

Report No.: FR1N1011F

FCC RADIO TEST REPORT

FCC ID : J9CQCARD7280N2

Equipment : QCARD7280 Brand Name : Qualcomm

Model Name : QCARD7280N2

Applicant : Qualcomm Technologies, Inc.

5775 Morehouse Drive, San Diego, California 92121, United State

Manufacturer : Qualcomm Semiconductor Limited

No. 16-1 Zhanye 2nd Rd. East District

Hsinchu City, 300091 (Taiwan)

Standard : FCC Part 15 Subpart E §15.407

The product was received on Feb. 16, 2022 and testing was performed from Mar. 17, 2022 to Aug. 15, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

Louis Win

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868 Page Number : 1 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

Table of Contents

			_
	-	f this test report	
Su	mmar	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	10
	2.3	Connection Diagram of Test System	12
	2.4	Support Unit used in test configuration and system	12
	2.5	EUT Operation Test Setup	12
	2.6	Measurement Results Explanation Example	13
3	Test	Result	14
	3.1	26dB & 99% Occupied Bandwidth Measurement	14
	3.2	Maximum conducted Output Power and Fundamental Maximum EIRP Measurement	21
	3.3	Fundamental Power Spectral Density Measurement	
	3.4	In-Band Emissions (Channel Mask)	
	3.5	Contention Based Protocol	
	3.6	Unwanted Emissions Measurement	
	3.7	Antenna Requirements	191
4	List o	of Measuring Equipment	193
5	Unce	rtainty of Evaluation	195
Aр	pendi	x A. Conducted Test Results	
Аp	pendi	x B. Conducted Spurious Emission	
_			

Appendix C. Conducted Spurious Emission Plots

Appendix D. Cabinet Radiated Spurious Emission

Appendix E. Cabinet Radiated Spurious Emission Plots

Appendix F. Radiated Spurious Emission

Appendix G. Radiated Spurious Emission Plots

Appendix H. Duty Cycle Plots

Appendix I. Setup Photographs

TEL: 886-3-327-0868 Page Number : 2 of 195 FAX: 886-3-327-0855 : Sep. 12, 2022 Issue Date

Report Template No.: BU5-FR15EWLAC MA Version 2.4

: 02 Report Version

Report No.: FR1N1011F

History of this test report

Report No.: FR1N1011F

Report No.	Version	Description	Issue Date
FR1N1011F	01	Initial issue of report	Aug. 16, 2022
FR1N1011F	02	 Add standard for Standard Client in Summary of Test Result Add description of test mode in section 2.2. Revise brand name, antenna Information and appendix C2, C4 	Sep. 12, 2022

TEL: 886-3-327-0868 Page Number : 3 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

Summary of Test Result

Report No.: FR1N1011F

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.403(i) 15.407(a)(10)	26dB Emission Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.407(a)(8) 15.407(a)(7)	Maximum Conducted Output Power	Reporting only	-
3.2	15.407(a)(8) 15.407(a)(7)	Fundamental Maximum EIRP	Pass	-
3.3	15.407(a)(8) 15.407(a)(7)	Fundamental Power Spectral Density	Pass	-
3.4	15.407(b)(6)	In-Band Emissions (Channel Mask)	Pass	-
3.5	15.407(d)(6)	Contention Based Protocol	Pass	-
3.6	15.407(b)	Unwanted Emissions	Pass	0.55 dB under the limit at 8226.000 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.7	15.203 15.407(a)	Antenna Requirement	Pass	-

Note: Not required means after assessing, test items are not necessary to carry out.

Declaration of Conformity:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
 It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Avis Chuang Report Producer: Ruby Zou

TEL: 886-3-327-0868 Page Number : 4 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

1 General Description

1.1 Product Feature of Equipment Under Test

WCDMA/LTE/5G NR, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, and Wi-Fi 6GHz 802.11a/n/ac/ax.

Report No.: FR1N1011F

				Antenna Inf				
Antenna Set	RF Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency Range (MHz)	Ant. Type	Connector Type	Cable Length (mm)
				3.53	2.4~2.4835 GHz			300mm
				3.06	5.15~5.25 GHz			
Α	Chain0/1	HONG BO	260-25094	3.07	5.25~5.35 GHz	PIFA	i-pex (MHF 4L)	
				4.81	5.47~5.725 GHz		(
				4.2	5.725~5.850 GHz			
				5.09	5.850~5.895 GHz		i-pex (MHF 4L)	300mm
	Chain0/1	HONG BO	260-25083	5.14	5.925~6.425 GHz	PIFA		
В				5.09	6.425~6.525 GHz			
				5.16	6.525~6.875 GHz			
				5.12	6.875~7.125 GHz			
				3.22	2.4~2.4835 GHz	- - -		
				3.35	5.15~5.25 GHz			
				3.42	5.25~5.35 GHz			
				4.77	5.47~5.725 GHz			
С	Chain0/1	HONG	260-25084	4.72	5.725~5.850 GHz	Mananala	i-pex	200mm
C	Chamo/ i	ВО	200-25064	4.71	5.850~5.895 GHz	Monopole	(MHF 4L)	20011111
				4.75	5.925~6.425 GHz			
				4.29	6.425~6.525 GHz			
				4.81	6.525~6.875 GHz			
				4.74	6.875~7.125 GHz			

Remark:

- 1. Ant. 5 means Chain 0 and Ant. 4 means Chain 1.
- 2. The maximum gain was chosen for test.
- 3. The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

TEL: 886-3-327-0868 Page Number : 5 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
Test Site No.	DF02-HY (TAF Code: 1190)
Remark	The Contention Based Protocol test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory

Report No.: FR1N1011F

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No. TH05-HY, 03CH15-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 987594 D02 U-NII 6 GHz EMC Measurement v01
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-0868 Page Number : 6 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Report No.: FR1N1011F

2.1 Carrier Frequency and Channel

BW 20M	Channel	2	1	5	9	13	17	21	25	29	
DVV ZUIVI	Freq. (MHz)	5935	5955	5975	5995	6015	6035	6055	6075	6095	
BW 40M	Channel	3			11		19		27		
DVV 40IVI	Freq. (MHz)	5965			6005		6045		6085		
BW 80M	Channel			7				2	3		
DAA QOIAI	Freq. (MHz)			598	35	5 60				065	
BW 160M	Channel					15	15				
DAA LOOIAI	Freq. (MHz)					602	25				

BW 20M	Channel	33	37	41	45	49	53	57	61	
DVV ZUIVI	Freq. (MHz)	6115	6135	6155	6175	6195	6215	6235	6255	
BW 40M	Channel	35		43		51		59		
DVV 4UIVI	Freq. (MHz)	61	25	61	65	62	05	62	45	
BW 80M	Channel		3	9		55				
DAA OOIAI	Freq. (MHz)		61	45		62	225			
BW 160M	Channel	47								
DAA LOOM	Freq. (MHz)				61	85				

TEL: 886-3-327-0868 Page Number : 7 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

Channel

Freq. (MHz)

