

Castra Zigbee Conducted Test Report

80-VR584-3 Rev. A

June 8, 2009

Submit technical questions at: https://support.cdmatech.com

Qualcomm Confidential and Proprietary

Restricted Distribution. Not to be distributed to anyone who is not an employee of either Qualcomm or a subsidiary of Qualcomm without the express approval of Qualcomm's Configuration Management.

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm.

QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners. CDMA2000 is a registered certification mark of the Telecommunications Industry Association, used under license. ARM is a registered trademark of ARM Limited. QDSP is a registered trademark of QUALCOMM Incorporated in the United States and other countries.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

QUALCOMM Incorporated 5775 Morehouse Drive San Diego, CA 92121-1714 U.S.A.

Copyright © 2009 QUALCOMM Incorporated. All rights reserved.

June 8, 2009

Castra Zigbee Conducted Test Report 80-VR584-3 Rev. A

Revision history

Revision	Date	Description
А	June 2009	Initial release

Castra Zigbee Conducted Test Report

FCC Part 15		
FCC ID:	J9CCASTRA	
Model:	Castra	

STATEMENT OF CERTIFICATION

The data, data evaluation and equipment configuration represented herein are a true and accurate representation of the measurements of the sample's radio frequency interference emissions characteristics as of the dates and at the times of the test under the conditions herein specified.

Test performed by: QUALCOMM Incorporated		
	5775 Morehouse Drive	
San Diego, CA 92121-1714		
Report Prepared by:	QUALCOMM Incorporated	
Report l'repareu by.	5775 Morehouse Drive	
San Diego, CA 92121-1714		
Tests that required an OATS site were performed by Nemko Product Services.		

Table of Contents

1 Int	roduction and Purpose	
2 De	escription of Device Under Test	2
3 Te	st Summary	3
4 RF	Power Output Verification	4
	4.1 Measurement Procedures	
4.1.1 For Z	igbee 4.2 Test Results	
	4.3 Plots	
5 Oc	cupied Bandwidth	7
	5.1 Test Procedures	
	5.2 Test Results	8
	5.3 Plots	
6 Ba	Ind Edge Compliance	
	6.1 Test Procedures	
	6.2 Test Results	
	6.3 Plots	
7 Co	onducted Spurious Emission at Antenna Terminals	
	7.1 Test Procedure	
	7.2 Test Result	15
	7.3 Plots	16
8 Po	ower Spectral Density	
	8.1 Test Procedure	
	8.2 Test Results	19
	8.3 Plots	20
9 Te	st Equipment	

1 Introduction and Purpose

This document provides the FCC test data for the Castra Qualcomm® second generation dedicated tracking module. The tests included in this report are limited to all conducted tests required for FCC Part 22 and 24. The radiated tests were performed at Nemko USA, Inc. in San Diego, CA, and are reported in a separate document.

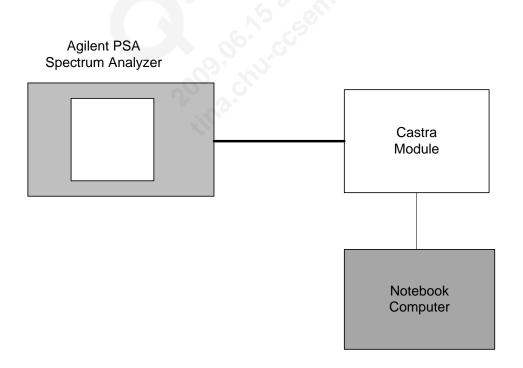
2 Description of Device Under Test

The Castra module is the Qualcomm® second generation dedicated tracking module. Castra is a CDMA2000®-1X module powered by the Qualcomm QSC6055[™] chipset. The module supports CDMA BC0 and BC1, with a single diversity in addition to GPS. The module also hosts, as options, a Bosch three axes accelerometer, and a ZigBee transceiver. The module tested included the Bosch three axes accelerometer and the ZigBee transceiver. The Castra modules are meant to be integrated into various dedicated tracking devices and can include a customized UI, antenna, and additional proprietary circuitry. Castra is a 7.3 gram, 21 mm x 46 mm x 5 mm sized devices. While CDMA2000 1X compliant, the HTT design is optimized for minimal cost, minimal size, maximum battery life and superb position location performance. The device uses A-GPS to obtain position location and sends this information back to the network by SMS or packed data. For the most active mode of operation, a position fix occurs about every 15 seconds followed by a 3 second SMS message or packet data stream. Other modes of simplified operation request position fixes less often. The hibernation mode extends the battery life beyond normal cellular phone standby time. Hibernation technology comprises of several innovative modes of battery saving. Smart mechanism selects the best fit mode based on future activities of the device.

