

FCC CFR47 PART 15 SUBPART C

BLUETOOTH LOW ENERGY

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/CDMA + BLUETOOTH + DTS/UNII a/b/g/n RADIO MODULE

MODEL NUMBER: QM8626

FCC ID: J9CQM8626

REPORT NUMBER: 15U19820-E2, Revision B

ISSUE DATE: AUGUST 26, 2015

Prepared for QUALCOMM TECHNOLOGIES, INC. 5775 MOREHOUSE DRIVE SAN DIEGO CA., 92121, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Issue

Rev.	Date	Revisions	Revised By
	05/08/15	Initial Issue	CHOON OOI
		Revised Antenna Gain an Setup Photo	
		Revised Duty Cycle Result on Page 39-51	
A	08/10/15	Revised KDB 558074 D01 DTS Meas Guidance v03r02 to v03r03	CHOON OOI
		Revised Section 2	
В	08/26/15	Updated Conducted Setup Picture	CHOON OOI

Page 2 of 67

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS 4
2. T	EST METHODOLOGY
3. F	ACILITIES AND ACCREDITATION5
4. C	ALIBRATION AND UNCERTAINTY
4.1.	MEASURING INSTRUMENT CALIBRATION
4.2.	SAMPLE CALCULATION
4.3.	MEASUREMENT UNCERTAINTY
5. E	QUIPMENT UNDER TEST
5.1.	DESCRIPTION OF EUT
5.2.	MAXIMUM OUTPUT POWER7
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS
5.4.	WORST-CASE CONFIGURATION AND MODE
5.5.	DESCRIPTION OF TEST SETUP9
6. T	EST AND MEASUREMENT EQUIPMENT11
7. S	JMMARY12
7. S 8. A	JMMARY12 NTENNA PORT TEST RESULTS
 7. S 8. A 8.1. 	JMMARY
 7. S 8. A 8.1. 8.2. 	JMMARY
 7. S 8. A 8. 1. 8. 2. 8. 3. 	JMMARY
 7. S 8. A 8. 1. 8. 2. 8. 3. 8. 4. 	JMMARY
 7. S 8. A 8.1. 8.2. 8.3. 8.4. 8.5. 	JMMARY12NTENNA PORT TEST RESULTS126 dB BANDWIDTH1399% BANDWIDTH17OUTPUT POWER21AVERAGE POWER25POWER SPECTRAL DENSITY26
 7. S 8. A 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 	JMMARY12NTENNA PORT TEST RESULTS126 dB BANDWIDTH1399% BANDWIDTH17OUTPUT POWER21AVERAGE POWER25POWER SPECTRAL DENSITY26CONDUCTED SPURIOUS EMISSIONS30
 7. S 8. A 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 9. R 	JMMARY12NTENNA PORT TEST RESULTS126 dB BANDWIDTH1399% BANDWIDTH17OUTPUT POWER21AVERAGE POWER25POWER SPECTRAL DENSITY26CONDUCTED SPURIOUS EMISSIONS30ADIATED TEST RESULTS37
 7. S 8. A 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 9. R 9.1. 	JMMARY12NTENNA PORT TEST RESULTS126 dB BANDWIDTH1399% BANDWIDTH17OUTPUT POWER21AVERAGE POWER25POWER SPECTRAL DENSITY26CONDUCTED SPURIOUS EMISSIONS30ADIATED TEST RESULTS37LIMITS AND PROCEDURE37
 7. S 8. A 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 9. R 9.1. 9.2. 	JMMARY12NTENNA PORT TEST RESULTS126 dB BANDWIDTH1399% BANDWIDTH17OUTPUT POWER21AVERAGE POWER25POWER SPECTRAL DENSITY26CONDUCTED SPURIOUS EMISSIONS30ADIATED TEST RESULTS37LIMITS AND PROCEDURE37TRANSMITTER ABOVE 1 GHz39
 7. S 8. A 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 9. R 9.1. 9.2. 9.3. 	JMMARY12NTENNA PORT TEST RESULTS126 dB BANDWIDTH1399% BANDWIDTH17OUTPUT POWER21AVERAGE POWER25POWER SPECTRAL DENSITY26CONDUCTED SPURIOUS EMISSIONS30ADIATED TEST RESULTS37LIMITS AND PROCEDURE37TRANSMITTER ABOVE 1 GHz39WORST-CASE BELOW 1 GHz52
 7. S 8. A 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 9. R 9.1. 9.2. 9.3. 10. 	JMMARY12NTENNA PORT TEST RESULTS126 dB BANDWIDTH1399% BANDWIDTH17OUTPUT POWER21AVERAGE POWER25POWER SPECTRAL DENSITY26CONDUCTED SPURIOUS EMISSIONS30ADIATED TEST RESULTS37LIMITS AND PROCEDURE37TRANSMITTER ABOVE 1 GHz39WORST-CASE BELOW 1 GHz55AC POWER LINE CONDUCTED EMISSIONS55

