PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 24 & 27 LTE

Applicant Name:

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 United States Date of Testing: 12/23/2015-3/5/2016 Test Site/Location: PCTEST Lab., Columbia, MD, USA Test Report Serial No.: 0Y1607131257-R2.J9C

FCC ID : J9CMTP9900LAA APPLICANT: QUALCOMM TECHNOLOGIES, INC. Application Type: Certification

Application Type: Model(s): EUT Type: FCC Classification: FCC Rule Part(s):

MTP9900LAA LAA Release 13 Small Cell PCS Licensed Transmitter (PCB)

§2; §24; §27

Test Procedure(s): Test Device Serial No.: §2; §24; §27 ANSI/TIA-603-D-2010, KDB 971168 D01 v02r02, KDB 662911 D01 v02r01 *identical prototype* [S/N: 49173051545004]

				EIRP	
Mode	Tx Frequency (MHz)	Emission Designator	Modulation	Max. Power (W)	Max. Power (dBm)
LTE Band 4	2112.5 - 2152.5	4M44G7D	QPSK	4.194	36.23
LTE Band 4	2115 - 2150	8M74G7D	QPSK	4.386	36.42
LTE Band 4	2117.5 - 2147.5	13M3G7D	QPSK	4.421	36.46
LTE Band 4	2120 - 2145	18M0G7D	QPSK	4.356	36.39
LTE Band 2	1932.5 - 1987.5	4M35G7D	QPSK	3.709	35.69
LTE Band 2	1935 - 1985	8M73G7D	QPSK	4.336	36.37
LTE Band 2	1937.5 - 1982.5	13M3G7D	QPSK	4.150	36.18
LTE Band 2	1940 - 1980	17M8G7D	QPSK	4.321	36.36

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 0Y1607131257-R2.J9C) supersedes and replaces the previously issued test report (S/N: 0Y1607131257-R1.J9C) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 101105
© 2016 PCTEST Engineering Laboratory. Inc. V 3.3			

TABLE OF CONTENTS

FCC PA	ART 24	& 27 MEASUREMENT REPORT	3
1.0	INTRO	DDUCTION	4
	1.1	Scope	4
	1.2	Testing Facility	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
3.0	DESC	RIPTION OF TESTS	6
	3.1	Measurement Procedure	6
	3.2	PCS - Base Frequency Blocks	6
	3.3	AWS - Base Frequency Blocks	6
	3.4	Radiated Power and Radiated Spurious Emissions	7
4.0	MEAS		8
5.0	TEST	EQUIPMENT CALIBRATION DATA	9
6.0	SAMF	PLE CALCULATIONS	10
7.0	TEST	RESULTS	11
	7.1	Summary	11
	7.2	Occupied Bandwidth	12
	7.3	Equivalent Isotropic Radiated Power	25
	7.4	Band Edge Emissions at Antenna Terminal	27
	7.5	Spurious and Harmonic Emissions at Antenna Terminal	61
	7.6	Peak-Average Ratio	75
	7.7	Frequency Stability / Temperature Variation	88
	7.8	Cabinet Radiated Spurious Emissions Measurements	91
8.0	CONC	CLUSION10	05

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 2 01 105
© 2016 PCTEST Engineering Laboratory, Inc. V 3.3			

MEASUREMENT REPORT FCC Part 24 & 27

§2.1033 General Information

APPLICANT:	Qualcomm Technologies, Inc.				
APPLICANT ADDRESS:	5775 Morehouse Drive				
	San Diego, CA 92121, United States				
TEST SITE:	PCTEST ENGINEERING LABORATORY, INC.				
TEST SITE ADDRESS:	7185 Oakland Mills Road, Co	lumbia, MD 21045	USA		
FCC RULE PART(S):	§2; §24; §27				
BASE MODEL:	MTP9900LAA				
SKU NUMBER:	65-F5230-910				
MCN NUMBER:	10-F5230-006				
FCC ID:	J9CMTP9900LAA				
FCC CLASSIFICATION:	PCS Licensed Transmitter (P	CB)			
FREQUENCY TOLERANCE:	±0.00025 % (2.5 ppm)				
Test Device Serial No.:	49173051545004	Production	Pre-Production	Engineering	
DATE(S) OF TEST:	12/23/2015-3/5/2016				
TEST REPORT S/N:	0Y1607131257-R2.J9C				

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 5 01 105
© 2016 PCTEST Engineering Laboratory Inc.			

rtificate of Accreditation	to ISO/IEC 17025:2005
HURLING	mitt
PCTEST Explorering E	deratery, Inc.
CTRANSCHIP	e Papel i colonea de concertato e medical duct i ficialità de la lagor c'honolità de ANN TILLECOMMENTACATIONS
CHORESCALDS, CORP.(2008), 27	AND TELECOMPRENE ATOMS

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2014 on January 22, 2015.

Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 4 01 105
© 2016 PCTEST Engineering Laboratory Inc.			

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Qualcomm LAA Release 13 Small Cell FCC ID: J9CMTP9900LAA**. The test hardware SKU identification number is 65-F5230-910. The test data contained in this report pertains only to the emissions due to the EUT's LTE function.

2.2 Device Capabilities

This device contains the following capabilities:

LTE Band 2 (5/10/15/20MHz BW), LTE Band 4 (5/10/15/20MHz BW), LAA (5GHz - UNII-1, UNII-3 (20/40MHz BW)), 802.11a (20MHz BW)

Both LAA and LTE portion of the device are of 2x2 MIMO.

2.3 Test Configuration

The Qualcomm LAA Release 13 Small Cell FCC ID: J9CMTP9900LAA was tested per the guidance of ANSI/TIA-603-D-2010 and KDB 971168 D01 v02r02. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

During LTE testing, one LTE carrier operates in either Band 2 (1930 – 1990MHz) or Band 4 (2110 – 2155MHz) while the other LTE carrier operates in the UNII 1 Band (5150 – 5250MHz) or the UNII 3 Band (5725 – 5850MHz). MIMO operation is considered while two LTE carriers are active (Chain0 and Chain1) in the same band on the same channel.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E of 10E
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 5 01 105
© 2016 PCTEST Engineering Laboratory, Inc. V 3.3			

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-D-2010) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v02r02) were used in the measurement of the **Qualcomm LAA Release 13 Small Cell FCC ID: J9CMTP9900LAA**.