BW 160M

BW 20M	Channel	65	69	73	77	81	85	89	93	
	Freq. (MHz)	6275	6295	6315	6335	6355	6375	6395	6415	
BW 40M	Channel	6	7	7	75		83		91	
BW 40III	Freq. (MHz)	62	85	63:	25	636	6365 6405			
BW 80M	Channel		7	1			8	7		
DVV OOIVI	Freq. (MHz)		63	05			63	85		
BW 160M	Channel				7	9				
DAA LOOIAL	Freq. (MHz)				63	45				
	Channel	97	101	105	109	113	117	121	125	
BW 20M	Freq. (MHz)	6435	6455	6475	6495	6515	6535	6555	6575	
	Channel		9)7	11		12		
BW 40M	Freq. (MHz)		45		·85					
	Channel)3		6525 6			6565	
BW 80M	Freq. (MHz)					6545				
	Channel	6465 6545 111								
BW 160M	Freq. (MHz)									
	rieq. (MITIZ)	6505								
BW 20M	Channel	129	133	137	141	145	149	153	157	
DVV ZOIVI	Freq. (MHz)	6595	6615	6635	6655	6675	6695	6715	6735	
BW 40M	Channel	13	31	13	39	14	7	155		
DVV 40IVI	Freq. (MHz)			6645		6685 6725				
	1 10q1 (IIII 12)	66	05	66	45	668	35	672	25	
DW OUN	Channel	66	05 13		45	668	35 15		25	
BW 80M	,	66		35	45	668		51	25	
	Channel	66	13	35	45 14		15	51	25	
BW 80M	Channel Freq. (MHz)	66	13	35		13	15	51	25	
BW 160M	Channel Freq. (MHz) Channel Freq. (MHz)		13 66	35 25	14 66	13 65	15 67	05		
	Channel Freq. (MHz) Channel	161 6755	13	35	14	13	15	51	189 6895	
BW 160M	Channel Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz)	161 6755	165 165	169 6795	14 66 173	13 65 177	15 67 181 6855	05 185	189 6895	
BW 160M	Channel Freq. (MHz) Channel Freq. (MHz) Channel	161 6755	165 6775	169 6795	14 66 173 6815	13 65 177 6835	15 67 181 6855 79	185 6875	189 6895	
BW 160M BW 20M BW 40M	Channel Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz)	161 6755	165 6775 63	169 6795	14 66 173 6815	13 65 177 6835	15 67 181 6855 79	185 6875 18 68	189 6895	
BW 160M	Channel Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz) Channel	161 6755	165 6775 63 65	169 6795	14 66 173 6815	13 65 177 6835	15 67 181 6855 79	185 6875 18 6833	189 6895	

Report No. : FR1N1011F

TEL: 886-3-327-0868 Page Number : 8 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

175

6825

_										
BW 20M	Channel	193	197	201	205	209	213	217	221	
DVV ZUIVI	Freq. (MHz)	6915 6935		6955	6975	6995	7015	7035	7055	
BW 40M	Channel	19	95	2	203		211		219	
DVV 40IVI	Freq. (MHz)	69	25	69	65	70	05	7045		
BW 80M	Channel		19	99				215		
DAA OOIAI	Freq. (MHz)		69	45	7025			25		
DW 160M	Channel	207								
DAA LOOM	Freq. (MHz)				69	985				
	Channel		225					000		
BW 20M	Citatillei		223		229			233		
	Frog (MHz)		7075		7005			7115		

Report No. : FR1N1011F

BW 20M	Channel	225	229	233
DVV ZUIVI	Freq. (MHz)	7075	7095	7115
BW 40M	Channel		227	
DVV 4UIVI	Freq. (MHz)		7085	

TEL: 886-3-327-0868 Page Number : 9 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

2.2 Test Mode

The 242-tone RU is covered by 20MHz channel, 484-tone RU is covered by 40MHz channel and 996-tone RU is covered by 80MHz channel.

The 802.11n/ac mode has no higher power and PSD than 802.11ax mode, thus the 802.11ax mode is chosen as main test configuration, and the 802.11n/ac mode is verified the power.

Report No.: FR1N1011F

The final test modes include the worst data rates for each modulation shown in the table below.

<Indoor Client>

Modulation	Data Rate		
802.11a	6Mbps		
802.11n HT20 (Covered by HE20)	MCS0		
802.11n HT40 (Covered by HE40)	MCS0		
802.11ac VHT20 (Covered by HE20)	MCS0		
802.11ac VHT40 (Covered by HE40)	MCS0		
802.11ac VHT80 (Covered by HE80)	MCS0		
802.11ac VHT160 (Covered by HE160)	MCS0		
802.11ax HE20	MCS0		
802.11ax HE40	MCS0		
802.11ax HE80	MCS0		
802.11ax HE160	MCS0		

<Standard Client>

Modulation	Data Rate
802.11a	6Mbps
802.11n HT20 (Covered by HE20)	MCS0
802.11n HT40 (Covered by HE40)	MCS0
802.11ac VHT20 (Covered by HE20)	MCS0
802.11ac VHT40 (Covered by HE40)	MCS0
802.11ac VHT80 (Covered by HE80)	MCS0
802.11ac VHT160 (Covered by HE160)	MCS0
802.11ax HE20	MCS0
802.11ax HE40	MCS0
802.11ax HE80	MCS0
802.11ax HE160	MCS0

Remark: The conducted power level of each chain in MIMO mode is equal or higher than SISO mode.

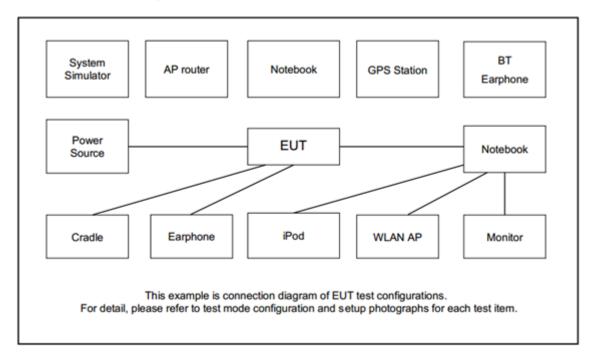
TEL: 886-3-327-0868 Page Number : 10 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

Ch. #		UNII-5 (5925-6425 MHz)	UNII-6 (6425-6525 MHz)	UNII-7 (6525-6875 MHz)	UNII-8 (6875-7125 MHz)
		802.11a	802.11a	802.11a	802.11a
L	Low	002, 001	097	117	-
M	Middle	045	105	149	209
н	High	093	113	181	229, 233
Straddle		-	-	185	-

Report No.: FR1N1011F

	Ch. #	UNII-5 (5925-6425 MHz)	UNII-6 (6425-6525 MHz)	UNII-7 (6525-6875 MHz)	UNII-8 (6875-7125 MHz)
		802.11ax HE20	802.11ax HE20	802.11ax HE20	802.11ax HE20
L	Low	002, 001	097	117	-
M	Middle	045	-	-	-
Н	High	093	-	-	229, 233

	Ch. #	UNII-5 (5925-6425 MHz)	UNII-6 (6425-6525 MHz)	UNII-7 (6525-6875 MHz)	UNII-8 (6875-7125 MHz)
		802.11ax HE40	802.11ax HE40	802.11ax HE40	802.11ax HE40
L	Low	003	099	123	-
М	Middle	-	-	-	-
Н	High	-	-	-	227


	Ch. #	UNII-5 (5925-6425 MHz)	UNII-6 (6425-6525 MHz)	UNII-7 (6525-6875 MHz)	UNII-8 (6875-7125 MHz)	
		802.11ax HE80	802.11ax HE80	802.11ax HE80	802.11ax HE80	
L	Low	007		135	-	
M	Middle	-	103	-	-	
Н	High	-		-	215	

Ch. #		UNII-5 (5925-6425 MHz)	UNII-6 UNII-7 MHz) (6425-6525 MHz) (6525-6875 MHz)		UNII-8 (6875-7125 MHz)	
		802.11ax HE160	802.11ax HE160	802.11ax HE160	802.11ax HE160	
L	Low	015	-		207	
М	Middle	047	-	143		
Н	High	079	-			
Straddle		-	111	175	-	

Remark: For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.