Page 3 of 67

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: QUALCOMM TECHNOLOGIES, INC.				
EUT DESCRIPTION: GSM/WCDMA/CDMA + BLUETOOTH + DTS/UNII a/b/g/n RA MODULE				
MODEL: QM8626				
SERIAL NUMBER: N10KRK5FL				
DATE TESTED: JANUARY 28 – APRIL 13, 2015				
	APPLICABLE STANDARDS			
STANDARD TEST RESULTS				
CFR 47 Part 15 Subpart C Pass				

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

CHOON OOI PROJECT LEAD UL Verification Services Inc.

CHARLES VERGONIO WISE LAB ENGINEER UL Verification Services Inc.

Page 4 of 67

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)
	Chamber G(IC: 2324B-7)
	Chamber H(IC: 2324B-8)

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Page 5 of 67

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 26000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 67

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/CDMA + BLUETOOTH + DTS/UNII a/b/g/n RADIO MODULE.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency	Mode	Output Power	Output Power	
Range		(dBm)	(mW)	
(MHz)				
2402-2480	BLE	1.96	1.57	

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an antenna, with a maximum gain of 1.7 dBi.

Page 7 of 67

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Page 8 of 67

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
Laptop	N/A	N/A	N/A	N/A			

I/O CABLES

I/O Cable List							
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	DC Power	1	Mini-USB	Shielded	1.2m	N/A	
2	Audio	1	Mini-Jack	Unshielded	1m	N/A	

TEST SETUP

The EUT is a stand-alone unit during the tests. Test software exercised the radio card.

Page 9 of 67

SETUP DIAGRAM FOR TESTS

Page 10 of 67

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement	equipment was utilized	I for the tests documented in this report:
------------------------------------	------------------------	--

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Due		
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	C01171	02/13/16		
Antenna, Horn, 18GHz	EMCO	3115	C00783	10/25/15		
Antenna, Horn, 25.5 GHz	ARA	MWH-1826/B	C00980	11/14/15		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	01/28/16		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	10/22/15		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/20/15		
CBT Bluetooth Tester	R & S	CBT	None	07/12/15		
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/15		
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/15		
LISN, 30 MHz	FCC	50/250-25-2	C00626	01/14/16		
Reject Filter, 2.4GHz	Micro-Tronics	BRM50702	N02684	CNR		

Test Software List					
Description Manufacturer Model Version					
Radiated Software	UL	UL EMC	Version 9.5, 07/22/14		
Conducted Software	UL	UL EMC	Version 9.5, 05/17/14		
CLT Software	UL	UL RF	Version 1.0, 02/02/15		
Antenna Port Software	UL	UL RF	Version 2.1.1.1, 1/20/15		

Page 11 of 67

7. SUMMARY

8.