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 6 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 6 01 105
© 2016 PCTEST Engineering Laboratory, Inc. V			V 3.3

3.4 Radiated Power and Radiated Spurious Emissions §2.1053, §24.232(c), §24.238(a), §27.50(d), §27.53(h)

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Clause 5, Figure 5.7 of ANSI C63.4-2014. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction. For measurements below 1GHz, a 72.4cm high PVC support structure is placed on top of the turntable. A 3" (~7.6cm) sheet of high density polystyrene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer, per the guidelines of KDB 971168.

Per the guidance of ANSI/TIA-603-D-2010, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi]$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g [dBm]}$ – cable loss $_{[dB]}$. The calculated P_d levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log₁₀(Power [Watts]).

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 7 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 7 01 105
© 2016 PCTEST Engineering Laboratory, Inc.			

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of CISPR 16-4-2. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 9 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 6 01 105
© 2016 PCTEST Engineering Laboratory, Inc.			

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	4/28/2015	Annual	4/28/2016	RE1
-	WL40-1	Conducted Cable Set (40GHz)	4/20/2015	Annual	4/20/2016	WL40-1
Agilent	8447D	Broadband Amplifier	6/12/2015	Annual	6/12/2016	1937A03348
Agilent	N5183A	MXG Analog Signal Generator	3/16/2014	Biennial	3/16/2016	MY50141900
Agilent	N9030A	PXA Signal Analyzer (44GHz)	3/24/2015	Annual	3/24/2016	MY52350166
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	7/30/2015	Biennial	7/30/2017	121034
Emco	3115	Horn Antenna (1-18GHz)	3/30/2014	Biennial	3/30/2016	9704-5182
Espec	ESX-2CA	Environmental Chamber	3/17/2015	Annual	3/17/2016	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/8/2014	Biennial	4/8/2016	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	6/17/2014	Biennial	6/17/2016	135427
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	3/12/2014	Biennial	3/12/2016	128337
K & L	11SH10-3075/U18000	High Pass Filter	7/18/2015	Annual	7/18/2016	11SH10-3075/U18000-2
K & L	11SH10-6000/T18000	High Pass Filter	7/18/2015	Annual	7/18/2016	11SH10-6000/T18000-1
Mini Circuits	TVA-11-422	RF Power Amp	N/A		N/A	QA1317001
Mini Circuits	PWR-SEN-4GHS	USB Power Sensor	3/11/2015	Annual	3/11/2016	11401010036
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator	N/A		N/A	11208010032
Rhode & Schwarz	TS-PR18	Pre-Amplifier	3/5/2015	Annual	3/5/2016	101622
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	3/5/2015	Annual	3/5/2016	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	3/3/2015	Annual	3/3/2016	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	3/12/2015	Annual	3/12/2016	100342
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	6/2/2015	Annual	6/2/2016	103200
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Tx	11/18/2015	Biennial	11/18/2017	91052522TX
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Rx	11/18/2015	Biennial	11/18/2017	91052523RX
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/18/2014	Biennial	3/18/2016	N/A
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/28/2014	Biennial	3/28/2016	A051107
VWR	62344-734	Thermometer with Clock	2/20/2014	Biennial	3/20/2016	140140336

Table 5-1. Test Equipment

Notes:

- 1. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.
- 2. Items whose calibration date lies within the test date range (e.g. TS-PR26 and TS-PR40) were not used to make calibrated measurements after their calibration due date.

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dago 0 of 105	
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 9 01 105	
© 2016 PCTEST Engineering Laboratory, Inc.				

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission – LTE Band

Example: LTE Harmonic at 1564 MHz

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analzyer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm – (-24.80).

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 10 01 105
© 2016 PCTEST Engineering Laboratory, Inc.			

7.0 TEST RESULTS

7.1 Summary

Company Name:	Qualcomm Technologies, Inc.
FCC ID:	J9CMTP9900LAA
FCC Classification:	PCS Licensed Transmitter (PCB)
Mode(s):	LTE

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Result	Reference
TRANSMITTER M	ODE (TX)	-			
2.1049	Occupied Bandwidth	N/A	CONDUCTED	PASS	Section 7.2
2.1046	Transmitter Conducted Output Power	N/A		PASS	Section 7.3
24.232(a)(2), 27.50(d)	Equivalent Isotropic Radiated Power (Band 4, Band 2)	< 1640 Watts/MHz max. EIRP		PASS	Section 7.3
2.1051, 24.238(a), 27.53(h)	Out of Band Emissions	> 43 + 10log ₁₀ (P[Watts]) attenuation from fundamental power at Band Edge and for all out-of-band emissions		PASS	Section 7.4, 7.5
24.232(d), 27.50(b)	Peak-Average Ratio	< 13 dB		PASS	Section 7.6
2.1055, 24.235, 27.54	Frequency Stability	Fundamental emissions must stay within authorized frequency block (Part 24, 27)		PASS	Section 7.7
2.1053, 24.238(a), 27.53(h)	Cabinet Radiated Emissions	> 43 + 10log ₁₀ (P[Watts]) attenuation from fundamental power for all out-of-band emissions	CABINET RADIATED	PASS	Section 7.8

Table 7-1. Summary of Test Results

Notes:

- 1. This device was evaluated for compliance using conducted measurements along with cabinet radiated emissions measurements, per KDB 971168.
- 2. All channels, modes, modulations, and channel bandwidths were investigated. The test results shown in the following sections represent the worst case emissions.
- 3. The analyzer plots (Sections 7.2, 7.4, 7.5, 7.6) were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the spectrum analyzer and the EUT at all frequencies of interest. Also included in the correction table were offsets to account for array gain which is comprised of the maximum antenna gain of 6dBi and an additional 3dB due to two antennas transmitting simultaneously.
- 4. All antenna port conducted emissions testing was performed on a test bench with the antenna ports of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 11 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 11 01 105
© 2016 PCTEST Engineering Laboratory, Inc.			

