

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

EA544D_3 ETHERNET ADAPTER CARD FOR 2.4 / 5 GHz AP APPLICATIONS_NON DFS

MODEL NUMBER: 65-VN663-P3

FCC ID: J9C-EA544D3 IC: 2723A-EA544D3

REPORT NUMBER: 09U12689-12

ISSUE DATE: MAY 10, 2010

Prepared for QUALCOMM, INC. 3165 KIFER ROAD SANTA CLARA, CA 95051, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	05/10/10	Initial Issue	F. Ibrahim

Page 2 of 99

TABLE OF CONTENTS

1.	ΑΠ	ESTATION OF TEST RESULTS	5
2.	TES	METHODOLOGY	6
3.	FAC	LITIES AND ACCREDITATION	6
4.	CAL	BRATION AND UNCERTAINTY	6
4	.1.	MEASURING INSTRUMENT CALIBRATION	6
4	.2.	SAMPLE CALCULATION	6
4	.3.	MEASUREMENT UNCERTAINTY	6
5.	EQU	IPMENT UNDER TEST	7
5	.1.	DESCRIPTION OF EUT	7
5	.2.	MAXIMUM OUTPUT POWER	7
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5	.4.	SOFTWARE AND FIRMWARE	8
5	.5.	WORST-CASE CONFIGURATION AND MODE	8
5	.6	DESCRIPTION OF CLASS 2 PERMISSIVE CHANGE	8
5	.7	TEST RESULTS FOR C2PC SAMPLE	9
5	.6.	DESCRIPTION OF TEST SETUP	9
6.	TES	AND MEASUREMENT EQUIPMENT	
7.	ANT	ENNA PORT TEST RESULTS	
7	.1.	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE	
	7.1.1		
	7.1.2	. OUTPUT POWER	15
		OUTPUT POWER	15 19
	7.1.2 7.1.3 7.1.4 7.1.5	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION 	
_	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS	
7.	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 	
7.	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER 	15 19 20 23 23 26 29 29 32
7.	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER 	15 19 20 23 23 26 29 29 29 32 39
7.	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY 	15 19 20 23 23 26 29 29 29 29 32 32 39 40
7.	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY. PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH. OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY. PEAK EXCURSION 	15 19 20 23 23 26 29 29 29 29 32 32 39 40 43
	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 	15 19 20 23 23 26 29 29 29 32 32 39 40 40 43 40 40 43
	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 99% & 26 dB BANDWIDTH 	15 19 20 23 23 26 29 29 29 32 39 40 40 43 40 43 40 49
	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 99% & 26 dB BANDWIDTH. OUTPUT POWER OUTPUT POWER 	15 19 20 23 26 29 29 29 32 39 40 43 40 43 43 40 51
	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6 7.3.1 7.3.2 7.3.3 7.3.4	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY 	15 19 20 23 26 29 29 29 32 39 40 40 43 46 49 49 51 56 57
	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3.1 7.3.2 7.3.3	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK POWER SPECTRAL DENSITY 	15 19 20 23 26 29 29 29 32 39 40 40 43 46 49 49 51 56 57
7.	7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3.1 7.3.2 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5	 OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK POWER SPECTRAL DENSITY PEAK POWER SPECTRAL DENSITY PEAK EXCURSION 	15 19 20 23 26 29 29 29 32 39 40 43 40 43 46 49 51 56 57 59 DRM NO: CCSUP4701C

This report shall not be reproduced except in full, without the written approval of CCS.

	7.3.6.	CONDUCTED SPURIOUS EMISSIONS	61
8.	RECEI\	/ER CONDUCTED SPURIOUS EMISSIONS	63
9.	RADIA	IED TEST RESULTS	65
ç).1. LII	MITS AND PROCEDURE	65
g	9.2. TF 9.2.1. 9.2.2. 9.2.3. 9.2.4.	ANSMITTER ABOVE 1 GHz 802.11a MODE IN 5.2 GHz BAND TX ABOVE 1 GHz FOR 802.11a DUAL CHAIN MODE IN 5.2 GHz BAND 802.11n HT20 MODE IN 5.2 GHz BAND 802.11n HT40 MODE IN 5.2 GHz BAND	66 70 75
ç	0.3. W	ORST-CASE BELOW 1 GHz	87
10.	AC F	OWER LINE CONDUCTED EMISSIONS	89
11.	MAX	IMUM PERMISSIBLE EXPOSURE	93
12.	SET	JP PHOTOS	97

Page 4 of 99

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	QUALCOMM, INC.
	3165 KIFER RD
	SANTA CLARA, CA 95051
	U.S.A.

EUT DESCRIPTION: EA544D_3 ETHERNET ADAPTER CARD FOR 2.4 / 5 GHz AP APPLICATIONS_NON DFS

MODEL: 65-VN663-P3

SERIAL NUMBER: 7813, 8286, 9021, 8263, and 9086 FOR ANTENNA PORT, 7908 and 9021 FOR RADIATED EMISSIONS

DATE TESTED: JUNE 24, 2009 – MARCH 23, 2010

APPLICABLE STANDARDS						
STANDARD	TEST RESULTS					
CFR 47 Part 15 Subpart E	Pass					
INDUSTRY CANADA RSS-210 Issue 7 Annex 9	Pass					
INDUSTRY CANADA RSS-GEN Issue 2	Pass					

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

FRANK IBRAHIM EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

VIEN TRAN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 5 of 99

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 99

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n WLAN transceiver module for 2.4 / 5 GHz AP Applications that do not include DFS bands. It is equipped with four identical transmitter / receiver chains and an Ethernet port.

The radio module is manufactured by Qualcomm, Inc.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power		
(MHz)		(dBm)	(mW)		
5.2 GHz BAND					
5180 - 5240	802.11a	12.10	16.22		
5180 - 5240	802.11n HT20	13.67	23.28		
5190 - 5230	802.11n HT40	16.88	48.75		

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dual band omni monopole (4 identical) antenna, each with a maximum gain of 3 dBi in the 5 GHz bands.