TEL: 886-3-327-0868 Page Number : 11 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

2.3 Connection Diagram of Test System

Report No.: FR1N1011F

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
2.	Power Supply	GW Instek	GET874629	N/A	N/A	Unshielded, 1.8 m
3.	Fixture	Qualcomm	20-33568-H1	N/A	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT v4.0.00195.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-0868 Page Number : 12 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Report No.: FR1N1011F

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-0868 Page Number : 13 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

3 Test Result

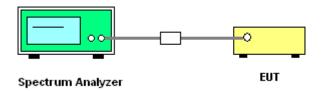
3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Limit of 26dB & 99% Occupied Bandwidth

<FCC 14-30 CFR 15.407>

(a)(10) The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125 GHz band is 320 megahertz.

Report No.: FR1N1011F

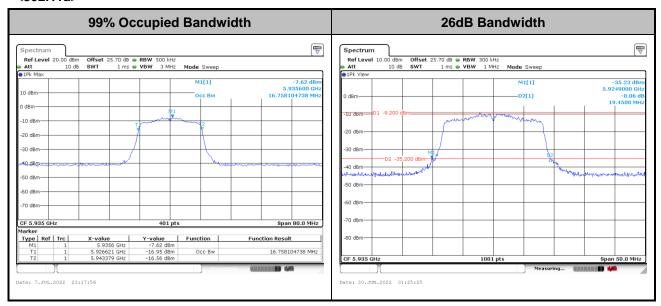

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \geq 3 * RBW.
- 8. Measure and record the results in the test report.

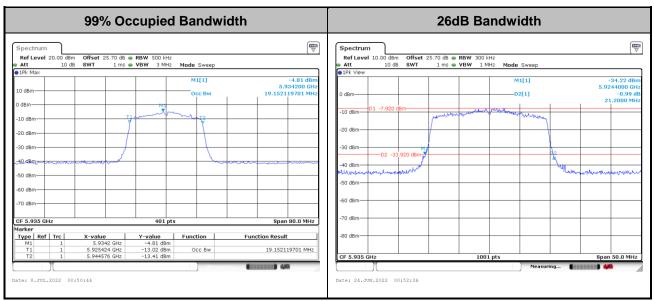
3.1.4 Test Setup


3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

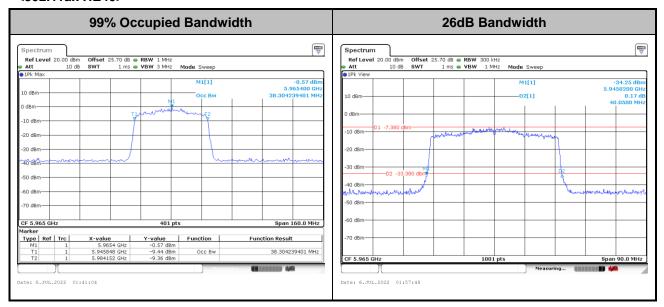
TEL: 886-3-327-0868 Page Number : 14 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

<Indoor Client>


<802.11a>

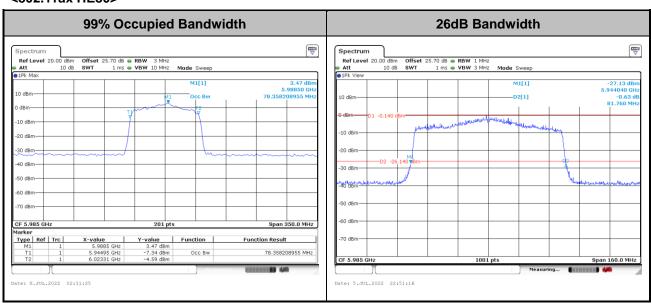
Report No.: FR1N1011F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<802.11ax HE20>

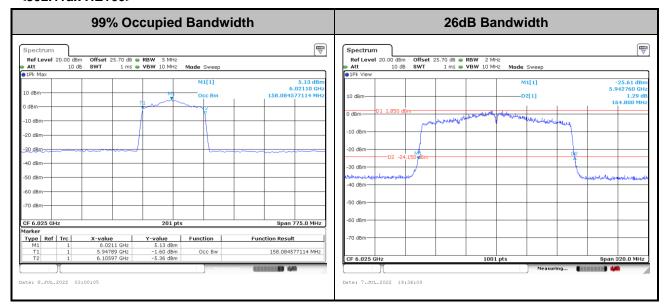
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 15 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022


<802.11ax HE40>

Report No.: FR1N1011F

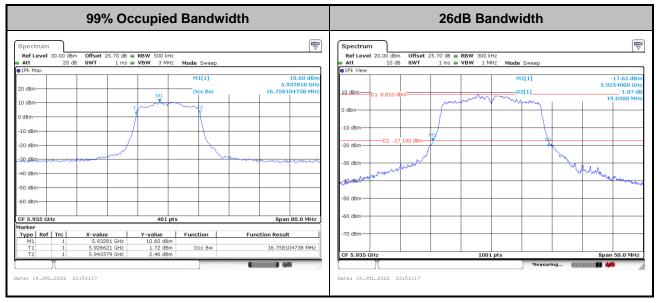
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<802.11ax HE80>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 16 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

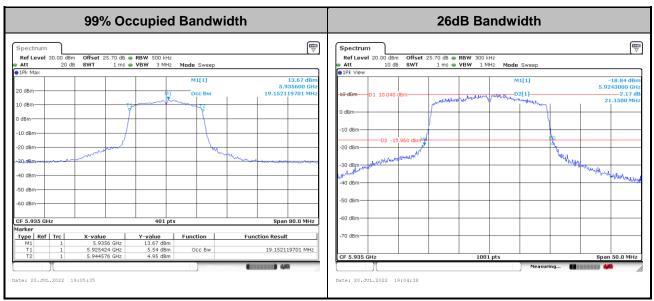
<802.11ax HE160>


Report No.: FR1N1011F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

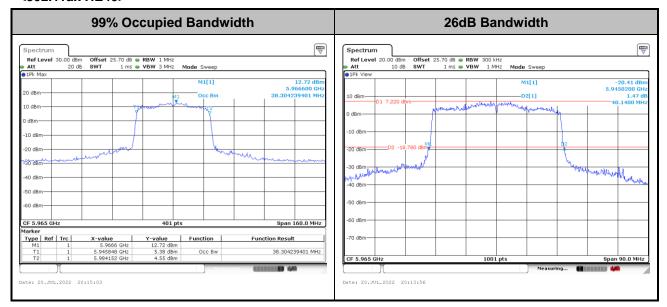
TEL: 886-3-327-0868 Page Number : 17 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

<Standard Client>


<802.11a>

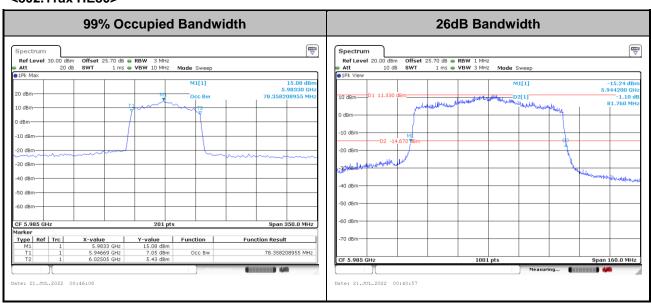
Report No.: FR1N1011F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<802.11ax HE20>

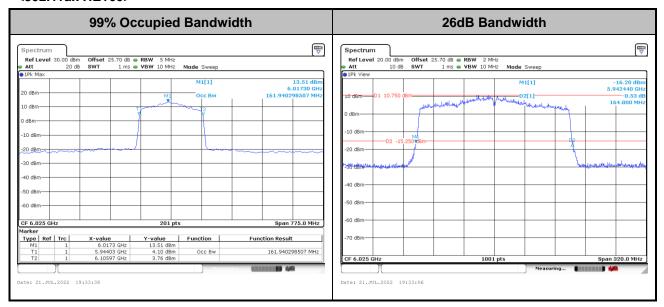
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 18 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022


<802.11ax HE40>

Report No.: FR1N1011F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<802.11ax HE80>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 19 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

<802.11ax HE160>

Report No.: FR1N1011F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 20 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

3.2 Maximum conducted Output Power and Fundamental Maximum EIRP Measurement

3.2.1 Limit of Fundamental Maximum EIRP

<FCC 14-30 CFR 15.407>

(a)(7) For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access

Report No.: FR1N1011F

point in 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 17 dBm e.i.r.p. in any 1-

megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm and the device must limit its

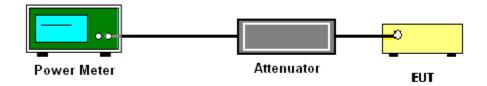
power to no more than 6 dB below its associated standard power access point's authorized transmit power.