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v02r02 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1 – 5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 12 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 12 01 105
© 2016 PCTEST Engineering Laboratory, Inc.			

Chain0

Plot 7-1. Occupied Bandwidth Plot (Band 4 – 5.0MHz QPSK – RB Size 25, Low Channel)

Plot 7-2. Occupied Bandwidth Plot (Band 4 – 5.0MHz QPSK – RB Size 25, Mid Channel)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 105	
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 13 01 105	
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-3. Occupied Bandwidth Plot (Band 4 – 5.0MHz QPSK – RB Size 25, High Channel)

Plot 7-4. Occupied Bandwidth Plot (Band 4 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 14 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 14 01 105
© 2016 PCTEST Engineering Lab	oratory, Inc.	-	V 3.3

Plot 7-6. Occupied Bandwidth Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 105	
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 15 01 105	
© 2016 PCTEST Engineering Laboratory, Inc. V 3.				

Plot 7-7. Occupied Bandwidth Plot (Band 2 – 5.0MHz QPSK – RB Size 25, Low Channel)

Plot 7-8. Occupied Bandwidth Plot (Band 2 – 5.0MHz QPSK – RB Size 25, Mid Channel)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 16 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 16 01 105
© 2016 PCTEST Engineering Lab	oratory. Inc.	-	V 3.3

Plot 7-9. Occupied Bandwidth Plot (Band 2 – 5.0MHz QPSK – RB Size 25, High Channel)

Plot 7-10. Occupied Bandwidth Plot (Band 2 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 17 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 17 01 105
© 2016 PCTEST Engineering Lab	oratory, Inc.	•	V 3.3

Plot 7-12. Occupied Bandwidth Plot (Band 2 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 19 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 16 01 105
© 2016 PCTEST Engineering Lat	oratory, Inc.		V 3.3

Chain1

Plot 7-13. Occupied Bandwidth Plot (Band 4 – 5.0MHz QPSK – RB Size 25, Low Channel)

Plot 7-14. Occupied Bandwidth Plot (Band 4 – 5.0MHz QPSK – RB Size 25, Mid Channel)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT Review (CERTIFICATION) Quality		
Test Report S/N:	Test Dates:	EUT Type:	Daga 10 of 105	
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 19 01 105	

© 2016 PCTEST Engineering Laboratory, Inc.

Plot 7-15. Occupied Bandwidth Plot (Band 4 – 5.0MHz QPSK – RB Size 25, High Channel)

Plot 7-16. Occupied Bandwidth Plot (Band 4 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 20 01 105
© 2016 PCTEST Engineering Lab	oratory, Inc.	·	V 3.3

Plot 7-18. Occupied Bandwidth Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 21 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 21 01 105
© 2016 PCTEST Engineering Lab	oratory, Inc.		V 3.3

Plot 7-19. Occupied Bandwidth Plot (Band 2 – 5.0MHz QPSK – RB Size 25, Low Channel)

Plot 7-20. Occupied Bandwidth Plot (Band 2 – 5.0MHz QPSK – RB Size 25, Mid Channel)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 22 01 105
© 2016 PCTEST Engineering Lab	oratory, Inc.	•	V 3.3

Plot 7-21. Occupied Bandwidth Plot (Band 2 – 5.0MHz QPSK – RB Size 25, High Channel)

Plot 7-22. Occupied Bandwidth Plot (Band 2 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 22 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 23 01 105
© 2016 PCTEST Engineering Lab	oratory, Inc.		V 3.3

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 24 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 24 01 105
© 2016 PCTEST Engineering Lab	oratory, Inc.	·	V 3.3

7.3 Equivalent Isotropic Radiated Power §2.1046, §24.232(a), §27.50(d)

Test Overview

A transmitter antenna terminal of the EUT is connected to the input of a broadband spectrum analyzer. Measurement is made using the analyzer while the EUT is operating at its maximum output power level and at the appropriate frequencies.

For MIMO measurements, the conducted average (RMS) output powers are added linearly via the "Measure and Sum" technique in KDB 662911 D01 v02r01. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v02r02 – Section 5.2 KDB 662911 D01 v02r01 – Section E)1)

Test Settings

- 1. The signal analyzer's automatic "Channel Power" function was used to perform the conducted output power measurements. The integration bandwidth is set to at least the emission bandwidth.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 5. Sweep = auto couple
- 6. Detector = Average (RMS)
- 7. Trace mode = trace averaging
- 8. Trigger was set to "free run" for all modes
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

The total directional gain is calculated from the maximum 6dBi antenna gain and the 3dB from $N_{ant} = 2$ (two antennas transmitting simultaneously), per KDB 662911. EIRP compliance is assessed while taking the total directional gain of 9dB into account.

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 25 01 105
© 2016 PCTEST Engineering Lat	oratory. Inc.	·	V 3.3

Equivalent Isotropic Radiated Power (Cont'd) §2.1046, §24.232(a), §27.50(d)