For the 802.11a legacy mode only two chains are transmitting, therefore the effective legacy antenna gain is:

Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain
(dBi)	(dB)	(dBi)
3	3.01	6.01

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Keyspan, rev. 3.7.0.2.

The test utility software used during testing was PTT GUI, rev. 5.1.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module connected to a host Laptop PC via a test fixture.

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11a Mode (20 MHz BW operation): 6 Mbps, OFDM. 802.11n MIMO HT20 Mode: MCS31, 260 Mbps, 4 Spatial Streams. 802.11n MIMO HT40 Mode: MCS31, 540 Mbps, 4 Spatial Streams.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power, that was determined to be 11n HT40, high channel.

For 26 dB BW measurement preliminary testing showed that there is no significant difference among different chains, so the measurement was performed using Chain 0.

For conducted spurious measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore, final measurement was performed using combiner for all channels and modes.

For PPSD measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore, final measurement was performed using combiner for all channels and modes.

For Radiated Band Edge measurements preliminary testing showed that the worst case was vertical polarization, so final measurements were performed with vertical polarization.

5.6 DESCRIPTION OF CLASS 2 PERMISSIVE CHANGE

A shield was added to the bottom side of the PCB to meet ETSI receiver spurious limits. This shield was subsequently incorporated into all versions of this radio module.

5.7 TEST RESULTS FOR C2PC SAMPLE

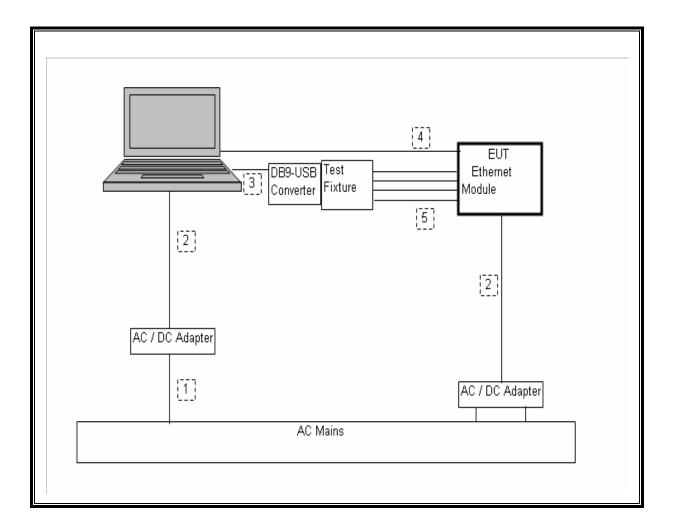
As a result of the C2PC, the original data was analyzed to find worst-case modes and margins, then preliminary tests were performed to determine where additional final testing was required. The original data is updated with all new final measurements that show degraded performance compared to the original configuration.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST								
Description Manufacturer Model Serial Number FCC IE								
Laptop	IBM	T43 ThinkPad	L3-F9978 05/06	DoC				
AC Adapter	IBM	08K8208	11S08K8208Z1Z6	DoC				
AC Adapter	Phihong	PSA15R-050P	N/A	N/A				
Serial (DB9)/USB	Keyspan	N/A	N/A	N/A				
Test Fixture	N/A	N/A	N/A	N/A				

I/O CABLES


	I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connecto Type	Cable Type	Cable Length	Remarks		
1	AC	2	US 115V	Shielded	1m	For laptop & EUT		
2	DC	2	DC	Un-shielded	2m	For laptop & EUT		
3	USB	1	USB	Shielded	.8m	From laptop to USB Converter		
4	Ethernet	1	RJ45	Un-shielded	1 m	From laptop to EUT		
5	Cable	1	Riibon	Un-shielded	.4 m	Test Fixture to EUT		

TEST SETUP

The EUT is installed in a host laptop computer via test fixture during the tests. Test software exercised the radio card.

Page 9 of 99

SETUP DIAGRAM FOR TESTS

Page 10 of 99

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description Manufacturer Model Asset Cal Date Cal Due							
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/09	01/05/10		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/09	01/14/10		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	04/22/10		
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	09/29/08	11/28/09		
Antenna, Horn, 40 GHz	ARA	MWH-2640B	C00981	05/21/09	05/21/10		
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	10/11/08	10/11/09		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/09	03/31/10		
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	08/05/08	08/05/09		
Peak Power Meter	Boonton	4541	C01186	01/19/09	01/19/10		
Peak Power Sensor	Boonton	4541	C01189	01/15/09	01/15/10		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/29/08	10/29/09		
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	02/06/08	08/06/09		

The following test and measurement equipment was utilized for the additional tests with the modified shield:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Date	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/10	03/05/11		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	04/22/10		
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	02/04/09	02/04/10		
Peak Power Meter	Boonton	4541	C01186	01/19/09	01/19/10		
Peak Power Sensor	Boonton	4541	C01189	01/15/09	01/15/10		

Page 11 of 99

7. ANTENNA PORT TEST RESULTS

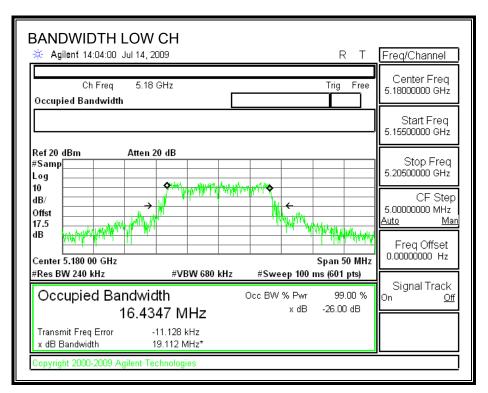
7.1. 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE

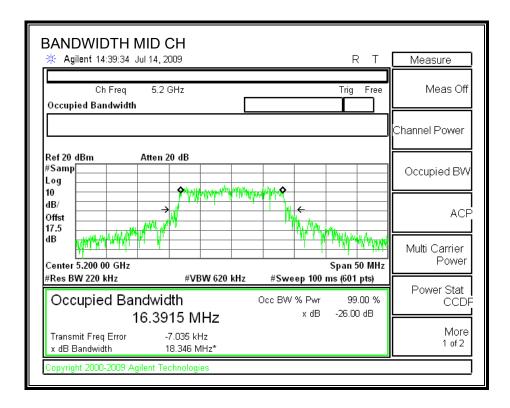
7.1.1. 26 dB and 99% BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

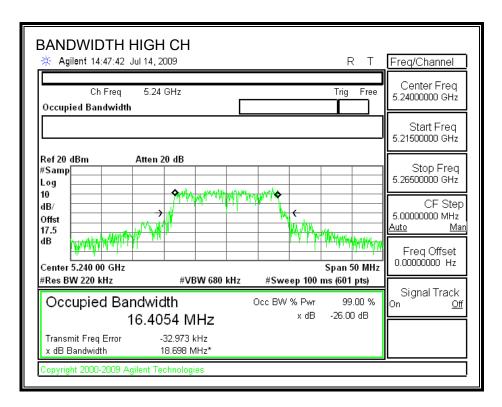
TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	19.1120	16.4340
Middle	5200	18.3460	16.3915
High	5240	18.6980	16.4054

Page 12 of 99


26 dB and 99% BANDWIDTH

Page 13 of 99

FAX: (510) 661-0888

This report shall not be reproduced except in full, without the written approval of CCS.

7.1.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

		Effective Legacy Gain (dBi)	
3	3.01	6.01	

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

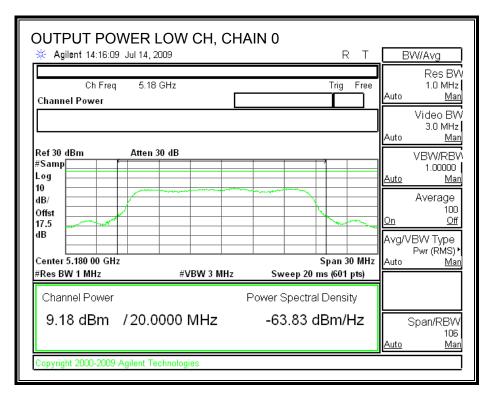
TEST PROCEDURE

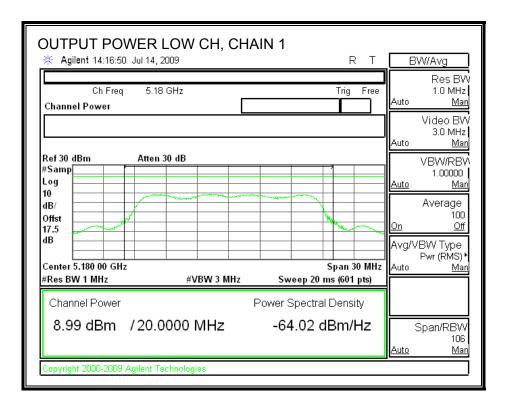
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

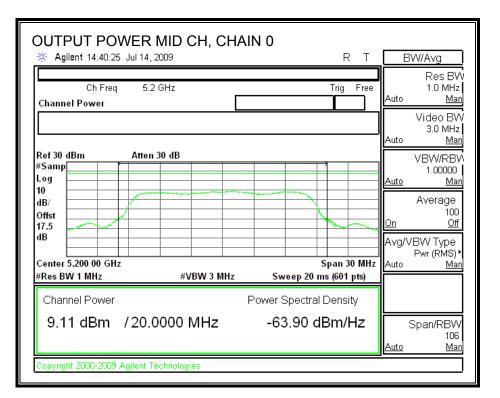
Channel	Frequency	Fixed	В	4 + 10 Log B	Effective	Limit
		Limit		Limit	Antenna Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	19.1120	16.81	6.01	16.80
Mid	5200	17	18.3460	16.64	6.01	16.63
High	5240	17	18.6980	16.72	6.01	16.71

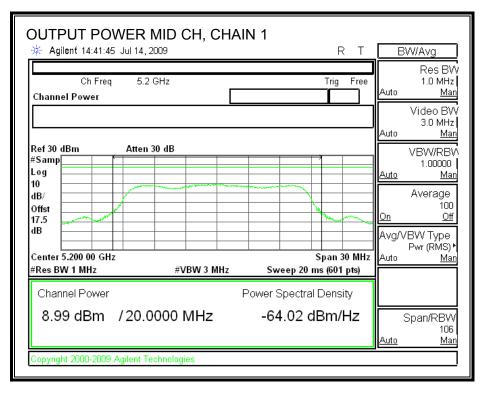

Limit


Individual Chain Results

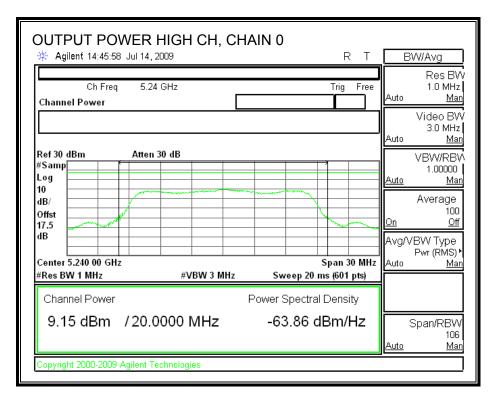
Channel	Frequency	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.18	8.99	12.10	16.80	-4.71
Mid	5200	9.11	8.99	12.06	16.63	-4.56
High	5240	9.15	8.96	12.07	16.71	-4.64