FCC Part Section	Test Description	Test Limit	Test Condition	Test Result	Worst Case
15.247 (a)(2)	Occupied Band width (6dB)	>500KHz		Pass	0.679 MHz
2.1051, 15.247 (d)	Band Edge / Conducted Spurious Emission	-20dBc	Conducted	Pass	-43.01dBm
15.247	TX conducted output power	<30dBm		Pass	1.96dBm
15.247	PSD	<8dBm		Pass	-5.62dBm
15.207 (a)	AC Power Line conducted emissions	Section 10	Padiatad	Pass	56.77dBuV(PK)
15.205, 15.209	Radiated Spurious Emission	< 54dBuV/m	Radiated	Pass	42.48 dBuV/m

Page 12 of 67

ANTENNA PORT TEST RESULTS 8.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.6820	0.5
Middle	2440	0.6790	0.5
High	2480	0.6800	0.5

Page 13 of 67

6 dB BANDWIDTH PLOTS

LOW CHANNEL

Page 14 of 67

MID CHANNEL

Page 15 of 67

HIGH CHANNEL

Page 16 of 67

8.2. 99% **BANDWIDTH**

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Reference to KDB558074 D01 DTS Meas Guidance v03r03: The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0063
Middle	2440	1.1012
High	2480	1.0290

Page 17 of 67

99% BANDWIDTH PLOTS

LOW CHANNEL

* Agilent	R T	Freq/Channel
Ch Freq 2.402 GHz Occupied Bandwidth	Trig Free	Center Freq 2.40200000 GHz
		Start Freq 2.40050000 GHz
Ref 36.5 dBm Atten 40 dB #Samp		Stop Freq 2.40350000 GHz
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CF Step 300.000000 kHz <u>Auto Man</u>
dB Center 2.402 000 GHz	Span 3 MHz	Freq Clfset 0.00000000 Hz
#Res BW 30 kHz #VBW 91 kHz Sweep 10.07 ms	(1001 pts)	Signal Track
Occupied Bandwidth Occ BW % Pwr 1.0063 MHz × dB	99.00 % -20.00 dB	On <u>Cif</u>
Transmit Freq Error62.862 kHzx dB Bandwidth1.037 MHz*		
Copyright 2000-2011 Agilent Technologies		

Page 18 of 67

MID CHANNEL

Page 19 of 67

HIGH CHANNEL

Page 20 of 67

8.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using KDB558074 D01 DTS Meas Guidance v03r03 under section 9.1.1 utilizing spectrum analyze.

RESULTS

Channel	Frequency	Peak Power	Limit	Margin
		Reading		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	1.900	30	-28.100
Middle	2440	1.960	30	-28.040
High	2480	0.590	30	-29.410

Page 21 of 67

OUTPUT POWER PLOTS

LOW CHANNEL

🔆 Agile	ent 11:45:37 I	May 21, 201	5			F	R T	Freq/Channel
Ref 20 di #Peak	Bm	Atten 20 d	B		Mk	r1 2.401 805 1.90	5 GHz) dBm	Center Freq 2.40200000 GHz
Log 10 dB/ Offst			1 \$					Start Freq 2.40050000 GHz
10.8 dB								Stop Freq 2.40350000 GHz
#PAvg								CF Step 300.000000 kHz <u>Auto Man</u>
V1 S2 S3 FC AA								Freq Clfset 0.00000000 Hz
¤(f): – FTun Swp –								Signal Track ^{On <u>Cif</u>}
Center 2 #Res BW	.402 000 GHz / 3 MHz		#VBW 3 N	 /Hz	Swee	Span p 1 ms (1001	3 MHz pts)	
Copyright	t 2000-2010 Ag	gilent Techno	ologies					

