TEST REPORT

FCC Part 15 Subpart B & C

Product : Aivia M8600 Wireless Macro Gaming Mouse

Model: **28715860000CBS**

Brand: **GIGABYTE**

Applicant: GIGA-BYTE Technology Co., Ltd.

Address: No. 6, Bau-Chiang Rd., Hsin Tien City, Taipei Hsien, Taiwan

Test Performed by:

International Standards Laboratory <Lung-Tan LAB> *Site Registration No. BSMI: SL2-IN-E-0013; TAF: 0997; IC: IC4067B-1; VCCI: R-1435, C-1440, T-1676, G-17, R-2598, C-2845, T-1464, G-16, G-211 NEMKO: ELA 113B *Address: No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325, Taiwan *Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-10LR038FC

Issue Date : 2010/11/05

This report totally contains 38 pages including this cover page and contents page.

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

Contents of Report

1. General	1
1.1 Certification of Accuracy of Test Data	1
1.2 Test Results Summary	2
1.3 Test Frequencies of the wireless module	2
1.4 Test Conditions	2
2. Description of Equipment Under Test (EUT)	3
2.1 Description of Support Equipment	4
2.1.1 Software for Controlling Support Unit	4
2.1.2 I/O Cable Condition of EUT and Support Units	4
3. TEST RESULTS	5
3.1 Powerline Conducted Emissions	5
3.1.1 EUT Configuration	5
3.1.2 Test Procedure	5
3.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	5
3.1.4 Test Data:	6
3.2 Radiated Emission Measurement	8
3.2.1 EUT Configuration	8
3.2.2 Test Procedure	8
3.2.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	8
2.2. Dand Edge & Eurodomental Emission Measurement	9 17
3.5 Danu Euge & Fundamental Emission Measurement	1 /
3.3.2 Test Setup	17
3.3.3 Test Data	18
3.4 Band Edge Restricted Bands & Fundamental Emission Measurement	
3.4.1 Test Procedure (Radiated & Fundamental)	21
3.4.2 Test Setup (Radiated & Fundamental).	21
3.4.3 Test Data	22
4. Appendix	28
4.1 Appendix A: Measurement Procedure for Power line Conducted Emissions	28
4.2 Appendix B: Test Procedure for Radiated Emissions	29
4.3 Appendix C: Test Equipment	
4.3.1 Test Equipment List	30
4.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data	30
4.4 Appendix D: Layout of EUT and Support Equipment	31
4.4.1 General Conducted Test Configuration	31
4.4.2 General Radiation Test Configuration	32
4.5 Appendix E: Accuracy of Measurement	33
4.6 Appendix F: Photographs of EUT Configuration Test Set Up	34

1. General

1.1 Certification of Accuracy of Test Data

Standards:	CFR 47 Part 15 Subpart B Class B
	CFR 47 Part 15 Subpart C (Section 15.249)
Test Procedure:	ANSI C63.4:2003
Equipment Tested:	Aivia M8600 Wireless Macro Gaming Mouse
Model:	28715860000CBS
Applied by:	GIGABYTE
Sample received Date:	2010/10/12
Final test Date :	2010/11/03
Test Result	PASS
Test Site:	Chamber 14, Conduction 03
Temperature	Refer to each site test data
Humidity:	Refer to each site test data
Test Engineer:	

Scott Chien

Scott Chien

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Approve & Signature

Jim Chu/ Director

-2- FCC ID: JCK28715860000CBS

1.2 Test Results Summary

The wireless functions of EUT has been tested according to the FCC regulations listed below:

Tested Standards: 47 CFR Part 15 Subpart C								
Standard	Test Type Result Remarks							
Section								
15.207	AC Power Line	Pass						
	Emissions							
15.249	Radiated Emissions	Pass						
	30MHz – 25 GHz							
15.249	Band Edge	Pass						
	Measurement							