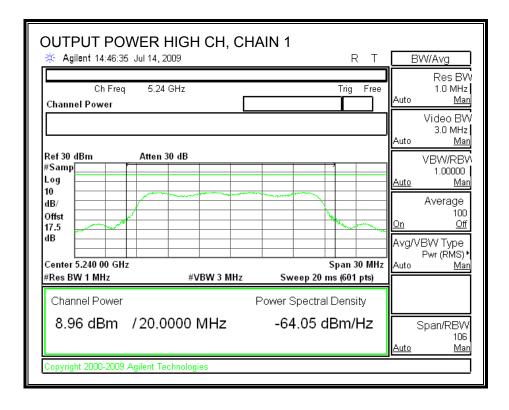
Page 15 of 99


OUTPUT POWER, LOW CHANNEL



Page 16 of 99


OUTPUT POWER, MID CHANNEL



Page 17 of 99

OUTPUT POWER, HIGH CHANNEL

Page 18 of 99

7.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	9.15	8.89	12.03
Middle	5200	9.10	8.98	12.05
High	5240	9.09	8.93	12.02

Page 19 of 99

7.1.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

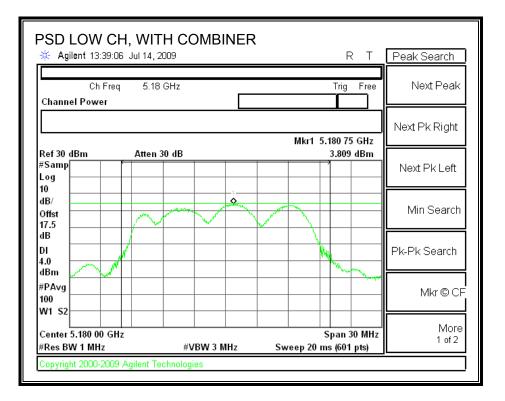
Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

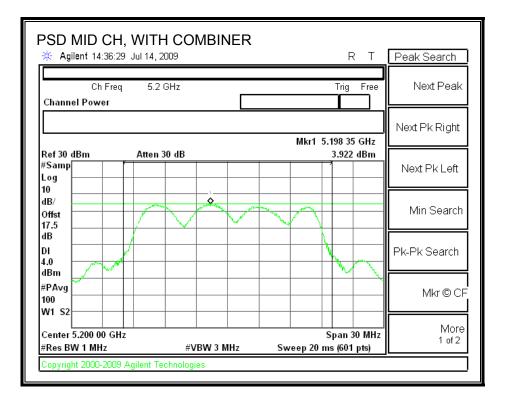
••••		Effective Legacy Gain (dBi)	
3	3.01	6.01	

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

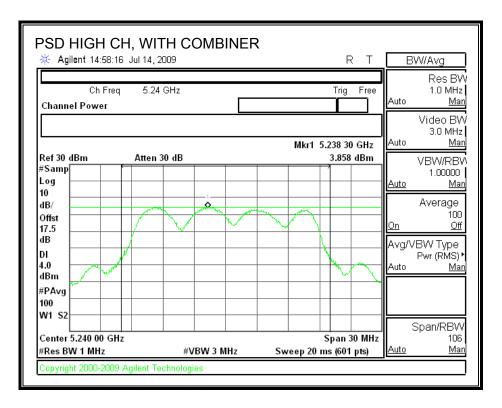
The maximum effective antenna gain is less than or equal to 6.01 dBi, therefore the limit is 3.99 dBm.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.81	3.99	-0.18
Middle	5200	3.92	3.99	-0.07
High	5240	3.86	3.99	-0.13


Page 20 of 99

POWER SPECTRAL DENSITY WITH COMBINER

Page 21 of 99

7.1.5. PEAK EXCURSION

<u>LIMITS</u>

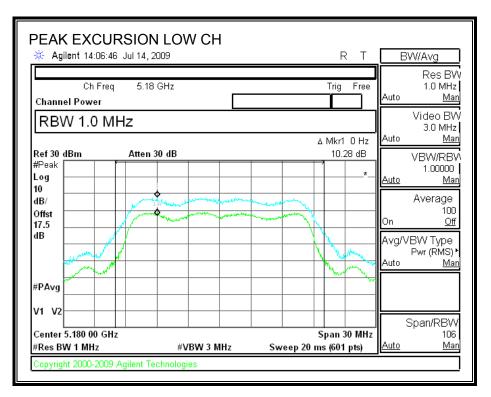
FCC §15.407 (a) (6)

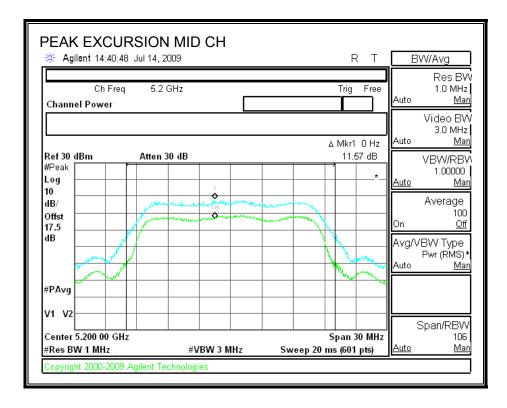
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.28	13	-2.72
Middle	5200	11.57	13	-1.43
High	5240	10.22	13	-2.78

Page 23 of 99

PEAK EXCURSION

Page 24 of 99

🔆 Agilent 14:48:51 Jul 14	, 2009	RT	BW/Avg
Ch Freq 5.: Channel Power	24 GHz	Trig Fre	Res B\ e 1.0 MHz Auto <u>Ma</u>
RBW 1.0 MHz		∆ Mkr1 0 H;	Video BV 3.0 MHz Auto <u>Ma</u>
Ref 30 dBm Atte #Peak Log 10	n 30 dB	10.22 dB	
0 dB/ 0ffst 17.5			Average 100 0n <u>Of</u>
dB			Avg/VBW Type Pwr (RMS) Auto <u>Ma</u>
#PAvg			~~
V1 V2			Span/RBV
Center 5.240 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 30 MH Sweep 20 ms (601 pts)	