Page 22 of 67

MID CHANNEL

🔆 Agiler	nt 11:47:16	May 21, 2015				F	₹ T	Freq/Channel
Ref 20 dB #Peak	im	Atten 20 dB			Mkr1 2.	439 997 1.96	GHz dBm	Center Freq 2.44000000 GHz
Log 10 dB/ Offst		_						Start Freq 2.43850000 GHz
10.8 dB								Stop Freq 2.44150000 GHz
#PAvg								CF Step 300.000000 kHz <u>Auto Man</u>
V1 S2 S3 FC AA								Freq Clfset 0.00000000 Hz
¤(f): FTun Swp								Signal Track ^{On <u>Cif</u>}
Center 2.4 #Res BW	 440 000 GHz 3 MHz	#	VBW 3 MH2	z Sw	veep 1 m	Span 1s (1001	3 MHz pts)	
Copyright 3	2000-2010 A	gilent Technolo	gies					

Page 23 of 67

🔆 Agile	nt 11:50:33	May 21, 201	5			F	R T	Freq/Channel
Ref 20 dB #Peak	3m	Atten 20 d	B		Mkr1 2	2.479 892 0.59	2 GHz 9 dBm	Center Freq 2.48000000 GHz
Log 10 dB/ Offst			1 \$					Start Freq 2.47850000 GHz
10.8 dB								Stop Freq 2.48150000 GHz
#PAvg								CF Step 300.000000 kHz <u>Auto Man</u>
M1 S2 S3 FC AA								Freq Olfset 0.00000000 Hz
¤(f): FTun Swp								Signal Track ^{On <u>Cif</u>}
Center 2. #Res BW	480 000 GHz 3 MHz		#VBW 3 M	Hz	Sweep 1 r	Spar ns (1001	3 MHz pts)	
Copyright	2000-2010 A	gilent Techno	ologies					

Page 24 of 67

8.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	0.6
Middle	2440	0.95
High	2480	-1.95

Page 25 of 67

8.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Power Spectral Density was performed utilizing the "Method PKPSD (Peak PSD)" under KDB558074 D01 DTS Meas Guidance v03r03

RESULTS

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-5.89	8	-13.89
Middle	2440	-5.62	8	-13.62
High	2480	-10.78	8	-18.78

Page 26 of 67

POWER SPECTRAL DENSITY PLOTS

LOW CHANNEL

Page 27 of 67

MID CHANNEL

Page 28 of 67

HIGH CHANNEL

Page 29 of 67

8.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

Page 30 of 67

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

LOW CHANNEL BANDEDGE

Page 31 of 67

LOW CHANNEL SPURIOUS

Page 32 of 67

SPURIOUS EMISSIONS, MID CHANNEL

MID CHANNEL REFERENCE

Page 33 of 67

Page 34 of 67

SPURIOUS EMISSIONS, HIGH CHANNEL

HIGH CHANNEL BANDEDGE

Page 35 of 67

HIGH CHANNEL SPURIOUS

Page 36 of 67

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range	Field Strength Limit	Field Strength Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4 - 2009. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and add duty cycle factor for average measurements. Duty cycle factor = $10 \log (1/x)$. For this sample: DCF = $10 \log (1/0.620) = 2.076$ dB

(Spectrum Analyzer round it up to 2.1dB)

Page 37 of 67

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 38 of 67

9.2. TRANSMITTER ABOVE 1 GHz RESTRICTED BANDEDGE (LOW CHANNEL)

HORIZONTAL PEAK AND AVERAGE PLOT

HORIZONTAL DATA	Α
-----------------	---

Marker	Frequency	Meter	Det	AF T119	Amp/Cbl/Flt	DC Corr (dB)	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	r/Pad (dB)		Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)	(dBuV/m)						
1	* 2.39	40.47	PK	32	-23.1	0	49.37	-	-	74	-24.63	105	396	н
2	* 2.384	43.49	PK	32	-23.1	0	52.39	-	-	74	-21.61	105	396	Н
3	* 2.39	30.73	RMS	32	-23.1	2.1	41.73	54	-12.27	-	-	105	396	Н
4	* 2.381	31.23	RMS	31.9	-23.1	2.1	42.13	54	-11.87	-	-	105	396	Н