LTE Band	BW	Channel Frequency (MHz)	3GPP Channel Number(s)	Directional Gain (dBi)	Chain0 Avg. Conducted Power (dBm)	Chain1 Avg. Conducted Power (dBm)	Total Conducted Power (dBm)	Total EIRP (dBm)	Limit (dBm)	Margin (dB)
		2112.5	1975	9.0	23.53	23.69	26.62	35.62	62.15	-35.53
	5 MHz	2132.5	2175	9.0	24.12	24.31	27.23	36.23	62.15	-34.92
		2152.5	2375	9.0	21.03	23.74	25.60	34.60	62.15	-36.55
		2115	2000	9.0	24.47	24.35	27.42	36.42	62.15	-34.73
	10MHz	2132.5	2175	9.0	24.11	24.18	27.16	36.16	62.15	-34.99
Pand 4		2150	2350	9.0	22.12	24.31	26.36	35.36	62.15	-35.79
Dallu 4		2117.5	2025	9.0	24.47	24.42	27.46	36.46	62.15	-34.69
	15 MHz	2132.5	2175	9.0	24.16	24.25	27.22	36.22	62.15	-34.93
		2147.5	2325	9.0	22.19	24.01	26.20	35.20	62.15	-35.94
	20 MHz	2120	2050	9.0	24.47	24.29	27.39	36.39	62.15	-34.76
		2132.5	2175	9.0	24.32	24.37	27.36	36.36	62.15	-34.79
		2145	2300	9.0	24.49	23.82	27.18	36.18	62.15	-34.97
		1932.5	625	9.0	23.13	23.42	26.29	35.29	62.15	-35.86
	5 MHz	1960	900	9.0	23.28	24.05	26.69	35.69	62.15	-35.46
		1987.5	1175	9.0	23.22	23.35	26.30	35.30	62.15	-35.85
		1935	650	9.0	23.81	24.45	27.15	36.15	62.15	-35.00
	10MHz	1960	900	9.0	24.32	24.4	27.37	36.37	62.15	-34.78
Dand 2		1985	1150	9.0	23.96	24.37	27.18	36.18	62.15	-34.97
Band 2		1937.5	675	9.0	23.74	24.47	27.13	36.13	62.15	-35.02
	15 MHz	1960	900	9.0	24.21	24.13	27.18	36.18	62.15	-34.97
		1982.5	1125	9.0	24.10	24.04	27.08	36.08	62.15	-35.07
		1940	700	9.0	24.39	24.3	27.36	36.36	62.15	-34.79
	20 MHz	1960	900	9.0	24.33	24.01	27.18	36.18	62.15	-34.97
		1980	1100	9.0	24.28	24.04	27.17	36.17	62.15	-34.98

Chain0 + Chain1 (Total Power) – EIRP Calculation

Table 7-25. EIRP (Total Power) Calculations (LTE Bands 2 and 4)

Note:

Per KDB 662911 v02r01 Section E)2), the output power at Chain0 and Chain1 were first measured separately. The measured values were then summed in linear power units then converted back to dBm.

Directional Gain = G_{ant} + 10log₁₀(N_{ant}) = 9dBi, where G_{ant} = 6dBi and N_{ant} = 2

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT REPORT CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 26 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 20 01 105
© 2016 PCTEST Engineering Laboratory, Inc.			

7.4 Band Edge Emissions at Antenna Terminal §2.1051, §24.238(a), §27.53(h)

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v02r02 – Section 6.0 KDB 662911 D01 v02r01 – Section E)3)a)iii)

Test Settings

1. Start and stop frequency were set such that the band edge would be placed in the center of the

plot

- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW <u>></u> 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT REPORT REPORT Q	
Test Report S/N:	Test Dates:	EUT Type:	Dego 27 of 105
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 27 of 105
© 2016 PCTEST Engineering Lab	oratory. Inc.	·	V 3.3

Test Notes

- 1. Per 24.238(a) and 27.53(h), in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- Per 24.238(a) and 27.53(h), the spurious emission limit is -13dBm. Since this device transmits from two antennas simultaneously, applying the "Measure and add 10 log(N_{ant}) dB", where N_{ant} = 2, guidance from KDB 662911 D01 v02r01 yields an additional correction to the limit of -3dB. The correct out of band conducted emission limit is -13dBm + (-3dB) = -16dBm.

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 29 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 26 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Chain0

Plot 7-26. Lower Band Edge Plot (Band 4 – 5.0MHz QPSK – RB Size 25)

Plot 7-27. Lower Extended Band Edge Plot (Band 4 – 5.0MHz QPSK – RB Size 25)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 29 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent Spectrum Analyzer - Swept SA				
💢 RF 50 Ω DC CORREC	SENSE:INT	ALIGNAUTO	04:08:33 PM Jan 28, 2016	Frequency
	Tria: Free Pup	#Avg Type: RMS AvailHold: 100/100		rioquonoy
PNO: Wide +++ IEGaint ow	#Atten: 32 dB	Argineia. 100/100	DET A N N N N N	
		Miles	4 0 455 07 011-	Auto Tune
		IVIKE	1 2.100 U/ GHZ	
10 dB/div Ref 22.00 dBm			-39.727 dBm	
Log				
				Center Freq
12.0				2.155000000 GHz
2 00 manual manual manual and a second				
2.00				Start Fred
				2 45000000 CU-
-8.00				2.15000000 GHz
	V WJ			
-18.0				
-10.0			-22.00 dBm	Stop Freq
				2.160000000 GHz
-28.0				
-38.0	<u> </u>			CF Step
	Margan and and and and and and and and and a	Also and the second sec		1.000000 MHz
		a	monoment	<u>Auto</u> Man
-48.0				
				Eron Offect
-58.0				Frequiser
				0 Hz
-68.0				
Center 2.155000 GHz			Span 10.00 MHz	
#Res BW 51 kHz #VBW	150 KHZ*	Sweep 5	.000 ms (1001 pts)	
MSG		STATUS		

Plot 7-28. Upper Band Edge Plot (Band 4 – 5.0MHz QPSK – RB Size 25)

Plot 7-29. Upper Extended Band Edge Plot (Band 4 – 5.0MHz QPSK – RB Size 25)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 50 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent Spectru	m Analyzer -	Swept SA									
LXI	RF	50 Ω DC	CORREC	SEN	ISE:INT		ALIGN AUTO	02:35:14 P	M Jan 28, 2016	Frequency	
				Tria Free	Run	#AVg Typ	e: RIVIS	TY	PE A Matatatatat		
			IFGain:Low	Atten: 36	dB	in ghiona	. 1001100	D	ET A N N N N N		
							Mk	1 2 110	00 CH7	Auto Tun	ne
							IVINI	-3/ 1	41 dBm		
10 dB/div	Ref 25	.vv aBm				_		-0	41 GDill		
										Contor Ero	
										CenterFre	Pe
15.0										2.110000000 GH	٦z
5.00					m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		monton	munit		
										Start Fre	Pe
-5.00										2.10000000 GH	Ηz
0.00									6		
-15.0										Stop Fre	pe
									-22.00 dBm	2.120000000 GH	Ηz
-25.0					<u> </u>						
					<u>, 1</u>				\setminus		
25.0					/					CF Ste	p
-55.0				/						2.000000 MH	Ηz
			min	mannet						<u>Auto</u> Ma	an
-45.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	manna									
										Eron Offe	ot
-55.0										Frequisi	EL
										0 F	۶
05.0											
-65.U											
Contor 1 (11000 0							- Cnon (
#Boc BW	100 KH3	12	#\/P\//	200 64-2			Swoon_1	Span 2	(1001 ptc)		
#RGS DW			#4044	300 KHZ			oweep 2		(100 Fpts)		
MSG							STATUS	5			

