

Report No.: FG1N10111

: 1 of 24

Page Number

FCC RADIO TEST REPORT

FCC ID : J9CQCARD7280N2

Equipment : QCARD7280
Brand Name : Qualcomm

Model Name : QCARD7280N2

Applicant : Qualcomm Technologies, Inc.

5775 Morehouse Drive, San Diego, California

92121, United State

Manufacturer : Qualcomm Semiconductor Limited

No. 16-1 Zhanye 2nd Rd. East District Hsinchu

City, 300091 (Taiwan)

Standard : FCC 47 CFR Part 2, 96

The product was received on Feb. 09, 2022 and testing was performed from Apr. 06, 2022 to Aug. 05, 2022. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

TEL: 886-3-327-3456

Lunis Win

Sporton International Inc. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022 Report Template No.: BU5-FGLTE96 Version 2.4 Report Version : 02

Table of Contents

His	story o	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	eral Description	5
	1.1 1.2 1.3 1.4	Product Feature of Equipment Under Test	5 5 6
2	Test	Configuration of Equipment Under Test	8
	2.1 2.2 2.3 2.4 2.5	Test Mode Connection Diagram of Test System Support Unit used in test configuration Measurement Results Explanation Example Frequency List of Low/Middle/High Channels	9 9
3	Cond	ducted Test Items	11
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Measuring Instruments Conducted Output Power Peak-to-Average Ratio EIRP and Power Density Occupied Bandwidth Conducted Band Edge Conducted Spurious Emission Frequency Stability	12 13 14 15 16
4	Radi	ated Test Items	19
	4.1 4.2 4.3 4.4	Measuring Instruments Test Setup Test Result of Radiated Test Radiated Spurious Emission	19 20
5	List	of Measuring Equipment	22
6	Unce	ertainty of Evaluation	24
Αp	pendi	x A. Test Results of Conducted Test x B. Test Results of Radiated Test x C. Test Setup Photographs	

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FGLTE96 Version 2.4

Page Number : 2 of 24

Issue Date : Aug. 22, 2022

Report No. : FG1N1011I

Report Version : 02

History of this test report

Report No. : FG1N1011I

Report No.	Version	Description	Issue Date
FG1N1011I	01	Initial issue of report	Aug. 12, 2022
FG1N1011I	02	Revise Report Clause in summary for Occupied Bandwidth and brand name Revise appendix A and B	Aug. 22, 2022

TEL: 886-3-327-3456 Page Number : 3 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

Summary of Test Result

Report No.: FG1N1011I

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.2	§2.1046 RSS-192 8.6	Conducted Output Power	Reporting only	-
3.3	§96.41	Peak-to-Average Ratio	Pass	
0.4	§96.41	Effective Isotropic Radiated Power	Pass	-
3.4	890.41	Power Density	Pass	-
3.5	§2.1049 §96.41	Occupied Bandwidth	Reporting only	-
3.6	§2.1051 §96.41	Conducted Band Edge Measurement	Pass	-
3.7	§2.1051 §96.41	Conducted Spurious Emission	Pass	
3.8	§2.1055	Frequency Stability for Temperature & Voltage	Pass	-
4.4	§2.1051 §96.41	Radiated Spurious Emission	Pass	3.53 dB under the limit at 7363.000 MHz

Declaration of Conformity:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
 It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- The measurement uncertainty please refer to report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Avis Chuang Report Producer: Lucy Wu

TEL: 886-3-327-3456 Page Number : 4 of 24
FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

1 General Description

1.1 Product Feature of Equipment Under Test

WCDMA/LTE/5G NR, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, and Wi-Fi 6GHz 802.11a/n/ac/ax.

Report No.: FG1N1011I

	WWAN Antenna Information										
Main Ante	enna_CFG0	Diversity Anten	na_CFG1								
Ant 0	WCDMA : 5 LTE : 5/12/13/14/26/71 NR : 5/71	Ant 0	WCDMA : 2/4 LTE : 2/4/25/30/38/41/48/66 NR : 2/25/38/41/48/66/77								
Ant 2	WCDMA: 2/4 LTE: 2/4/25/30/38/41/66 NR: 2/25/38/41/66	Ant 2	NR : 70								
Ant 3	LTE: 48 NR: 48/77/70	Ant 0 . 4	ND - 44/40/77 LH MINO								
Ant 2+3 Ant 3+1	NR : 41 UL MIMO NR : 48/77 UL MIMO	Ant 0+1	NR : 41/48/77 UL MIMO								
Diversity	Antenna_CFG2	Diversity Antenna_CFG3									
	WCDMA : 2/4	Ant 2	LTE : 48 NR : 48/77								
Ant 1	LTE: 2/4/25/30/38/41/48/66 NR: 2/25/38/41/48/66/77	Ant 3	WCDMA : 2/4 LTE : 2/4/25/30/38/41/66 NR : 2/25/38/41/66								
Ant 1+0	NR : 41 UL MIMO	Ant 3+2	NR : 41 UL MIMO								
Ant 1+3	NR : 48/77 UL MIMO	Ant 2+1	NR : 48/77 UL MIMO								

Remark:

- 1. The EUT's information above was declared by manufacturer. Please refer to Comments and Explanations in report summary.
- 2. Maximum allow antenna Gain: refer MPE Report FA1N1011.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 886-3-327-3456 Page Number : 5 of 24
FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
Test Site No.	TH03-HY
Test Engineer	Luffy Lin
Temperature (°C)	20~24
Relative Humidity (%)	50~58

Report No. : FG1N1011I

Test Site	Sporton International Inc. Wensan Laboratory					
	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)					
Test Site Location	TEL: +886-3-327-0868 FAX: +886-3-327-0855					
Took Cita No	Sporton Site No.					
Test Site No.	03CH12-HY (TAF Code: 3786)					
Test Engineer	Jack Cheng and Wilson Wu					
Temperature (°C)	21.6~26.2					
Relative Humidity (%)	56~68					
Remark	The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory					

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW3786

TEL: 886-3-327-3456 Page Number : 6 of 24
FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

1.4 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FG1N1011I

- ANSI C63.26-2015
- ANSI / TIA-603-E
- FCC 47 CFR Part 2, 96
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 940660 D01 Part 96 CBRS Eqpt v01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- FCC KDB 414788 D01 Radiated Test Site v01r01
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

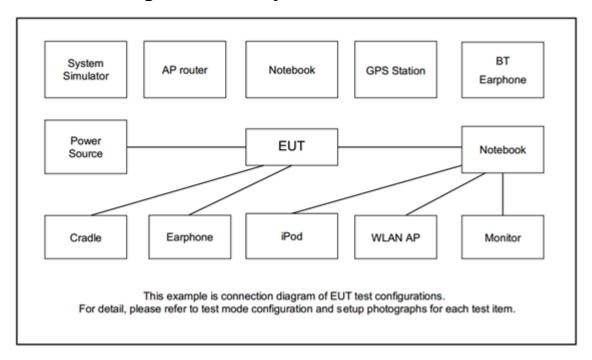
Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.
- **3.** The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 886-3-327-3456 Page Number : 7 of 24
FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

2 Test Configuration of Equipment Under Test

2.1 Test Mode


Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

Report No.: FG1N1011I

Test Items	Band	Bandwidth (MHz)			Modulation				RB#			Test Channel				
rest items	Ballu	10	15	20	40	PI/2 BPSK	QPSK	16QAM	64QAM	256QAM	1	Half	Full	L	М	н
Max. Output Power	n48	-	-	-	v	v	v	v	v	v	٧	v	v	v	v	v
26dB and 99% Bandwidth	n48	-	-	-	v	v	v	٧	v	v			v		>	
Conducted Band Edge	n48	-	•	-	v	v	v	v	v	v	>		v	v	>	v
Peak-to-Average Ratio	n48	-	1	-	v	v	v	v	v	v			v		٧	
Conducted Spurious Emission	n48	-	-	-	v		v				>			v	٧	v
E.I.R.P	n48	-	-	-	v	v	v	v	v	v		Max. Power				
Frequency Stability	n48	-	-	-	v	v	v				v				v	
Radiated Spurious Emission	n48						w	orst Cas	e					v	٧	v
Remark	 Th Th er th Fc 	 The mark "-" means that this bandwidth is not supported. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported. 														