1.3 Test Frequencies of the wireless module

EUT Channel	Test Frequency (MHz)
1	2402
4	2439
8	2479

1.4 Test Conditions

- a. Normal test conditions: Temperature: 25 ⁰C Relative Humidity: 50% to 75%
- b. During the test, the EUT was set in continuously transmitting mode with a duty cycle of 89%.
- c. The channel 1, 4, 8 of EUT were all tested

2. Description of Equipment Under Test (EUT)

Description: Condition: Model: FCC ID:	Aivia M8600 Wireless Macro Gaming Mouse Pre-Production 28715860000CBS JCK28715860000CBS
Frequency Range of 802.11b/g/n: Support channel:	2400 - 2483.5 MHz 8 Channels
Modulation Skill:	GFSK
Antennas Type:	Monopole
Antenna Connected:	The antenna Soldered on the PCB of the wireless module .The user is not possible to change the antenna without disassembling the EUT.
Antenna peak Gain:	0 dBi.
Battery Pack:	BURNABY INTERNATIONAL TECHNOLOGY Model: NP 80, 3.7V 1500mAh
Power Type of wireless module:	Battery supply voltage

The channel and the operation frequency of is listed below:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
01	2402	07	2468
02	2411	08	2479
03	2425		
04	2439		
05	2447		
06	2450		

FCC ID: JCK28715860000CBS

2.1 Description of Support Equipment

No	Unit	Model / Serial No.	Brand	Power Cord	FCC ID
1	DELL NB	Latitude D620 S/N:N/A	DELL	Non-shielded Detachable	FCC DOC

2.1.1 Software for Controlling Support Unit

During the test, the EUT is connected to a notebook PC which excutes the RF software to make the transmitter continuously send RF signals.

	Filename	Issued Date
Control Soft	rf_gaming_test_mode.exe	8/30/2010

2.1.2 I/O Cable Condition of EUT and Support Units

Description	Path	Cable Length	Cable Type	Connector Type
USB Data Cable	EUT to NB USB Port	1.8M	Nonshielded, Detachable (with cord)	Metal Head

3. TEST RESULTS

3.1 Powerline Conducted Emissions

3.1.1 EUT Configuration

The EUT was set up on the non-conductive table that is 1.0 by 1.5 meter, 80cm above ground. The wall of the shielded room was located 40cm to the rear of the EUT.

Power to the EUT was provided through the LISN. The impedance vs. frequency characteristic of the LISN is complied with the limit used.

Both lines (neutral and hot) were connected to the LISN in series at testing. A coaxial-type connector which provides one 50 ohms terminating impedance was provided for connecting the test instrument. The excess length of the power cord was folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

If the EUT is a Personal Computer or a peripheral of personal computer, and the personal computer has an auxiliary AC outlet which can be used for providing power to an external monitor, then all measurements will be made with the monitor power from first the computer-mounted AC outlet and then a floor-mounted AC outlet.

3.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The main power line conducted EMI tests were run on the hot and neutral conductors of the power cord and the results were recorded. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

At the frequencies where the peak values of the emissions were higher than 6dß below the applicable limits, the emissions were also measured with the quasi-peak detectors. At the frequencies where the quasi-peak values of the emissions were higher than 6dß below the applicable average limits, the emissions were also measured with the average detectors.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

3.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range Detector Function Bandwidth (RBW) 150 KHz--30MHz Quasi-Peak/Average 9KHz

3.1.4 Test Data:

Power Line Conducted Emissions (Hot) Lowest, Middle, Highest channel

No.	Frequency MHz	LISN Loss dB	Cabl e Loss dB	QP Correct. dBuV	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin dB	Note
1	0.1740	0.08	0.04	45.31	64.7	-19.4	32.09	54.7	-22.6	
2	0.1980	0.07	0.04	38.87	63.6	-24.8	23.37	53.6	-30.3	
3	0.2180	0.07	0.04	34.20	62.8	-28.6	20.25	52.8	-32.6	
4	0.2460	0.07	0.05	31.47	61.8	-30.4	18.48	51.8	-33.4	
5	0.4060	0.06	0.06	25.85	57.7	-31.8	19.24	47.7	-28.4	
6	1.1620	0.06	0.06	27.32	56.0	-28.6	23.08	46.0	-22.9	
7	16.0220	0.2	0.24	34.95	60.0	-25.0	33.06	50.0	-16.9	