Plot 7-30. Lower Band Edge Plot (Band 4 – 10.0MHz QPSK – RB Size 50)

Plot 7-31. Lower Extended Band Edge Plot (Band 4 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 21 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 31 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-33. Upper Extended Band Edge Plot (Band 4 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 32 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent S	pectrum	Analyzer	- Swept SA								
L <mark>XI</mark>		RF	50 Ω D	C CORREC	SEN	ISE:INT		ALIGN AUTC	06:33:06 P	4 Jan 28, 2016	Frequency
					Teles Free		#Avg Typ	e: RMS	TRA	E 123456	riequency
				PNO: Wide ↔	Atton: 26	a Run	Avginoid	100/100	D	ANNNN	
	_			IFGain:Low	Atten: 30	aD			-		Auto Tupo
								M	(r1 2.109	96 GHz	Auto Tune
10 481	dio	Pef 2	5 00 dBr	n					-37.4	13 dBm	
	uiv	KCI Z.	5.00 abi								
											Contor From
											Center Freq
15.0											2.110000000 GHz
5.00									~~~~~~	man	
5.00						1					Start From
											otartireq
-5.00											2.100000000 GHz
-15.0											Stop Freg
										-22.00 dBm	2 420000000 CU
05.0										-22.00 0.011	2.12000000 GH2
-25.0						1					
						1					05.04
-35.0					(, '					CF Step
						r					2.000000 MHz
				mann	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						<u>Auto</u> Man
-45.0 🗠	~~~~~	~~~~~									
											Freq Offset
-55.0											0 Hz
-65.0											
05.0											
	- 0.4	1000									
Cente	er 2.1	1000 C	HZ						span 2	0.00 WHZ	
#Res	BW 1	60 kH	Z	#VBW	470 kHz	5		Sweep	1.000 ms (1001 pts)	
MSG								STAT	US		

Plot 7-34. Lower Band Edge Plot (Band 4 – 15.0MHz QPSK – RB Size 75)

Plot 7-35. Lower Extended Band Edge Plot (Band 4 – 15.0MHz QPSK – RB Size 75)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 22 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 33 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent	Spectrum	ı Analyze	- Swept SA									
<mark>LXI</mark>		RF	50 Ω [DC CORREC		SEN	ISE:INT	#A	ALIGN AUTO	06:35:52 P	M Jan 28, 2016	Frequency
					т,	ia: Free	Dun	#Avg Typ	e: RMS 100/100	IRA TY		rioquonoy
				PNO: W	ide ⊶	tten: 36	dB	Arginola.	100/100	D	ET A N N N N N	
	_			ir Gain.t	.0w 10	item ee	4 D					Auto Tune
									IVI	(r1 2.155	03 GHz	Auto Tunc
10 dE	3/div	Ref 2	5.00 dB	m						-25.1	45 dBm	
Log												
												Center Freg
15.0												2 155000000 CH-
10.0												2.155000000 GH2
5.00	- mark	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	human	m	work have a	~~~						
						1						Start Freq
5 00	{											2.140000000 GHz
-0.00												
						1						
-15.0	H——											Stop Fred
							1				22.00 dBm	
))'				-22.00 dbm	2.170000000 GHZ
-25.0							many					
									mon			OE Oton
-35.0											manne	
												S.000000 Minz
												Auto
-45.0												
												Erog Offect
-55.0												Frequiser
												0 Hz
-65.0												
Cen	ter 2.1	5500	GHz							Span 3	0.00 MHz	
#Res	s BW	160 kH	z	7	#VBW 47	0 kHz			Sweep	1.467 ms	(1001 pts)	
MSG									STAT	US		
									JIA			

Plot 7-36. Upper Band Edge Plot (Band 4 – 15.0MHz QPSK – RB Size 75)

Plot 7-37. Upper Extended Band Edge Plot (Band 4 – 15.0MHz QPSK – RB Size 75)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 34 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-38. Lower Band Edge Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

Plot 7-39. Lower Extended Band Edge Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 35 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent	Spectrun	n Analyze	er - Swept	SA								
L <mark>XI</mark>		RF	50 Ω	DC	CORREC	SEI	ISE:INT	#Avg Typ	ALIGNAUTO	06:49:24 P TRA	4 Jan 28, 2016 E 1 2 3 4 5 6	Frequency
					PNO: Wide ↔	Trig: Free	Run	AvgHold	: 100/100	TY	PE A WARAAAA FT A N N N N N	
	_				IFGain:Low	Atten: 30	aD					Auto Tune
									IVIP	-20 0		
10 dB	/div	Ref 2	25.00 c	Bm						-23.0	SS UDIII	
												Center Freq
15.0												2 15500000 GHz
5.00												
						λ						Start Freq
-5.00						1						2.150000000 GHz
-15.0												Stop From
											-22.00 dBm	2 16000000 GHz
-25.0						- W.	1					2.10000000 0112
						March 1	-					
-35.0							- where a construction of the second	and the state of the second	Marria Married			CF Step
											and the state of t	Auto Man
-45.0												
-55.0												FreqOffset
												0 HZ
-65.0												
Cent #Poo	er 2.1	5500	GHz		#)(D)	N 620 KH-	*		Swoon	Span 1	0.00 MHz	
#Res	, тың т	200 K	12		#VBV	V OZU KHZ			Sweep	5.000 ms (roo r prs)	
MSG									STAT	US		