TEL: 886-3-327-3456 Page Number : 8 of 24
FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

2.2 Connection Diagram of Test System

Report No.: FG1N1011I

2.3 Support Unit used in test configuration

Item	Equipment	Brand Name	Model No.	FCC ID	Data Cable	Power Cord	
1.	System Simulator	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m	
2.	System Simulator	Anritsu	MT8000A	N/A	N/A	Unshielded, 1.8 m	

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Example:

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

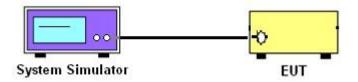
TEL: 886-3-327-3456 Page Number : 9 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

2.5 Frequency List of Low/Middle/High Channels

5G NR n48 Channel and Frequency List										
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest						
40	Channel	638000	641666	645332						
40	Frequency	3570	3624.99	3679.98						

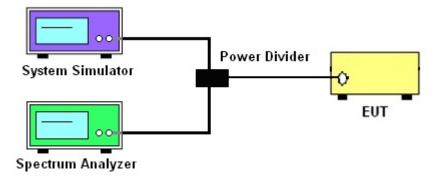
Report No. : FG1N1011I

TEL: 886-3-327-3456 Page Number : 10 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

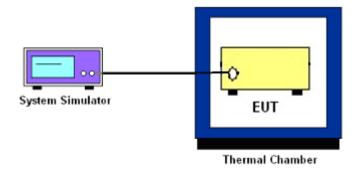

3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.


3.1.1 Test Setup

3.1.2 Conducted Output Power



Report No.: FG1N1011I

3.1.3 EIRP, Power Density, Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 11 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

3.2 Conducted Output Power

3.2.1 Description of the Conducted Output Power Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Report No.: FG1N1011I

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

TEL: 886-3-327-3456 Page Number : 12 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Report No. : FG1N1011I

3.3.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.6

- 1. The EUT was connected to spectrum and system simulator via a power divider.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio

TEL: 886-3-327-3456 Page Number : 13 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

3.4 EIRP and Power Density

3.4.1 Description of the EIRP and Power Density Measurement

The EIRP of mobile transmitters must not exceed 23 dBm /10 megahertz for LTE Band 48.

Report No.: FG1N1011I

The testing follows ANSI C63.26-2015 Section 5.2.5.5

According to KDB 412172 D01 Power Approach,

EIRP = PT + GT - LC, where

PT = transmitter output power in dBm

GT = gain of the transmitting antenna in dBi

LC = signal attenuation in the connecting cable between the transmitter and antenna in dB

Device	Maximum EIRP	Maximum PSD		
	(dBm/10 MHz)	(dBm/MHz)		
End User Device	23	n/a		

Remark:

- 1. Total channel power is complied with EIRP limit 23dBm/10MHz.
- 2. The MIMO mode is completely uncorrelated, so the directional gain is selected the maximum gain among all antennas.

3.4.2 Test Procedures

The testing follows procedure in Section 5.2 of ANSI C63.26-2015 and KDB 940660 D01 Part 96 CBRS Eqpt v03 Section 3.2(b)(2)

Determine the EIRP by adding the effective antenna gain to the measured average conducted power level.

TEL: 886-3-327-3456 Page Number : 14 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

3.5 Occupied Bandwidth

3.5.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the

Report No.: FG1N10111

total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and

one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB

below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit

bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of

the emission bandwidth.

3.5.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

1. The EUT was connected to spectrum analyzer and system simulator via a power divider.

2. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.

The span range for the spectrum analyzer shall be between two and five times the anticipated

OBW.

3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated

OBW, and the VBW shall be at least 3 times the RBW.

4. Set the detection mode to peak, and the trace mode to max hold.

5. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to

stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace.

(this is the reference value)

6. Determine the "-26 dB down amplitude" as equal to (Reference Value – X).

7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of

the spectral display such that each marker is at or slightly below the "-X dB down amplitude"

determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed

as close as possible to this value. The OBW is the positive frequency difference between the

two markers.

8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured

bandwidth.

TEL: 886-3-327-3456 Page Number : 15 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

3.6 Conducted Band Edge

3.6.1 Description of Conducted Band Edge Measurement

The conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25 dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

Report No.: FG1N1011I

3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used
- 5. Set spectrum analyzer with RMS detector.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. For MIMO mode, add additional MIMO factor 10log(NTX=2) = 3.01dB into the spectrum analyzer offset.

For Adjacent Channel Leakage Ratio (ACLR) measurement,

- 1. The Adjacent Channel Leakage Ratio (ACLR) is the ratio of the average power in the assigned aggregated channel bandwidth to the average power over the equivalent adjacent channel bandwidth.
- 2. The option ACLR of spectrum analyzer is used and measures the ACLR ratio by setting equivalent channel bandwidth.
- 3. The measured ACLR ratio shall be at least 30 dB.

TEL: 886-3-327-3456 Page Number : 16 of 24
FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

3.7 Conducted Spurious Emission

3.7.1 Description of Conducted Spurious Emission Measurement

96.41 (e)(2)

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

3.7.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.

Report No.: FG1N1011I

- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is -40dBm/MHz.
- 10. For MIMO mode, add additional MIMO factor 10log(NTX=2) = 3.01dB into the spectrum analyzer offset.

TEL: 886-3-327-3456 Page Number : 17 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

3.8 Frequency Stability

3.8.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5ppm) of the center frequency

Report No.: FG1N1011I

3.8.2 Test Procedures for Temperature Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

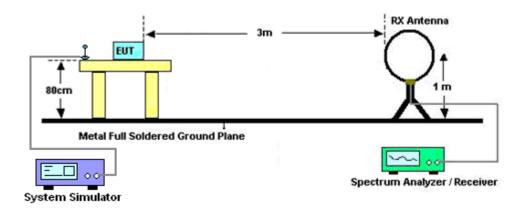
- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.8.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

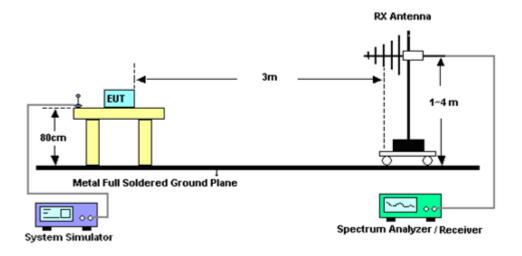
- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

TEL: 886-3-327-3456 Page Number : 18 of 24
FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

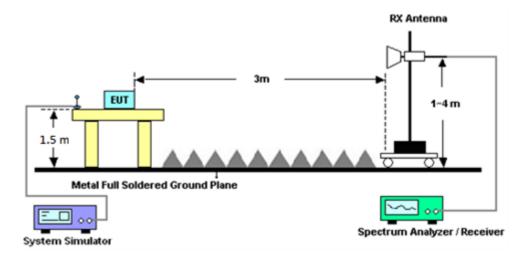

4 Radiated Test Items

4.1 Measuring Instruments

See list of measuring instruments of this test report.


