

FCC CFR47 PART 27 SUBPART L & INDUSTRY CANADA RSS-139

CERTIFICATION TEST REPORT

FOR

802.11BG, BT, WWAN COMBO MODULE

MODEL NUMBER: FENWAY-2

FCC ID: J9CFENWAY-2

IC: 2723A-FENWAY2

REPORT NUMBER: 10U13243-4

ISSUE DATE: MAY 28, 2010

Prepared for

QUALCOMM 5775 MOREHOUSE DRIVE SAN DIEGO, CA. 92121, UNITED STATES

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	05/28/10	Initial Issue	

Page 2 of 45

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3.	FACILITIES AND ACCREDITATION	5
4.	CALIBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	MEASUREMENT UNCERTAINTY	5
5.	EQUIPMENT UNDER TEST	6
5.1.	DESCRIPTION OF EUT	6
5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5.3.	DESCRIPTION OF TEST SETUP	7
6.	TEST AND MEASUREMENT EQUIPMENT	10
7.	TEST SUMMARY	11
8.	MAXIMUM OUTPUT POWER	11
9.	RF POWER OUTPUT VERIFICATION	12
9.1.	RF POWER OUTPUT FOR UMTS REL99	13
9.2.	RF POWER OUTPUT FOR UMTS Rel 6 HSDPA	14
9.3.	RF POWER OUTPUT for UMTS- Rel 6 HSPA (HSDPA & HSUPA)	15
10.	WORST-CASE CONFIGURATION AND MODE	17
11.	CONDUCTED TEST RESULTS	18
11.1	1. OCCUPIED BANDWIDTH	18
11.2	2. BAND EDGE	23
11.3	3. OUT OF BAND EMISSIONS	26
11.4	4. FREQUENCY STABILITY	31
12.	RADIATED TEST RESULTS	33
12.1	I. RADIATED POWER (ERP & EIRP)	33
12.2	2. FIELD STRENGTH OF SPURIOUS RADIATION	35
12.3	B. RECEIVER SPURIOUS EMISSIONS	38
13.	MAXIMUM PERMISSIBLE EXPOSURE	41
14.	SETUP PHOTOS	44

Page 3 of 45

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	QUALCOMM CORPORATE
	5775 MOREHOUSE DRIVE SAN DIEGO, CA. 92121, UNITED STATES.
EUT DESCRIPTION:	802.11bg, BT, WWAN Combo Module
MODEL:	FENWAY-2
SERIAL NUMBER:	HCR1JJW
DATE TESTED:	NOVEMBER 06-15, 2008

APPLICABLE STANDARDS						
STANDARD	TEST RESULTS					
FCC PART 27 SUBPART L	Pass					
IC RSS-139 ISSUE 2	Pass					

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Tested By:

Seenay Shih

SUNNY SHIH EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Chin Pany

CHIN PANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 45

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with RSS-GEN, RSS-139 Issue 1 and FCC CFR 47 Part 2, and FCC CFR 47 Part 27.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/Standards/scopes/2000650.htm.</u>

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 45

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11bg, BT, WWAN Combo Module.

Fenway is a ruggedized Win Mobile PDA device for the Vertical and Enterprise markets. Fenway will deliver WWAN connectivity solutions for the UMTS HSDPA and HSUPA, and GSM/GPRS/EDGE protocols in one hardware configuration.

In the US and Canada, only 850 MHz (Cellular), 1700 MHz (AWS) and 1900 MHz (PCS) bands are used for WCDMA and GSM operation. The EUT was only tested in those three bands for FCC application.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Magnetic Mount triple-frequency Mobile antenna with a maximum gain of 0 dBi.

Page 6 of 45

5.3. DESCRIPTION OF TEST SETUP

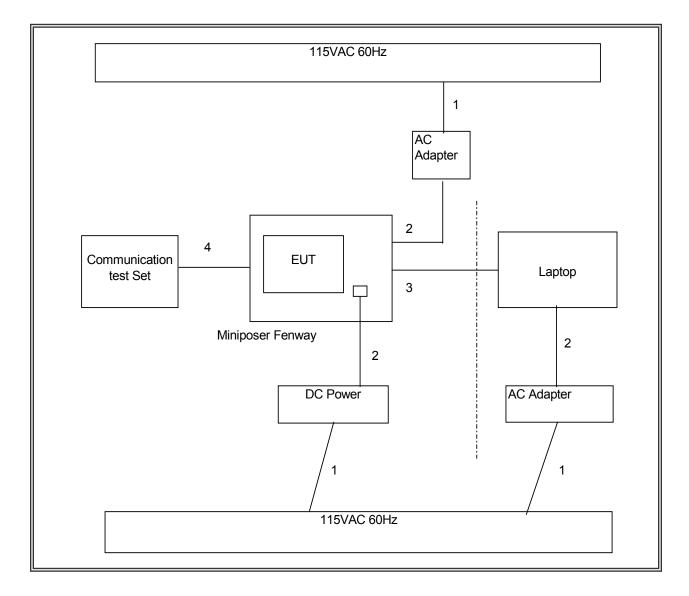
SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop	HP	Compaq6910p	CND8153FTV	DoC		
AC Adapter	HP	PA-1131-08HC	7500329102	DoC		
DC Power Supply	XANTREX	XHR60-18	1064	NA		
Horn	EMCO	3115	6717	NA		
AC Adapter	QUALCOMM	GWC-1700	CV90-C6024	DoC		
Qualcomm Miniposer	QUALCOMM	NA	NA	NA		

I/O CABLES (CONDUCTED TEST)

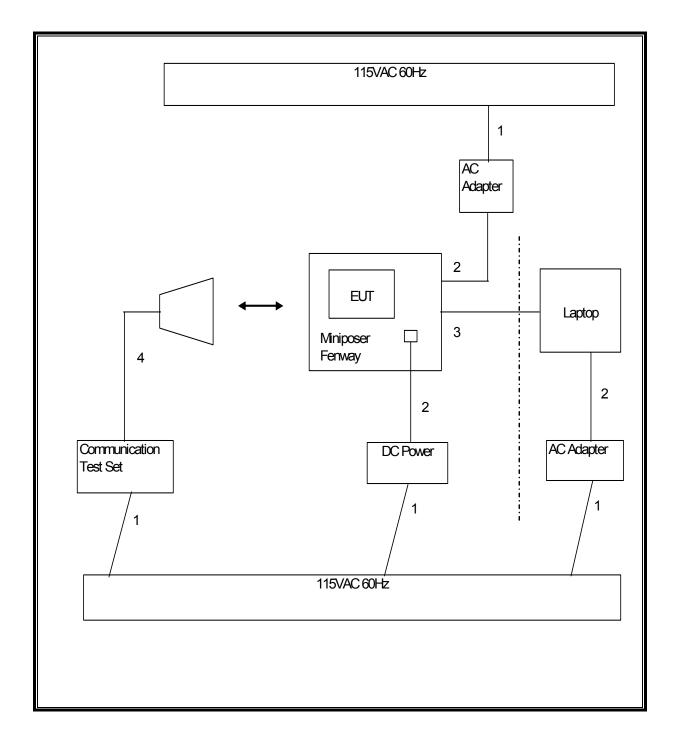
	I/O CABLE LIST					
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	3	US 115V	Un-shielded	2m	No
2	DC	3	DC	Un-shielded	2m	No
3	USB	1	USB	Un-shielded	2m	Yes
4	RF In/Out	1	SMA	Un-shielded	1m	Yes

I/O CABLES (RADIATED TEST)


	I/O CABLE LIST					
Cable No.	Port	# of Identical	Connector Type	Cable Type	Cable Length	Remarks
		Ports	51	51	5	
1	AC	3	US 115V	Un-shielded	2m	No
2	DC	3	DC	Un-shielded	2m	No
3	USB	1	USB	Un-shielded	2m	Yes
4	RF In/Out	1	Horn	Un-shielded	1m	Yes

TEST SETUP

The EUT is installed in a test fixture during the tests. A link is established between the EUT and the Agilent 8960 communications test set.