Page 25 of 99

7.1.6. CONDUCTED SPURIOUS EMISSIONS

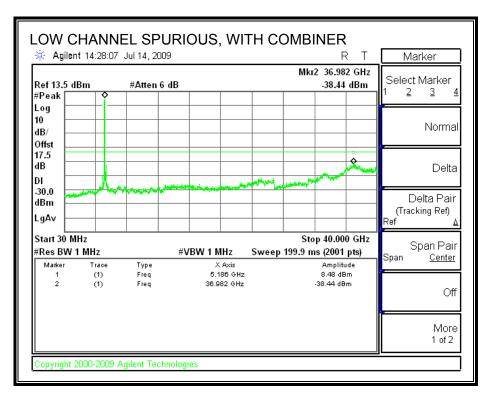
LIMITS

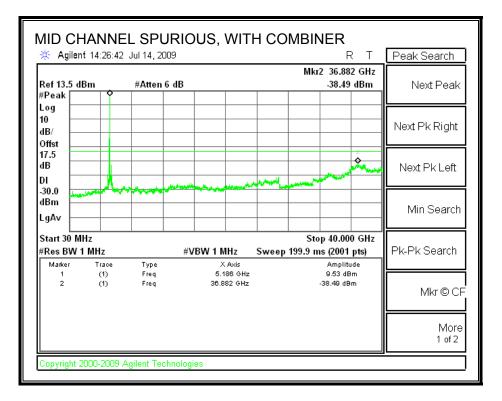
FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

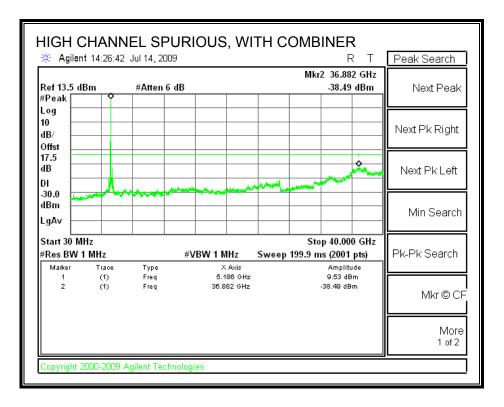
For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Page 26 of 99

SPURIOUS EMISSIONS WITH COMBINER

Page 27 of 99

Page 28 of 99

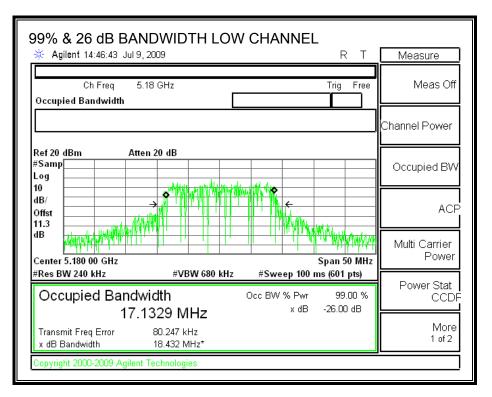
7.2. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

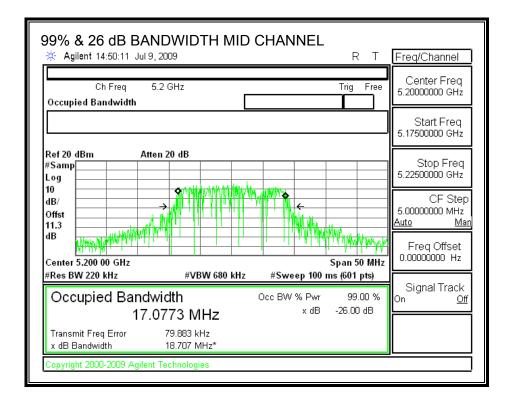
7.2.1. 99% & 26 dB BANDWIDTH

<u>LIMITS</u>

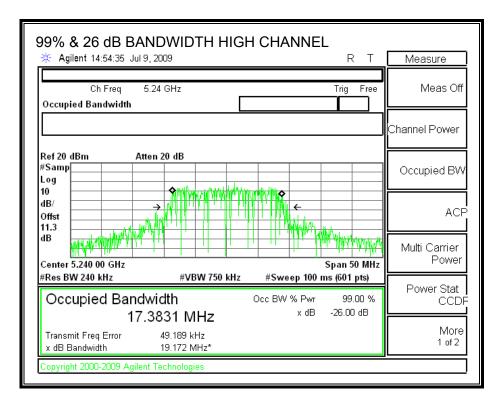
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5180	17.1329	18.432
Middle	5200	17.0773	18.707
High	5240	17.3831	19.172


Page 29 of 99

99% & 26 dB BANDWIDTH

Page 30 of 99

Page 31 of 99

7.2.2. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

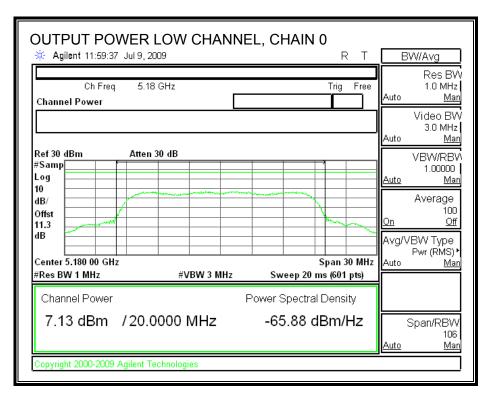
For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