4.2 Test Setup

For radiated emissions below 30MHz


Report No.: FG1N1011I

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 Page Number : 19 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

For radiated emissions above 1GHz

Report No.: FG1N1011I

4.3 Test Result of Radiated Test

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

TEL: 886-3-327-3456 Page Number : 20 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

4.4 Radiated Spurious Emission

4.4.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E.

Report No.: FG1N10111

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least -40dBm / MHz.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.4.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- A horn antenna was substituted in place of the EUT and was driven by a signal generator.
 Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.

EIRP (dBm) = S.G. Power - Tx Cable Loss + Tx Antenna Gain<math>ERP (dBm) = EIRP - 2.15

8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is -40dBm/MHz

TEL: 886-3-327-3456 Page Number : 21 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

5 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 07, 2021	Apr. 06, 2022~ Aug. 05, 2022	Sep. 06, 2022	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01 N-06	37059 & 01	30MHz~1GHz	Oct. 09, 2021	Apr. 06, 2022~ Aug. 05, 2022	Oct. 08, 2022	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	35414 & AT-N0602	30MHz~1GHz	Oct. 09, 2021	Apr. 06, 2022~ Aug. 05, 2022	Oct. 08, 2022	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1328	1GHz~18GHz	Dec. 03, 2021	Apr. 06, 2022~ Aug. 05, 2022	Dec. 02, 2022	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1212	1GHz~18GHz	Mar. 10, 2022	Apr. 06, 2022~ Aug. 05, 2022	Mar. 09, 2023	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170251	18GHz~40GHz	Nov. 30, 2021	Apr. 06, 2022~ Aug. 05, 2022	Nov. 29, 2022	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170576	18GHz~40GHz	May 21, 2021	Apr. 06, 2022~ May 13, 2022	May 20, 2022	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170576	18GHz~40GHz	May 14, 2022	May 14, 2022~ Aug. 05, 2022	May 13, 2023	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 23, 2022	Apr. 06, 2022~ Aug. 05 2022	Mar. 22, 2023	Radiation (03CH12-HY)
Preamplifier	Aglient	8449B	3008A02375	1GHz~26.5GHz	May 25, 2021	Apr. 06, 2022~ May 23, 2022	May 24, 2022	Radiation (03CH12-HY)
Preamplifier	Aglient	8449B	3008A02375	1GHz~26.5GHz	May 24, 2022	May 24, 2022~ Aug. 05, 2022	May 23, 2023	Radiation (03CH12-HY)
Preamplifier	E-INSTRUME NT TECH LTD.	ERA-100M-18 G-56-01-A70	EC1900270	1GHz-18GHz	Dec. 27, 2021	Apr. 06, 2022~ Aug. 05 2022	Dec. 26, 2022	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 24, 2021	Apr. 06, 2022~ Aug. 05, 2022	Dec. 23, 2022	Radiation (03CH12-HY)
Spectrum Analyzer	Keysight	N9010A	MY53470118	10Hz~44GHz	Jan. 12, 2022	Apr. 06, 2022~ Aug. 05, 2022	Jan. 11, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 10, 2022	Apr. 06, 2022~ Aug. 05, 2022	Mar. 09, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30MHz~18GHz	Dec. 10, 2021	Apr. 06, 2022~ Aug. 05 2022	Dec. 09, 2022	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Feb. 21, 2022	Apr. 06, 2022~ Aug. 05, 2022	Feb. 20, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803953/2	30MHz~40GHz	Mar. 08, 2022	Apr. 06, 2022~ Aug. 05, 2022	Mar. 07, 2023	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-12 SS	SN2	1.2GHz Low Pass Filter	Mar. 16, 2022	Apr. 06, 2022~ Aug. 05 2022	Mar. 15, 2023	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000- 60ST	SN2	3GHz High Pass Filter	Jul. 12, 2021	Apr. 06, 2022~ Jul. 10, 2022	Jul. 11, 2022	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000- 60ST	SN2	3GHz High Pass Filter	Jul. 11, 2022	Jul. 11, 2022~ Aug. 05, 2022	Jul. 10, 2023	Radiation (03CH12-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000- 40ST	SN2	6.75GHz High Pass Filter	Mar. 16, 2022	Apr. 06, 2022~ Aug. 05 2022	Mar. 15, 2023	Radiation (03CH12-HY)

Report No. : FG1N1011I

TEL: 886-3-327-3456 Page Number : 22 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303B	TP140349	N/A	Sep. 30, 2021	Apr. 06, 2022~ Aug. 05, 2022	Sep. 29, 2022	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Apr. 06, 2022~ Aug. 05, 2022	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Apr. 06, 2022~ Aug. 05 2022	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Apr. 06, 2022~ Aug. 05, 2022	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-000989	N/A	N/A	Apr. 06, 2022~ Aug. 05, 2022	N/A	Radiation (03CH12-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890001	50Hz~60Hz	Oct. 06, 2021	Jun. 13, 2022~ Aug. 04, 2022	Oct. 05, 2022	Conducted (TH03-HY)
Signal Analyzer	Rohde & Schwarz	FSV3044	101049	10Hz~44GHz	Aug. 31, 2021	Jun. 13, 2022~ Aug. 04, 2022	Aug. 30, 2022	Conducted (TH03-HY)
Temperature Chamber	ESPEC	SH-641	92013720	-40℃ ~90℃	Sep. 09, 2021	Jun. 13, 2022~ Aug. 04, 2022	Sep. 08, 2022	Conducted (TH03-HY)
Hygrometer	TECPEL	DTM-303B	TP200886	NA	Mar. 21, 2022	Jun. 13, 2022~ Aug. 04, 2022	Mar. 20, 2023	Conducted (TH03-HY)
Base Station (Measure)	Anritsu	MT8821C	6261849015	LTE	Oct. 06, 2021	Jun. 13, 2022~ Aug. 04, 2022	Oct. 05, 2022	Conducted (TH03-HY)
Base Station (Measure)	Anritsu	MT8000A	6261940327	FR1	Oct. 29, 2021	Jun. 13, 2022~ Aug. 04, 2022	Oct. 28, 2022	Conducted (TH03-HY)

Report No. : FG1N1011I

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.31 dB
Confidence of 95% (U = 2Uc(y))	3.31 dB

Report No.: FG1N1011I

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	3.25 dB
Confidence of 95% (U = 2Uc(y))	1

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	3.81 dB
Confidence of 95% (U = 2Uc(y))	3.61 UB

TEL: 886-3-327-3456 Page Number : 24 of 24 FAX: 886-3-328-4978 Issue Date : Aug. 22, 2022

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power and EIRP)