Only 850 MHz (Cellular) and 1900 MHz (PCS) bands are used for operation. The DUT is a pre-production sample

80-VR584-3 Rev. A

3 Test Summary


FCC/IC Rule	Description of Test	Result	Page
§15.247(b)	RF Power Output	Complies	3
§2.1049,15.247(a)(2)	Occupied Bandwidth	Complies	7
§15.247(d)	Block Edge Requirement	Complies	11
\$15.247(d)	Coducted Spurious Emission at Antenna Terminals	Complies	14
§15.247(e)	Power Spectral Density	Complies	18
\$1.1310, 2.1091	RF Exposure	Complies	See Exhibit 4
§2.1053, 15.247(d)	Field Strength of Spurious Radiation	Complies	See Exhibit 3

4 RF Power Output Verification

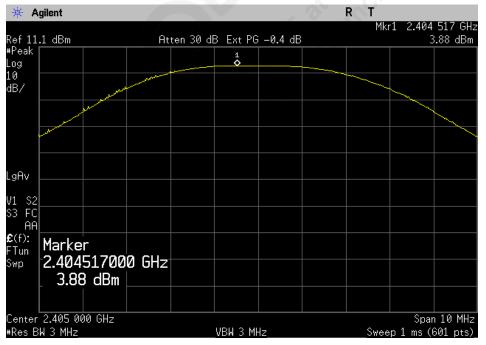
FCC:	§ 15.247(b)
Limit:	The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.
DUT SN	B0A4F5

4.1 Measurement Procedures

As shown in the figure below, connect the Zigbee transmitter output of the Castra module to the Agilent PSA Spectrum Analyzer. Following the FCC's "Measurement of Digital Transmission Systems operating under Section 15.247, March 23, 2005" instructions, use the spectrum analyzer to measure the low, mid and high frequency channel's conducted power output in accordance with the Power Output Option 1. The relevant cable loss is measured for the specific frequencies under test and added as a correction factor for all the tests.

4.1.1 For Zigbee

Measure the power at Ch 11, 18 and 26.

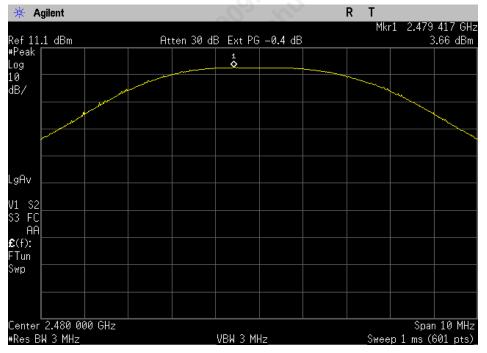

80-VR584-3 Rev. A

The notebook computer was used to configure the Zigbee transmitter to run in continuous transmit mode, at maximum output power and modulated. The spectrum analyzer was set up with a resolution and video bandwidth of 3MHz, and a span of 10 MHz, with measurements from a peak detector presented in the chart below.