Power Line Conducted Emissions (Neutral) Lowest, Middle, Highest channel

Limit: CISPR22 Class B Conduction

No.	Frequency MHz	LISN Loss dB	Cabl e Loss dB	QP Correct. dBuV	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin dB	Note
1	0.1740	0.11	0.04	45.25	64.7	-19.5	33.30	54.7	-21.4	
2	0.1980	0.1	0.04	35.48	63.6	-28.2	22.13	53.6	-31.5	
3	0.2380	0.1	0.05	34.43	62.1	-27 .7	24.27	52.1	-27.9	
4	0.4300	0.08	0.06	31.12	57.2	-26.1	25.94	47.2	-21.3	
5	0.9860	0.07	0.06	30.22	56.0	-25.7	25.10	46.0	-20.9	
6	14.6340	0.24	0.24	32.75	60.0	-27.2	28.02	50.0	-21.9	

 * NOTE: During the test, the EMI receiver was set to Max. Hold then switch the EUT Channel between Lowest, Middle, Highest to get the maximum reading of all these channels.
Margin = Amplitude + Insertion Loss- Limit A margin of -8dB means that the emission is 8dB below the limit

3.2 Radiated Emission Measurement

3.2.1 EUT Configuration

The equipment under test was set up on the 3 meter chamber with measurement distance of 3 meters. The EUT was placed on a non-conductive table 80cm above ground.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

3.2.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. We found the maximum readings by varying the height of antenna and then rotating the turntable. Both polarization of antenna, horizontal and vertical, are measured.

30M to 1GHz: The highest emissions between 30 MHz to 1000 MHz were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission.

1GHz – 25GHz: The highest emissions were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in peak mode to determine the precise amplitude of the emission. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission. During test the EMI receiver and spectrum was setup according to EMI Receiver/Spectrum Analyzer Configuration.

For the test of 2nd to 10th harmonics frequencies, the equipment setup was also refer to EMI Receiver/Spectrum Analyzer Configuration. The frequencies were tested using Peak mode first, if the test data is higher than the emissions limit, an additional measurement using Average mode will be performed and the average reading will be compared to the limit and record in test report.

3.2.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range Tested:	30MHz~1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth (RBW):	120KHz
Video Bandwidth (VBW)	360KHz
Frequency Range Tested:	1GHz – 25 GHz
Detector Function:	Peak Mode
Resolution Bandwidth (RBW):	1MHz
Video Bandwidth (VBW)	3MHz
Frequency Range Tested:	1GHz – 25 GHz
Detector Function:	Average Mode
Resolution Bandwidth (RBW):	1MHz
Video Bandwidth (VBW)	30 Hz

3.2.4 Test Data:

30M – 1GHz Open Field Radiated Emissions (Horizontal) Lowest, Middle, Highest channel

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	132.8200	57.54	12.3	0.73	34.43	36.14	43.50	-7.36	241	70	peak
2	216.2400	58.41	10.5	0.9	34.51	35.30	46.00	-10.70	100	47	peak
3	258.9200	56.25	13.51	1	34.4	36.36	46.00	-9.64	100	195	peak
4	388.9000	55.1 2	16.21	1.18	33.78	38.73	46.00	-7.27	100	264	peak
5	453.8900	51.81	17.15	1.3	33.73	36.53	46.00	-9.47	100	148	peak
6	518.8800	45.68	18.08	1.34	33.71	31.39	46.00	-14.61	353	314	peak
7	644.9800	41.40	19.27	1.5	33.41	28.76	46.00	-17.24	393	318	peak
8	799.2100	45.15	20.59	1.7	32.96	34.48	46.00	-11.52	146	103	peak

*:Maximum data x:Over limit !:over margin

International Standards Laboratory

30M – 1GHz Open Field Radiated Emissions (Vertical) Lowest, Middle, Highest channel

