

Partial FCC Test Report

Report No.: RFBDGE-WTW-P22120074-4

FCC ID: J9C-QCNFA765

Test Model: QCNFA765

Received Date: Dec. 02, 2022

Test Date: Mar. 18, 2023

Issued Date: Mar. 24, 2023

Applicant: Qualcomm Technologies, Inc.

Address: 5775 Morehouse Drive, San Diego, CA 92121-1714

- **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan, R.O.C

FCC Registration / 427177 / TW0011 Designation Number:

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot form which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report to notify us of any material error or omission caused by our require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report co

Table of Contents

Release Control Record	3
1 Certificate of Conformity	4
2 Summary of Test Results	5
2.1 Modification Record	5
3 General Information	6
3.1General Description of EUT3.2Description of Test Modes3.2.1Test Mode Applicability and Tested Channel Detail3.3Description of Support Units3.3.1Configuration of System under Test3.4General Description of Applied Standard	6 8 1 2 2
4 Test Types and Results1	3
4.1Contention Based Protocol Measurement134.1.1Limits of Contention Based Protocol Measurement134.1.2Test Setup134.1.3Test Instruments134.1.4Test Procedure144.1.5EUT Operating Condition144.1.6Test Results14	3 3 3 4 4 5
5 Pictures of Test Arrangements	7
Appendix A– Information of the Testing Laboratories	8

Release Control Record

Issue No.	Description	Date Issued
RFBDGE-WTW-P22120074-4	Original Release	Mar. 24, 2023

Certificate of Conformity 1

Product:	Wi-Fi 6E BT 5.2M.2 2230 Module
Brand:	Qualcomm
Test Model:	QCNFA765
Sample Status:	Engineering Sample
Applicant:	Qualcomm Technologies, Inc.
Test Date:	Mar. 18, 2023
Standard:	47 CFR FCC Part 15, Subpart E (Section 15.407)
	ANSI C63.10-2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Grina Lin , Date: Mar. 24, 2023

Gina Liu / Specialist

Approved by :

Jeremy Lin, Da

Jeremy Lin / Project Engineer

Date: Mar. 24, 2023

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)								
FCC Test Item Result Remarks								
15.407 (d)(6) Contention-based Protocol. Pass Meet the requirement of limit.								

Note:

1. This report is a partial report. According to customer requirements, only test item of Contention-based Protocol was performed for this report.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wi-Fi 6E BT 5.2M.2 2230 Module					
Brand	Qualcomm					
Test Model	QCNFA765					
Status of EUT	Engineering Sample					
Power Supply Rating	3.3Vdc form host equipment					
Modulation Type	1024QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM					
Madulation Task note su	4096QAM, 1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDMA					
Modulation Technology	OFDM, OFDMA					
Transfer Rate	802.11a: up to 54.0 Mbps					
	802.11ax: up to 2969.7 Mbps					
	6GHz:					
	Under control by Standard Power AP:					
Operating Frequency	5.935 ~ 6.415GHz, 6.535 ~ 6.855GHz					
Operating Frequency	Under control by Low-powerIndoor AP:					
	5.935 ~ 6.415GHz, 6.435 ~ 6.525GHz, 6.535 ~ 6.855GHz, 6.865 ~					
	7.115GHz					
	6GHz:					
	802.11a/ax (HE20): 60					
Number of Channel	802.11ax (HE40): 29					
	802.11ax (HE80): 14					
	802.11ax (HE160): 7					
Antenna Type	Refer to Note					
Antenna Connector	Refer to Note					
Accessory Device	Refer to Note					
Data Cable Supplied	Refer to Note					

Note:

1. Test modes for performing RF output power and spurious emission tests according to customer requirements (power, channel, etc.).

2. The EUT is authorized for use in specific End-product. Please refer to below table for more details.

Product Name	Brand Name	Model No.
Portable Computer	ALIENWARE	P51E

3. The End-product contains following accessory devices.

Product	Brand	Model	Description
Adapter	DELL	DA330PM190	I/P: 100-240 Vac, 50-60 Hz, 4.4 A O/P: 19.5Vdc; 16.92A DC Output Cable: 1.7m/ 2 core
Battery	DELL	9JRV0	11.4 Vdc, 8071 mAh, 97 Wh

4. The EUT incorporates a MIMO function. Physically, the EUT provides 2 completed transmitters and 2 receivers.

Modulation Mode	TX Function
802.11a	2TX
802.11ax (HE20)	2TX
802.11ax (HE40)	2TX
802.11ax (HE80)	2TX
802.11ax (HE160)	2TX
802.11ax	
(RU26/52/106/242/484/996/1992)	218
5. The antenna information is liste	d as below.