(a)(8) For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum e.i.r.p. over the frequency band of operation must not exceed 24 dBm.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures


The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using a gated RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter.
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

TEL: 886-3-327-0868 Page Number : 21 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

3.2.4 Test Setup

Report No.: FR1N1011F

3.2.5 Test Result of Fundamental Maximum EIRP

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 22 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

3.3 Fundamental Power Spectral Density Measurement

3.3.1 Limit of Fundamental Power Spectral Density

<FCC 14-30 CFR 15.407>

(a)(7) For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access point in 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 17 dBm e.i.r.p. in any 1-megahertz band, (a)(8) For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum power spectral density must not exceed -1 dBm e.i.r.p. in any 1-megahertz band.

Report No.: FR1N1011F

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

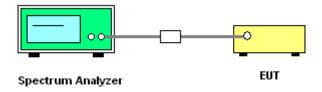
TEL: 886-3-327-0868 Page Number : 23 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

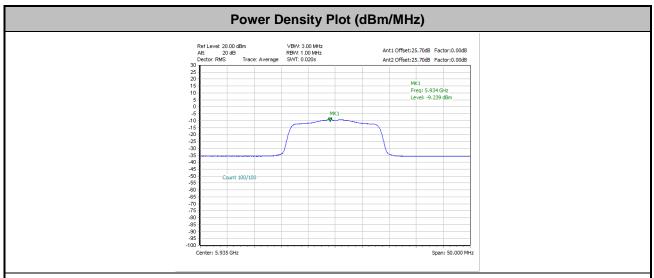

Report No.: FR1N1011F

- · Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the
 average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if
 the duty cycle is 25 percent.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 3. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (a): Measure and sum the spectra across the outputs.

The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points; the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum.

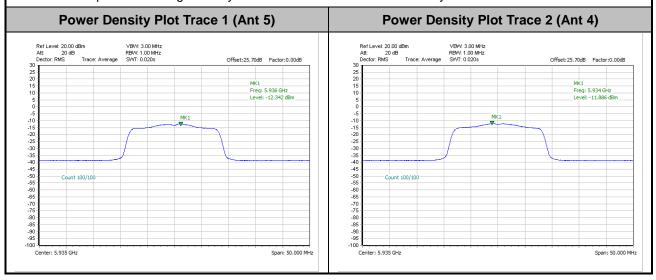
3.3.4 Test Setup



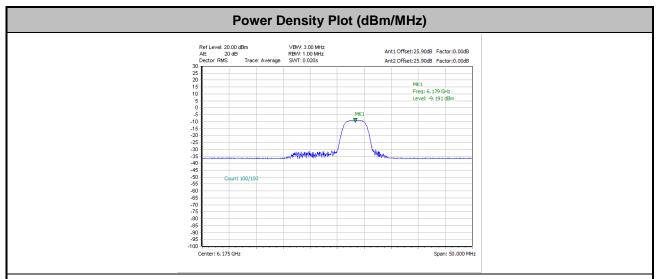
3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 24 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

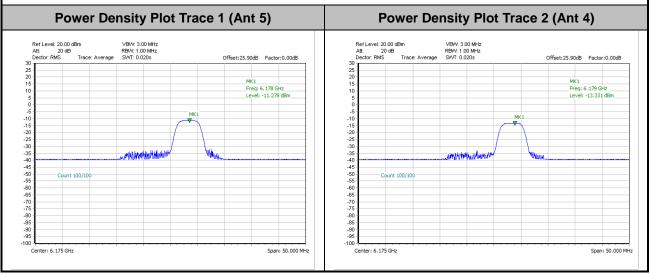

<Indoor Client> <802.11a>

Report No.: FR1N1011F

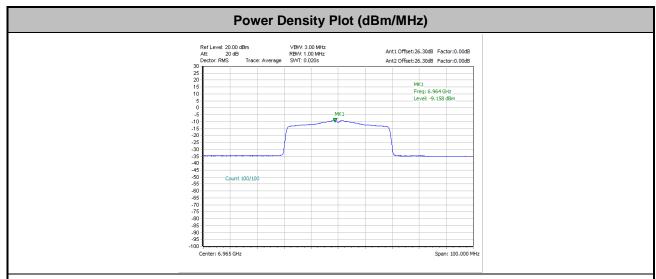

Note:

- 1. EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 25 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

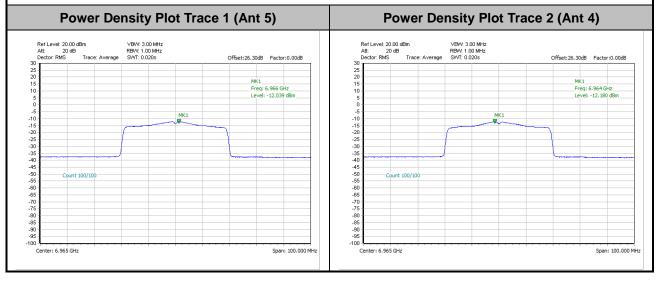

<802.11ax HE20>

Report No.: FR1N1011F

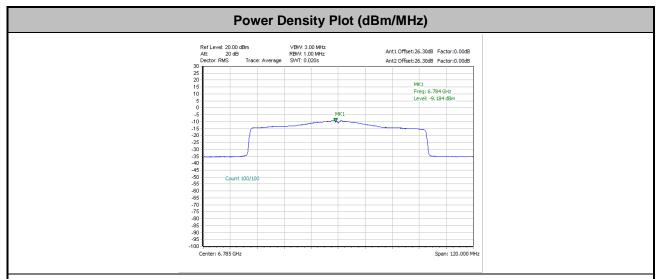

Note:

- 1. EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 26 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

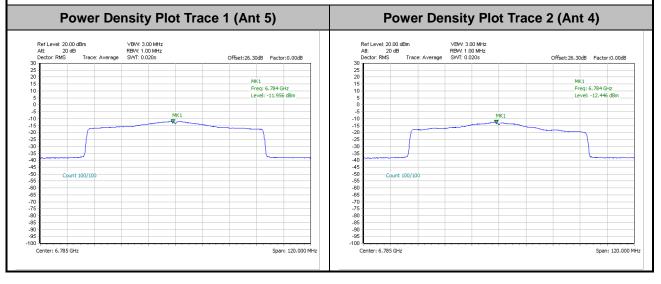

<802.11ax HE40>

Report No.: FR1N1011F

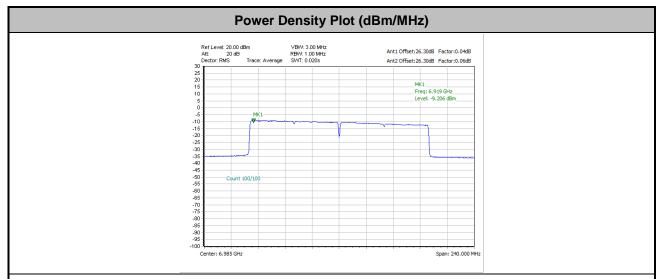

Note:

- 1. EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 27 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