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	37.7600	55.52	14.99	0.4	34.77	36.14	40.00	-3.86	100	93	peak
2	76.5600	59.90	7.22	0.6	34.54	33.18	40.00	-6.82	245	316	peak
3	132.8200	58.37	12.3	0.73	34.43	36.97	43.50	-6.53	226	287	peak
4	167.7400	59.28	10.27	0.8	34.49	35.86	43.50	-7.64	201	167	peak
5	388.9000	51.29	16.21	1.18	33.78	34.90	46.00	-11.10	187	242	peak
6	453.8900	47.47	17.15	1.3	33.73	32.19	46.00	-13.81	271	329	peak
7	515.9700	51.88	18.02	1.33	33.71	37.52	46.00	-8.48	153	225	peak
8	796.3000	41.69	20.56	1.69	32.97	30.97	46.00	-15.03	138	163	peak

*:Maximum data x:Over limit !:over margin

NOTE:

- During the Pre-test, the EUT has been tested for Lowest, Middle, Highest channel transmit from Main and Aux antenna respectively to get all the critical emission frequencies. In the final test all the critical emission frequencies has been tested and the test data are listed above.
- \neg Margin = Corrected Amplitude Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

All frequencies from 30MHz to 1GHz have been tested

1GHz~ 25 GHz (Horizontal), Lowest Channel

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	4804.000	52.93	34.64	3.42	47.32	43.67	74.00	-30.33	370	220	peak
2	7206.000	52.41	36.08	4.18	46.34	46.33	74.00	-27.67	100	168	peak
3	9608.000	49.21	37.11	4.92	43.56	47.68	74.00	-26.32	100	220	peak
4	12010.000	48.76	39.3	5.6	43.31	50.35	74.00	-23.65	263	181	peak
5	14412.000	51.53	39.76	6	46.56	50.73	74.00	-23.27	335	171	peak
6	16814.000	48.15	42.17	6.66	46.89	50.09	74.00	-23.91	100	209	peak
7	19216.000	51.56	23.84	5.7	48.43	32.67	74.00	-41.33	100	229	peak
8	21618.000	49.93	24.48	6.02	46.26	34.17	74.00	-39.83	263	168	peak
9	24020.000	48.67	24.7	6.4	45.1	34.67	74.00	-39.33	366	224	peak

*:Maximum data x:Over limit !:over margin

1GHz~ 25 GHz (Vertical), Lowest Channel

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	4804.000	53.64	34.64	3.42	47.32	44.38	74.00	-29.62	162	134	peak
2	7206.000	51.93	36.08	4.18	46.34	45.85	74.00	-28.15	100	356	peak
3	9608.000	49.22	37.11	4.92	43.56	47.69	74.00	-26.31	236	1	peak
4	12010.000	48.14	39.3	5.6	43.31	49.73	74.00	-24.27	132	278	peak
5	14412.000	51.10	39.76	6	46.56	50.30	74.00	-23.70	361	175	peak
6	16814.000	49.22	42.17	6.66	46.89	51.16	74.00	-22.84	118	33	peak
7	19216.000	52.24	23.84	5.7	48.43	33.35	74.00	-40.65	358	21	peak
8	21618.000	51.19	24.48	6.02	46.26	35.43	74.00	-38.57	166	313	peak
9	24020.000	48.34	24.7	6.4	45.1	34.34	74.00	-39.66	230	146	peak

*:Maximum data x:Over limit !:over margin

Note:

- According to the standards used, Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- ¬ "peak": peak mode; "avg": average mode
- ¬ The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit
- Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain

 \neg A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

1GHz~ 25 GHz (Horizontal), Middle Channel

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	4878.000	52.77	34.62	3.45	47.35	43.49	74.00	-30.51	307	280	peak
2	7317.000	51.95	36.01	4.23	46.25	45.94	74.00	-28.06	100	184	peak
3	9756.000	48.25	37.26	4.95	43.5	46.96	74.00	-27.04	100	141	peak
4	12195.000	48.10	39.34	5.64	43.5	49.58	74.00	-24.42	354	15	peak
5	14634.000	51.86	40.01	6.05	46.78	51.14	74.00	-22.86	100	307	peak
6	17073.000	46.74	41.98	6.73	46.52	48.93	74.00	-25.07	244	344	peak
7	19512.000	56.16	23.9	5.7	48.19	37.57	74.00	-36.43	252	44	peak
8	21951.000	50.30	24.41	6.09	45.86	34.94	74.00	-39.06	100	98	peak
9	24390.000	50.30	24.7	6.48	45.1	36.38	74.00	-37.62	100	197	peak

*:Maximum data x:Over limit !:over margin

1GHz~ 25 GHz (Vertical), Middle Channel

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	4878.000	50.23	34.62	3.45	47.35	40.95	74.00	-33.05	182	1	peak
2	7317.000	48.81	36.01	4.23	46.25	42.80	74.00	-31.20	292	39	peak
3	9756.000	46.06	37.26	4.95	43.5	44.77	74.00	-29.23	100	290	peak
4	12195.000	45.75	39.34	5.64	43.5	47.23	74.00	-26.77	104	178	peak
5	14634.000	46.47	40.01	6.05	46.78	45.75	74.00	-28.25	333	184	peak
6	17073.000	45.64	41.98	6.73	46.52	47.83	74.00	-26.17	292	148	peak
7	19512.000	56.34	23.9	5.7	48.19	37.75	74.00	-36.25	100	285	peak
8	21951.000	48.57	24.41	6.09	45.86	33.21	74.00	-40.79	393	276	peak
9	24390.000	50.92	24.7	6.48	45.1	37.00	74.00	-37.00	293	209	peak

*:Maximum data x:Over limit !:over margin

Note:

- According to the standards used, where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- ¬ "peak": peak mode; "avg": average mode
- ¬ The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit
- n Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- \neg A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

International Standards Laboratory

1GHz~ 25 GHz (Horizontal), Highest Channel

			-	_				-	_		
Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	4958.000	51.55	34.61	3.48	47.38	42.26	74.00	-31.74	327	275	peak
2	7437.000	50.56	35.94	4.27	46.15	44.62	74.00	-29.38	328	227	peak
3	9916.000	48.18	37.42	4.98	43.43	47.15	74.00	-26.85	251	71	peak
4	12395.000	47.89	39.38	5.68	43.7	49.25	74.00	-24.75	325	147	peak
5	14874.000	49.34	40.2	6.15	46.92	48.77	74.00	-25.23	100	188	peak
6	17353.000	46.42	41.54	6.84	45.85	48.95	74.00	-25.05	100	99	peak
7	19823.000	55.49	24.03	5.76	47.88	37.40	74.00	-36.60	308	76	peak
8	22311.000	53.95	24.46	6.1	45.74	38.77	74.00	-35.23	344	61	peak
9	24790.000	52.74	24.58	6.56	45.1	38.78	74.00	-35.22	158	131	peak

*:Maximum data x:Over limit !:over margin

1GHz~ 25 GHz (Vertical), Highest Channel

			-		-		-				
Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	4950.000	56.66	34.61	3.48	47.38	47.37	74.00	-26.63	119	262	peak
2	7437.000	50.88	35.94	4.27	46.15	44.94	74.00	-29.06	286	201	peak
3	9916.000	47.25	37.42	4.98	43.43	46.22	74.00	-27.78	337	334	peak
4	12395.000	47.50	39.38	5.68	43.7	48.86	74.00	-25.14	281	229	peak
5	14874.000	50.67	40.2	6.15	46.92	50.10	74.00	-23.90	271	206	peak
6	17353.000	47.96	41.54	6.84	45.85	50.49	74.00	-23.51	359	27	peak
7	19823.000	53.82	24.03	5.76	47.88	35.73	74.00	-38.27	101	175	peak
8	22311.000	49.88	24.46	6.1	45.74	34.70	74.00	-39.30	100	342	peak
9	24790.000	50.73	24.58	6.56	45.1	36.77	74.00	-37.23	355	14	peak