4.2 Test Results

CHANNEL	CENTER FREQ (GHz)	LIMIT (dBm)	MEASURED POWER (dBm)	MARGIN (dB)
11	2.405	30	3.88	26.12
18	2.44	30	3.97	26.03
26	2.48	30	3.66	26.34

4.3 Plots



Plot 4.3 - 1 (Ch11)

80-VR584-3 Rev. A

Plot 4.3 - 2 (Ch18)

Plot 4.3 - 3 (Ch26)

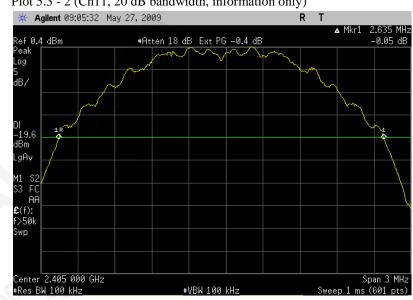
5 Occupied Bandwidth

FCC:	§15.247(a)(2)
Limit: The minimum 6 dB bandwidth shall be at least 500 kHz.	
DUT SN	B0A4F5

5.1 Test Procedures

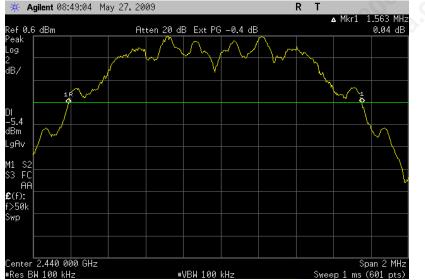
As shown in the figure below, connect the Zigbee transmitter output of the Castra module to the Agilent PSA Spectrum Analyzer. Following the FCC's "Measurement of Digital Transmission Systems operating under Section 15.247, March 23, 2005" instructions, use the spectrum analyzer to measure the low, mid and high frequency channel's 6 dB bandwidth. The resolution and video bandwidth for the spectrum analyzer is set to 100 kHz. The relevant cable loss is measured for the specific frequencies under test and added as a correction factor for all the tests.

5.2 Test Results


The occupied bandwidth was measured at low, mid and high channels in each band. The results are shown below in the table below.

Channel	Center Freq. (GHz)	Measured -6 dBc Occ. BW (kHz)	Minimum -6 dBc Limit (kHz)	Measured -20 dBc Occ. BW (kHz)
11	2.405	1553	500	26.12
18	2.44	1563	500	26.03
26	2.48	1597	500	26.34

Plot 5.3 - 1 (Ch11, 6dB bandwidth)


5.3 Plots

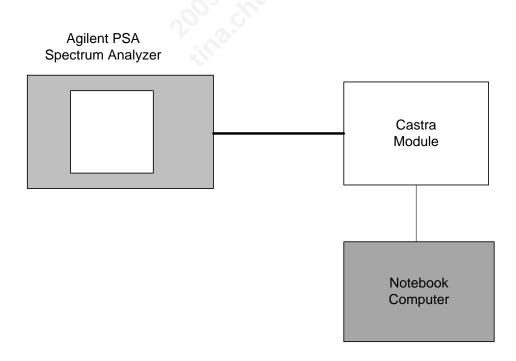
Plot 5.3 - 2 (Ch11, 20 dB bandwidth, information only)

Plot 5.3 - 3 (Ch18, 6dB bandwidth)

Plot 5.3 - 4 (Ch18, 20dB bandwidth, information only)

80-VR584-3 Rev. A

Plot 5.3-5 (Ch26, 6dB bandwidth)



6 Band Edge Compliance

FCC:	§15.247(d)
Limit:	-20 dB below the fundamental emission level
DUT SN	B0A4F5

6.1 Test Procedures

As the figure below indicates, the Castra module device was connected to the Agilent PSA Spectrum Analyzer through a calibrated coaxial cable. FCC 15.247(d) requires a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band Edges where the intentional radiator operates. The following plots demonstrate compliance of the intentional at the 2400-2483.5 MHz Band Edges. The EUT was operated in continuous transmit mode and continuous modulation. The EUT was operated at the lowest frequency channel for the investigation of the lower Band Edge and at the highest frequency channel for the investigation of the upper Band Edge.