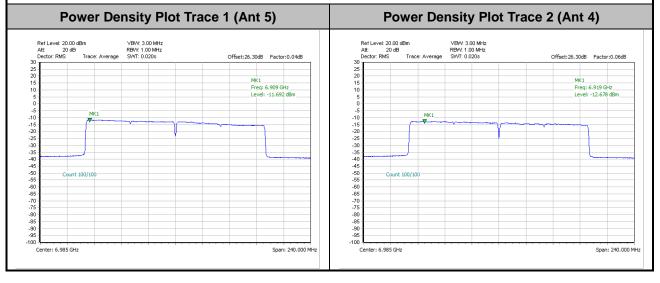

<802.11ax HE80>

Report No.: FR1N1011F

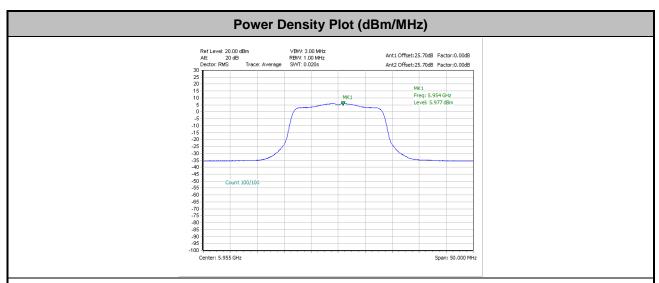

Note:

- 1. EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 28 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

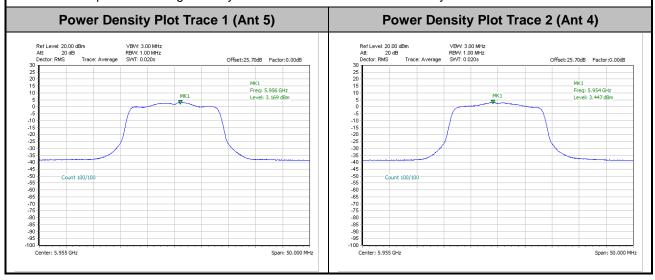

<802.11ax HE160>

Report No.: FR1N1011F

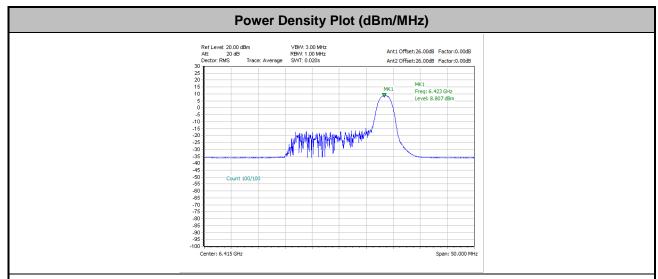

Note:

- 1. EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 29 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

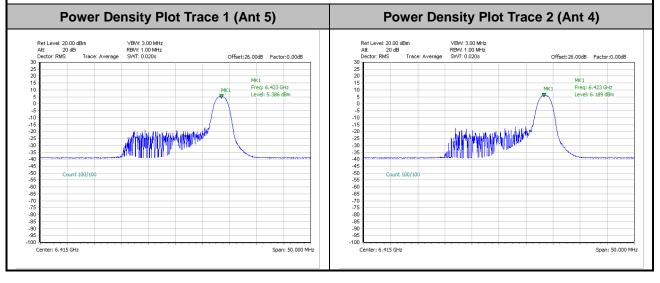

<Standard Client> <802.11a>

Report No.: FR1N1011F

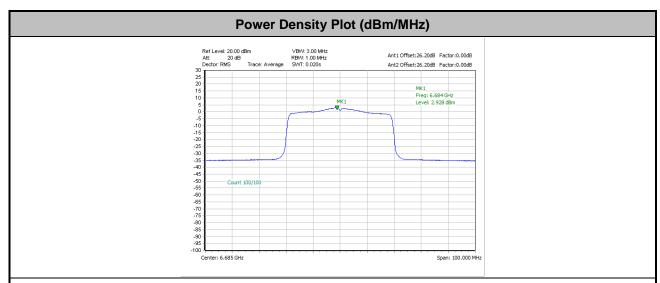

Note:

- 1. EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 30 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

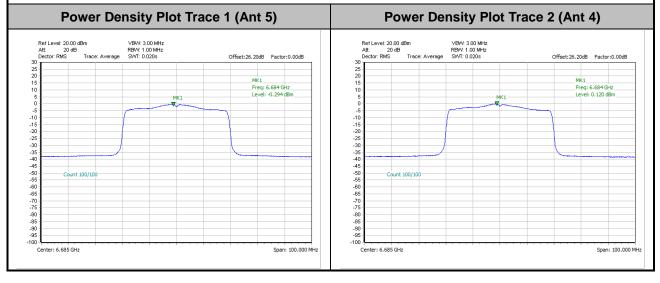

<802.11ax HE20>

Report No.: FR1N1011F

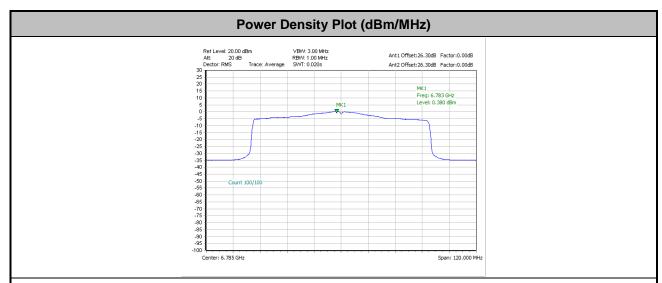

Note:

- 1. EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 31 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

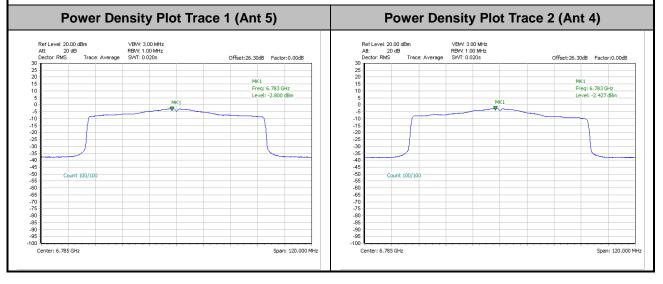

<802.11ax HE40>

Report No.: FR1N1011F

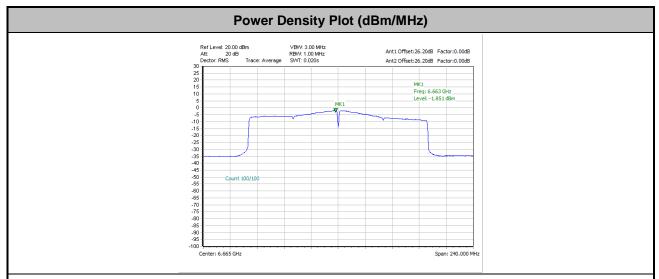

Note:

- 1. EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 32 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

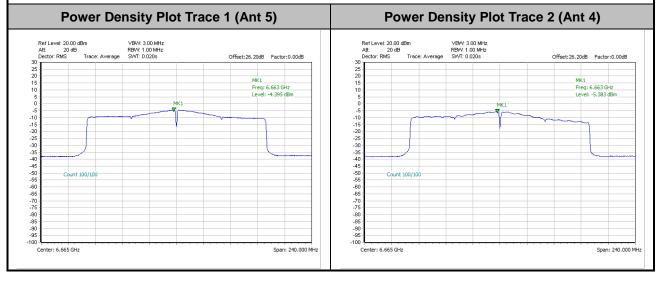

<802.11ax HE80>

Report No.: FR1N1011F


Note:

- 1. EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 33 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022


<802.11ax HE160>

Report No.: FR1N1011F

Note:

- 1. EIRP Power Density (dBm/MHz) = Measured value+ Duty Factor + Directional Gain
- 2. The test plot is showing a bin by bin combined result mathematically adds two traces.