<SISO Mode>

<Main Antenna CFG0>

-Maiii Ai	iterina_Ci		aximum Aver	age Power	· [dBm] (G	T - LC = -2.	2 dB)	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP(W)
40	1	1		14.25	20.74	14.25		
40	1	104		14.23	20.65	13.97		
40	50	25	PI/2 BPSK	14.15	20.63	14.11		
40	1	0	PIIZ BPSK	24.26	24.23	24.16		
40	1	105		24.21	24.12	24.05	1	
40	100	0		14.24	20.73	14.11	22.06	0.1607
40	1	1		14.19	20.65	14.16	22.00	0.1007
40	1	104		14.27	20.47	13.96		
40	50	25	QPSK	14.17	20.63	14.01		
40	1	0	QFSK	23.91	23.69	23.61		
40	1	105		23.76	23.51	23.56		
40	100	0		14.19	20.72	13.64		
40	1	1	16-QAM	13.76	20.95	13.69		
40	1	1	64-QAM	13.95	20.87	13.52	18.75	0.0750
40	1	1	256-QAM	13.54	19.92	13.31		
Limit	EIRF	o < 23dBm/	10MHz		Result		Pa	ISS

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

<Diversity Antenna_CFG1>

	y Antenna	_	ximum Aver	age Power	[dBm] (G	Γ - LC = -2.	.2 dB)		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP(W)	
40	1	1		13.61	23.94	13.24			
40	1	104		13.52	23.82	13.23			
40	50	25	PI/2 BPSK	13.72	24.01	13.27			
40	1	0	PI/Z BP3K	23.61	23.44	23.12			
40	1	105		23.41	23.35	23.12			
40	100	0		13.71	23.44	13.24	21.81	0.1517	
40	1	1		13.67	23.94	13.05	21.01	0.1317	
40	1	104		13.52	23.79	13.04			
40	50	25	QPSK	13.71	23.99	13.19			
40	1	0	QFSK	23.11	22.92	22.41			
40	1	105		23.01	22.79	22.49			
40	100	0		13.51	22.99	12.94			
40	1	1	16-QAM	12.97	22.92	12.51			
40	1	1	64-QAM	12.69	21.37	11.51	20.72	0.1180	
40	1	1	256-QAM	13.05	19.37	12.48			
Limit	EIR	o < 23dBm/	10MHz		Result		Pa	ISS	

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

<Diversity Antenna_CFG2>

	y Antenna I	_	ximum Aver	age Power	[dBm] (G	Γ - LC = -2.	.2 dB)		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP(W)	
40	1	1		13.02	19.34	12.63			
40	1	104		13.04	19.32	12.61			
40	50	25	PI/2 BPSK	12.96	19.29	12.54			
40	1	0	PI/Z BP3K	23.02	22.84	22.51			
40	1	105		22.91	22.81	22.47			
40	100	0		13.00	19.37	12.53	20.82	0.1208	
40	1	1		13.04	19.35	12.61	20.62	0.1206	
40	1	104		13.00	19.34	12.61			
40	50	25	QPSK	13.01	19.23	12.52			
40	1	0	QFSK	22.60	22.36	22.04			
40	1	105		22.51	22.32	22.03			
40	100	0		12.85	19.27	12.22			
40	1	1	16-QAM	12.47	19.29	11.87			
40	1	1	64-QAM	12.31	19.45	11.04	17.25	0.0531	
40	1	1	256-QAM	12.45	18.77	12.07			
Limit	EIR	o < 23dBm/	10MHz		Result		Pa	ISS	

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

<Diversity Antenna_CFG3>

CDIVEISI			ximum Aver	age Power	[dBm] (G	T - LC = -2.	.2 dB)		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP(W)	
40	1	1		13.47	19.74	13.27			
40	1	104		13.61	19.79	13.32			
40	50	25	PI/2 BPSK	13.56	19.90	13.24			
40	1	0	FI/Z BF3K	23.43	23.27	23.15			
40	1	105		23.45	23.34	23.24			
40	100	0		13.52	19.86	13.26	21.25	0.1334	
40	1	1		13.45	19.79	13.27			
40	1	104		13.61	19.79	13.27			
40	50	25	QPSK	13.51	19.97	13.24			
40	1	0	QFSK	22.99	22.79	22.61			
40	1	105		23.11	22.81	22.68			
40	100	0		13.52	19.85	13.25			
40	1	1	16-QAM	12.87	19.70	12.82			
40	1	1	64-QAM	12.91	19.96	12.40	17.76	0.0597	
40	1	1	256-QAM	12.85	19.25	12.72			
Limit	EIR	o < 23dBm/	10MHz		Result		Pa	ISS	

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

Limit

FCC RADIO TEST REPORT

<MIMO Mode> <Main Antenna_CFG0>

MIMO <Ant. 3+1> Part96 NR n48 Maximum AHerage Power [dBm], DG = -2.2 dBi BW RB RB Antenna 3 Antenna 1 Combine EIRP EIRP Mod Middle Highest (MHz) Size Offset Lowest Middle Highest Middle Highest (dBm) (W) Lowest Lowest 40 17.78 17.35 20.58 10.32 10.13 10.05 9.56 13.20 12.86 1 1 40 104 10.32 17.65 10.04 17.24 9.65 20.46 1 9.82 13.09 12.86 40 53 10.17 26 17.52 9.94 9.86 17.32 9.56 13.03 20.43 12.76 QPSK 19.55 0.0902 40 1 0 18.76 18.77 18.57 18.72 18.39 18.06 21.75 21.59 21.33 40 1 105 18.72 18.59 18.44 18.54 18.32 18.17 21.64 21.47 21.32 40 106 0 10.32 17.70 10.05 10.04 17.48 9.67 13.19 20.60 12.87 40 1 16-QAM 10.06 17.56 10.13 10.32 17.78 9.93 13.20 20.68 13.04 40 64-QAM 10.09 17.18 12.94 12.74 18.48 0.0705 10.02 9.76 17.19 9.42 20.20 256-QAM 40 10.25 10.34 9.99 13.27 16.43 12.95 9.88 10.27 15.20

Result

EIRP < 23dBm/10MHz

Report No. : FG1N1011I

Pass

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

FCC RADIO TEST REPORT

<Diversity Antenna_CFG1>
MIMO <Ant. 0+1>

IVIIIVIO	Ant. v	T 1 /												
			Par	t96 NR ı	n48 Max	imum A	Herage I	Power [dBm], Do	G = -2.2	dBi			
BW	RB	RB	Mod	A	ntenna	0	A	Antenna 1			Combine			EIRP
(MHz)	Size	Offset	Wiou	Lowest	Middle	Highest	Lowest	Middle	Highest	Lowest	Middle	Highest	(dBm)	(W)
40	1	1		9.62	17.01	9.23	10.01	17.41	9.71	12.83	20.22	12.49		
40	1	104		9.56	16.94	9.19	9.88	17.35	9.76	12.73	20.16	12.49		
40	53	26	QPSK	9.64	17.05	9.18	9.78	17.24	9.65	12.72	20.16	12.43	19.15	0.0822
40	1	0	QI SIX	18.01	17.96	17.73	18.64	18.42	18.23	21.35	21.21	21.00	13.13	0.0022
40	1	105		18.07	17.85	17.75	18.54	18.34	18.21	21.32	21.11	21.00		
40	106	0		9.68	17.04	9.24	9.92	17.34	9.73	12.81	20.20	12.50		
40	1	1	16-QAM	9.54	16.95	9.14	10.32	17.73	9.98	12.96	20.37	12.59		
40	1	1	64-QAM	9.35	16.91	9.06	9.75	17.15	9.45	12.56	20.04	12.27	18.17	0.0656
40	1	1	256-QAM	9.42	14.55	8.65	10.15	15.14	9.98	12.81	17.87	12.38		
Limit	EIRP <	: 23dBm	/10MHz		Result						Pa	ass		