Brand	Model	Туре	Connector
Wistron	0G7K8N	PIFA	IPEX 4L

	Antenna Gain (dBi)									
	2400-2483.5	5150-	5250-	5470-5725	5725-5850	5850-5895	5925-6425	6425-6525	6525-6875	6875-7125
	MHz	5250MHz	5350MHz	MHz						
Main	1.98	1.81	2.02	1.80	0.88	0.69	1.84	1.91	1.91	2.79
Aux.	2.41	0.76	0.40	0.86	0.46	0.45	1.46	1.15	2.34	2.34

*Detail antenna specification please refer to antenna datasheet.

3.2 Description of Test Modes

U-NII-5 (5925 ~ 6425MHz): Under control of a Low-power Indoor AP and Standard Power AP 25 channels are provided for 802.11a, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
2	5935 MHz	1	5955 MHz	5	5975 MHz	9	5955 MHz
13	6015 MHz	17	6035 MHz	21	6055 MHz	25	6075 MHz
29	6095 MHz	33	6115 MHz	37	6135 MHz	41	6155 MHz
45	6175 MHz	49	6195 MHz	53	6215 MHz	57	6235 MHz
61	6255 MHz	65	6275 MHz	69	6295 MHz	73	6315 MHz
77	6335 MHz	81	6355 MHz	85	6375 MHz	89	6395 MHz
93	6415MHz						
12 channels a	are provided fo	or 802.11ax (F	HE40):				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
3	5965 MHz	11	6005 MHz	19	6045 MHz	27	6085 MHz
35	6125 MHz	43	6165 MHz	51	6205 MHz	59	6245 MHz
67	6285MHz	75	6325 MHz	83	6365 MHz	91	6405 MHz
6 channels ar	e provided for	[.] 802.11ax (HI	E80):				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
7	5985 MHz	23	6065 MHz	39	6145 MHz	55	6225 MHz
71	6305 MHz	87	6385 MHz				
3 channels ar	e provided for	· 802.11ax (HI	E160):				
0	_		-	0	-		

Channel	Frequency	Channel	Frequency	Channel	Frequency
15	6025 MHz	47	6185 MHz	79	6345 MHz

U-NII-6 (6425 ~ 6525MHz): Under control of a Low-power Indoor AP

5 channels are provided for 802.11a, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
97	6435 MHz	101	6455 MHz	105	6475 MHz	109	6495 MHz
113	6515 MHz						

3 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency
99	6445 MHz	107	6485 MHz	*115	6525 MHz

1 channel is provided for 802.11ax (HE80):

Channel	Frequency
103	6465 MHz

1 channel is provided for 802.11ax (HE160):

Channel	Frequency
*111	6505 MHz

U-NII-7 (6525 ~ 6875MHz): Under control of a Low-power Indoor AP and Standard Power AP

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
117	6535 MHz	121	6555 MHz	125	6575 MHz	129	6595 MHz
133	6615 MHz	137	6635 MHz	141	6655 MHz	145	6675 MHz
149	6695 MHz	153	6715 MHz	157	6735 MHz	161	6755 MHz
165	6775 MHz	169	6795 MHz	173	6815 MHz	177	6835 MHz
181	6855 MHz						
8 channels ar	channels are provided for 802 11ax (HE40):						

17 channels are provided for 802.11a, 802.11ax (HE20):

8 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
123	6565 MHz	131	6605 MHz	139	6645 MHz	147	6685 MHz
155	6725 MHz	163	6765 MHz	171	6805 MHz	179	6845 MHz

4 channels are provided for 802.11ax (HE80):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
*119	6545 MHz	135	6625 MHz	151	6705 MHz	167	6785 MHz

2 channels are provided for 802.11ax (HE160):

Channel	Frequency	Channel	Frequency
143	6665 MHz	175	*6825 MHz

U-NII-8 (6875 ~ 7125MHz): Under control of a Low-power Indoor AP

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
185	6875 MHz	189	6895 MHz	193	6915 MHz	197	6935 MHz
201	6955 MHz	205	6975 MHz	209	6995 MHz	213	7015 MHz
217	7035 MHz	221	7055 MHz	225	7075 MHz	229	7095 MHz
233	7115 MHz						