TEL: 886-3-327-0868 Page Number : 34 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

3.4 In-Band Emissions (Channel Mask)

3.4.1 Limit of Unwanted Emissions

<FCC 14-30 CFR 15.407>

(a)(6) For transmitters operating within the 5.925-7.125 GHz bands: Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression, and at frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression. Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB.

Report No.: FR1N1011F

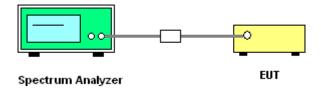
3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

TEL: 886-3-327-0868 Page Number : 35 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

3.4.3 Test Procedures

The testing follows FCC KDB 987594 D02 U-NII 6GHz EMC Measurement v01.


Section J) In-Band Emissions.

 Take nominal bandwidth as reference channel bandwidth provided that 26 dB emission bandwidth is always larger than nominal bandwidth

Report No.: FR1N1011F

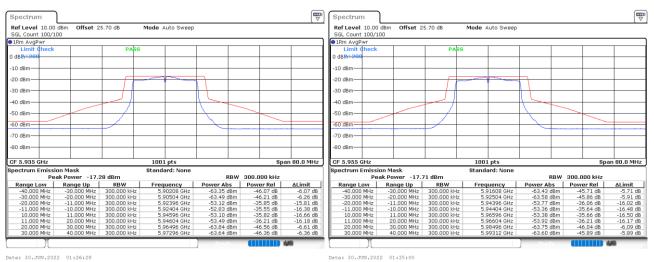
- 2. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
 - a) Set the span to encompass the entire 26 dB EBW of the signal.
 - b) Set RBW = same RBW used for 26 dB EBW measurement.
 - c) Set VBW ≥ 3 X RBW
 - d) Number of points in sweep ≥ [2 X span / RBW].
 - e) Sweep time = auto.
 - f) Detector = RMS (i.e., power averaging)
 - g) Trace average at least 100 traces in power averaging (rms) mode.
 - h) Use the peak search function on the instrument to find the peak of the spectrum.
- 3. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:
 - a. Suppressed by 20 dB at 1 MHz outside of the channel edge.
 - b. Suppressed by 28 dB at one channel bandwidth from the channel center.
 - c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.
- 4. Adjust the span to encompass the entire mask as necessary.
- 5. Clear trace.
- 6. Trace average at least 100 traces in power averaging (rms) mode.
- Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

3.4.4 Test Setup

TEL: 886-3-327-0868 Page Number : 36 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

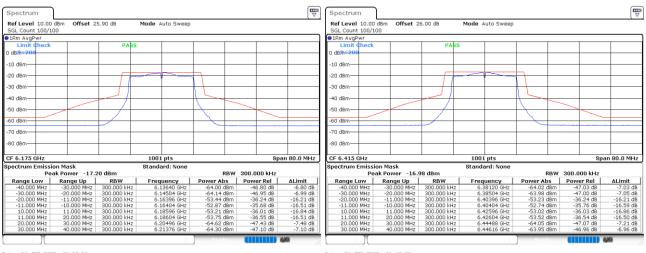
3.4.5 Test Result

<Indoor Client>


MIMO <Ant. 5+4(5)>

EUT Mode : 802.11a

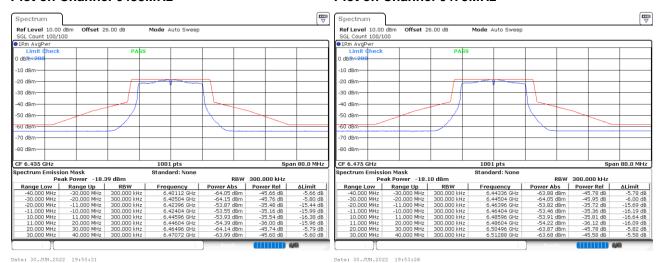
Plot on Channel 5935MHz


Plot on Channel 5955MHz

Report No.: FR1N1011F

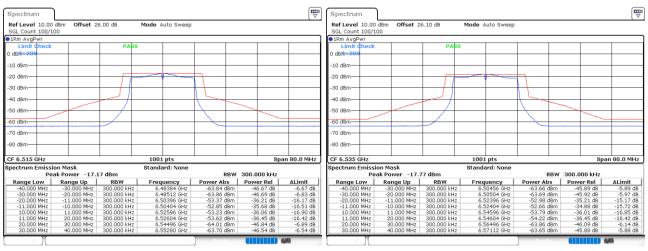
Plot on Channel 6175MHz

Plot on Channel 6415MHz



ate: 30.JUN.2022 01:38:51 Date: 30.JUN.2022 01:46:20

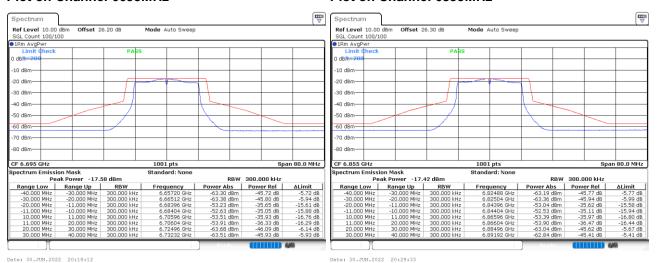
TEL: 886-3-327-0868 Page Number : 37 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022


Plot on Channel 6475MHz

Report No.: FR1N1011F

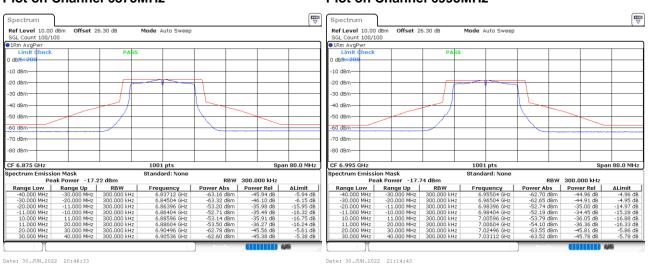
Plot on Channel 6515MHz

Plot on Channel 6535MHz



Date: 30.JUN.2022 19:50:49 Date: 30.JUN.2022 20:13:53

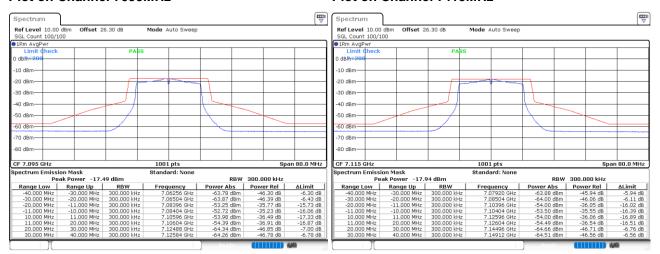
TEL: 886-3-327-0868 Page Number : 38 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022


Plot on Channel 6855MHz

Report No.: FR1N1011F

Plot on Channel 6875MHz

Plot on Channel 6995MHz



tte: 30.JUN.2022 20:46:33 Date: 30.JUN.2022 21:14:

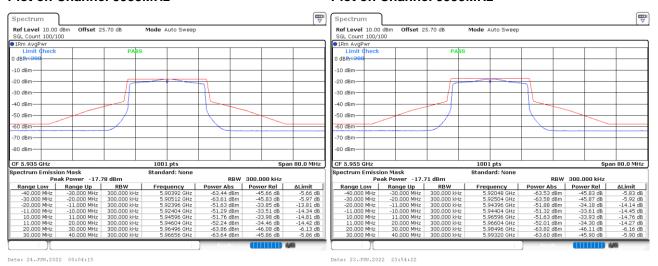
TEL: 886-3-327-0868 Page Number : 39 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