Page 7 of 45

SETUP DIAGRAM FOR CONDUCTED TESTS

Page 8 of 45

SETUP DIAGRAM FOR RADIATED TESTS

COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 9 of 45

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	12/03/07	03/03/09	
Temperature / Humidity	Thermotron	SE 600-10-10	C00930	05/13/08	05/13/09	
Antenna, Horn, 18 GHz	ETS	3117	C01006	04/22/08	04/22/09	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	09/27/07	08/05/09	
EMI Receiver, 2.9 GHz	Agilent / HP	8542E	C00957	06/19/08	09/19/09	
RF Filter Section, 2.9 GHz	Agilent / HP	85420E	C00958	06/19/08	09/19/09	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	02/06/08	08/06/09	
Communications Test Set	Agilent / HP	E5515C	C01086	06/16/08	06/16/09	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	02/11/08	02/11/09	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C01064	05/09/07	03/31/09	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	09/15/06	10/29/09	

7. TEST SUMMARY

	Description of test		Results	
	Description of test	FCC	IC	Tresuits
1.	RF Power Output	§2.1046,	RSS-139	Complies
2.	Occupied Bandwidth	§2.1049	RSS-Gen, 4.6	
3.	Block Edge (Band Edge)	§27.53	RSS-139, 6.5	Complies
4.	Out of Band Emissions	§2.1051, §27.53	RSS-139, 6.5	Complies
5.	Frequency Stability	§2.1055, §27.54	RSS-139, 6.3	Complies
6.	Radiated Power (ERP & EIRP)	§2.1046, §27.50(d) (2)	RSS-139, 6.4	Complies
7.	Field Strength of Spurious Radiation	§2.1053, §24.53	RSS-139, 6.5	Complies
8.	Receiver Spurious Emissions (IC only)	n/a	RSS-139, 6.6 RSS-Gen	Complies

8. MAXIMUM OUTPUT POWER

The transmitter has a maximum output power as follows:

Part 27 UMTS Band IV

Frequency range (MHz)	Modulation	Conducted		EIRP	
Frequency range (Miriz)	wouldtion	dBm	mW	dBm	mW
1710 – 1755	UMTS - Rel 99	28.8	756.8	27.5	562.3
1710 - 1755	UMTS - HSDPA	29.2	822.2	27.8	602.6

Page 11 of 45

9. RF POWER OUTPUT VERIFICATION

RULE PART(S)

FCC: §2.1046 IC: RSS-139, 6.4

LIMITS

For reporting purposes only

TEST PROCEDURE

The transmitter output was connected to an Agilent 8960Test Set and configured to operate at maximum power in a call. The peak power was measured using the spectrum analyzer at three equally spaced operating frequencies for each band. The RBW was set to 300 KHz for the GSM and EDGE measurements and 5 MHz for the UMTS (WCDMA) measurements.

MODES TESTED

• UMTS (W-CDMA) - Rel 99, Rel 6 HSDPA and HSPA (HSDPA & HSUPA)

<u>RESULTS</u>

See Section 9.1 to 9.3

Page 12 of 45

9.1. RF POWER OUTPUT FOR UMTS REL99

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 V7.5.0 specification. The EUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7) 12.2kps RMC is used for this testing. Power control set to All bits up. A summary of these settings are illustrated below:

	Mode	Rel99
	Subtest	-
	Loopback Mode	Test Mode 1
	Rel99 RMC	12.2kbps RMC
	HSDPA FRC	Not Applicable
	HSUPA Test	Not Applicable
WCDMA General	Power Control Algorithm	Algorithm2
Settings	βc	Not Applicable
Settings	βd	Not Applicable
	βec	Not Applicable
	βc/βd	8/15
	βhs	Not Applicable
	βed	Not Applicable

REL 99

Band	UL Ch DL Ch		Fraguena	Conducted output power (dBm)			
		Frequency	Average	Peak			
UNTS1710	1312	1537	1712.4	24.50	28.81		
(Band IV)	1412	1637	1732.4	24.20	28.61		
(Ballu IV)	1513	1738	1754.0	24.50	28.82		

Page 13 of 45

9.2. RF POWER OUTPUT FOR UMTS Rel 6 HSDPA

The following Sub-Tests were completed according to the test requirements outlined in section 5.2A of the 3GPP TS34.121-1 V7.5.0 specification. All TX RMS and Peak power requirements for Power Class 3 were met according to table 5.2AA.5 and achieved through the outlined test procedure in section 5.2AA.4.2. A summary of these settings are illustrated below:

	Mode	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA				
	Subtest	1	2	3	4				
	Loopback Mode	Test Mode 1							
	Rel99 RMC	12.2kbps RMC							
	HSDPA FRC	H-Set1							
	HSUPA Test	Not Applicable							
WCDMA	Power Control Algorithm	Algorithm 2							
General	βc	2/15	12/15	15/15	15/15				
Settings	βd	15/15	15/15	8/15	4/15				
	βec	-	-	-	-				
	βc/βd	2/15	12/15	15/8	15/4				
	βhs	4/15	24/15	30/15	30/15				
	βed	Not Applicable							
	DACK	8							
	DNAK	8							
HSDPA	DCQI	8							
Specific	Ack-Nack repetition factor	3							
Settings	CQI Feedback (Table 5.2B.4)	4ms							
	CQI Repetition Factor (Table 5.2B.4)	2							
	Ahs = βhs/βc	30/15							

RESULTS

REL 6 HSDPA

Band	Subtest	UL Ch	DL Ch	Frequency	Conducted output	ut power (dBm)
Danu	Sublesi			Frequency	Average	Peak
		1312	1537	1712.4	24.20	28.49
	1	1412	1637	1732.4	24.10	28.51
		1513	1738	1752.6	24.15	28.63
		1312	1537	1712.4	24.40	28.96*
	2*	1412	1637	1732.4	24.10	28.57
UMTS1710		1513	1738	1752.6	24.12	28.65
(Band IV)		1312	1537	1712.4	24.08	28.91
	3	1412	1637	1732.4	24.10	28.79
		1513	1738	1752.6	24.15	28.89
		1312	1537	1712.4	23.60	28.62
	4	1412	1637	1732.4	23.60	28.72
		1513	1738	1752.6	23.50	28.68

Page 14 of 45

9.3. RF POWER OUTPUT for UMTS- Rel 6 HSPA (HSDPA & HSUPA)

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 V7.5.0 specification. The EUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7) 12.2kps RMC is used for this testing. Power control set to All bits up. A summary of these settings are illustrated below:

	Mode	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA				
	Subtest	1	2	3	4	5				
	Loopback Mode	Test Mode 1								
	Rel99 RMC	12.2kbps RMC	12.2kbps RMC							
	HSDPA FRC	H-Set1								
	HSUPA Test	HSUPA Loopback								
	Power Control Algorithm	Algorithm2								
WCDMA General	βc	11/15	6/15	15/15	2/15	15/15				
Settings	βd	15/15	15/15	9/15	15/15	15/15				
Settings	βес	209/225	12/15	30/15	2/15	24/15				
	βc/βd	11/15	6/15	15/9	2/15	15/15				
	βhs	22/15	12/15	30/15	4/15	30/15				
	•			47/15						
	βed	1309/225	94/75	47/15	56/75	134/15				
	DACK	8				•				
	DNAK	8								
	DCQI	8								
HSDPA	Ack-Nack repetition factor	3								
Specific Settings	CQI Feedback (Table 5.2B.4)	4ms								
Settings	CQI Repetition Factor (Table									
	5.2B.4)	2								
	Ahs = β hs/ β c	30/15								
	D E-DPCCH	6	8	8	5	7				
	DHARQ	0	0	0	0	0				
	AG Index	20	12	15	17	21				
	ETFCI (from 34.121 Table									
	C.11.1.3)	75	67	92	71	81				
	Associated Max UL Data Rate									
	kbps	242.1	174.9	482.8	205.8	308.9				
HSUPA		E-TFCI 11			E-TFCI 11					
Specific		E-TFCI PO 4			E-TFCI PO 4					
Settings		E-TFCI 67			E-TFCI 67					
		E-TFCI PO 18			E-TFCI PO 18					
	Reference E_TFCIs	E-TFCI 71			E-TFCI 71					
		E-TFCI PO 23		E-TFCI 11	E-TFCI PO 23					
		E-TFCI 75		E-TFCI PO 4	E-TFCI 75					
		E-TFCI PO 26		E-TFCI 92	E-TFCI PO 26					
		E-TFCI 81		E-TFCI PO	E-TFCI 81					
		E-TFCI PO 27		18	E-TFCI PO 27					