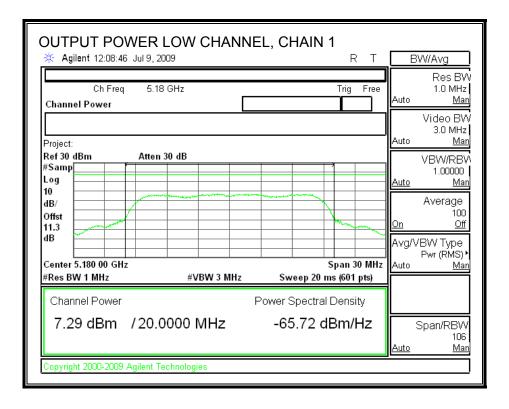
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

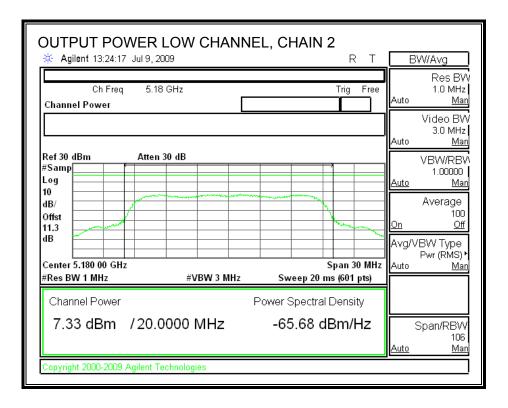
The transmitter output operates continuously therefore Method # 1 is used.

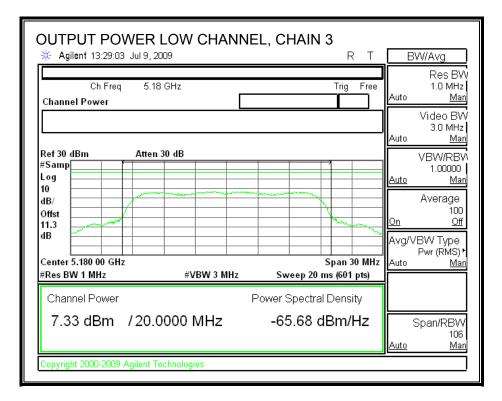
<u>RESULTS</u>

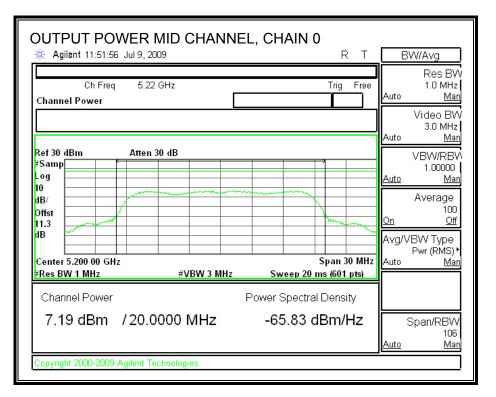

Limit

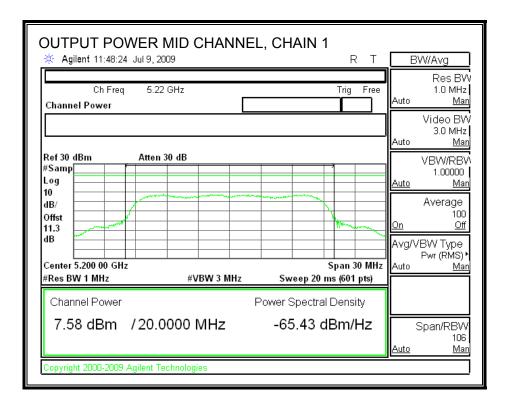

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	18.432	16.66	3	16.66
Mid	5200	17	18.707	16.72	3	16.72
High	5240	17	19.172	16.83	3	16.83

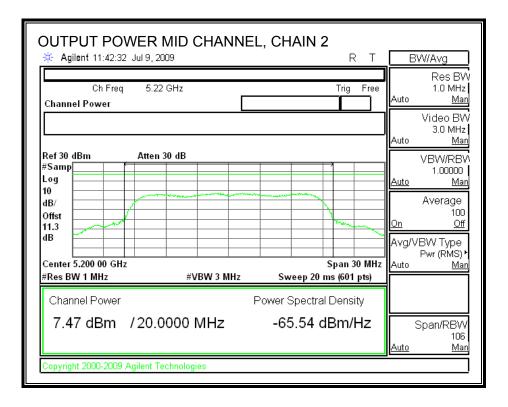
Individual Chain Results

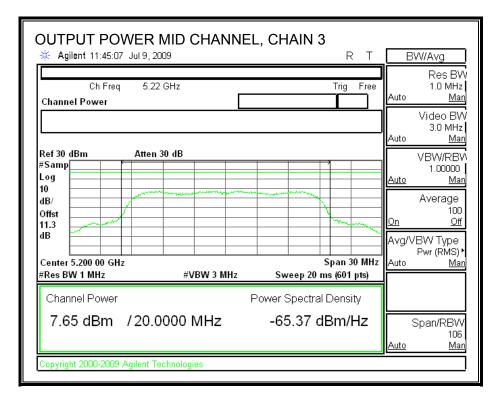

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	7.13	7.29	7.33	7.33	13.29	16.66	-3.36
Mid	5200	7.19	7.58	7.47	7.65	13.50	16.72	-3.22
High	5240	7.22	7.86	7.85	7.65	13.67	16.83	-3.15