Plot on Channel 7115MHz

Report No.: FR1N1011F

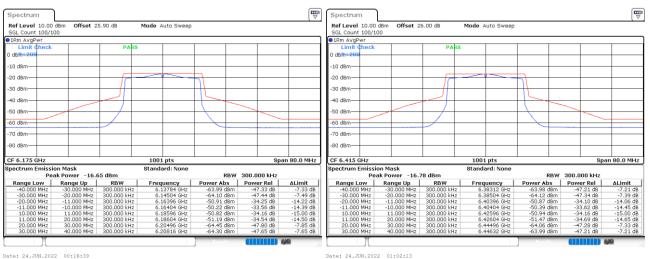
Date: 30.JUN.2022 21:20:27 Date: 30.JUN.2022 21:26:39

 TEL: 886-3-327-0868
 Page Number
 : 40 of 195


 FAX: 886-3-327-0855
 Issue Date
 : Sep. 12, 2022

EUT Mode: 802.11ax HE20 Full RU

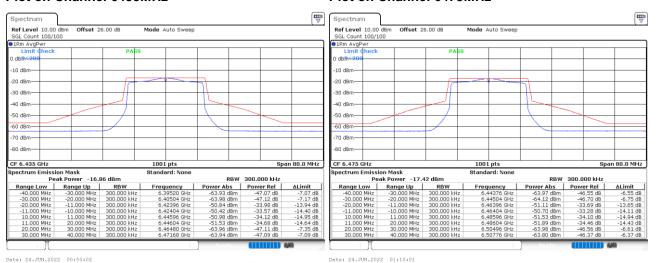
Plot on Channel 5935MHz


Plot on Channel 5955MHz

Report No.: FR1N1011F

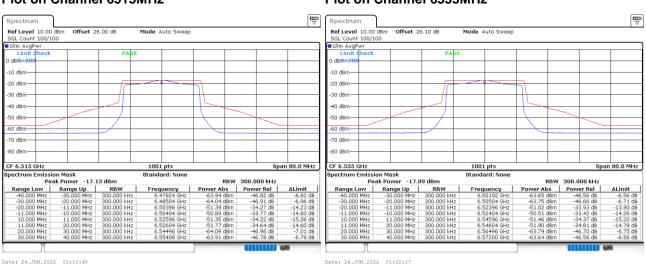
Plot on Channel 6175MHz

Plot on Channel 6415MHz



Date: 24.JUN.2022 00:16:39 Date: 24.JUN.2022 01:02:13

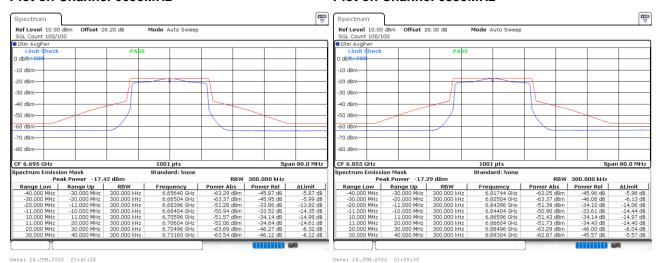
TEL: 886-3-327-0868 Page Number : 41 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022


Plot on Channel 6475MHz

Report No.: FR1N1011F

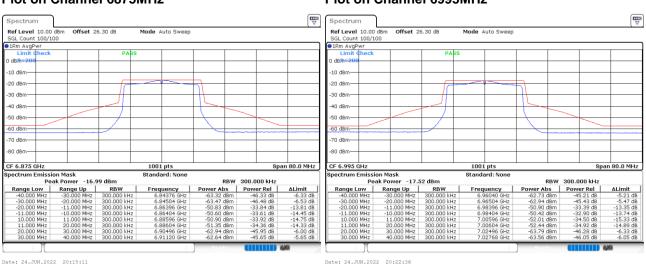
Plot on Channel 6515MHz

Plot on Channel 6535MHz



ate: 24.JUN.2022 02:10:45 Date: 24.JUN.2022 01:32:

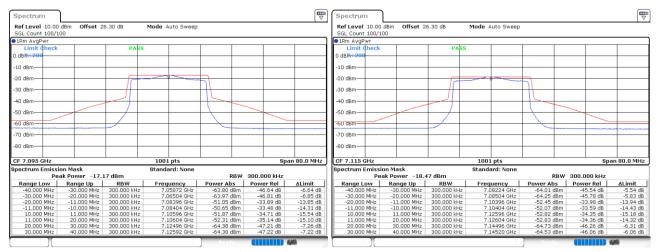
TEL: 886-3-327-0868 Page Number : 42 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022


Plot on Channel 6855MHz

Report No.: FR1N1011F

Plot on Channel 6875MHz

Plot on Channel 6995MHz



Date: 24.JUN.2022 20:15:11 Date: 24.JUN.2022 20:22:3

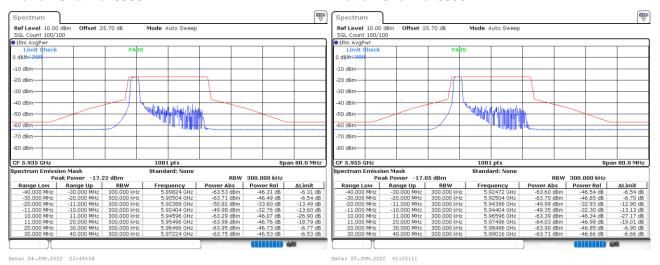
TEL: 886-3-327-0868 Page Number : 43 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

Plot on Channel 7115MHz

Report No.: FR1N1011F

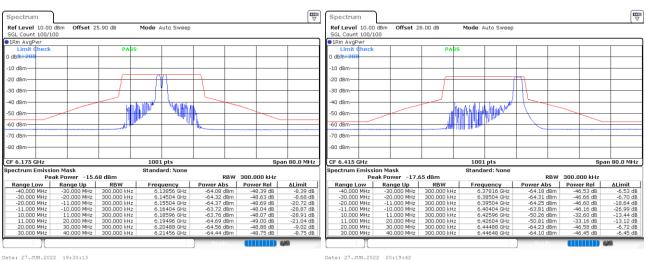
Date: 24.JUN.2022 20:44:35 Date: 24.JUN.2022 22:17:11

 TEL: 886-3-327-0868
 Page Number
 : 44 of 195


 FAX: 886-3-327-0855
 Issue Date
 : Sep. 12, 2022

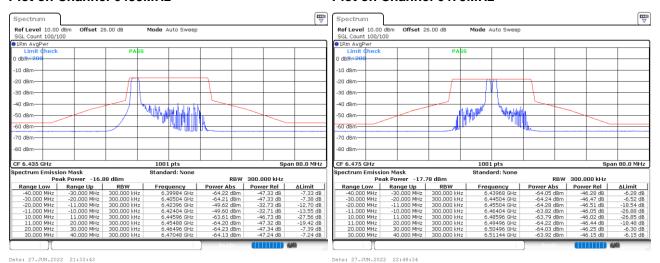
Report No.: FR1N1011F

EUT Mode: 802.11ax HE20 26RU

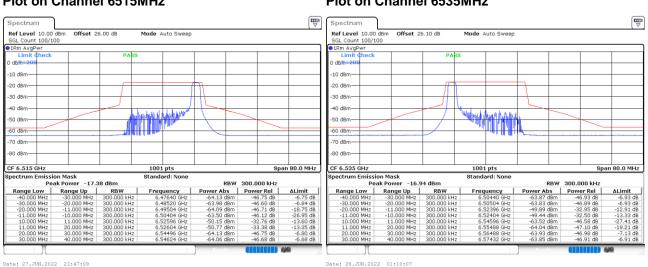

Plot on Channel 5935MHz

Plot on Channel 5955MHz

Plot on Channel 6175MHz

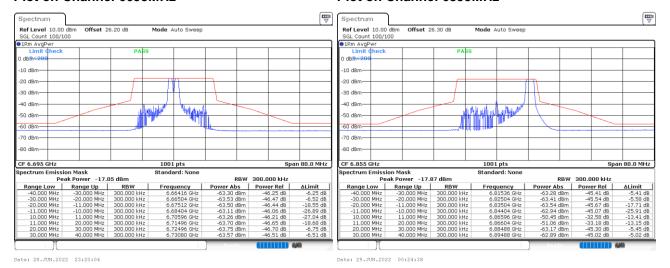

Plot on Channel 6415MHz

TEL: 886-3-327-0868 Page Number : 45 of 195 FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

