

UNDP-1 Module HP HSTNN-I70C Collocated RF Analysis

80-VH688-18 Rev. C

September 1, 2009

Submit technical questions at: regulatory.support@qualcomm.com

QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners. CDMA2000 is a registered certification mark of the Telecommunications Industry Association, used under license. ARM is a registered trademark of ARM Limited. QDSP is a registered trademark of QUALCOMM Incorporated in the United States and other countries.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

QUALCOMM Incorporated 5775 Morehouse Drive San Diego, CA 92121-1714 U.S.A.

Copyright © 2009 QUALCOMM Incorporated. All rights reserved.

September 1, 2009

UNDP-1 Module HP HSTNN-I70C Collocated RF Analysis 80-VH688-18 Rev. C

Revision history

Revision	Date	Description
А	April 2009	Initial release
В	August 2009	Additional collocated WLAN transmitter
С	September 2009	Corrected typographical errors; updated title

1.1 Overview

This document provides collocated SAR analysis of the notebook model HSTNN-I70C in reference to KDB 616217.

The change filed under this application is amending the grant for HP notebook model HSTNN-I70C to include an additional collocated WLAN transmitter. In addition to Bluetooth FCC ID: QDS-BRCM1010, and WLAN FCC ID: QDS-BRCM1030 that were included in Rev. A of this analysis document, HSTNN-I70C will now also include WLAN FCC ID: QDS-BRCM1044.

1.2 Definitions

$$n_x = \frac{P_x}{60/f} - 1$$

n = number of times by which an antenna's output power exceeds 60/f, calculated to determine an antenna's user separation threshold for test reduction procedures

P = average power

f = frequency in MHz

1.3 Collocation Calculations

Table 1 Antenna Separation Distances

Antenna	Distance (cm)
WLAN Main-to-user	16.1
WLAN Aux-to-user	16.1
WWAN main-to-user	5.2
WLAN Aux-to-WWAN main	5.4
WLAN main-to-WWAN main	19.2

Table 2 Individual Transmitter SAR Evaluation

Freq (MHz)	Measured Burst Avg Pwr (GPRS only) (dBm)	Average Power (dBm)	Measured Average Power (mW)	60/F _(GHz) (mW)	n = (P / (60/f) -1) cm	1/2*n (cm) per FCC Procedure	Minimum Antenna-User Separation Requirement (cm)	Actual Antenna- User Distance (cm)	Highest Measured SAR (mW/g 1g)
850	32.6	26.58	454.9	70.6	5.4	3	8.0	5.2	0.125
1850		24.52	283.1	32.4	7.7	4	9	5.2	0.106
2480		23.1	202.0	24.2	7	4.0	9	16.1	0.012
2412		25.9	389.0	24 9	15	7.0	12	16 1	0 295
	Freq (MHz) 850 1850 2480 2412	FreqMeasured Burst Avg Pwr (GPRS only) (dBm)85032.61850-2480-2412-	Measured Burst Avg Pwr (GPRS only) (dBm) Average Power (dBm) 850 32.6 26.58 1850 24.52 2480 23.1 2412 25.9	Measured Burst Avg Pwr (GPRS only) (dBm) Average Power (dBm) Measured Average Power (mW) 850 32.6 26.58 454.9 1850 24.52 283.1 2480 23.1 202.0 2412 25.9 389.0	Measured Burst Avg Pwr (GPRS only) (dBm) Average Power (dBm) Measured Average Power (mW) 60/F _(GHz) (mW) 850 32.6 26.58 454.9 70.6 1850 24.52 283.1 32.4 2480 2.3.1 202.0 24.2 2412 25.9 389.0 24.9	Measured Burst Avg Pwr (GPRS only) (dBm) Average Power (dBm) Measured Average Power (mW) n = (P / 60/F _{(GHz}) 850 32.6 26.58 454.9 70.6 5.4 1850 24.52 283.1 32.4 7.7 2480 23.1 202.0 24.2 7 2412 25.9 389.0 24.9 15	Measured Burst Avg Pwr (GPRS only) (dBm) Average Power (dBm) Measured Average Power (mW) n = (P / 60/F _{(GHz}) 1/2*n (cm) per FCC Procedure 850 32.6 26.58 454.9 70.6 5.4 3 1850 24.52 283.1 32.4 7.7 4 2480 23.1 202.0 24.2 7 4.0 2412 25.9 389.0 24.9 15 7.0	Measured Burst Avg (MHz)Average Power (dBm)Measured Average Power (mW)Image: Comparison of the comparison o	Measured Burst Avg (MHz)Average Power (dBm)Measured Measured Average Power (mW)n = (P / 60/F(GHz)1/2*n (cm) per FCC cmMinimum Antenna-User Separation ProcedureActual Antenna-User Distance (cm)85032.626.58454.970.65.438.05.2185024.52283.132.47.7495.2248023.1202.024.274.0916.1241225.9389.024.9157.01216.1

Note: Burst Average power for GPRS effectively results in peak power since it is the average power during the transmission slot. The average GPRS power represents the power over 8 slots.

	(5 + 1/2 Nx + 1/2 Ny)	Actual Separation	
Mode	cm	(cm)	Result
GPRS 850 MHz + WLAN Aux	12.0	5.4	SAR eval required. >5cm: Sum SAR
EVDO r0 1900 MHz + WLAN	13.0	5.4	SAR eval required. >5cm: Sum SAR

Table 3	Simultanenous	Transmitter	SAR	Req	juirements
---------	---------------	-------------	-----	-----	------------

1.4 Summation of WWAN and WLAN SAR Values

1.4.1 QDS-BRCM1030

Table 4 Applicable SAR measurements for summation of QDS-BRCM1030

Mode	Highest Measured SAR (mW/g (1g))
WWAN 850 Max SAR (GPRS 850MHz)	0.125
WWAN 1900 MHz SAR (EVDO r0 1900MHz)	0.106
WLAN MAX SAR from QDS-BRCM1030 SAR report	0.012

WWAN 850 MHz +WLAN (QDS-BRCM1030) WWAN 850 + WLAN SAR = 0.125 mW/g +0.012mW/g = 0.137 mW/g (1g)

WWAN 1900 MHz +WLAN (QDS-BRCM1030)

WWAN 1900 + WLAN SAR = 0.106 mW/g +0.012mW/g = 0.118 mW/g (1g)

1.4.2 QDS-BRCM1044

Table 5 Applicable SAR measurements for summation of QDS-BRCM1044

Mode	Highest Measured SAR (mW/g (1g))
WWAN 850 Max SAR (GPRS 850MHz)	0.125
WWAN 1900 MHz SAR (EVDO r0 1900MHz)	0.106
WLAN MAX SAR from QDS-BRCM1044 SAR report	0.295

WWAN 850 MHz +WLAN (QDS-BRCM1044) WWAN 850 + WLAN SAR = 0.125 mW/g +0.295mW/g =0.42 mW/g (1g)

WWAN 1900 MHz +WLAN (QDS-BRCM1044) WWAN 1900 + WLAN SAR = 0.106 mW/g +0.295mW/g =0.401 mW/g (1g)