Page 39 of 67

VERTICAL PEAK AND AVERAGE PLOT

VERTICAL DATA

Marker	Frequency	Meter	Det	AF T119	Amp/Cbl/Flt	DC Corr (dB)	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	r/Pad (dB)		Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)	(dBuV/m)						
1	* 2.39	41.78	PK	32	-23.1	0	50.68	-	-	74	-23.32	276	127	V
2	* 2.325	43	PK	31.7	-23.1	0	51.6	-	-	74	-22.4	276	127	V
3	* 2.39	30.52	RMS	32	-23.1	2.1	41.52	54	-12.48	-	-	276	127	V
4	* 2.372	31.37	RMS	31.9	-23.1	2.1	42.27	54	-11.73	-	-	276	127	V

Page 40 of 67

AUTHORIZED BANDEDGE (HIGH CHANNEL)

HORIZONTAL PEAK AND AVERAGE PLOT

HORIZONTAL DATA

Marker	Frequency	Meter	Det	AF T119	Amp/Cbl/Flt	DC Corr (dB)	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	r/Pad (dB)		Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)	(dBuV/m)						
1	* 2.484	40.22	PK	32.3	-22.8	0	49.72	-	-	74	-24.28	165	152	н
3	* 2.484	30.55	RMS	32.3	-22.8	2.1	42.15	54	-11.85	-	-	165	152	н
4	2.527	31.07	RMS	32.4	-22.7	2.1	42.87	54	-11.13	-		165	152	Н
2	2.557	42.68	PK	32.4	-22.7	0	52.38	-	-	74	-21.62	165	152	Н

Page 41 of 67

VERTICAL PEAK AND AVERAGE PLOT

Marker	Frequency	Meter	Det	AF T119	Amp/Cbl/Flt	DC Corr (dB)	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	r/Pad (dB)		Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)	(dBuV/m)						
1	* 2.484	39.67	PK	32.3	-22.8	0	49.17	-	-	74	-24.83	304	100	V
3	* 2.484	30.58	RMS	32.3	-22.8	2.1	42.18	54	-11.82	-	-	304	100	V
2	2.526	43.03	PK	32.4	-22.7	0	52.73	-	-	74	-21.27	304	100	V
4	2.559	31.09	RMS	32.4	-22.7	2.1	42.89	54	-11.11	-	-	304	100	V

VERTICAL DATA

Page 42 of 67

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL HORIZONTAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 43 of 67

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 44 of 67

LOW CHANNEL DATA

TRACE MARKERS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Fltr /Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.292	34.09	PK	29.8	-23.8	0	40.09	-	-	74	-33.91	0-360	100	н
2	* 1.332	35.18	PK	29.5	-23.8	0	40.88	-	-	74	-33.12	0-360	100	V
5	* 4.56	31.69	PK	33.8	-30.9	0	34.59	-	-	74	-39.41	0-360	200	н
6	* 4.026	32.02	PK	33.2	-31.5	0	33.72	-	-	74	-40.28	0-360	100	н
3	* 3.596	32.99	PK	32.8	-31.7	0	34.09	-	-	74	-39.91	0-360	200	V
4	4.401	30.86	PK	33.6	-30	0	34.46	-	-	-	-	0-360	200	V

PK - Peak detector

RADIATED EMISSIONS

Frequenc	Meter	Det	AF T119	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak	PK Margin	Azimuth	Height	Polarity
У	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	(dBuV/m)	(dB)	Limit	(dB)	(Degs)	(cm)	
(GHz)	(dBuV)			(dB)		(dBuV/m)			(dBuV/m)				
* 1.332	43.21	PK2	29.5	-23.8	0	48.91	-	-	74	-25.09	265	308	V
* 1.331	31.36	MAv1	29.5	-23.8	2.1	39.16	54	-14.84	-	-	265	308	V
* 3.594	42.67	PK2	32.8	-31.7	0	43.77	-	-	74	-30.23	0	137	V
* 3.594	30.81	MAv1	32.8	-31.7	2.1	34.01	54	-19.99	-	-	0	137	V