Page 15 of 45

RESULTS

REL 6 HSPA (HSDPA & HSUPA)

Band	Subtest	UL Ch	DL Ch	Frequency	Conducted outp	out power (dBm)
Banu	Sublesi	DE CIT DE CIT		Frequency	Average	Peak
		1312	1537	1712.4	24.15	28.70
	1	1412	1637	1732.4	24.00	28.88
		1513	1738	1752.6	24.10	28.90
		1312	1537	1712.4	22.54	28.12
	2	1412	1637	1732.4	22.58	28.20
		1513	1738	1752.6	22.52	28.15
	3	1312	1537	1712.4	23.16	28.30
UMTS1700		1412	1637	1732.4	23.20	28.54
		1513	1738	1752.6	23.10	28.40
		1312	1537	1712.4	22.40	28.39
	4	1412	1637	1732.4	22.60	28.77
		1513	1738	1752.6	22.50	28.71
		1312	1537	1712.4	24.13	28.71
	5	1412	1637	1732.4	24.20	28.80
		1513	1738	1752.6	24.10	28.70

Page 16 of 45

10. WORST-CASE CONFIGURATION AND MODE

Based on the following investigation results, see Section 6. RF POWER OUTPUT VERIFCATION. The highest peak power and enhanced data rate is the worst-case scenario for all measurements.

Worst case modes:

- Rel 99
 - o Rel 6 HSDPA Subtest 2

Page 17 of 45

11. CONDUCTED TEST RESULTS

11.1. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049 IC: RSS-Gen, 4.6

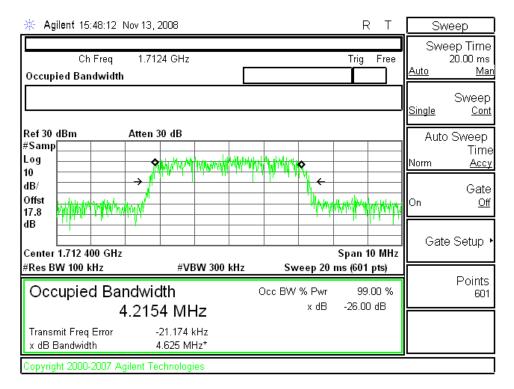
LIMITS

For reporting purposes only

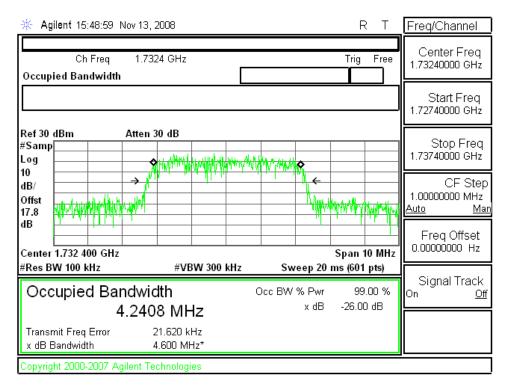
TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The –26dB bandwidth was also measured and recorded.

MODES TESTED


• UMTS (W-CDMA) - Rel 99, Rel 6 HSDPA Subtest 2

RESULTS


Band	Mode	Channel	f (MHz)	99% BW (MHz)	-26dB BW (MHz)
		1312	1712.4	4.2154	4.625
	Rel 99	1412	1732.4	4.2408	4.600
UMTS1710		1513	1752.6	4.1597	4.647
(Band IV)	HSDPA	1312	1712.4	4.2006	4.618
	Rel 6	1412	1732.4	4.1655	4.662
	Subtest 2	1513	1752.6	4.1601	4.609

Plots for UMTS Rel 99 Mode

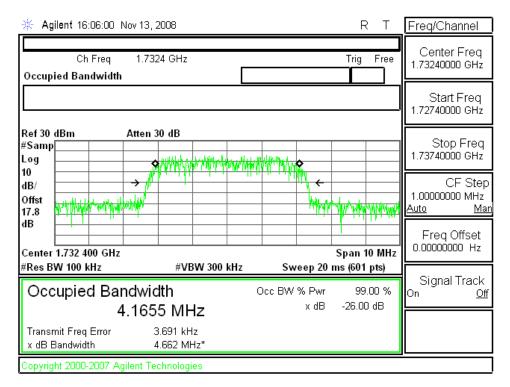
<u>Rel 99, Ch 128</u>

Rel99, Ch 1412

Page 19 of 45

Rel 99, Ch 1513

☆ Agilent 15:46:39 Nov 13, 2008	BW/Avg
Ch Freq 1.7526 GHz Trig Free Occupied Bandwidth	Res BW 100.0 kHz Auto <u>Man</u>
	Video BW 300.0 kHz Auto <u>Man</u>
Ref 30 dBm Atten 30 dB #Samp Log 10	VBW/RBV 10.00000 Auto <u>Man</u>
dB/ Offst 17.8	Average 10 On <u>Off</u>
dB Center 1.752 600 GHz Span 10 MHz	Avg/VBW Type Log-Pwr (Video) ▲ <u>Auto Man</u>
#Res BW 100 kHz #VBW 300 kHz Sweep 20 ms (601 pts)	
Occupied Bandwidth Occ BW % Pwr 99.00 % 4.1597 MHz × dB -26.00 dB	Span/RBW
Transmit Freq Error -11.308 kHz x dB Bandwidth 4.647 MHz*	Spani/RBW 106 Auto <u>Man</u>
Copyright 2000-2007 Agilent Technologies	


Page 20 of 45

Plots for Rel 6 HSDPA Subtest 2 Mode

Rel 6 HSDPA Subtest 2, 1312

* Agilent 16:04:32 Nov 13, 2008 R T	Sweep
Ch Freq 1.7124 GHz Trig Free Occupied Bandwidth	Sweep Time 20.00 ms <u>Auto Mar</u>
	Sweep <u>Single Cont</u>
Ref 30 dBm Atten 30 dB #Samp	Auto Sweep Time Norm <u>Accy</u>
dB/ Offst 17.8	Gate On <u>Off</u>
dB Center 1.712 400 GHz Span 10 MHz	Gate Setup 🔸
#Res BW 100 kHz #VBW 300 kHz Sweep 20 ms (601 pts)	Points
Occupied Bandwidth Occ BW % Pwr 99.00 %	601
4.2006 MHz × dB -26.00 dB	
Transmit Freq Error 1.344 kHz x dB Bandwidth 4.618 MHz*	
Copyright 2000-2007 Agilent Technologies	

Rel 99 HSDPA Subtest 2, 1412

Page 21 of 45

Rel 6 HSDPA Sub test 2, Ch1513

✤ Agilent 16:02:23 Nov 13, 2008 R T	Sweep
Ch Freq 1.7526 GHz Trig Free Occupied Bandwidth	Sweep Time 20.00 ms <u>Auto Man</u>
	Sweep <u>Single Cont</u>
Ref 30 dBm Atten 30 dB #Samp Log 10	Auto Sweep Time Norm <u>Accy</u>
dB/ Offst 17.8	Gate On <u>Off</u>
dB	Gate Setup ▸
#Res BW 100 kHz #VBW 300 kHz Sweep 20 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % 4 1001 MHz × dB -26.00 dB	Points 601
4.1601 MHz × dB -26.00 dB Transmit Freq Error 2.399 kHz x dB Bandwidth 4.609 MHz*	
Copyright 2000-2007 Agilent Technologies	

Page 22 of 45

11.2. BAND EDGE

RULE PART(S)