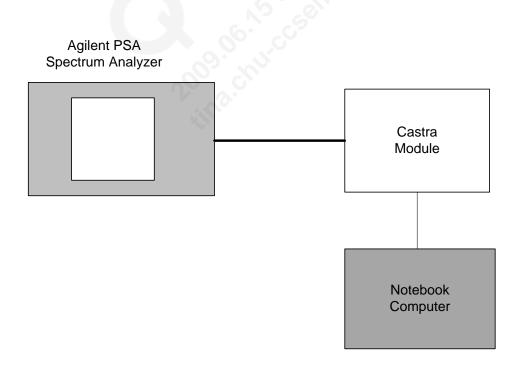
6.2 Test Results

The test was conducted at block edges in each band

Frequency (MHz)	Channel Tested	Corresponding Plot number	Test Result
2400	11	Plot 6.2 - 1	Complies
2483.5	26	Plot 6.2 - 2	Complies

Plot 6.3 -1 (Ch11 Band Edge)

6.3 Plots

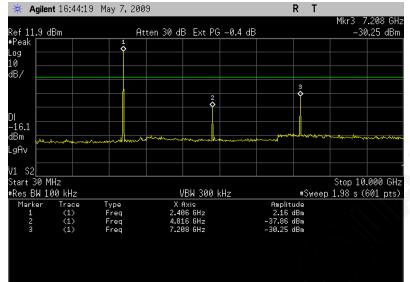

Plot 6.3-2 (Ch26 Band Edge)

7 Conducted Spurious Emission at Antenna Terminals

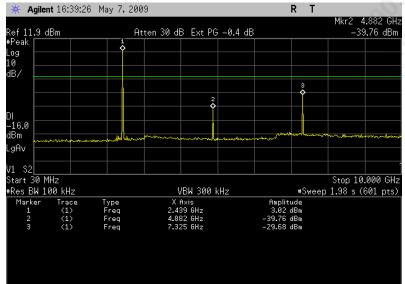
FCC:	§15.247(d)
Limit:	-13dBm
DUT SN	B0A4F5

7.1 Test Procedure

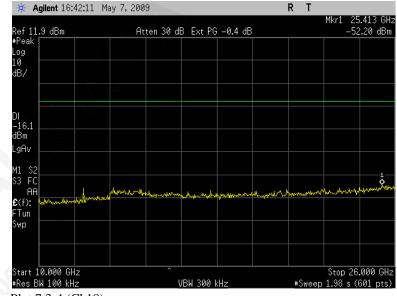
As the figure below indicates, the Castra module was connected to the Agilent PSA Spectrum Analyzer through a calibrated coaxial cable and directional coupler. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. The EUT was operated in continuous transmit mode and continuous modulation.

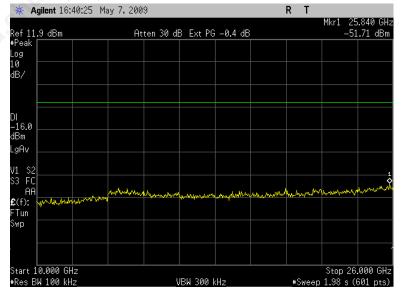

7.2 Test Result

The test was conducted at low, mid and high channels.


Frequency (MHz)	Channel Tested	Corresponding Plot number	Test Result	
0 ~ 26 GHz	11	Plot 7.3 – 1,2	Complies	
0 ~ 26 GHz	18	Plot 7.3 – 3,4	Complies	
0 ~ 26 GHz	26	Plot 7.3 – 5,6	Complies	

7.3 Plots


Plot 7.3 -1 (Ch11)


Plot 7.3-3 (Ch18)

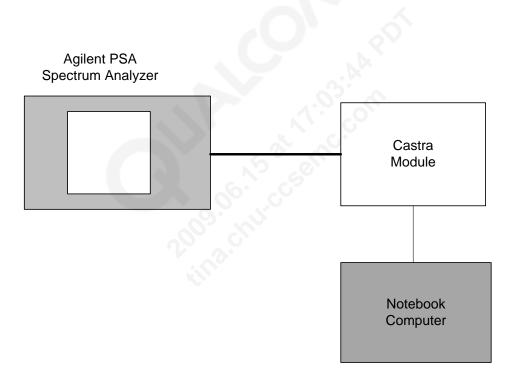
Plot 7.3-2 (Ch11)

Plot 7.3-4 (Ch18)

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Castra Zigbee Conducted Test Report

