6. RF Exposure

² Table 6-1 gives a summary of the expected radiation exposure levels versus

³ distance from the transmitter antenna using equation (6-1). The maximum ERP

⁴ power 1.209 W in Table 5-2 is used in evaluation of the RF exposure level.

5

1

$$S = \frac{EIRP}{4\pi D^2} = \frac{1.64ERP}{4\pi D^2}$$
(6-1)

 $_{6}$ where *S* is power density at distance *D* from the antenna. For near field,

⁷ equation (6-1) could be used as "worst case" or conservative prediction¹.

8

Table 6–1. Rl	exposure	level versus	distance
---------------	----------	--------------	----------

Distance (cm)	10	50	100
MPE (mW/cm ²)	0.962	0.038	0.010

⁹ Table 5-1 shows that the RF exposure level complies with the uncontrolled

exposure environment defined by IEEE STD C95.1. In real application, the

transmission antenna shall be mounted on a trailer roof and will be at least 2 meter apart from the ground level. In normal operation, the TUTT will be

meter apart from the ground level. In normal operation, the TUTT will be
transmitting message data for 3-5 seconds every few hours. Thus, the actual

duty cycle of the transmitter is very small and there would be no RF exposure

¹⁵ risk from this product.

16

¹ FCC OET Bulletin, No. 65, Edition 97-01, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", August 1997.