FCC: §27.53 IC: RSS-139, 6.5

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

TEST PROCEDURE

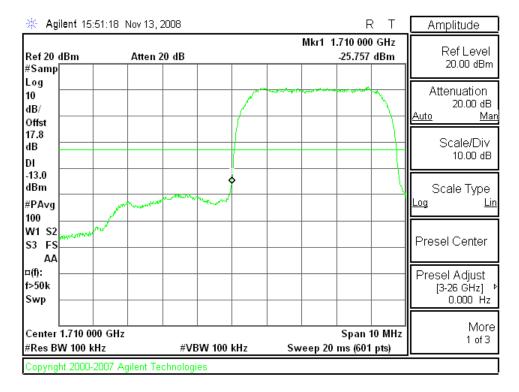
The transmitter output was connected to a Agilent 8960 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

For each band edge measurement:

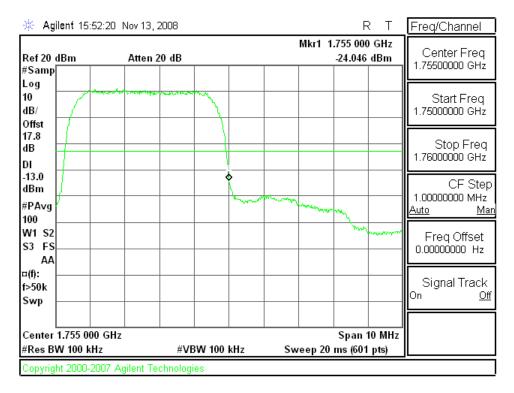
- Set the spectrum analyzer span to include the block edge frequency (1710 MHz and 1755 MHz)
- Set a marker to point the corresponding band edge frequency in each test case.
- Set display line at -13 dBm
- Set resolution bandwidth to at least 1% of emission bandwidth.

MODES TESTED

- GSM GSM (GSMK) & EGPRS (8PSK),
- UMTS (W-CDMA) Rel 99, Rel 6 HSDPA Subtest 2


RESULTS

See the following pages.


Page 23 of 45

Plots for WCDMA REL99 Mode

WCDMA REL99 (Low Ch)

WCDMA REL99 (High Ch)

Page 24 of 45

10

dB/

dB

DL

100

f>50k

Swp

Center 1.710 000 GHz

Copyright 2000-2007 Agilent Technologies

#Res BW 100 kHz

4

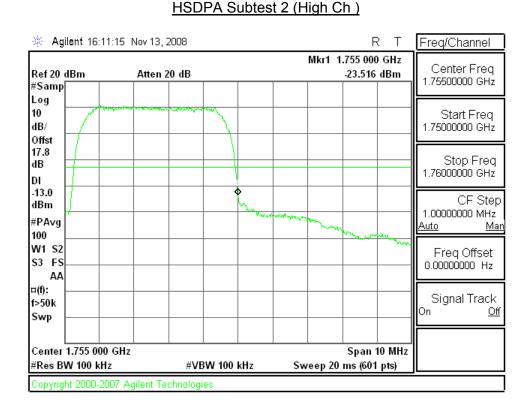
≙

Off

More

1 of 2

Span 10 MHz


Sweep 20 ms (601 pts)

Plots for WCDMA Rel 6 HSDPA Subtest 2 Mode

🔆 Agilent 16:08:06 Nov 13, 2008 R T Marker Mkr1 1.710 000 GHz Select Marker Ref 20 dBm Atten 20 dB -24.001 dBm 3 2 #Samp Log Normal Offst 17.8 Delta -13.0 Delta Pair dBm (Tracking Ref) #PAvg Ref W1 S2 Span Pair S3 FS Span <u>Center</u> AA ¤(f):

#VBW 100 kHz

HSDPA Subtest 2 (Low Ch)

Page 25 of 45

11.3. OUT OF BAND EMISSIONS

RULE PART(S)

FCC: §2.1051, §27.53 IC: RSS-139, 6.5

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

TEST PROCEDURE

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

For each out of band emissions measurement:

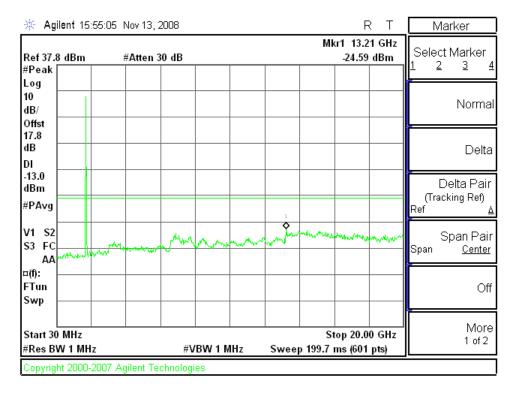
- Set display line at -13 dBm
- Set RBW & VBW to 100 kHz for the measurement below 1 GHz, and 1 MHz for the measurement above 1 GHz.

MODES TESTED

• UMTS (W-CDMA) - Rel 99, Rel 6 HSDPA Subtest 2

RESULTS

See the following pages.


Page 26 of 45

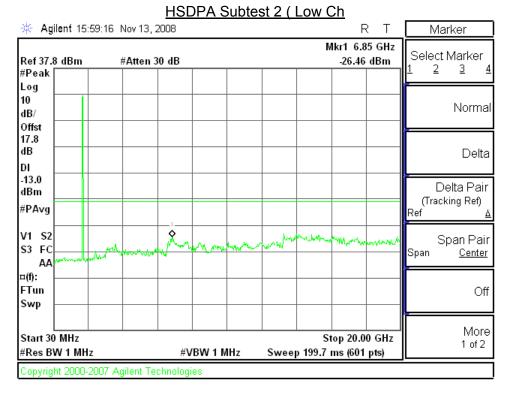
Plots for WCDMA Rel 99 Mode

REL99 (Low Ch)

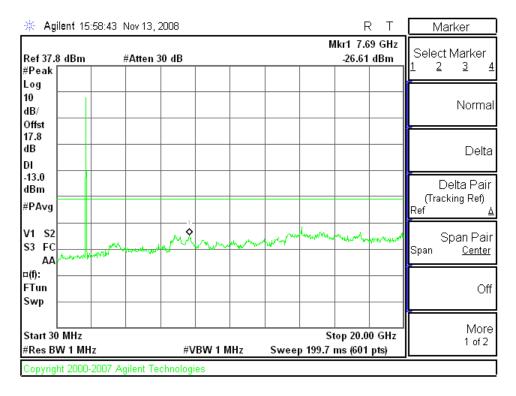
🔆 Agiler	nt 15:54:2	22 Nov 13	3,2008					F	ξТ	N	/larker	
Ref 37.8 d #Peak □	IBm	#Atte	n 30 dB				M	lkr1 7.6 -27.20			ct Marl 2 <u>3</u>	ker 4
Log 10 dB/ Offst												rmal
17.8 dB DI											C)elta
-13.0 dBm											Delta I acking F	
#PAvg										Ref	Joining 1	<u></u>
V1 S2 S3 FC AA	mar hand	-	m nh	Mumu	an search and	m	mon	and an state of	aday na sa da	Span	Span <u>Ce</u>	Pair <u>enter</u>
¤(f): FTun Swp												Off
Start 30 M #Res BW			#V	/BW 1 M	IHz	Swee	St p 199.7	top 20.0 ms (601				/lore of 2
Copyright 3	2000-2007	7 Agilent	Technologi	es						-		

Rel 99 (Mid Ch)

Page 27 of 45


Rel 99 (High Ch)

🔆 Agilent 15:53	8:42 Nov 13, 2008				R	Т	Trace
Ref 37.8 dBm	#Atten 30 dB			Mkr	1 13.4 _24.89		Trace
#Peak Log 10 dB/ Offst							⊥ ≗ ≝ Clear Write
17.8 dB DI							Max Hold
-13.0 dBm #PAvg			1				Min Hold
V1 S2 S3 FC AA	man	mm	A A A A A A A A A A A A A A A A A A A	haman	war	runnuh	View
a(f): FTun Swp							Blank
Start 30 MHz #Res BW 1 MHz	#\	/BW 1 MHz	Swee	Sto 5 199.7 m	op 20.00 ns (601		More 1 of 2
Copyright 2000-20	07 Agilent Technolog	ies					


COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 28 of 45

Plots for HSDPA Subtest 2 Mode

HSDPA Subtest 2 (Mid Ch

Page 29 of 45

HSDPA Subtest 2 (High Ch)

🔆 Agile	ent 16:00:35	Nov 13, 2008				RТ	Marker
Ref 37.8	dBm	#Atten 30 dB			Mkr1 6. -27.4	82 GHz 7 dBm	Select Marker
#Peak Log 10 dB/ Offst							Normal
17.8 dB DI							Delta
-13.0 dBm #PAvg							Delta Pair (Tracking Ref) Ref <u>∆</u>
	mun mon	A ANA	mm	www.	and the second	mahanda	Span Pair Span <u>Center</u>
¤(f): — FTun Swp —							Off
Start 30 I #Res BW		#\	/BW 1 MHz	Sweep	Stop 20. 199.7 ms (60		More 1 of 2
Copyright	: 2000-2007 A	gilent Technolog	ies				-

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 30 of 45

11.4. FREQUENCY STABILITY

RULE PART(S)

FCC: §2.1055, §27.54 IC: RSS-139, 6.3

LIMITS

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

TEST PROCEDURE

Use Agilent 8960 with Frequency Error measurement capability.

- Temp. = -20° to $+50^{\circ}$ C
- Voltage = 3.3 Vdc
- 3.0 3.6 Vdc (85% 115%)

Frequency Stability vs Temperature:

The EUT is place inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until +50°C is reached. Reference power supply voltage for these tests is 3.3 Vdc.

Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case). The test voltages are 3.0 to 3.6 Vdc.

MODES TESTED

• UMTS (W-CDMA) - Rel 99

RESULTS

See the following pages.

Page 31 of 45

AWS 1700 WCDMA MODULATION - MID CHANNEL

Reference Frequency: AWS WCDMA Mid Channel 1730.1511MHz @ 20°C Limit: within the authorized block or +- 2.5 ppm = 4325.378 Hz										
Power Supply	Environment	Environment Frequency Deviation Measureed with Time Elapse								
(Vdc)	Temperature (*C)	(MHz)	Delta (ppm)	Limit (ppm)						
4.20	50	1730.15072	0.220	2.5						
4.20	40	1730.15105	0.029	2.5						
4.20	30	1730.15068	0.243	2.5						
4.20	20	1730.15110	0	2.5						
4.20	10	1730.15075	0.202	2.5						
4.20	0	1730.15113	-0.017	2.5						
4.20	-10	1730.15153	-0.249	2.5						
4.20	-20	1730.15145	-0.202	2.5						
4.20	-30	1730.15155	-0.260	2.5						

Re	Reference Frequency: PCS Mid Channel 1730.1511MHz @ 20°C									
Limit: withir	Limit: within the authorized block or +- 2.5 ppm = 4325.378 Hz									
Power Supply	Environment	Frequency Dev	viation Measureed wi	th Time Elapse						
(Vdc)	Temperature (*C)	(MHz)	Delta (ppm)	Limit (ppm)						
100%	20	1730.15110	0	2.5						
85%	85% 20 1730.15142 -0.185 2.5									
115%	20	1730.15150	-0.231	2.5						

Page 32 of 45

12. RADIATED TEST RESULTS

12.1. RADIATED POWER (ERP & EIRP)

RULE PART(S)

FCC: §2.1046, §27.50(d) (2) IC: RSS-139, 6.4

<u>LIMITS</u>

27.50(d) (2) - The Fixed, mobile, and portable (hand-held) stations operating in the 1710–1755 MHz band are limited to a peak EIRP of 1 watt.

RSS-139 § 6.4 - The peak equivalent isotropically radiated power (e.i.r.p.) for fixed, mobile and portable transmitters in the 1710-1755 MHz shall not exceed 1 watt.

TEST PROCEDURE

ANSI / TIA / EIA 603C, RSS-139

MODES TESTED

• UMTS (W-CDMA) - Rel 99, Rel 6 HSDPA Subtest 2

RESULTS for Cellular Band (ERP)

			Ell	RP
Mode	Channel	f (MHz)	dBm	mW
	1312	1712.40	27.10	512.86
Rel 99	1412	1733.00	27.00	501.19
	1513	1754.00	27.50	562.34
	1312	1712.40	26.20	416.87
HSDPA (Subtest 2)	1412	1733.00	27.80	602.56
	1513	1754.00	27.20	524.81

Page 33 of 45

EIRP for Rel 99 Mode

Complia			ntal Measurem Fremont 5m Ch						
Compan	y: Qualcomm								
	#:08U12127								
	/18/2008								
	gineer: Chin Pa	nø							
	<i>w</i>	0	lount triple-freq	uency mob	ile antenna				
	WS1700, WCD		rount arpre-neg	active fillion	ac antenna				
Test Ea	uipment:								
			D 206 CUN 2290	76 005					
Receivit	1σ [.] Ηριτή T73 (a)	nd Chamher							
	ng: Horn T73, ar tion: Horn T608				S/N+ 18721	5 001			
	· ·		4ft SMA Cable		e S/N: 18721	5 001			
	· ·				e S/N: 18721 Gain	5 001 EIRP	Limit	Margin	Notes
Substitu	tion: Horn T608	Substitution,	4ft SMA Cable	Warehouse			Limit (dBm)	Margin (dB)	Notes
Substitu f	tion: Horn T608 SA reading	Substitution, Ant. Pol.	4ft SMA Cable SG reading	Warehouse CL	Gain	EIRP	1	~	Notes
Substitu f GHz	tion: Horn T608 SA reading	Substitution, Ant. Pol.	4ft SMA Cable SG reading	Warehouse CL	Gain	EIRP	1	~	Notes
Substitu f GHz Low Ch	tion: Horn T608 SA reading (dBuV/m)	Substitution, Ant. Pol. (H/V)	4ft SMA Cable SG reading (dBm)	Warehouse CL (dB)	Gain (dBi)	EIRP (dBm)	(dBm)	(dB)	Notes
Substitu f GHz Low Ch 1.712 1.712	tion: Horn T605 SA reading (dBuV/m) 96.4	Substitution, Ant. Pol. (H/V) V	4ft SMA Cable SG reading (dBm) 19.8	Warehouse CL (dB) 0.7	Gain (dBi) 8.0	EIRP (dBm) 27.1	(dBm) 30.0	(dB) -29	Notes
Substitu f GHz Low Ch 1.712 1.712 Mid Ch	SA reading (dBuV/m) 96.4 89.0	Ant. Pol. (H/V) V H	4ft SMA Cable SG reading (dBm) 19.8 12.1	Warehouse CL (dB) 0.7 0.7	Gain (dBi) 8.0 8.0	EIRP (dBm) 27.1 19.4	(dBm) 30.0 30.0	(dB) -2.9 -10.6	Notes
Substitu f GHz Low Ch 1.712 1.712 Mid Ch 1.733	tion: Horn T608 SA reading (dBuV/m) 96.4 89.0 96.2	Ant. Pol. (H/V) V H V	4ft SMA Cable SG reading (dBm) 19.8 12.1 19.7	Warehouse CL (dB) 0.7 0.7 0.7	Gain (dBi) 8.0 8.0 8.0	EIRP (dBm) 27.1 19.4 27.0	(dBm) 30.0 30.0 30.0	(dB) -2.9 -10.6 -3.0	Notes
Substitu f GHz Low Ch 1.712 1.712 Mid Ch	SA reading (dBuV/m) 96.4 89.0	Ant. Pol. (H/V) V H	4ft SMA Cable SG reading (dBm) 19.8 12.1	Warehouse CL (dB) 0.7 0.7	Gain (dBi) 8.0 8.0	EIRP (dBm) 27.1 19.4	(dBm) 30.0 30.0	(dB) -2.9 -10.6	Notes
Substitu f GHz Low Ch 1.712 1.712 Mid Ch 1.733 1.733	tion: Horn T608 SA reading (dBuV/m) 96.4 89.0 96.2	Ant. Pol. (H/V) V H V	4ft SMA Cable SG reading (dBm) 19.8 12.1 19.7	Warehouse CL (dB) 0.7 0.7 0.7	Gain (dBi) 8.0 8.0 8.0	EIRP (dBm) 27.1 19.4 27.0	(dBm) 30.0 30.0 30.0	(dB) -2.9 -10.6 -3.0	Notes
Substitu f GHz Low Ch 1.712 1.712 Mid Ch 1.733	tion: Horn T608 SA reading (dBuV/m) 96.4 89.0 96.2	Ant. Pol. (H/V) V H V	4ft SMA Cable SG reading (dBm) 19.8 12.1 19.7	Warehouse CL (dB) 0.7 0.7 0.7	Gain (dBi) 8.0 8.0 8.0	EIRP (dBm) 27.1 19.4 27.0	(dBm) 30.0 30.0 30.0	(dB) -2.9 -10.6 -3.0	Notes