*:Maximum data x:Over limit !:over margin

Note:

- According to the standards used, where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- ¬ "peak": peak mode; "avg": average mode
- ¬ The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit
- n Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- \neg A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

International Standards Laboratory

3.3 Band Edge & Fundamental Emission Measurement

3.3.1 Test Procedure

Conducted

- The transmitter output of EUT was connected to the spectrum analyzer. Equipment mode: Spectrum analyzer Detector function: Peak mode SPAN: 100MHz RBW: 100KHz VBW: 100KHz Center frequency: 2.375GHz, 2.5GHz.
- 2. Using Peak Search to read the peak power of Carrier frequencies after Maximum Hold function is completed
- 3. Find the next peak frequency outside the operation frequency band

Radiated

- Antenna and Turntable test procedure same as Radiated Emission Measurement. Equipment mode: Spectrum analyzer Detector function: Peak mode SPAN: 100MHz RBW: 100KHz VBW: 100KHz Center frequency: 2.375GHz, 2.5GHz.
- 2. Using Peak Search to read the peak power of Carrier frequencies after Maximum Hold function is completed
- 3. Find the next peak frequency outside the operation frequency band

3.3.2 Test Setup

Conducted

Radiated

Same as Radiated Emission Measurement

3.3.3 Test Data:

Table: Band Edge measurement

Conducted Test

Test Engineer:Scott Chien

Temperature (°C):25 Humidity (%):55 Carrier -Spectrum Frequency Outsideband Reading Channel **Pass/Fail** Limit: >20dB (MHz) (dBuV) (**dB**) 01 2402.16 91.38 ------Outside band 2399.9 37.85 53.53 Pass 08 2479.12 90.72 -------Outside band 2483.5 48.22 42.5 Pass

Radiated Test

Temperature (°C):25

Test Engineer:Scott Ch	nien		Humidity (%):60	
Channel	Frequency	Spectrum Reading	Carrier - Outsideband Limit: >20dB	Pass/Fail
	(MHz)	(dBuV)	(dB)	
01	2402.14	60.03		
Outside band	2399.9	25.73	34.3	Pass
08	2479.12	57.27		
Outside band	2483.9	22.5	34.77	Pass

Band Edge Conducted Measurement

Band Edge Conducted Measurement

Date: 26.0CT.2010 15:37:12

Band Edge Radiated Measurement

Band Edge Radiated Measurement

Date: 12.0CT.2010 23:35:31

3.4 Band Edge Restricted Bands & Fundamental Emission Measurement

3.4.1 Test Procedure (Radiated & Fundamental)

- Antenna and Turntable test procedure same as Radiated Emission Measurement. Equipment mode: Spectrum analyzer Detector function: Peak mode SPAN: 100MHz RBW: 100HHz VBW: 3MHz Center frequency: 2.39GHz, 2.4835GHz.
- 2. Using Peak Search to read the peak power of Carrier frequencies after Maximum Hold function is completed.
- 3. Find the next peak frequency outside the operation frequency band
- 4. For peak frequency emission level measurement in Restricted Band Change RBW: 1MHz VBW: 30Hz
- 5. Get the spectrum reading after Maximum Hold function is completed.

3.4.2 Test Setup (Radiated & Fundamental)

Same as *Radiated Emission Measurement*

3.4.3 Test Data

Channel 1: Restricted Bands Measurement & Fundamental Emission (Radiated) (Peak)

RBW:1MHz VBW: Peak:3MH; Average:30Hz

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Description
1	2390.000	30.67	32.8	2.33	0	65.80	74	-8.2	Channel_1 Restricted band (peak mode)
2	2402.000	51.20	32.82	2.34	0	86.36	114	-27.64	Channel_1 (peak mode)

Note:

- \neg The Spectrum noise level+Correction Factor < Limit 6 dB
- ¬ Margin=Corrected Amplitude Limit
- Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss
- \neg A margin of -8dB means that the emission is 8dB below the limit.