Plot 7-40. Upper Band Edge Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

Plot 7-41. Upper Extended Band Edge Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 26 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 30 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-42. Lower Band Edge Plot (Band 2 – 5.0MHz QPSK – RB Size 25)

Plot 7-43. Lower Extended Band Edge Plot (Band 2 – 5.0MHz QPSK – RB Size 25)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dege 27 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 37 01 105		
© 2016 PCTEST Engineering Laboratory, Inc. V					

Plot 7-45. Upper Extended Band Edge Plot (Band 2 – 5.0MHz QPSK – RB Size 25)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 29 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 36 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-46. Lower Band Edge Plot (Band 2 – 10.0MHz QPSK – RB Size 50)

Plot 7-47. Lower Extended Band Edge Plot (Band 2 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 39 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent Spectrum Analyzer - Swept	t 5A				
LXI RF 50 Ω	DC CORREC	SENSE:INT	ALIGNAUTO	06:09:16 PM Jan 28, 2016	Frequency
		ria: Eroo Dun	#Avg Type: RMS Aug/Hold: 100/100		Troqueriey
	PNO: Wide ++++ +	Atten: 36 dB	Avginoid. 100/100	DET A NNNNN	
	IFGam.cow				Auto Tune
			IVIKI	1 1.990 02 GHZ	/late rane
10 dB/div Ref 25.00	dBm			-34.222 dBm	
					Center Freq
15.0					1 99000000 GHz
					1.000000000000
5.00	warmen and the second s	~			Otart Frank
					StartFreq
-5.00					1.980000000 GHz
		- ξ			
-15.0					Stop Freq
				-22.00 dBm	2 00000000 GHz
.25.0					2.0000000000000
20.0		<u></u>			
∫		** '			CE Sten
-35.0		X			2 000000 MHz
		\square			Auto Man
45.0					
-4310		- marine	Margan and Mar		
			a more and the second		Freg Offset
-55.0				manna manna and	0 47
					0112
65.0					
-85.0					
				0	
Center 1.99000 GHz	20 (B) (1) (2)			Span 20.00 MHz	
#Res BW 100 kHz	#VBW 30		Sweep 2	.533 ms (1001 pts)	
MSG			STATUS		

Plot 7-49. Upper Extended Band Edge Plot (Band 2 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 40 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 40 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent Spectrum Analyzer	- Swept SA							
LXI RF	50 Ω DC CORREC	SE	NSE:INT	/	ALIGN AUTO	06:21:14 PM	Jan 28, 2016	Frequency
		Tria: Fro	o Bun	#Avg Type	100/100	TYPE		rioquonoy
	PNO: N IEGain	Nide →→ Hig. He How Atten: 36	6 dB	Arginola.	1007100	DET	A N N N N N	
	ii Gain				Milent	4 020 /		Auto Tune
					IVIKE	11.930 (JU GHZ	
10 dB/div Ref 2	5.00 dBm					-39.62	n abm	
								Center Freq
15.0								1.93000000 GHz
5.00								
5.00				and the second			······································	Start Fred
			1					1 020000000 CH-
-5.00			╞──┤					1.92000000 GH2
-15.0								
10.0								StopFreq
							-22.00 dBm	1.940000000 GHz
-25.0								
-35.0			<u> </u>					CF Step
			•·					2.000000 MHz
								<u>Auto</u> Man
-45.0		some south the						
	m							Fred Offset
-55.0								Trequiser
								0 HZ
-65.0								
Center 1.93000 G	SHZ					Span 20	.00 MHz	
#Res BW 160 kH	Z	#VBW 470 kHz	ð		sweep 1.	000 ms (1	001 pts)	
MSG					STATUS			

Plot 7-50. Lower Band Edge Plot (Band 2 – 15.0MHz QPSK – RB Size 75)

Plot 7-51. Lower Extended Band Edge Plot (Band 2 – 15.0MHz QPSK – RB Size 75)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 41 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 41 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent Sp	pectrum	Analy	zer - Swep	t 5A								
L <mark>XI</mark>		RF	50 S	2 DC	CORREC	9	SENSE:INT	#Aug Tup	ALIGN AUTC	06:24:44 P	M Jan 28, 2016	Frequency
					PNO Mide ↔	Trig: Fr	ee Run	Avg Hold:	: 100/100	TY	PE A WWWWWW	
					IFGain:Low	Atten:	36 dB			D	ET <mark>A N N N N N</mark>	
									Mk	(r1 1.990	00 GHz	Auto Tune
10 dB/c	div	Ref	25.00	dBm						-37.1	29 dBm	
												Center Freq
15.0												1.990000000 GHz
5.00 🗠	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
						}						Start Freq
-5.00											<u> </u>	1.98000000 GHz
-15.0												Stop From
											-22.00 dBm	Stop Freq
.25.0						Ì					-22.00 0.00	2.00000000 GHZ
20.0						l	1					
25.0							\ 1					CF Step
-35.0							×.					2.000000 MHz
							mon	mm				<u>Auto</u> Man
-45.0										mmmmm		
												Freq Offset
-55.0												0 Hz
-65.0											┼───┤	
Conto	r 1 0	0000								- Cnon-1		
#Res	BW 1	60	H7		#VBW	470 kH	7*		Sween	1.000 ms	(1001 pts)	
MEG			10.7		<i>"</i> ••Bn				0747	110	(Toor pla)	
MSG									STAT	05		

Plot 7-53. Upper Extended Band Edge Plot (Band 2 – 15.0MHz QPSK – RB Size 75)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 42 of 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-54. Lower Band Edge Plot (Band 2 – 20.0MHz QPSK – RB Size 100)

Plot 7-55. Lower Extended Band Edge Plot (Band 2 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 42 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 43 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-56. Upper Band Edge Plot (Band 2 – 20.0MHz QPSK – RB Size 100)

Plot 7-57. Upper Extended Band Edge Plot (Band 2 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 44 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 44 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Chain1