Conducted Spurious Emission at Antenna Terminals

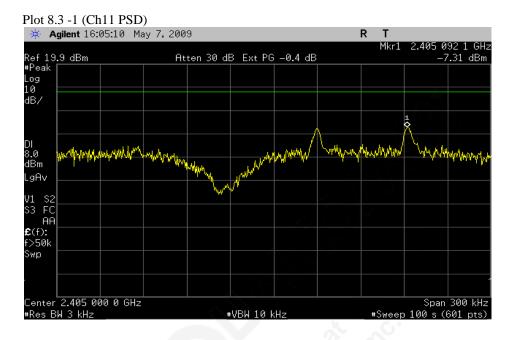

✤ Agilent 16:30:38 May 7,			Plot 7.3-6 (Ch	126)					
	2009	RT		31:46 May 7,	2009		RT		
Ref 11.9 dBm Atten 30 dB Ext PG -0.4 dB -			r3 7.441 GHz -34.23 dBm Ref 11.9 dBm		Atten 30 dB Ext PG -0.4 dB			Mkr1 25.947 GHz -52.38 dBm	
#Peak Log 1 10 ♦			HPeak	\sim					
Log 10 → dB/			Log 10 dB/						
		3 •							
	×		DI -16.3 dBm						
-16.3 dBm LgAv	Mary many mary and	water and a state and a state and	dBm LgAv						
V1 S2									
vi sz <u> </u>	VBW 300 kHz	Stop 10.000 G						1	
Marker Trace Type	X Axis 2.473 GHz	#Sweep 1.98 s (601 pt Amplitude -6.58 dBm	£(f): www.	rownorthated	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	have a start of the second	man and a star and the second starting and a start of the second s		
1 (1) Freq 2 (1) Freq 3 (1) Freq	4.965 GHz 7.441 GHz	-42.07 dBm -34.23 dBm	Swp						
			Start 10.000 GH	lz				Stop 26.000 GHz	
			#Res BW 100 kH	z	\	/BW 300 kHz_	#Swe	eep 1.98 s (601 pts)_	

8 Power Spectral Density

FCC:	§15.247(e)
Limit:	8dBm in any 3kHz frequency band
DUT SN	B0A4F5

8.1 Test Procedure

As the figure below indicates, the Castra module was connected to the Agilent PSA Spectrum Analyzer through a calibrated coaxial cable and directional coupler. The output power was was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.



8.2 Test Results

The test was conducted at low, mid and high channels.

Channel	Center Freq. (GHz)	PSD (dBm)	Limit (dBm)	Margin (dBm)	
11	2.405	-7.31	8	15.31	
18	2.44	-7.19	8	15.19	
26	2.48	-8.22	8	16.22	

8.3 Plots

Plot 8.3 -2 (Ch18 PSD)

Plot 8.3 -2 (Ch26 PSD)

f	itten 30 dl	B Ext PG	-0.4 dB		Mkr1	2.480 0 -8	92 2 GHz 3.22 dBm
						1	
March March 1			A	W.M. all all	and well	M. a.M.	
when the second second	Mywa	MAR MAY	h water that has		a wayar ya	- Warning	Product Mary
		J Mary					
	1 MA	<u> </u>					
0 0 GHz	+	ŧVRW 10 k	:Hz		#Sweer	Span າ100 ຣ()	300 kHz 601 nts)
	0 0 GHz	0 0 GHz	0 0 GHz +VBW 10 k	0 0 GHz +VBW 10 kHz	0 0 GHz +VBW 10 kHz		

80-VR584-3 Rev. A 21 Qualcomm Confidential and Proprietary MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

9 Test Equipment

Model	Manufacturer	Description	S/N	Cal Data	Cal Due Date
8960 Series 10 E5515C	Agilent	Wireless Communication Set	K119302	09/15/2008	09/15/2009
E4440A PSA Series	Agilent	Spectrum Analyzer	K159342	09/15/2008	09/15/2009
Model 105	TestEquity	Temperature Chamber	K162535	08/04/2008	08/04/2009
8541C	Gigatronics	Power Meter	X07077	06/23/2008	06/23/2009
80601A	Gigatronics	Power Meter Sensor	K60750	02/12/2009	02/12/2010

The following test equipment was used.