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

FCC RADIO TEST REPORT

<Diversity Antenna_CFG2>
MIMO <Ant. 1+3>

IVIIIVIO	\Ant. 1	rJ/												
			Par	t96 NR ı	n48 Max	imum A	Herage I	Power [dBm], Do	G = -2.2	dBi			
BW	RB	RB	Mod	A	ntenna	1	A	ntenna	3	Combine			EIRP	EIRP
(MHz)	Size	Offset	WIOG	Lowest	Middle	Highest	Lowest	Middle	Highest	Lowest	Middle	Highest	(dBm)	(W)
40	1	1		8.89	16.32	8.60	8.31	15.45	7.60	11.62	18.92	11.14		
40	1	104		8.89	16.05	8.42	8.02	15.21	7.56	11.49	18.66	11.02		
40	53	26	QPSK	8.83	16.13	8.30	8.07	15.30	7.54	11.48	18.75	10.95	18.01	0.0632
40	1	0	QI SIX	17.42	17.35	17.13	16.96	16.51	16.01	20.21	19.96	19.62	10.01	0.0032
40	1	105		17.32	17.05	16.81	16.66	16.23	15.99	20.01	19.67	19.43		
40	106	0		8.89	16.33	8.42	8.18	15.31	7.47	11.56	18.86	10.98		
40	1	1	16-QAM	8.93	16.35	8.55	8.59	15.87	7.98	11.77	19.13	11.28		
40	1	1	64-QAM	8.78	16.24	8.53	8.02	15.23	7.30	11.43	18.77	10.97	16.93	0.0493
40	1	1	256-QAM	8.61	13.98	7.54	8.45	13.28	7.79	11.54	16.65	10.68		
Limit	EIRP <	: 23dBm/	/10MHz		Result							Pa	ass	

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

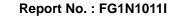
FCC RADIO TEST REPORT

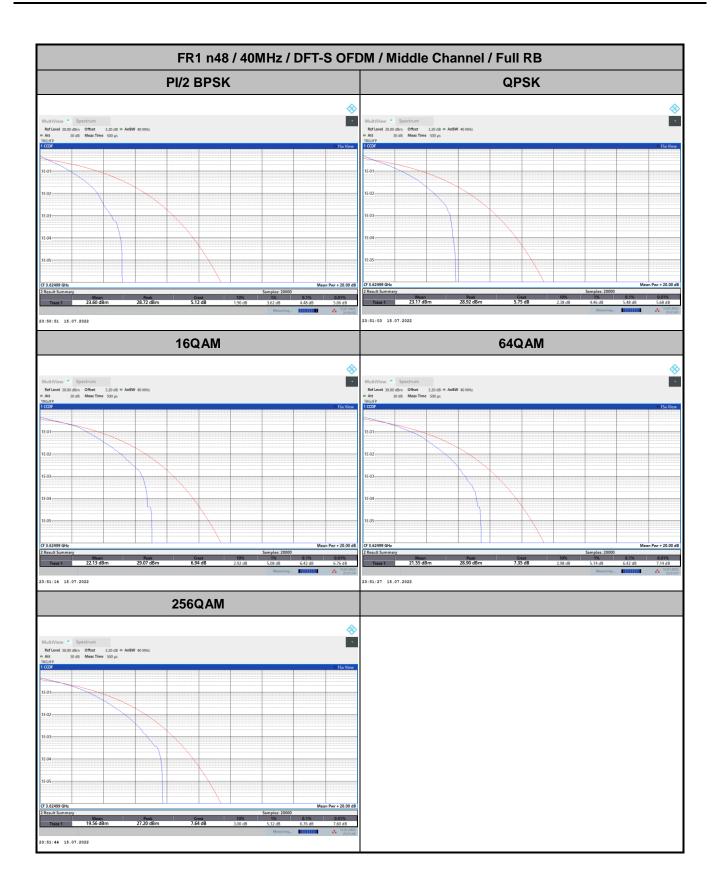
<Diversity Antenna_CFG3>
MIMO <Ant. 2+1>

INITIAL S	HIMO CAHL. 2+1>													
			Par	t96 NR ı	n48 Max	imum A	Herage I	Power [dBm], Do	3 = -2.2	dBi			
BW	RB	RB	Mod	A	ntenna	2	A	Antenna 1			Combine			EIRP
(MHz)	Size	Offset	Wiou	Lowest	Middle	Highest	Lowest	Middle	Highest	Lowest	Middle	Highest	(dBm)	(W)
40	1	1		9.40	16.87	9.44	9.93	17.32	9.68	12.68	20.11	12.57		
40	1	104		9.57	16.78	9.38	9.78	17.21	9.54	12.69	20.01	12.47		
40	53	26	QPSK	9.41	16.75	9.12	9.70	17.18	9.36	12.57	19.98	12.25	19.14	0.0820
40	1	0	QI SIX	18.01	17.87	17.72	18.63	18.32	18.02	21.34	21.11	20.88	13.14	0.0020
40	1	105		18.05	17.77	17.60	18.42	18.17	17.95	21.25	20.98	20.79		
40	106	0		9.45	16.68	9.17	9.75	17.20	9.56	12.61	19.96	12.38		
40	1	1	16-QAM	9.37	16.88	9.24	10.21	17.34	9.82	12.82	20.13	12.55		
40	1	1	64-QAM	9.28	16.72	9.12	9.71	17.01	9.28	12.51	19.88	12.21	17.93	0.0621
40	1	1	256-QAM	9.46	14.48	9.15	10.02	15.07	9.72	12.76	17.80	12.45		
Limit	EIRP <	23dBm	/10MHz		Result							Pa	ass	

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

FR1 n48


<SISO Mode>


Peak-to-Average Ratio

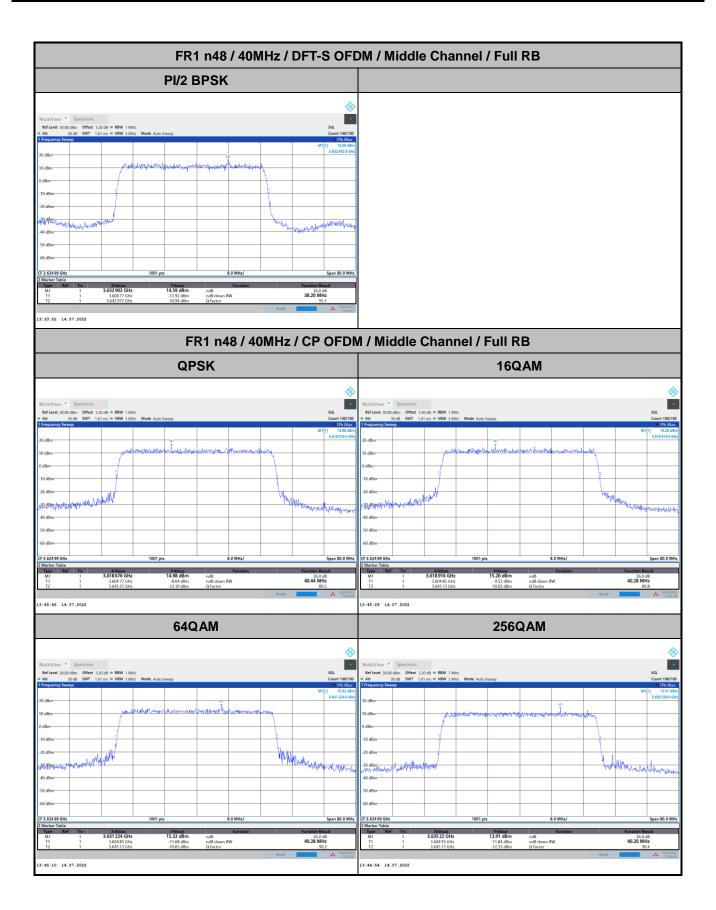
Mode		FR1 n48 / 40MHz / DFT-S OFDM								
Mod.	PI/2 BPSK	QPSK	16QAM	64QAM	Limit: 13dB					
RB Size	Full RB	Full RB	Full RB	Full RB	Result					
Middle CH	4.48	5.48	6.42	6.42	PASS					
Mode		FR1 n48 / 40MH	z / DFT-S OFDM							
Mod.	256QAM				Limit: 13dB					
RB Size	Full RB				Result					
Middle CH	6.76				PASS					

