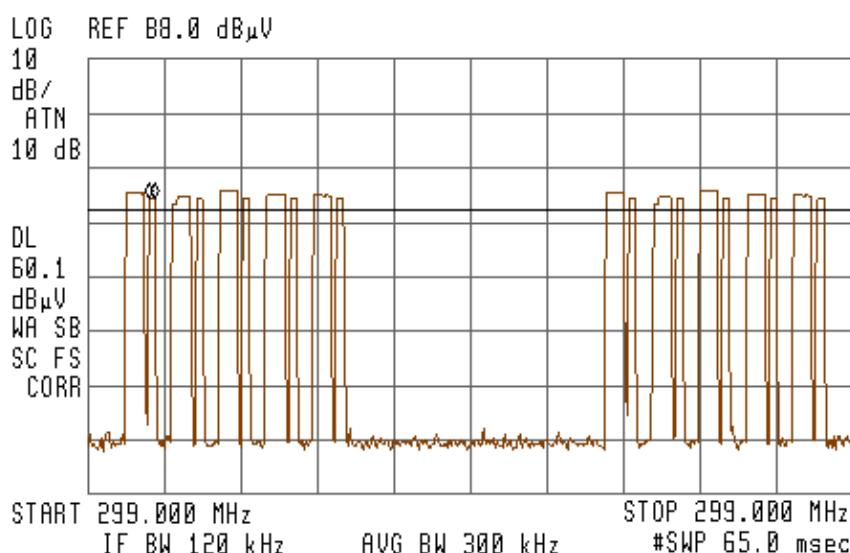
The Model 5036 2-button Remote Transmitter generates a pulse of fixed duration and period. The transmit pulse waveform is shown below. The period between pulses is 40.79ms. There are 5 narrow peaks and 5 wide peaks.

4p 11:24:31 10 MAY 2001

The next two plots show the width of the pulses. The narrow pulses are 0.49ms, and the wide


Intertek Testing Services NA, Inc.

pulses are 1.46ms.


11:32:01 10 MAY 2001

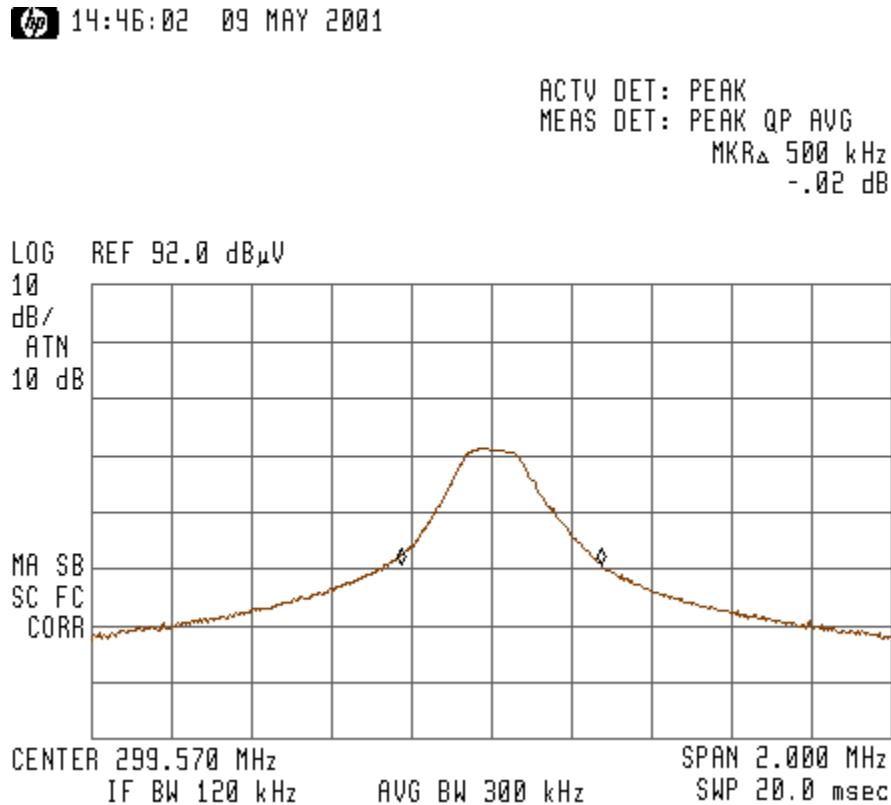
ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR_A 1.4620 msec
.02 dB

11:37:14 10 MAY 2001

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR_A 487.00 μ sec
.00 dB

Given 5 narrow peaks of length 0.49ms, and 5 wide peaks of 1.46ms, and a transmission length of 40.79ms, we can perform the average factor calculation.

Intertek Testing Services NA, Inc.



$$20 \log((0.49\text{ms} \times 5 + 1.46\text{ms} \times 5) / 40.79\text{ms}) = -12.4 \text{ dB}$$

Maximum duty cycle over a 40.79ms period is 23.9% resulting in an averaging factor of -12.4 dB.

XI - Bandwidth

The following plot(s) show bandwidth measurements made. The Bandwidth is measured at 20dB down from the fundamental frequency. The 20dB bandwidth was measured to be 500 kHz, which meets the requirement that it be less than 750 kHz.