Channel 1: Restricted Bands Measurement & Fundamental Emission (Radiated) (Average) RBW:1MHz VBW: Peak:3MH; Average:30Hz

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Description
1	2390.000	17.22	32.8	2.33	0	52.35	54	-1.65	Channel_1 Restricted band (average mode)
2	2402.000	47.28	32.82	2.34	0	82.44	94	-11.56	Channel_1 (average mode)

Note:

 \neg The Spectrum noise level+Correction Factor < Limit - 6 dB

 \neg Margin=Corrected Amplitude – Limit

¬ Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss

 \neg A margin of -8dB means that the emission is 8dB below the limit

Channel 4: Fundamental Emission (Radiated) (Peak)

RBW:1MHz VBW: Peak:3MH; Average:30Hz

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Description
1	2439.000	57.00	32.89	2.36	0	92.25	114	-21.75	Channel_4 (peak mode)

Note:

- \neg The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit
- $\neg \quad Corrected \ Amplitude=Radiated \ Amplitude+Antenna \ Correction \ Factor+Cable \ Loss$
- $\neg \;\;$ A margin of -8dB means that the emission is 8dB below the limit

126.0 dBu∀/m Limit: Margin: 116 106 96 86 76 66 56 46 36.0 2414.000 2419.00 2424.00 2429.00 2434.00 2439.00 2444.00 2449.00 2454.00 2464.00 MHz

Channel 4: Fundamental Emission (Radiated) (Average)

RBW:1MHz VBW: Peak:3MH; Average:30Hz

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Description
1	2439.000	48.05	32.89	2.36	0	83.30	94	-10.7	Channel_4 (average mode)

Note:

- \neg The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit

¬ Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss

 \neg A margin of -8dB means that the emission is 8dB below the limit

Channel 8: Restricted Bands Measurement & Fundamental Emission (Radiated) (Peak)

RBW:1MHz VBW: Peak:3MH; Average:30Hz

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Description
1	2479.000	56.24	32.96	2.39	0	91.59	114	-22.41	Channel_8 (peak mode)
2	2483.500	26.39	32.97	2.39	0	61.75	74	-9.25	Channel_8 Restricted band (peak mode)

Note:

¬ The Spectrum noise level+Correction Factor < Limit - 6 dB

- Margin=Corrected Amplitude - Limit

- Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss

→ A margin of -8dB means that the emission is 8dB below the limit

Channel 8: Restricted Bands Measurement & Fundamental Emission (Radiated) (Average)

RRW·1MH7	VRW ·	Peak·3MH·	Average 30Hz
	VDVV .	I Cak. Sivili,	Average.JUIL

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Description
1	2479.000	55.53	32.96	2.39	0	90.88	94	-3.12	Channel_8 (average mode)
2	2483.500	17.37	32.97	2.39	0	52.73	54	-1.27	Channel_8 Restricted band (average mode)

Note:

 \neg The Spectrum noise level+Correction Factor < Limit - 6 dB

¬ Margin=Corrected Amplitude – Limit

¬ Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss

→ A margin of -8dB means that the emission is 8dB below the limit

4. Appendix

4.1 Appendix A: Measurement Procedure for Power line Conducted Emissions

The measurements are performed in a $3.5m \times 3.4m \times 2.5m$ shielded room, which referred as Conduction 01 test site, or a $3m \times 3m \times 2.3m$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the required standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

If the EUT is supplied with a flexible power cord, the power cord length in excess of the distance separating the EUT from the LISN shall be folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length. If the EUT is provided with a permanently coiled power cord, bundling of the cord is not required. If the EUT is supplied without a power cord, the EUT shall be connected to the LISN by a power cord of the type specified by the manufacturer which shall not be longer than 1 meter. The excess power cord shall be bundled as described above. If a non-flexible power cord is provided with the EUT, it shall be cut to the length necessary to attach the EUT to the LISN and shall not be bundled.