Report No. : FG1N1011I

TEL: 886-3-327-3456 Page Number : A2 - 1 of 40

TEL: 886-3-327-3456 Page Number : A2 - 2 of 40

26dB Bandwidth


Mode		FR1 n48 : 26dB BW(MHz) / DFT-S OFDM										
BW	10MHz	15MHz	20MHz	30MHz	40MHz	50MHz	60MHz	70MHz				
Mod.	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK				
Middle CH	-	-	-	-	38.20	-	-	-				
BW	80MHz	90MHz	100MHz									
Mod.	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK									
Middle CH	-	-	-									

Report No. : FG1N1011I

Mode	FR1 n48 : 26dB BW(MHz) / CP OFDM							
BW	10MHz		15MHz		20MHz		30MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Middle CH	-	-	-	-	-	-	-	-
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM
Middle CH	-	-	-	-	-	-	-	-
BW	40MHz		50MHz		60MHz		70MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Middle CH	40.44	40.28	-	-	-	-	-	-
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM
Middle CH	40.28	40.20	-	-	-	-	-	-
BW	80MHz		90MHz		100MHz			
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Middle CH	-	-	-	-	-	-		
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM		
Middle CH	-	-	-	-	-	-		

TEL: 886-3-327-3456 Page Number : A2 - 3 of 40

TEL: 886-3-327-3456 Page Number : A2 - 4 of 40

Occupied Bandwidth

Mode	FR1 n48 : OB BW(MHz) / DFT-S OFDM									
BW	10MHz	15MHz	20MHz	30MHz	40MHz	50MHz	60MHz	70MHz		
Mod.	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK		
Middle CH	-	-	-	-	35.94	-	-	-		
BW	80MHz	90MHz	100MHz							
Mod.	PI/2 BPSK	PI/2 BPSK	PI/2 BPSK							
Middle CH	-	-	-							

Report No. : FG1N1011I

Mode	FR1 n48 : OB BW(MHz) / CP OFDM										
BW	10MHz		15MHz		20MHz		30MHz				
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM			
Middle CH	-	-	-	-	-	-	-	-			
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM			
Middle CH	-	-	-	-	-	-	-	-			
BW	40MHz		50MHz		60MHz		70MHz				
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM			
Middle CH	37.93	38.09	-	-	-	-	-	-			
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM			
Middle CH	37.95	37.95	-	-	-	-	-	-			
BW	80MHz		90MHz		100MHz						
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM					
Middle CH	-	-	-	-	-	-					
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM					
Middle CH	-	-	-	-	-	-					

TEL: 886-3-327-3456 Page Number : A2 - 5 of 40

F 3.624 99 GH:

FR1 n48 / 40MHz / DFT-S OFDM / Middle Channel / Full RB PI/2 BPSK Span 80.0 MHz Occ Bw Occ Bw Centroid Occ Bw Freq Offs FR1 n48 / 40MHz / CP OFDM / Middle Channel / Full RB 16QAM **QPSK** May my make the same of the sa 64QAM 256QAM 38/48W04/pmph/~~~//~~mm/s/fr/

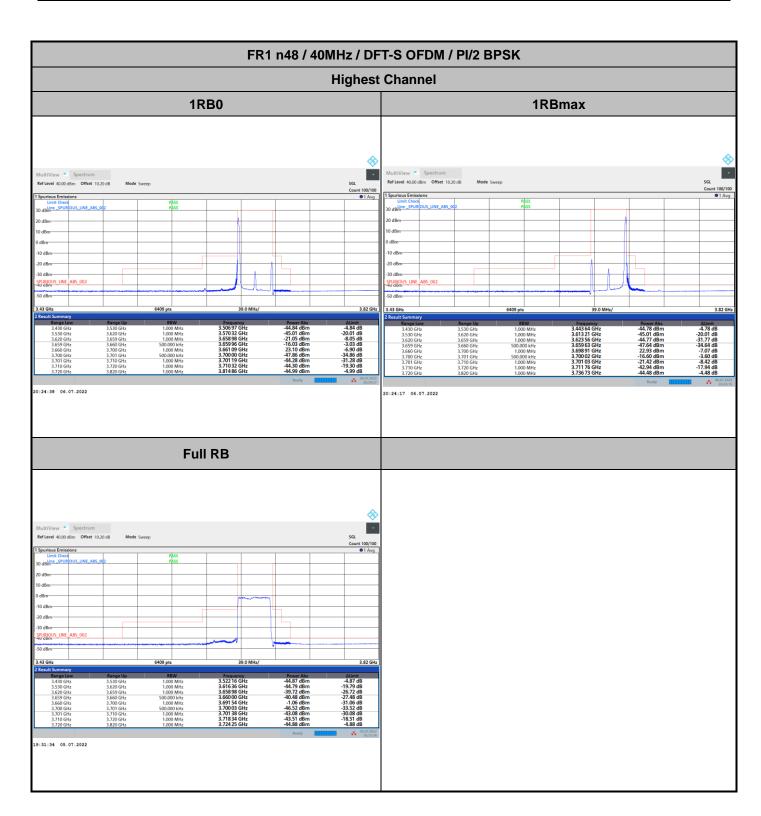
Report No.: FG1N1011I

Span 80.0 MH

Span 80.0 MH:


CF 3.624 99 GH:

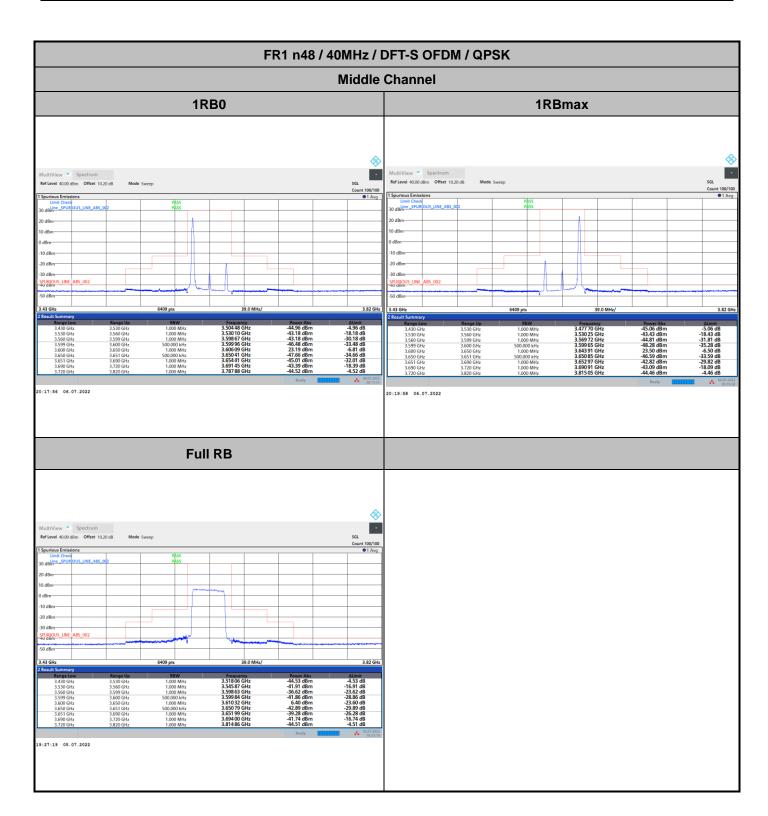
Unwanted Emission (MASK)