13 channels are provided for 802.11a, 802.11ax (HE20):

6 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency
187	6885 MHz	195	6925 MHz	203	6965 MHz
211	7005 MHz	219	7045 MHz	227	7085 MHz

3 channels are provided for 802.11ax (HE80):

Channel	Frequency	Channel	Frequency	Channel	Frequency
*183	6865 MHz	199	6945 MHz	215	7025 MHz

1 channel is provided for 802.11ax (HE160):

Channel	Frequency
207	6985 MHz

* mean these's straddle channels Note:

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT	Applicable To	Description
Mode	СВР	Description
-	\checkmark	-

Where CBP:Contention Based Protocol

NOTE: The EUT is designed to be positioned on the NB Mode only.

Contention Based Protocol Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, RU configurations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band Available (MHz) Channel		Tested Channel	Modulation Technology	Modulation Type	Data Rate Parameter
	5955-6415	1 to 93	45	OFDMA	BPSK	MCS0
000 44 (115 00)	6435-6525	97 to 113	105	OFDMA	BPSK	MCS0
802.11ax (HE20)	6525-6855	117 to 185	149	OFDMA	BPSK	MCS0
	6875-7115	185 to 233	209	OFDMA	BPSK	MCS0
	5955-6415	15 to 79	47	OFDMA	BPSK	MCS0
	6435-6525	111	111	OFDMA	BPSK	MCS0
802.11ax (HE160)	6525-6855	111 to 175	143	OFDMA	BPSK	MCS0
	6875-7115	207	207	OFDMA	BPSK	MCS0

Test Condition:

Applicable To	Environmental Conditions	Input Power (System)	Tested By
СВР	25 deg. C, 60% RH	120Vac, 60Hz	Stan Shih

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.4 General Description of Applied Standard

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart E (15.407) ANSI C63.10-2013 All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 987594 D02 EMC Measurement v01r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Contention Based Protocol Measurement

4.1.1 Limits of Contention Based Protocol Measurement

Unlicensed indoor low-power devices must detect co-channel radio frequency power that is at least -62 dBm (The threshold is referenced to a 0 dBi antenna gain.) or lower. Additionally, indoor low-power devices must detect co-channel energy with 90% or greater certainty.

4.1.2 Test Setup

4.1.3 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer R&S	FSW	102023	Nov. 08, 2022	Nov. 07, 2023
Spectrum Analyzer R&S	FSV40	101516	Feb. 10, 2023	Feb. 09, 2024
MXG X-Series RF Vector Signal Generator Agilent	N5182B	MY59100182	Apr. 26, 2022	Apr. 25, 2023
N5182BU KEYSIGHT	N5182BX07	MY59360203	Apr. 26, 2022	Apr. 25, 2023
Power Splitter/combiner Mini-Circuits	ZFRSC-123-S+	F698501347_01	Dec. 28, 2022	Dec. 27, 2023

Note: 1. The test was performed in Femtocell room.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested date: Mar. 18, 2023

4.1.4 Test Procedure

- a. Set the signal analyzer center frequency to the nominal EUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of the EUT. Connect the output port of the EUT to the signal analyzer 2. Ensure that the attenuator 2 provides enough attenuation to not overload the signal analyzer 2 receiver.
- b. Monitoring the signal analyzer 2, verify the EUT is operating and transmitting with the parameters (set as following section 4.7.5 EUT operating condition).
- c. Determine number of times detection threshold test as following table,

lf	Number of Tests	Placement of Incumbent Transmission
$BW_{EUT}{\leq}\ BW_{Inc}$	Once	Same as EUT transmission
$\text{BW}_{\text{Inc}} \text{<} \text{BW}_{\text{EUT}} \leq \text{ 2xBW}_{\text{Inc}}$	Once	Contained within BWEUT
$2xBW_{Inc}$ < $BW_{EUT} \leq 4xBW_{Inc}$	Twice. (Incumbent transmission is contained within BW _{EUT})	Closely to the lower edge and upper edge of the EUT Channel
$BW_{EUT} > 4xBW_{Inc}$	Three times	Closely to the lower edge ,in the middle and upper edge of the EUT Channel

- d. Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use step c table to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- e. Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer 1 and the EUT.
- f. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer 1.
- g. Monitor the signal analyzer 2 to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.
- h. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- i. Refer to step c table to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step d, choose a different center frequency for the AWGN signal and repeat the process.