The interconnecting cables were arranged and moved to get the maximum emission. Both the line of power cord, hot and neutral, were measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

4.2 Appendix B: Test Procedure for Radiated Emissions

Preliminary Measurements in the Anechoic Chamber

The radiated emissions are initially measured in the anechoic chamber at a measurement distance of 3 meters. Desktop EUT are placed on a wooden stand 0.8 meter in height. The measurement antenna is 3 meters from the EUT. The test setup in anechoic chamber is the same as open site. The turntable rotated 360°. The antenna height is varied from 1-2.5m. The primary objective of the radiated measurements in the anechoic chamber is to identify the frequency spectrum in the absence of the electromagnetic environment existing on the open test site. The frequencies can then be pre-selected on the open test site to obtain the corresponding amplitude. The initial scan is made with the spectrum analyzer in automatic sweep mode. The spectrum peaks are then measured manually to determine the exact frequencies.

Measurements on the Open Site or 3m EMC Chamber

The radiated emissions test will then be repeated on the open site or 3m EMC chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of the 3 or 10 meter open field sites. Desktop EUT are set up on a wooden stand 0.8 meter above the ground.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. Both reading are recorded with the quasi-peak detector with 120KHz bandwidth. For frequency between 30 MHz and 1000MHz, the reading is recorded with peak detector or quasi-peak detector. For frequency above 1 GHz, the reading is recorded with peak detector or average detector with 1 MHz bandwidth.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum emission. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

4.3 Appendix C: Test Equipment

4.3.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction 03	Conduction 03 -1	WOKEN	CFD 300-NL	Conduction	06/21/2010	06/21/2011
	Cable			03 -1		
Conduction 03	EMI Receiver 11	ROHDE &	ESCI	100568	06/18/2010	06/18/2011
		SCHWARZ				
Conduction 03	ISNT4-02	FCC	FCC-TLISN-T	20575	05/15/2010	05/15/2011
			4-02			
Conduction 03	ISNT8-02	FCC	FCC-TLISN-T	20476	05/15/2010	05/15/2011
			8-02			
Conduction 03	LISN 07	FCC Inc.	FCC-LISN-50-	07040	06/02/2010	06/02/2011
			100-4-02			
Conduction 03	LISN 08	FCC	FCC-LISN50-	07039	06/25/2010	06/25/2011
			25-2-01			

Location Chmb14	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Radiation (Chamber14)	Spectrum Analyzer 21	Agilent	N9010A	MY49060537	07/13/2010	07/13/2011
Rad. Above 1GHz (Chamber14)	Horn Antenna 06	ETS	3117	00066665	09/28/2010	09/28/2011
Rad. Above 1GHz (Chamber14)	SUCOFLEX 1GHz~26.5GHz cable	HUBER+SUHN ER AG.	Sucoflex 104	286305/4	09/30/2010	09/30/2011
Rad. Above 1GHz (Chamber14)	Preamplifier 13	MITEQ	JS44-0010180 0-25-10P-44	1329256	06/10/2010	06/10/2011

Note: Calibration is traceable to NIST or national or international standards.

4.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Radiation/Conduction	Filename	Version	Issued Date	
Lung_Tan Conduction	EZ EMC	1.1.4.2	2/10/2007	
Lung_Tan Radiation	EZ EMC	1.1.4.2	1/24/2007	

4.4 Appendix D: Layout of EUT and Support Equipment

4.4.1 General Conducted Test Configuration

4.4.2 General Radiation Test Configuration

4.5 Appendix E: Accuracy of Measurement

The measurement uncertainty refers to CISPR 16-4-2:2003. The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 03>: ±3.551dB

<Chamber 14 (3M)> Horizontal 30MHz~200MHz: ±4.316 dB 200MHz~1GHz: ±4.587 dB Vertically 30MHz~200MHz: ±4.420 dB 200MHz~1GHz: ±4.573 dB

1GHz~26.5GHz ±3.722 dB

4.6 Appendix F: Photographs of EUT Configuration Test Set Up

The Front View of Highest Conducted Set-up For EUT

The Front View of Highest Radiated Set-up For EUT

The Back View of Highest Radiated Set-up For EUT