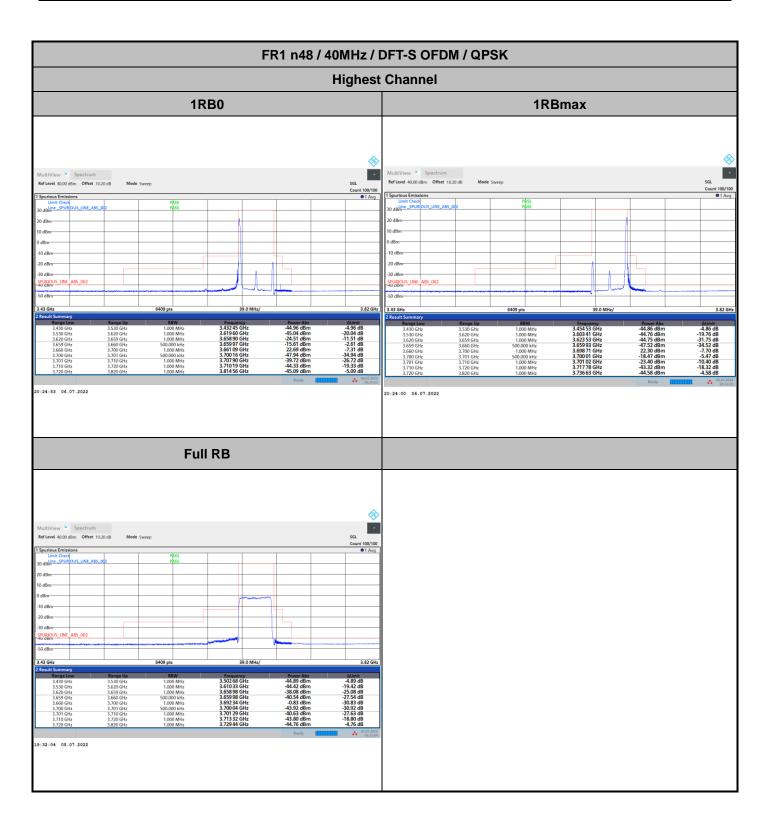
Report No.: FG1N1011I

TEL: 886-3-327-3456 Page Number : A2 - 7 of 40

TEL: 886-3-327-3456 Page Number : A2 - 8 of 40

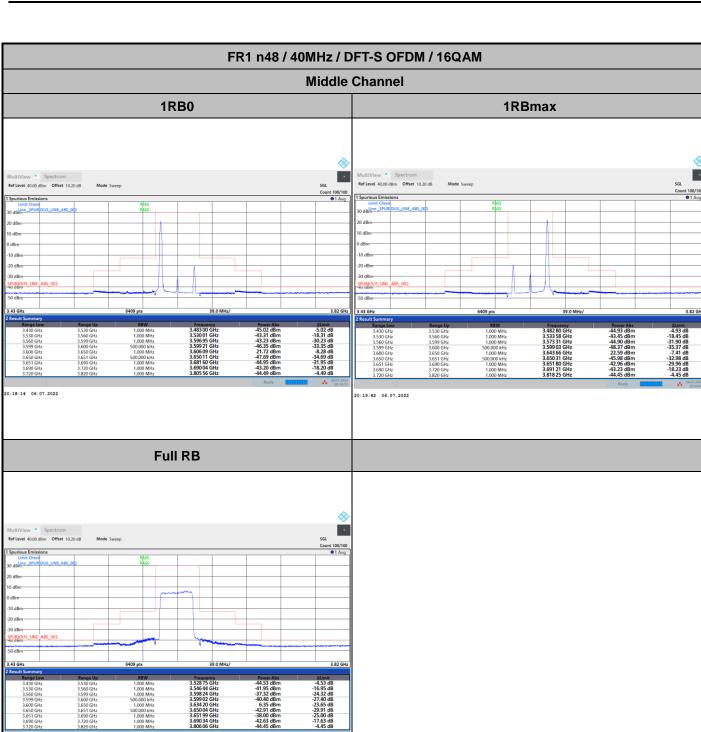

TEL: 886-3-327-3456 Page Number : A2 - 9 of 40

FR1 n48 / 40MHz / DFT-S OFDM / QPSK **Lowest Channel 1RB0** 1RBmax MultiView Spectrum

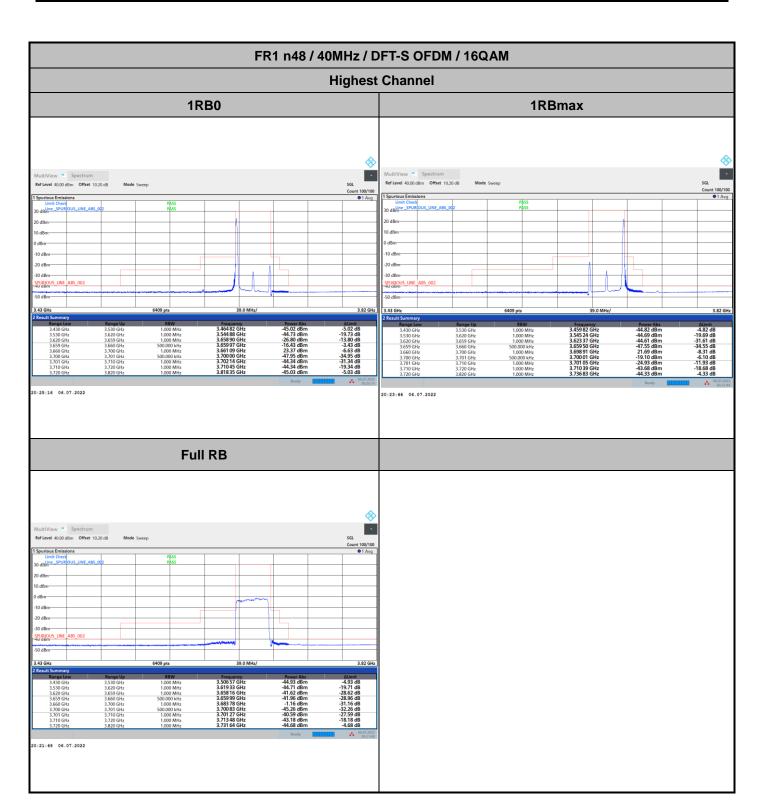

Ref Level 40.00 dBm Offset 10.20 dB 10 dBm 10 dBm -10 dBm -20 dBm SPURIOUS LINE ABS 002 PURIOUS_LINE 3.43 GHz 0:03:09 06.07.2022 Full RB Ref Level 40.00 dBm Offset 10.20 dB 9:06:56 05.07.2022