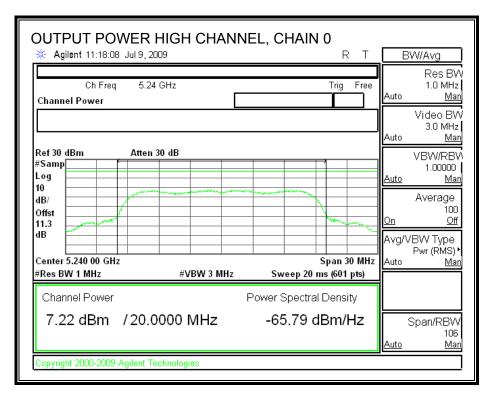

OUTPUT POWER, LOW CHANNEL

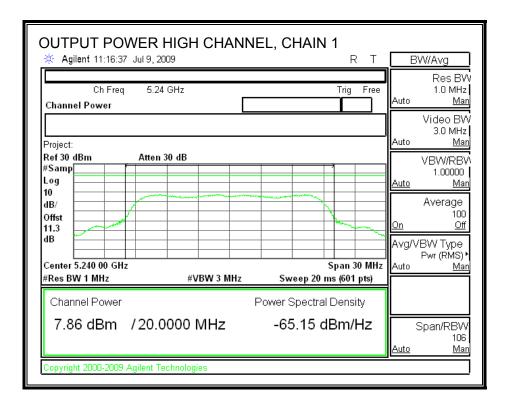

Page 33 of 99

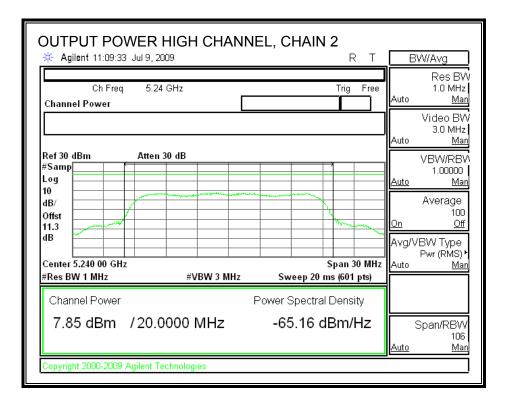


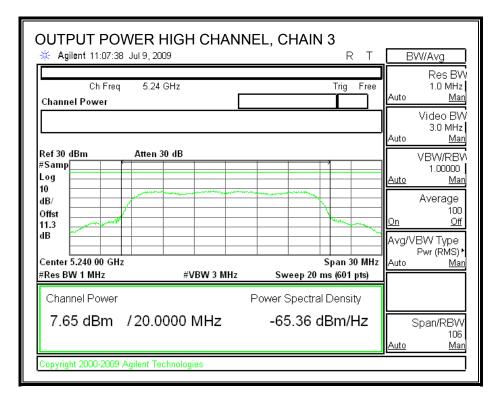

Page 34 of 99


OUTPUT POWER, MID CHANNEL


Page 35 of 99




Page 36 of 99


OUTPUT POWER, HIGH CHANNEL

Page 37 of 99

Page 38 of 99

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	7.41	7.51	7.69	7.89
Middle	5200	7.11	8.23	8.01	8.05
High	5240	7.82	7.85	8.04	8.11

Page 39 of 99

7.2.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

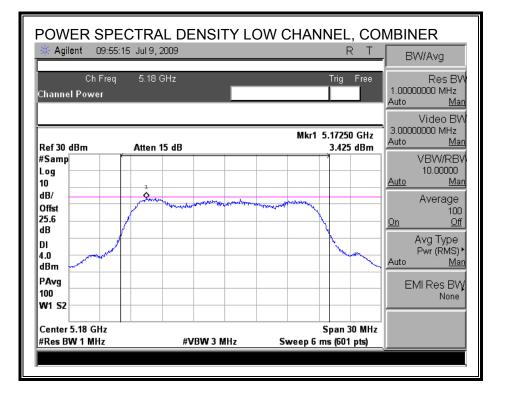
IC RSS-210 A9.2 (2)

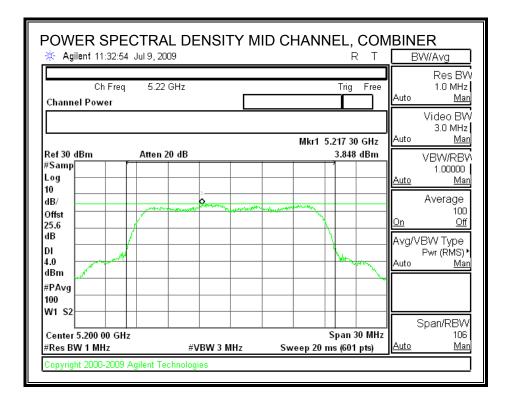
For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi, therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


Channel	Frequency PSD with Combiner		Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.43	4	-0.58
Middle	5200	3.85	4	-0.15
High	5240	3.65	4	-0.35

RESULTS

Page 40 of 99

POWER SPECTRAL DENSITY

Page 41 of 99

POWER SPECTRAI		GH CHANNEL, R	, COMBINER T BW/Avg
Ch Freq 5.24 (Channel Power	GHz	Trig	Free Auto <u>Mar</u>
Ref 30 dBm Atten 24) dB	Mkr1 5.242 40 3.652 c	
#Samp Log 10 dB/ Offst 25.6	1 - 1	automatical and a state of the	1.00000 Auto Mai Average 100 On Off
dB			Avg/VBW Type Pwr (RMS) Auto <u>Ma</u>
100 W1 S2 Center 5.240 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 30 Sweep 20 ms (601 p	

Page 42 of 99

7.2.5. PEAK EXCURSION

<u>LIMITS</u>

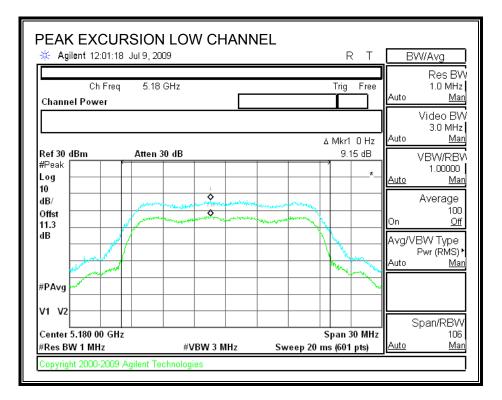
FCC §15.407 (a) (6)