EIRP for Rel 6 HSDPA Subtest 2 Mode

. 1.	High Frequer								
Compila	nce Certificatio	n Services, .	Fremont 5m Ch	amber Site					
Compan	y:Qualcomm								
Project #	#:08U12127								
Date: 11	/18/2008								
Test En	gineer: Chin Pa	ng							
Configu	ration: EUT with	Magnetic M	lount triple-freq	uency mob	ile antenna				
Mode:A	W\$1700, WCD	MA+HSDPA	A						
Tost F~	and an and a second sec								
restEd	uipment:								
		nd Chamber	B 20ft S/N 2280	76 005					
Receivii	ng: Horn T73, a		B 20ft S/N 2280 , 4ft SMA Cable		e S/N: 1872.	15 001			
Receivii	ng: Horn T73, a				e S/N: 1872.	15 001			
Receivii	ng: Horn T73, a				e S/N: 1872. Gain	15 001 EIRP	Limit	Margin	Notes
Receivii Substitu	ng: Horn T73, a tion: Horn T60	Substitution,	, 4ft SMA Cable	Warehous			Limit (dBm)	Margin (dB)	Notes
Receivii Substitu f GHz	ng: Horn T73, a tion: Horn T60 SA reading	Substitution, Ant. Pol.	, 4ft SMA Cable SG reading	Warehous CL	Gain	EIRP		0	Notes
Receivin Substitu f GHz Low Ch 1.712	ng: Horn T73, a tion: Horn T60 SA reading (dBuV/m) 95.5	Substitution, Ant. Pol. (H/V) V	, 4ft SMA Cable SG reading (dBm) 18.9	Warehous CL (dB) 0.7	Gain (dBi) 8.0	EIRP (dBm) 26.2	(dBm) 30.0	(dB)	Notes
Receivin Substitu f GHz Low Ch	ng: Horn T73, a tion: Horn T60 SA reading (dBuV/m)	Substitution, Ant. Pol. (H/V)	, 4ft SMA Cable SG reading (dBm)	Warehous CL (dB)	Gain (dBi)	EIRP (dBm)	(dBm)	(dB)	Notes
Receivii Substitu GHz Low Ch 1.712 1.712	ng: Horn T73, a tion: Horn T60 SA reading (dBuV/m) 95.5	Substitution, Ant. Pol. (H/V) V	, 4ft SMA Cable SG reading (dBm) 18.9	Warehous CL (dB) 0.7	Gain (dBi) 8.0	EIRP (dBm) 26.2	(dBm) 30.0	(dB)	Notes
Receivii Substitu GHz Low Ch 1.712 1.712 Mid Ch	ng: Horn T73, a tion: Horn T60 SA reading (dBuV/m) 95.5 88.1	Substitution, Ant. Pol. (H/V) V H	4ft SMA Cable SG reading (dBm) 18.9 11.2	Warehous CL (dB) 0.7 0.7	Gain (dBi) 8.0 8.0	EIRP (dBm) 26.2 18.5	(dBm) 30.0 30.0	(dB) -38 -11.5	Notes
Receivin Substitu f GHz Low Ch 1.712	ng: Horn T73, a tion: Horn T60 SA reading (dBuV/m) 95.5	Substitution, Ant. Pol. (H/V) V	, 4ft SMA Cable SG reading (dBm) 18.9	Warehous CL (dB) 0.7	Gain (dBi) 8.0	EIRP (dBm) 26.2	(dBm) 30.0	(dB)	Notes
Receivii Substitu f GHz Low Ch 1.712 1.712 Mid Ch 1.733	ng: Horn T73, a tion: Horn T60 SA reading (dBuV/m) 95.5 88.1 97.0	Substitution, Ant. Pol. (H/V) V H V	4ft SMA Cable SG reading (dBm) 18.9 11.2 20.5	Warehous CL (dB) 0.7 0.7 0.7	Gain (dBi) 8.0 8.0 8.0	EIRP (dBm) 26.2 18.5 27.8	(dBm) 30.0 30.0 30.0	(dB) -38 -11.5 -2.2	Notes
Receivin Substitu <u>f</u> GHz Low Ch 1.712 1.712 Mid Ch 1.733 1.733 High Ch	ng: Horn T73, a tion: Horn T60 SA reading (dBuV/m) 95.5 88.1 97.0	Substitution, Ant. Pol. (H/V) V H V	4ft SMA Cable SG reading (dBm) 18.9 11.2 20.5	Warehous CL (dB) 0.7 0.7 0.7	Gain (dBi) 8.0 8.0 8.0	EIRP (dBm) 26.2 18.5 27.8	(dBm) 30.0 30.0 30.0	(dB) -38 -11.5 -2.2	Notes
Receivin Substitu f GHz Low Ch 1.712 1.712 Mid Ch 1.733 1.733	ng: Horn T73, a tion: Horn T60 SA reading (dBuV/m) 95.5 88.1 97.0	Substitution, Ant. Pol. (H/V) V H V	4ft SMA Cable SG reading (dBm) 18.9 11.2 20.5	Warehous CL (dB) 0.7 0.7 0.7	Gain (dBi) 8.0 8.0 8.0	EIRP (dBm) 26.2 18.5 27.8	(dBm) 30.0 30.0 30.0	(dB) -38 -11.5 -2.2	Notes

Page 34 of 45

12.2. FIELD STRENGTH OF SPURIOUS RADIATION

RULE PART(S)

FCC: §2.1053, §27.53 IC: RSS-139, 6.5

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

TEST PROCEDURE

Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

MODES TESTED

• UMTS (W-CDMA) - Rel 99, Rel 6 HSDPA Subtest 2

RESULTS

See the following pages.

Page 35 of 45

Rel 99 Mode

Complian	<u> </u>		ition Measurei Fremont 3m C							
Project #: Date:11/1 Test Eng Configura	ineer: Chin Pa	h Magnetic N	/lount triple-fre	quency m	obile antenn	a				
<u>Test Equ</u>										
1	EMCO Horn 1-1	8 GHz		Horn >	18GHz			Limit		
Те	50; S/N: 2238 @	3m –				-	FCC	27	-	✓ High Pass Filter
_	Frequency Cables (2' Chin 17707903)	☞ (2 ~ 3', Th 18721 <i>5</i> 003	ianh 3)	5/N: 46002)		Pre-amplifer l T34 HP 84499			Pre-amplifer	• 26-40 GHz
	a. 1				 a ·			L 		
f GHz	SA reading (dBuV/m)	Ant. Pol. (H/V)	SG reading (dBm)	CL (dB)	Gain (dBi)	Gain (dBd)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Notes
Low Ch, 17		(11/1)	((((()))))	(005)	(0.001)	(((())))	(0.00 m)	(adda)	(00)	
3.425	43.8	н	-59.8	3.1	9.5	7.4	-53.4	-13.0	-40.4	
5.137	39.0	Н	-60.6	3.2	11.0	8.9	-52.8	-13.0	-39.8	
3.425	45.6	v	-58.1	3.1	9.5	7.4	-51.7	-13.0	-38.7	
5.137	39.5	v	-61.1	3.2	11.0	8.9	-53.3	-13.0	-40.3	
Ma (1- 17-	22 AMU-		[[[[
Mid Ch, 17: 3.465	32.4MHz 42.8	Н	-60.7	3.1	9.5	7.4	-54.3	-13.0	-41.3	
5.197	38.6	н	-60.8	3.2	95	8.9	-54.5	-13.0	-41.5	
3.465	44.5	v	-59.1	3.1	9.5	7.4	-52.7	-13.0	-39.7	
5.197	39.5	v	-60.9	3.2	11.0	8.9	-53.1	-13.0	-40.1	þ
High Ch, l'	752.6MHz		Y							
3.505	42.6	Н	-60.8	3.1	9.6	7.4	-54.3	-13.0	-41.3	
5.258	39.2	Н	-60.0	33	11.0	8.8	-52.3	-13.0	-39.3	•
3.505	43.6	v	-59.9	3.1	9.6	7.4	-53.4	-13.0	-40.4	
5.258	39.8	v	-60.4	33	11.0	8.8	-52.7	-13.0	-39.7	
Rev. 8.19.8	<u> </u>		<u>I</u>			l	<u>.</u>	<u> </u>		