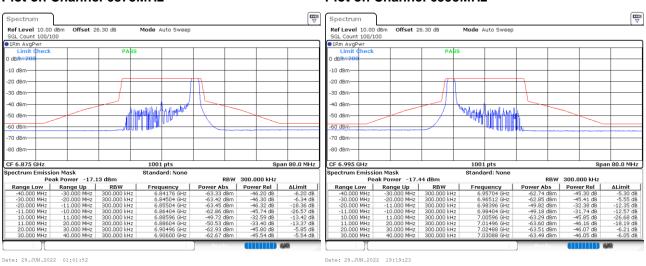

Plot on Channel 6475MHz

Report No.: FR1N1011F

Plot on Channel 6515MHz


Plot on Channel 6535MHz

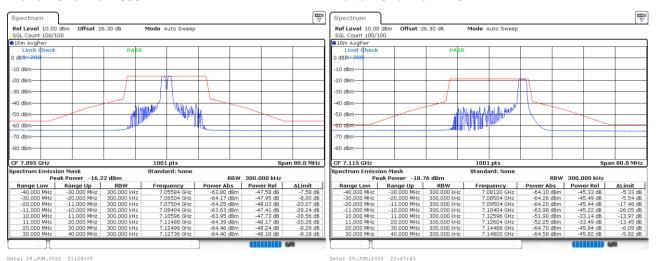
TEL: 886-3-327-0868 Page Number : 46 of 195 FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022


Plot on Channel 6855MHz

Report No.: FR1N1011F

Plot on Channel 6875MHz

Plot on Channel 6995MHz



TEL: 886-3-327-0868 Page Number : 47 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

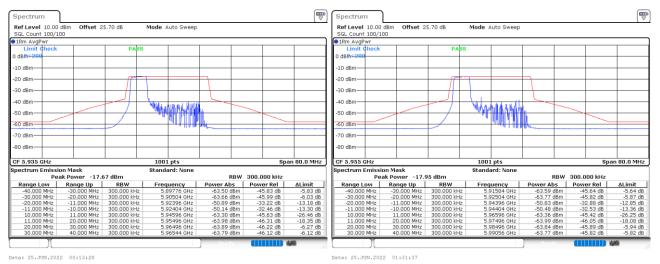
FAX: 886-3-327-0855

Plot on Channel 7115MHz

Report No.: FR1N1011F

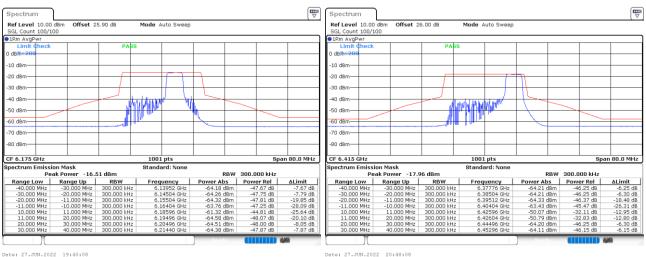
TEL: 886-3-327-0868 Page Number : 48 of 195

Issue Date


: Sep. 12, 2022

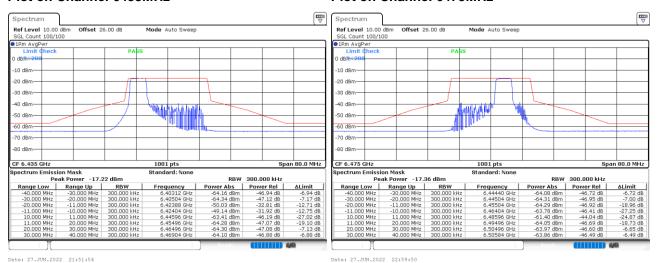
Report No.: FR1N1011F

802.11ax HE20 52RU **EUT Mode:**

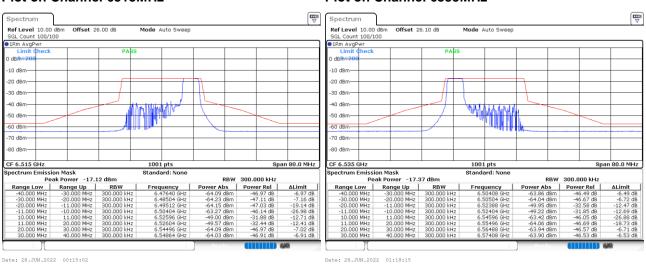

Plot on Channel 5935MHz

Plot on Channel 5955MHz

Plot on Channel 6175MHz

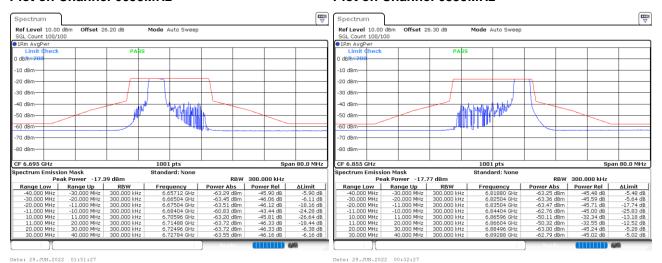

Plot on Channel 6415MHz

TEL: 886-3-327-0868 Page Number : 49 of 195 FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

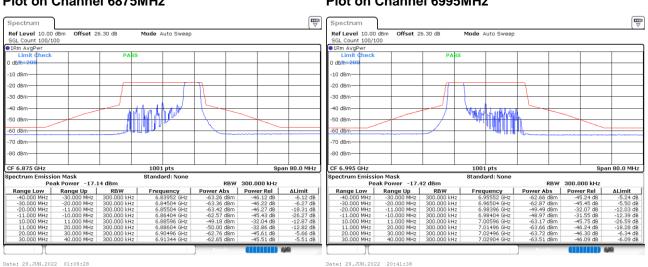

Plot on Channel 6475MHz

Report No.: FR1N1011F

Plot on Channel 6515MHz

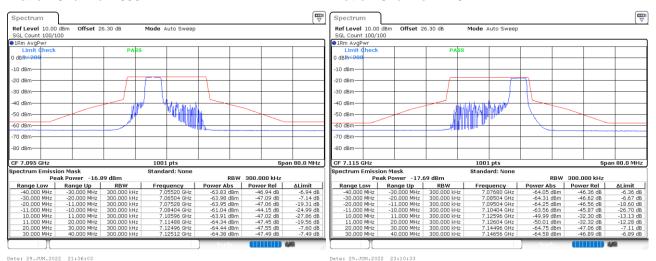

Plot on Channel 6535MHz

TEL: 886-3-327-0868 Page Number : 50 of 195 FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022


Plot on Channel 6855MHz

Report No.: FR1N1011F

Plot on Channel 6875MHz


Plot on Channel 6995MHz

TEL: 886-3-327-0868 Page Number : 51 of 195 FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022

Plot on Channel 7115MHz

Report No.: FR1N1011F

TEL: 886-3-327-0868 Page Number : 52 of 195
FAX: 886-3-327-0855 Issue Date : Sep. 12, 2022