Plot 7-58. Lower Band Edge Plot (Band 4 – 5.0MHz QPSK – RB Size 25)

Plot 7-59. Lower Extended Band Edge Plot (Band 4 – 5.0MHz QPSK – RB Size 25)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 45 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 45 of 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-60. Upper Band Edge Plot (Band 4 – 5.0MHz QPSK – RB Size 25)

Plot 7-61. Upper Extended Band Edge Plot (Band 4 – 5.0MHz QPSK – RB Size 25)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 46 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 46 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-62. Lower Band Edge Plot (Band 4 – 10.0MHz QPSK – RB Size 50)

Plot 7-63. Lower Extended Band Edge Plot (Band 4 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 47 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 47 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-65. Upper Extended Band Edge Plot (Band 4 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 49 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 46 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent Spectru	m Analyzer	- Swept SA								
LXI	RF	50 Ω DC	CORREC	SEN	SE:INT		ALIGN AUTO	03:28:48 Pf	4Feb 01, 2016	Frequency
				Tria: Free	Pup	#Avg Typ	e: RMS 100/100	TRAC		ricqueriey
			PNO: Wide +++	Atten: 36	dB	Arginola.	1007100	DI	TANNNN	
			II GUILLOW				Miles	4 0 440	00 CU-	Auto Tune
							IVIKI	1 2.110		
10 dB/div	Ref 2	5.00 dBm						-30.0	94 abm	
										Center Freq
15.0										2.110000000 GHz
5.00					of molecular	and the second second	- Comprometer	www.www.ww	·······	
0.00					<pre>/***</pre>					Start Freg
										2 09500000 GHz
-5.00										2.03000000 0112
-15.0					_					Oton From
										StopFreq
									-22.00 dBm	2.125000000 GHz
-25.0										
					. <u>1</u>				k,	05.04.0
-35.0					·				\	CF Step
				1 mart						S.000000 MHZ
			man	man						Auto Mari
-45.0	man	~ mar and a marine								
										Fred Offset
-55.0										
										0 112
er 0										
-05.0										
Comton 2	44000 4	SI I						Onen 2	0.00 8411-	
"Center 2."	450 64	-	#\/D\M	470 kH=			Duraan (Span J	0.00 IVIHZ	
#Res BW	TOU KH	2	#VBW	47 U KHZ			sweep 1	.007 ms (roor pts)	
MSG							STATUS	5		

Plot 7-66. Lower Band Edge Plot (Band 4 – 15.0MHz QPSK – RB Size 75)

Plot 7-67. Lower Extended Band Edge Plot (Band 4 – 15.0MHz QPSK – RB Size 75)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 49 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent Spect	rum Analyzer - Swept:	5A				
L <mark>XI</mark>	RF 50 Ω	DC CORREC	SENSE:INT	ALIGN AUTO	03:31:28 PM Feb 01, 2016	Frequency
		PNO: Mido ↔	Trig: Free Run	Avg Hold: 100/100	TYPE A WARMAN	
		IFGain:Low	Atten: 36 dB		DET A N N N N N	
				Mk	r1 2.155 00 GHz	Auto Tune
10 dB/div	Ref 25.00 d	lBm			-34.848 dBm	
Log						
						Center Freq
15.0						2.155000000 GHz
5.00	2 Mar 10 - Mar 10 - Mar 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	and the reason of the second second				
(*						Start Freq
5.00						2.140000000 GHz
-3.00						
-15.0						Stop Freq
					-22.00 dBm	2.170000000 GHz
-25.0			└──── <u></u>			
			\/1			OF Oton
-35.0 /			<u> </u>			3 000000 MHz
				Maran Maran		Auto Man
-45.0					montometere	
-55.0						Freq Offset
-33.0						0 Hz
-65.0						
Center 2	15500 GHz				Spap 30.00 MHz	
#Res BV	V 150 kHz	#VBW	470 kHz*	Sweep	1.667 ms (1001 pts)	
MSG				STATU	s	
				STATU		

Plot 7-68. Upper Band Edge Plot (Band 4 – 15.0MHz QPSK – RB Size 75)

Plot 7-69. Upper Extended Band Edge Plot (Band 4 – 15.0MHz QPSK – RB Size 75)

FCC ID: J9CMTP9900LAA		ST FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dege 50 of 105	
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 50 01 105	
© 2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-70. Lower Band Edge Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

Plot 7-71. Lower Extended Band Edge Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga E1 of 10E		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 51 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					

Agilent Spectrur	n Analyzer	- Swept SA								
LXI	RF	50 Ω DC	CORREC	SEN	ISE:INT		ALIGN AUTO	03:38:00 P	MFeb 01, 2016	Frequency
				Tria: Eroc	Dun	#Avg lyp	e: RMS	TY		Troqueriey
			PNO: Wide +++	Atten: 36	dB	Arginola.	1007100	D	ET A N N N N N	
			II Gam.cow				8.41		00.011-	Auto Tune
							IVIK	(FI 2.155	UU GHZ	
10 dB/div	Ref 2:	5.00 dBm						-31.6	эт авт	
										Center Freq
15.0										2.155000000 GHz
5.00										
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								Start Freg
										2 135000000 CH7
-5.00										2.133000000 GH2
-15.0										04
										StopFreq
									-22.00 dBm	2.175000000 GHz
-25.0					1					
1										
-35.0					<u></u>					CF Step
					- www.	www.				4.000000 MHZ
								mon		<u>Auto</u> Man
-45.0										
										Fred Offset
-55.0										i i cq onsci
										0 H2
05.0										
-65.0										
Conton C	5500-	311-						0		
Center 2.1	13500 C	SAZ	#\/D\\	600 kH-			Duvo om	span 4	0.00 WIHZ	
#Res BW	200 KH	2	#VBW	020 KHZ			sweep	1.207 ms	TOUT pts)	
MSG							STAT	US		





Plot 7-73. Upper Extended Band Edge Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 52 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					





Plot 7-74. Lower Band Edge Plot (Band 2 – 5.0MHz QPSK – RB Size 25)