Page 36 of 45

Relo 6 HSDPA Subtest 2 Mode

ompliar	- -		ution Measurer , Fremont 3m C-							
·	y: Qualcomm									
	:08U12127									
Project # Date:11/1										
	ineer: Chin Pa									
	0		Mount triple-fre		bile outour	~				
0	WS1700, WCE	0	-	quency mo	оце ангени	a				
vioue.A	ws1/00, web	MATISDE.	А							
Fest Equ	ipment:									
cot Equ										
1	EMCO Horn 1-1	18GHz		Horn >	18GHz			Limit		
	(D. (13) 4442 C						FCC	27		🔽 High Pass Filter
	60; S/N: 2238 @	3m 🔽				•	1.00			
Г	Frequency Cables					Pre-amplifer l	26687		Pre-amplifer	26-40 GHz
	- (2' Chin	[2 ~ 3', T] 18721500	hanh 🔽 (12' S			тте-алфшегт	-200112	_		
	17707903)	18721500)3) 20894	46002)		T34 HP 84491	в 🗸			-
					I			L.		
f	SA reading	Ant Pol	SG reading	CL.	Gain	Gain	FIRP	Limit	Margin	Notes
f CH7	SA reading	Ant. Pol.	SG reading	CL	Gain (dBi)	Gain (dBd)	EIRP	Limit	Margin (dB)	Notes
GHz	(dBuV/m)	Ant. Pol. (H/V)	SG reading (dBm)	CL (dB)	Gain (dBi)	Gain (dBd)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Notes
GHz Low Ch, 17	(dBuV/m) 712.4MHz	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	Notes
GHz Low Ch, 17 1425	(dBuV/m) 712.4MHz 43.0	(H/V) H	(dBm) -60.6	(dB) 3.1	(dBi) 9.5	(dBd) 7.4	(dBm) -54.2	(dBm) -13.0	(dB) -41.2	Notes
GHz Low Ch, 17 3.425 5.137	(dBuV/m) 712.4MHz	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	Notes
GHz Low Ch, 17 3.425 5.137 3.425	(dBuV/m) 712.4MHz 43.0 39.0	(H/V) H H	(dBm) -60.6 -60.6	(dB) 3.1 3.2	(dBi) 9.5 11.0	(dBd) 7.4 8.9	(dBm) -54.2 -52.8	(dBm) -13.0 -13.0	(dB) -41.2 -39.8	Notes
GHz ow Ch, 17 425 437 425 437	(dBuV/m) 712.4MHz 43.0 39.0 444.4 39.0	(H/V) H H V	(dBm) -60.6 -60.6 -59.3	(dB) 3.1 3.2 3.1	(dBi) 95 11.0 95	(dBd) 7.4 8.9 7.4	(dBm) -54.2 -52.8 -52.9	(dBm) -13.0 -13.0 -13.0	(dB) -41.2 -39.8 -39.9	Notes
GHz Jow Ch, 17 3425 5.137 3425 5.137 3.137 Mid Ch, 17	(dBuV/m) 712.4MHz 43.0 39.0 44.4 39.0 732.4MHz	(H/V) H H V V	(dBm) -60.6 -60.6 -59.3 -61.6	(dB) 3.1 3.2 3.1 3.2	(dBi) 95 11.0 95 11.0	(dBd) 7.4 8.9 7.4 8.9	(dBm) -54.2 -52.8 -52.9 -53.8	(dBm) -13.0 -13.0 -13.0 -13.0	(dB) -41.2 -39.8 -39.9 -40.8	Notes
GHz ow Ch, 17 425 137 425 137 425 137 425 137 425 137 425 425 425 425 425 425 425 425 425 425	(dBuV/m) 712.4MHz 43.0 39.0 44.4 39.0 732.4MHz 42.5	(H/V) H H V V H	(dBm) -60.6 -60.6 -59.3 -61.6 -61.0	(dB) 3.1 3.2 3.1 3.2 3.1 3.2	(dBi) 9.5 11.0 9.5 11.0 9.5	(dBd) 7.4 8.9 7.4 8.9 7.4 8.9 7.4	(dBm) -54.2 -52.8 -52.9 -53.8 -54.6	(dBm) -13.0 -13.0 -13.0 -13.0 -13.0	(dB) -41.2 -39.8 -39.9 -40.8 -41.6	Notes
GHz Low Ch, 17 3.425 5.137 3.425 5.137 5.137 Wid Ch, 17 3.465 5.197	(dBuV/m) 712.4MHz 43.0 39.0 44.4 39.0 32.4MHz 42.5 38.6	(H/V) H V V H H	(dBm) -60.6 -60.6 -59.3 -61.6 -61.0 -60.8	(dB) 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2	(dBi) 95 110 95 110 95 110 95 110	(dBd) 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9	(dBm) -54.2 -52.8 -52.9 -53.8 -54.6 -53.0	(dBm) -130 -130 -130 -130 -130 -130	(dB) -41.2 -39.8 -39.9 -40.8 -41.6 -40.0	Notes
GHz Low Ch, 17 3425 5.137 3425 5.137 3425 5.137 Wid Ch, 17 3465 5.197 3465	(dBuV/m) 712.4MHz 43.0 39.0 44.4 39.0 32.4MHz 42.5 38.6 45.0	(H/V) H V V H H H V	(dBm) -60.6 -60.6 -59.3 -61.6 -61.0 -61.0 -60.8 -58.6	(dB) 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1	(dBi) 9.5 11.0 9.5 11.0 9.5 11.0 9.5 11.0 9.5	(dBd) 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9 7.4	(dBm) -54.2 -52.8 -52.9 -53.8 -54.6 -53.0 -52.2	(dBm) -130 -130 -130 -130 -130 -130 -130	(dB) -41.2 -39.8 -39.9 -40.8 -41.6 -40.0 -39.2	Notes
GHz Jow Ch, 17 425 5.137 425 5.137 4425 5.137 Mid Ch, 17 4465 5.197	(dBuV/m) 712.4MHz 43.0 39.0 44.4 39.0 32.4MHz 42.5 38.6	(H/V) H V V H H	(dBm) -60.6 -60.6 -59.3 -61.6 -61.0 -60.8	(dB) 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2	(dBi) 95 110 95 110 95 110 95 110	(dBd) 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9	(dBm) -54.2 -52.8 -52.9 -53.8 -54.6 -53.0	(dBm) -130 -130 -130 -130 -130 -130	(dB) -41.2 -39.8 -39.9 -40.8 -41.6 -40.0	Notes
GHz 4425 4425 4425 4425 4425 4425 4425 4425 4425 4465 4465 4465 4465 4465	(dBuV/m) 712.4MHz 43.0 39.0 44.4 39.0 732.4MHz 42.5 38.6 45.0 39.5	(H/V) H V V H H H V	(dBm) -60.6 -60.6 -59.3 -61.6 -61.0 -61.0 -60.8 -58.6	(dB) 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1	(dBi) 9.5 11.0 9.5 11.0 9.5 11.0 9.5 11.0 9.5	(dBd) 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9 7.4	(dBm) -54.2 -52.8 -52.9 -53.8 -54.6 -53.0 -52.2	(dBm) -130 -130 -130 -130 -130 -130 -130	(dB) -41.2 -39.8 -39.9 -40.8 -41.6 -40.0 -39.2	Notes
GHz 	(dBuV/m) 712.4MHz 43.0 39.0 44.4 39.0 32.4MHz 42.5 38.6 45.0	(H/V) H V V H H H V	(dBm) -60.6 -60.6 -59.3 -61.6 -61.0 -61.0 -60.8 -58.6	(dB) 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1	(dBi) 9.5 11.0 9.5 11.0 9.5 11.0 9.5 11.0 9.5	(dBd) 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9 7.4	(dBm) -54.2 -52.8 -52.9 -53.8 -54.6 -53.0 -52.2	(dBm) -130 -130 -130 -130 -130 -130 -130	(dB) -41.2 -39.8 -39.9 -40.8 -41.6 -40.0 -39.2	Notes
GHz 4425 5.137 4425 5.137 4425 5.137 4465 5.197 4465 5.197	(dBuV/m) 712.4MHz 43.0 39.0 44.4 39.0 32.4MHz 42.5 38.6 45.0 39.5 752.6MHz	(H/V) H H V V H H V V V V	(dBm) -60.6 -60.6 -59.3 -61.6 -61.0 -60.8 -58.6 -60.9	(dB) 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2	(dBi) 9.5 11.0 9.5 11.0 9.5 11.0 9.5 11.0 9.5	(dBd) 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9	(dBm) -54.2 -52.8 -52.9 -53.8 -54.6 -53.0 -52.2 -53.1	(dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	(dB) -41.2 -39.8 -39.9 -40.8 -41.6 -40.0 -39.2 -40.1	Notes
GHz .ow Ch, 17 .425 .137 .425 .137 .425 .137 .445 .197 .465 .197 .197 .197 .197 .197	(dBuV/m) 712.4MHz 43.0 39.0 44.4 39.0 52.4MHz 42.5 38.6 45.0 39.5 752.6MHz 43.0	(H/V) H H V V H H H H H H	(dBm) -60.6 -60.6 -59.3 -61.6 -61.0 -61.0 -60.8 -58.6 -60.9 -60.4	(dB) 3.1 3.2	(dBi) 9.5 11.0 9.5 11.0 9.5 11.0 9.5 11.0 9.5 11.0 9.5	(dBd) 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9 7.4 8.9	(dBm) -54.2 -52.8 -52.9 -53.8 -54.6 -53.0 -52.2 -53.1 -53.9	(dBm) -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	(dB) -41.2 -39.8 -39.9 -40.8 -41.6 -40.0 -39.2 -40.1 -40.1 -40.9	Notes