FCC Part15 Subpart C T186 2400MHz Spurious Emissions.TST 12746Rev 9.5 12 Jun 2013

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 45 of 67

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 46 of 67

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 47 of 67

REPORT NO: 15U19820-E2B MODEL NUMBER: QM8626

MID CHANNEL DATA

TRACE MARKERS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Fltr /Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	* 1.35	34.17	PK	29.3	-23.8	0	39.67	-	-	74	-34.33	0-360	200	н
1	* 1.332	35.65	PK	29.5	-23.8	0	41.35	-	-	74	-32.65	0-360	200	V
2	* 1.598	35.22	PK	28	-23.4	0	39.82	-	-	74	-34.18	0-360	100	V
6	* 3.683	31.7	PK	33	-30.7	0	34	-	-	74	-40	0-360	100	н
4	* 3.584	33.54	PK	32.8	-31.6	0	34.74	-	-	74	-39.26	0-360	100	V
5	* 4.123	31.9	РК	33.3	-31	0	34.2	-	-	74	-39.8	0-360	200	V

PK - Peak detector

RADIATED EMISSIONS

Frequenc	Meter	Det	AF T119	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak	PK Margin	Azimuth	Height	Polarity
У	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	(dBuV/m)	(dB)	Limit	(dB)	(Degs)	(cm)	
(GHz)	(dBuV)			(dB)		(dBuV/m)			(dBuV/m)				
* 1.332	43.56	PK2	29.5	-23.8	0	49.26	-	-	74	-24.74	265	308	V
* 1.33	31.31	MAv1	29.5	-23.8	2.1	39.11	54	-14.89	-	-	265	308	V
* 3.586	44.15	PK2	32.8	-31.6	0	45.35	-	-	74	-28.65	0	137	V
* 3.586	31.27	MAv1	32.8	-31.6	2.1	34.57	54	-19.43	-	-	0	137	V

FCC Part15 Subpart C T186 2400MHz Spurious Emissions.TST 12746Rev 9.5 12 Jun 2013

Page 48 of 67

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 49 of 67

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 50 of 67

HIGH CHANNEL DATA

TRACE MARKERS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Fltr /Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.273	33.79	PK	29.6	-23.8	0	39.59	-	-	74	-34.41	0-360	100	н
2	* 1.22	34.33	PK	29.1	-23.8	0	39.63	-	-	74	-34.37	0-360	200	V
4	* 3.685	31.48	PK	33	-30.7	0	33.78	-	-	74	-40.22	0-360	100	н
5	* 4.683	31.62	PK	34	-30.7	0	34.92	-	-	74	-39.08	0-360	100	н
3	* 3.598	35.24	PK	32.8	-31.7	0	36.34	-	-	74	-37.66	0-360	100	V
6	* 4.125	31.73	PK	33.3	-31	0	34.03	-	-	74	-39.97	0-360	200	V

PK - Peak detector

RADIATED EMISSIONS

Frequenc	Meter	Det	AF T119	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak	PK Margin	Azimuth	Height	Polarity
У	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	(dBuV/m)	(dB)	Limit	(dB)	(Degs)	(cm)	
(GHz)	(dBuV)			(dB)		(dBuV/m)			(dBuV/m)				
* 3.598	44.79	PK2	32.8	-31.7	0	45.89	-	-	74	-28.11	0	137	V
* 3.597	32.82	MAv1	32.8	-31.7	2.1	36.02	54	-17.98	-	-	0	137	V

FCC Part15 Subpart C T186 2400MHz Spurious Emissions.TST 12746Rev 9.5 12 Jun 2013