4.1.5 EUT Operating Condition

Set the EUT to transmit with a constant duty cycle and relative operating parameters which including power level, operating frequency, modulation and bandwidth.

4.1.6 Test Results

UNII Band 5:

				Co	ontention Ba	sed Protocol Me	asurement			
Operation Mode	Channel Bandwidth (MHz)	Channel Number (MHz)		Inject (A Freq.	ed Signal WGN) Power	Antenna Gain (dBi)	Path Loss (dB)	Adjusted Power (dBi)	Detection Limit	EUT TX Status
	(11112)		(11112)	(MHz)	(dBm)					
					-70.54	1.46	0	-72	-62	OFF
	20	45	6175	6175	-71.54	1.46	0	-73	-62	Minimal
				-80.54	1.46	0	-82	-62	ON	
					-60.54	1.46	0	-62	-62	OFF
				6110	-61.54	1.46	0	-63	-62	Minimal
802 11ov					-80.54	1.46	0	-82	-62	ON
002.118					-60.54	1.46	0	-62	-62	OFF
	160	47	6185	6185	-61.54	1.46	0	-63	-62	Minimal
					-80.54	1.46	0	-82	-62	ON
					-60.54	1.46	0	-62	-62	OFF
				6260	-61.54	1.46	0	-63	-62	Minimal
					-80.54	1.46	0	-82	-62	ON

	Contention Based Protocol Detection Probability														
Operation Mode	Channel Bandwidth (MHz)	AWGN Signal Freq. (MHz)	#01	#02	#03	#04	#05	#06	#07	#08	#09	#10	Detection Probability	Detection Limit	Test Result
	20	6175	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
802 11 ov	160	6110	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
802.11ax		6185	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
		6260	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass

UNII Band 6:

				Co	ntention Ba	sed Protocol Me	easurement			
Operation Mode	Channel Bandwidth (MHz)	Channel Number	Channel Freq. (MHz)	Inject (A Freq. (MHz)	ed Signal WGN) Power (dBm)	Antenna Gain (dBi)	Path Loss (dB)	Adjusted Power (dBi)	Detection Limit	EUT TX Status
				· · · ·	-67.85	1.15	0	-69	-62	OFF
	20 105 6	6475	6475	-68.85	1.15	0	-70	-62	Minimal	
				-80.85	1.15	0	-82	-62	ON	
					-60.85	1.15	0	-62	-62	OFF
				6430	-61.85	1.15	0	-63	-62	Minimal
902 11ov					-80.85	1.15	0	-82	-62	ON
002.1188					-60.85	1.15	0	-62	-62	OFF
	160	111	6505	6505	-61.85	1.15	0	-63	-62	Minimal
					-80.85	1.15	0	-82	-62	ON
					-60.85	1.15	0	-62	-62	OFF
				6580	-61.85	1.15	0	-63	-62	Minimal
				-80.85	1.15	0	-82	-62	ON	

	Contention Based Protocol Detection Probability														
Operation Mode	Channel Bandwidth (MHz)	AWGN Signal Freq. (MHz)	#01	#02	#03	#04	#05	#06	#07	#08	#09	#10	Detection Probability	Detection Limit	Test Result
	20	6475	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
902 11ov	160	6430	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
002.118		6505	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
		6580	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass

UNII Band 7:

				Co	ntention Ba	sed Protocol Me	asurement			
Operation Mode	Channel Bandwidth (MHz)	Channel Number	Channel Freq. (MHz)	Inject (A Freq.	ed Signal WGN) Power (dBm)	Signal <u>GN)</u> Antenna Gain Power (dBi)		Adjusted Power (dBi)	Detection Limit	EUT TX Status
				(1011 12)	-65.09	1.91	0	-67	-62	OFF
	20 149 66	6695	6695	-66.09	1.91	0	-68	-62	Minimal	
				-80.09	1.91	0	-82	-62	ON	
					-60.09	1.91	0	-62	-62	OFF
				6590	-61.09	1.91	0	-63	-62	Minimal
802 11ov					-80.09	1.91	0	-82	-62	ON
002.118					-60.09	1.91	0	-62	-62	OFF
	160	143	6665	6665	-61.09	1.91	0	-63	-62	Minimal
					-80.09	1.91	0	-82	-62	ON
					-60.09	1.91	0	-62	-62	OFF
				6740	-61.09	1.91	0	-63	-62	Minimal
				-80.09	1.91	0	-82	-62	ON	