Plot 7-75. Lower Extended Band Edge Plot (Band 2 – 5.0MHz QPSK – RB Size 25)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 55 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					





Plot 7-76. Upper Band Edge Plot (Band 2 – 5.0MHz QPSK – RB Size 25)



Plot 7-77. Upper Extended Band Edge Plot (Band 2 – 5.0MHz QPSK – RB Size 25)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga E4 of 10E		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 54 01 105		
© 2016 PCTEST Engineering Laboratory, Inc. V					





Plot 7-78. Lower Band Edge Plot (Band 2 – 10.0MHz QPSK – RB Size 50)



Plot 7-79. Lower Extended Band Edge Plot (Band 2 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga EE of 10E		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 55 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					



Agilent Spectrum Analyzer	- Swept SA								
LXI RF	50 Ω DC	CORREC	SEN	JSE:INT		ALIGN AUTO	03:12:06 PM	4Feb 01, 2016	Frequency
			Tria: Free	Dun	#Avg lype	100/100	TYP		Troqueriey
		PNU: Wide ↔ → IEGain:Low	Atten: 36	dB	in ghiona.	1001100	DE		
						ML	4 4 000	00 CU-	Auto Tune
						IVIN	22 4		
10 dB/div Ref 2	5.00 dBm						-55.4	oo ubiii	
									Center Freq
15.0									1.990000000 GHz
5.00	man	man	m						
									Start Freq
									1.980000000 GHz
-0.00									
			}						
-15.0									Stop Freq
								-22.00 dBm	2 00000000 GHz
-25.0									2.000000000000112
			$\langle \rangle$	1					
05.0				2					CF Step
-35.0				l .					2.000000 MHz
				کر ا					<u>Auto</u> Man
-45.0				haven					
						manyou	Augusta .		Ener Offerst
-55 በ								- Marine Mari	Frequise
									0 Hz
-65.0									
Q	NU-						0		
Center 1.99000 G		#\(D)A(	200 64-			Swoon	Span 2	1001 ptc)	
#Res DW 100 KH	2	#VDVV	300 KHZ			sweep .	ะ	roor pis)	
MSG						STATU	IS		





Plot 7-81. Upper Extended Band Edge Plot (Band 2 – 10.0MHz QPSK – RB Size 50)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dege EC of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 56 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					









Plot 7-83. Lower Extended Band Edge Plot (Band 2 – 15.0MHz QPSK – RB Size 75)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dege E7 of 10E		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 57 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					



Agilent Spectru	n Analyzer - Swep	t SA								
LXI	RF 50 S	2 DC	CORREC	SEN	ISE:INT		ALIGN AUTO	03:26:05 Pf	4Feb 01, 2016	Frequency
				Tui u Fuer	<b>D</b>	#Avg Typ	e: RMS	TRAC	E 1 2 3 4 5 6	riequency
			PNO: Wide	Atton: 36	a Run	Avginoid:	100/100	DI	ANNNN	
			IFGain:Low	Atten. 50	<b>u</b> D			_	_	Auto Tup
							Mkr	1 1.990	00 GHz	Auto Tuli
10 dB/div	Ref 25.00	dBm						-40.6	77 dBm	
Log										
										Center Free
45.0										Centerried
15.0										1.990000000 GH
5.00	warne wa	mount	······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
				)						Start Free
										1 975000000 GH
-5.00										
-15.0										04 E
										StopFree
									-22.00 dBm	2.005000000 GH
-25.0										
25.0				1						CF Step
-35.0				, y	1					3.000000 MH
										<u>Auto</u> Mar
-45.0					how we are the					
						and a second and a second and a second	mummen	4		
								man		Freq Offse
-55.0									m	0 H
									and and a second second	
-65.0										
Contor 1 (								Cnop 2		
temer 1.9			41/014/	470 kula	e		Duraan 4	Span J	1001 WINZ	
#Res BW	150 KHZ		#VBW	470 KHZ	<u> </u>		sweep 1	.007 ms (	TOUT pts)	
MSG							STATUS			
								-		





Plot 7-85. Upper Extended Band Edge Plot (Band 2 – 15.0MHz QPSK – RB Size 75)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dege 59 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 56 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					









Plot 7-87. Lower Extended Band Edge Plot (Band 2 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dege 50 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 59 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					



Agilent Spectrur	n Analyzer - Swept SA					
LXI	RF 50 Ω D	C CORREC	SENSE:INT	ALIGN AU	TO 03:43:44 PMFeb 01, 2016	Frequency
				#Avg Type: RMS	TRACE 1 2 3 4 5 6	riequency
		PNO: Wide 🔸	Atton: 26 dB	AvgiHold: 100/100		
		IFGain:Low	Atten: 36 db			
				N	/kr1 1.990 00 GHz	Auto Tune
	Dof 25.00 dB	m			-43.357 dBm	
	NCI 20.00 UDI					
-						
						Center Freq
15.0						1.990000000 GHz
F 00						
5.00	man war	and the second s				Start Eron
						StartFrey
-5 00						1.970000000 GHz
-15.0						Stop Fred
					22.00 dB-	Coprieq
					-22.00 dBill	2.010000000 GHz
-25.0						
25.0						CF Step
-35.0			1			4.000000 MHz
V			▲ '			<u>Auto</u> Man
-45.0						
				manna		
					m	Freq Offset
-55.0					- Marine -	0 Hz
					man from the second second	0112
-65.0						
Center 1.9	99000 GHz				Span 40.00 MHz	
#Res BW	200 kHz	#VBW	620 kHz*	Swee	p 1.267 ms (1001 pts)	
MSG				0	TATUS	
MoG				SI	IA105	

Plot 7-88. Upper Band Edge Plot (Band 2 – 20.0MHz QPSK – RB Size 100)



Plot 7-89. Upper Extended Band Edge Plot (Band 2 – 20.0MHz QPSK – RB Size 100)

FCC ID: J9CMTP9900LAA		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 60 of 105		
0Y1607131257-R2.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 60 01 105		
© 2016 PCTEST Engineering Laboratory, Inc.					