Page 51 of 67

9.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

HORIZONTAL PLOT

Page 52 of 67

VERTICAL PLOT

Page 53 of 67

BELOW 1 GHz TABLE

Marker	Frequency	Meter	Det	AF T185	Amp/Cbl	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)	(dB/m)	Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
1	30.0425	42.24	PK	21.8	-27.5	36.54	40	-3.46	0-360	300	Н
2	33.1875	45.07	РК	19.4	-27.5	36.97	40	-3.03	0-360	300	н
4	33.5275	49.79	РК	19.1	-27.5	41.39	40	1.39	0-360	100	V
3	35.3125	51.29	РК	17.8	-27.5	41.59	40	1.59	0-360	100	V
7	36.205	51.5	РК	17.1	-27.4	41.2	40	1.2	0-360	100	V
5	153.2925	48.29	PK	12.1	-26.3	34.09	43.52	-9.43	0-360	200	Н
6	676	36.34	РК	19.3	-25.3	30.34	46.02	-15.68	0-360	100	V

PK - Peak detector

FCC Part 15 Subpart C 30-1000MHz.TST 30915 9 Jul 2013 Rev 9.5 12 Jun 2013

Radiated Emissions

Frequency (MHz)	Meter Reading (dBuV)	Det	AF T185 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
33.5275	45.41	QP	19.1	-27.5	37.01	40	-2.99	175	100	V
35.3125	32.71	QP	17.8	-27.5	23.01	40	-16.99	357	274	V
36.205	44.56	QP	17.1	-27.4	34.26	40	-5.74	237	100	V

QP - Quasi-Peak detector

FCC Part 15 Subpart C 30-1000MHz.TST 39763 12 Jun 2014

Rev 9.5 22 Jul 2014

Page 54 of 67

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 "		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4 - 2009

RESULTS

<u>6 WORST EMISSIONS</u>

LINE 1 PLOT

LINE 1 RESULTS

Range 1: Line-L1 .15 - 30MHz										
Marker	Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin
	(MHz)	Reading			1&3	Reading	Class B QP	(dB)	Class B	(dB)
		(dBuV)				dBuV			Avg	
1	.456	53.38	Pk	.4	0	53.78	56.77	-2.99		
2	.447	41.43	Av	.4	0	41.83	-	-	46.93	-5.1
3	.519	47.99	Pk	.3	0	48.29	56	-7.71		
4	.5055	35.5	Av	.3	0	35.8	-	-	46	-10.2
5	.816	46.39	Pk	.3	0	46.69	56	-9.31		
6	.816	34.29	Av	.3	0	34.59	-	-	46	-11.41
7	1.014	46.22	Pk	.2	0	46.42	56	-9.58		
8	1.0275	35.09	Av	.2	0	35.29	-	-	46	-10.71
9	12.3045	45.68	Pk	.2	.2	46.08	60	-13.92		-
10	12.291	34.4	Av	.2	.2	34.8	-	-	50	-15.2
11	13.083	45.31	Pk	.2	.2	45.71	60	-14.29		
12	13.0245	33.15	Av	.2	.2	33.55	-	-	50	-16.45

LINE 2 PLOT

LINE 2 RESULTS

Range 2: Line-L2 .15 - 30MHz										
Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CISPR 22	Margin	CISPR 22	Margin
	(MHz)	Reading			2&3	Reading	Class B QP	(dB)	Class B	(dB)
		(dBuV)				dBuV			Avg	
13	.438	51.44	Pk	.4	0	51.84	57.1	-5.26		
14	.4335	39.22	Av	.4	0	39.62	-	-	47.19	-7.57
15	1.0995	45.27	Pk	.3	.1	45.67	56	-10.33		
16	1.086	34.53	Av	.3	0	34.83	-	-	46	-11.17
17	.8385	45.05	Pk	.3	.1	45.45	56	-10.55		
18	.861	33.58	Av	.3	0	33.88	-	-	46	-12.12
19	12.822	44.76	Pk	.2	.2	45.16	60	-14.84		
20	12.822	33.27	Av	.2	.2	33.67	-	-	50	-16.33
21	24.2475	38.33	Pk	.3	.3	38.93	60	-21.07		
22	24.252	26.89	Av	.3	.3	27.49	-	-	50	-22.51