	Contention Based Protocol Detection Probability														
Operation Mode	Channel Bandwidth (MHz)	AWGN Signal Freq. (MHz)	#01	#02	#03	#04	#05	#06	#07	#08	#09	#10	Detection Probability	Detection Limit	Test Result
	20	6695	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
902 11ov	160	6590	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
002.118		6665	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
		6740	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass

UNII Band 8:

				Co	ntention Ba	sed Protocol Me	asurement			
Operation Mode	Channel Bandwidth (MHz)	Channel Number	Channel Freq. (MHz)	Injected Signal (AWGN) Freq. Power (MHz) (dBm)		Antenna Gain (dBi)	Path Loss (dB)	Adjusted Power (dBi)	Detection Limit	EUT TX Status
				()	-64.66	2.34	0	-67	-62	OFF
	20	209	6995	6995	-65.66	2.34	0	-68	-62	Minimal
				-79.66	2.34	0	-82	-62	ON	
					-59.66	2.34	0	-62	-62	OFF
				6910	-60.66	2.34	0	-63	-62	Minimal
802 11ov					-79.66	2.34	0	-82	-62	ON
002.118					-59.66	2.34	0	-62	-62	OFF
	160	207	6985	6985	-60.66	2.34	0	-63	-62	Minimal
					-79.66	2.34	0	-82	-62	ON
					-59.66	2.34	0	-62	-62	OFF
				7060	-60.66	2.34	0	-63	-62	Minimal
			-79.66	2.34	0	-82	-62	ON		

Contention Based Protocol Detection Probability															
Operation Mode	Channel Bandwidth (MHz)	AWGN Signal Freq. (MHz)	#01	#02	#03	#04	#05	#06	#07	#08	#09	#10	Detection Probability	Detection Limit	Test Result
802.11ax	20	6995	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
	160	6910	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass
		6985	v	v	v	v	х	v	v	v	v	v	90%	90%	Pass
		7060	v	v	v	v	v	v	v	v	v	v	100%	90%	Pass

Pl	ots of EUT ceased trans	mission in the time domain	
802.11ax (HE2)	0) / CH 45	802.11ax (HE160) /	CH 47 (Low Edge)
Spectrum Analyzer 1 Spectrum Analyzer 2 Spectrum Analyzer 3 Cramel Row Spectrum Analyzer 3 Cramel Row Spectrum Analyzer 3	Marker 1000 Marker 11 More 1000 Marker 11 More 1000 Marker 11 More 1000 Marker 10 Marker 1 Marker	Searchum Analyzer 1 Secolar Analyzer 2 Secolar Analyzer 3 Secolar Analyzer	And Type: Power (RMS) 2 3 4 5 0 And Type: Power (RMS) 2 3 4 5 0
Res BW 8 IMI2 ■ つ	Sweep 20.0 s (10000 ps)	Res BW1 8 MHz Image: Mile State	CH 47 (High Edge)
Concernent Analyzer 1 Concernent Analyzer 2 Concernent Power KEVSGGHT Ingel RF Megn Auto Spectrum Analyzer 2 Spectrum Analyzer 3 Megn Auto Spectrum A	May Type: Power (FMS) 2 3 4 3 0 May Type: Power (FMS) 2 3 4 3 0 Marker 1 Marker 1	Spectrum Analyzer 3 S	And Proc. Your (RMS) 2.3.4.5 C Trigge Zamul 1 Multin 1.0005 -0.0.3.3 dBm -0.0.3 dBm -
Image: Control of the second	Span 0 Hz Sweep 20.0 s (100001 Hz) Couple Markers Off Couple Markers Couple Markers Couple Markers Couple Markers	00 Frides BW 50 MHz* Res BW 54 MHz Frides BW 50 MHz* Res BW 50 MHz Frides BW 50 MHz* Res BW 50 MHz Frides BW 50 MHz*	Span 0 Hz Sweep 20.0 s (10000 ps)