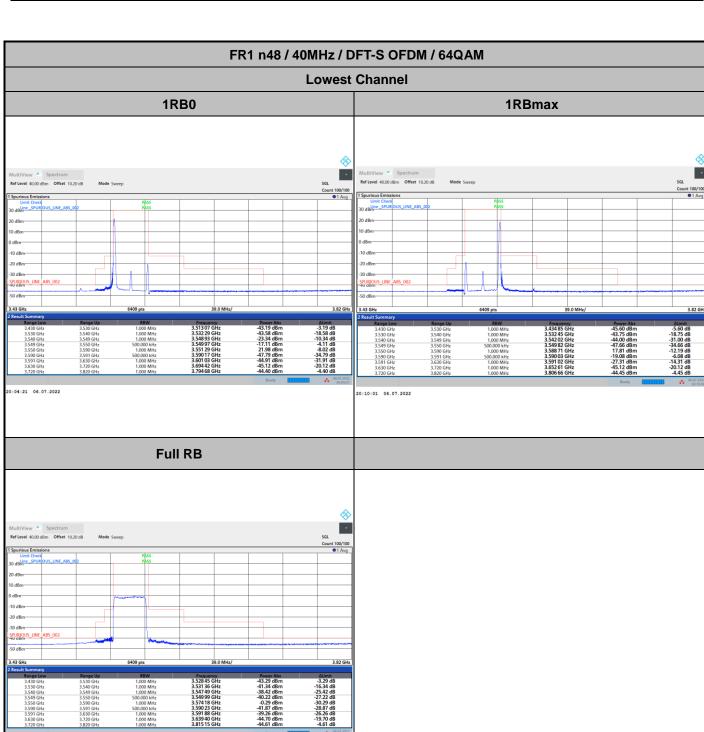
Report No.: FG1N1011I

TEL: 886-3-327-3456 Page Number : A2 - 10 of 40


TEL: 886-3-327-3456 Page Number : A2 - 11 of 40

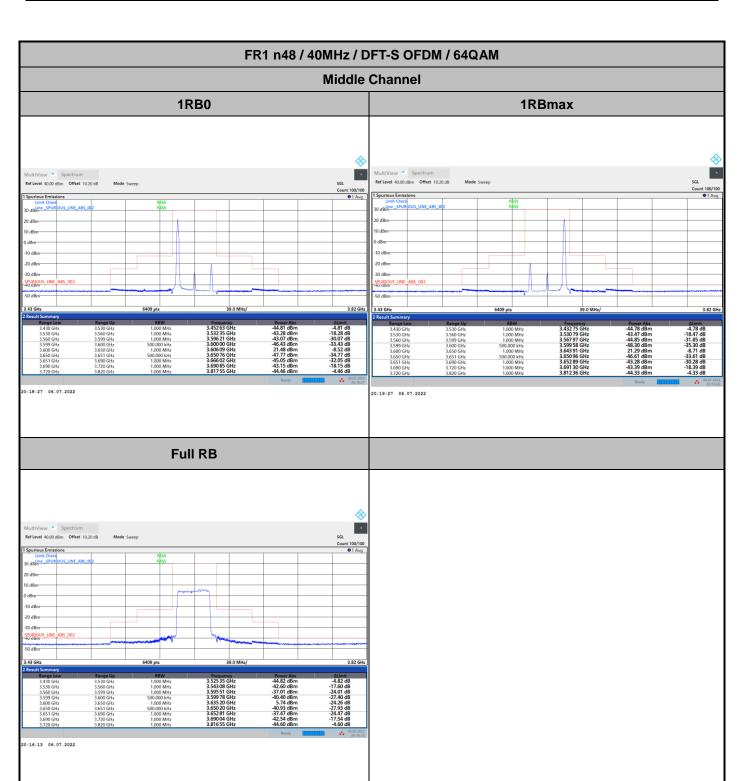
TEL: 886-3-327-3456 Page Number : A2 - 12 of 40

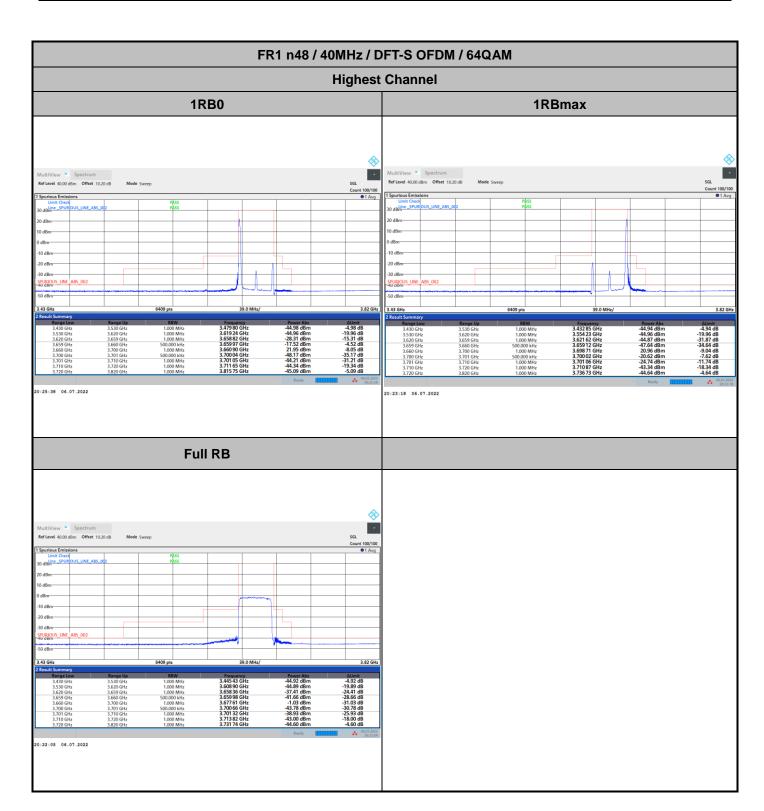

TEL: 886-3-327-3456 Page Number : A2 - 13 of 40


TEL: 886-3-327-3456 Page Number : A2 - 14 of 40

FAX: 886-3-328-4978

0:16:28 06.07.2022


TEL: 886-3-327-3456 Page Number: A2 - 15 of 40


TEL: 886-3-327-3456 Page Number : A2 - 16 of 40

FAX: 886-3-328-4978

0:13:20 06.07.2022

TEL: 886-3-327-3456 Page Number: A2 - 17 of 40

TEL: 886-3-327-3456 Page Number : A2 - 18 of 40

TEL: 886-3-327-3456 Page Number: A2 - 19 of 40

FR1 n48 / 40MHz / DFT-S OFDM / 256QAM **Middle Channel 1RB0** 1RBmax MultiView Spectrum

Ref Level 40.00 dBm Offset 10.20 dB 10 dBm 10 dBm -10 dBm SPURIOUS LINE ABS 002 PURIOUS_LINE_ABS_002 0:18:47 06.07.2022 Full RB Ref Level 40.00 dBm Offset 10.20 dB 0:15:42 06.07.2022

Report No.: FG1N1011I

TEL: 886-3-327-3456 Page Number: A2 - 20 of 40