Page 37 of 45

12.3. RECEIVER SPURIOUS EMISSIONS

RULE PART(S)

FCC: N/A IC: RSS-139, 6.6, RSS-Gen

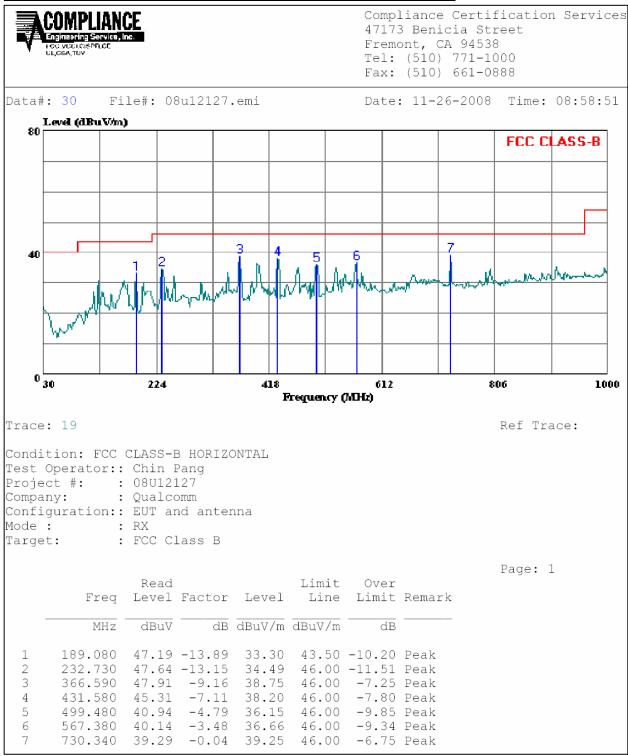
LIMIT

RSS-Gen 6 (a) - If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1.

Table 1 - Spurious Emission Limits for Receivers:

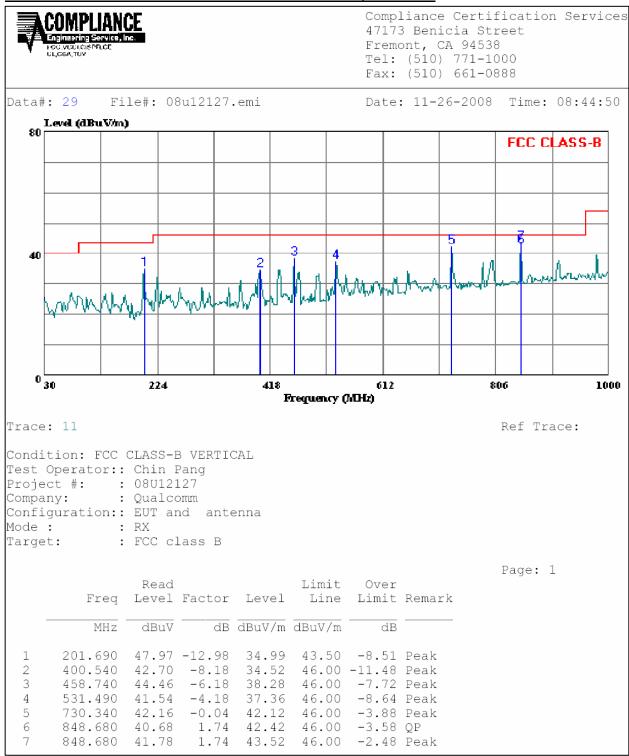
Spurious Frequency (MHz)	Field Strength(microvolt/m at 3 meters)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

TEST PROCEDURE


RSS-Gen 4.10 - The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tuneable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RESULTS

See the following pages.


Page 38 of 45

RECEIVER SPURIOUS EMISSIONS FOR 30 TO 1000 MHz, HORIZONTAL

Page 39 of 45

RECEIVER SPURIOUS EMISSIONS FOR 30 TO 1000 MHz, VERTICAL

Page 40 of 45

MAXIMUM PERMISSIBLE EXPOSURE 13.

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

			. ,	
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1 <i>8</i> 42# 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f ²)	30 30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2 f/1500	30 30
1500–100,000			1.0	30

f = frequency in MHz

 * = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 41 of 45

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

S = E ^ 2 / 3770

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d (cm) =100 * d (m) vields d = 100 * √ ((30 * (P / 1000) * G) / (3770 * S)) $d = 0.282 * \sqrt{(P * G / S)}$ where d = distance in cmP = Power in mWG = Numeric antenna gain S = Power Density in mW/cm² Substituting the logarithmic form of power and gain using: $P(mW) = 10^{(P(dBm))} / 10)$ and G (numeric) = 10 ^ (G (dBi) / 10) vields $d = 0.282 * 10^{(P + G)} / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi

S = Power Density Limit in mW/cm²

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

From §1.1310 Table 1 (B), S = 0.549 mW/cm² (Cell) and 1.0 mW/cm² (PCS)

<u>RESULTS</u>

No non-compliance noted: (MPE distance equals 20 cm)

	MPE	Output	Antenna	Power	FCC MPE
Modulation	Distance	Power	Gain	Density	Limit
	(cm)	(dBm)	(dBi)	(mW/cm^2)	(mW/cm^2)
UMTS - Rel 99	20.0	28.80	0.00	0.151	1.0
UMTS - HSDPA	20.0	29.20	0.00	0.165	1.0

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 43 of 45