	Plots of EUT of	ceased transr	nission in the	time domain			
802.11ax	(HE20) / CH 105		802.11ax (HE160) / CH 111 (Low Edge)				
Spectrum Advigurs 1	halyzer 3 PRO Fait ale off ale off	Trigger Trigger Extend Trig Source External 1 Trigger Source 1.20 Source Source Care Care Care Care Care Care Care Car	Beectrum Analyzer 1 Beectrum Be	Avalger 2 (Spectrum Avalger 3 BW Chancel Power (Anarole Power Power Ref Level 0.00 dBm Ref Level 0.00 dBm	Ang Type Prove (PMR) 2 3 4 5 0 Mig Extension 1 2 3 4 5 0 Work work (PMR) 2 3 4 5 0 Work work (PMR) 2 3 4 5 0 Work (PMR) 2 3	Trigger Carlos Rel Trig Source Source Carlos P Delay Satings P Delay Satings P Relative Relative P Source Carlos Source Carlos Satings Sa	
	te* 5800 0 H0 Sweep 20.0 ± (100001 H0 	Trigger Settings	000 000 000 000 000 000 000 000	Video BW 50 MHz* #18.2023 @ a ax (HE160) / CH	Speep 20.0 - (100001 pts) Sweep 20.0 - (100001 pts) Sweep 20.0 - (100001 pts) I 1111 (High Ed	Postive Nagative Span Duay Co Proger Selenge Diagram	
Spectrum Amagan 1 Opectrum Amagan 2 Opectrum Amagan 2 Opectrum Amagan 2 KEYSIGHT werk RF Opectrum Amagan 2 Opectrum Amagan 2 Opectrum Amagan 2 Work 25 00 Provide 25 00 Provide 25 00 Provide 25 00 I Spectrum Amagan 2 Provide 25 00 Provide 25 00 Provide 25 00 I Spectrum Amagan 2 Provide 25 00 Provide 25 00 Provide 25 00 I Spectrum Amagan 2 Provide 25 00 Provide 25 00 Provide 25 00 I Spectrum 3 Provide 25 00 Provide 25 00 Provide 25 00 Provide 25 00 I Spectrum 4 Provide 25 00 Provide 25 00 Provide 25 00 Provide 25 00 I Spectrum 5 Provide 25 00 Provide 25 00 Provide 25 00 Provide 25 00 I Spectrum 5 Provide 25 00 Provide 25 00 Provide 25 00 Provide 25 00 I Spectrum 5 Provide 25 00 Provide 25 00 Provide 25 00 Provide 25 00 I Spectrum 5 Provide 25 00 Provide 25 00 Provide 25 00 Provide 25 00 Provide 25 00	endigaer 3 PHO Find Cade Off © Gene Loo m Serence signal at 1 sec Cale off m Second by Mkr1 1.000 9 m Second by Mkr1 1.000 9 m Second by Mkr1 1.000 9 m Second by Second by Mkr1 1.000 9 Second by Second by Se	Trigger Conce External 1 Trigger 10 ps Gate 10 ps Periodic 10 p	Boectrum Analyzer 1 Beectrum Analyzer 1 Beectrum Event an Analyzer 1 Beectrum Be	A Avaiguer 2 [Gpectrum Avaiguer 3] BW (Channel Power (Channel Power Ref Level 0.00 dBm njected Interference	Ang Yood Power (PMSO) 2, 2, 4, 5 (Not Yood Power (PMSO) 2, 2, 4, 5 (Not You Power (PMSO) 2, 2, 4, 5 (Not You Power (PMSO) 2, 2, 4, 5 (Not You Power (PMSO) 2, 2, 4 (Not You Power (PMSO) 2, 4 (Not You Power	Trigger & Constant and 1 To Source Toger Level Sector Source	
Res BW 8 MHz	Sweep 20.0 s (100001 pts)			rr 18, 2023	Sweep 20.0 s (100001 pts)		

Plots of EUT ceased trans	mission in the time domain
802.11ax (HE20) / CH 149	802.11ax (HE160) / CH 143 (Low Edge)
Spectrum Analyzer 1 Spectrum Analyzer 1 Spectrum Analyzer 2 Channel Rower Counce con Co Counce co	Image: Control Analyses 1 Character A.
Bockuta Analyzer 1 Centrum Analyzer 1 Centru	BO2.11ax (HE160) / CH 143 (High Edge)

Report No.: RFBDGE-WTW-P22120074-4

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix A– Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---