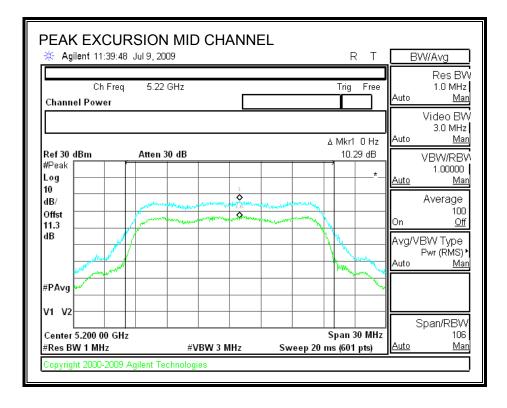
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.15	13	-3.85
Middle	5200	10.29	13	-2.71
High	5240	11.12	13	-1.88

Page 43 of 99

PEAK EXCURSION

Page 44 of 99

🔆 Agilent 11:20:19 Jul 9,1	2009		RΤ	E	W/Avg
Ch Freq 5.2 Channel Power	4 GHz	-	Trig Free	Auto	Res BV 1.0 MHz <u>Ma</u> i
		1 Δ	Mkr1 0 Hz	Auto	Video BV 3.0 MHz <u>Ma</u> r
Ref 30 dBm Atter #Peak Log 10	1 30 dB		11.12 dB	<u>Auto</u>	VBW/RB\ 1.00000 <u>Ma</u> r
0 dB/ 0ffst 11.3		- and		On	Average 100 <u>Off</u>
dB				A∨g/\ Auto	/BW Type Pwr (RMS) <u>Ma</u>
#PAvg					
V1 V2					Span/RBV\
Center 5.240 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Sp Sweep 20 ms	an 30 MHz (601 pts)	<u>Auto</u>	106 <u>Mai</u>

Page 45 of 99

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

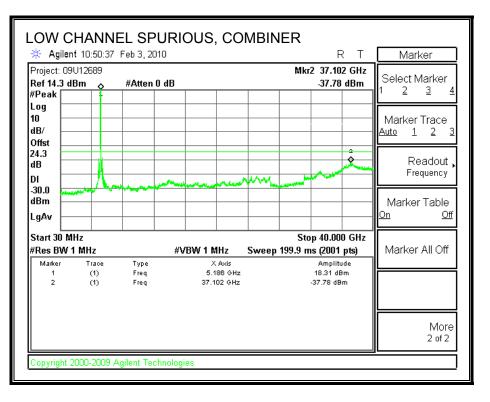
FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

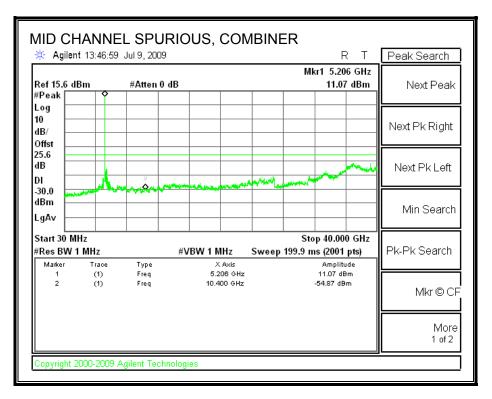
For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

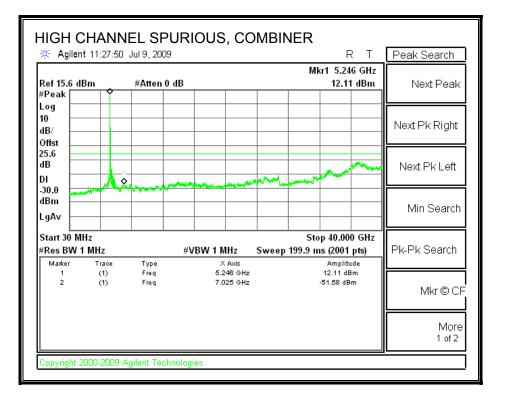

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 46 of 99

LOW CHANNEL SPURIOUS EMISSIONS



MID CHANNEL SPURIOUS EMISSIONS

Page 47 of 99

HIGH CHANNEL SPURIOUS EMISSIONS

Page 48 of 99

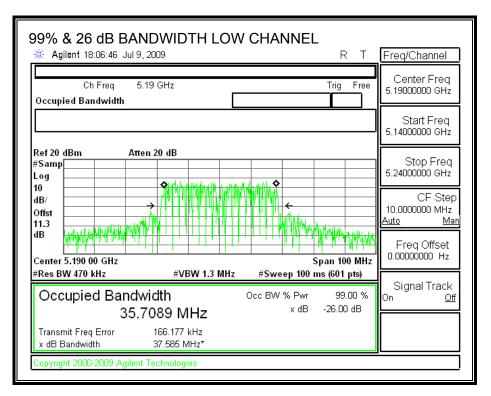
7.3. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

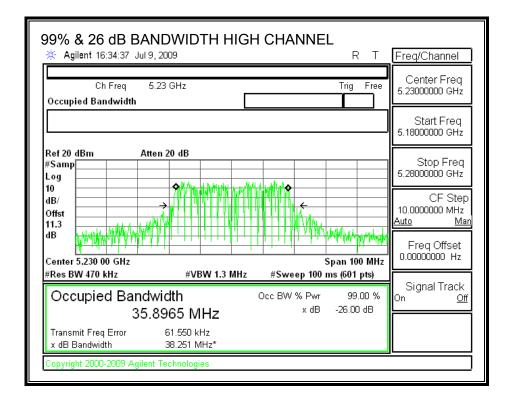
7.3.1. 99% & 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5190	35.7089	37.585	
High	5230	35.8965	38.251	

Page 49 of 99

99% & 26 dB BANDWIDTH

Page 50 of 99

7.3.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

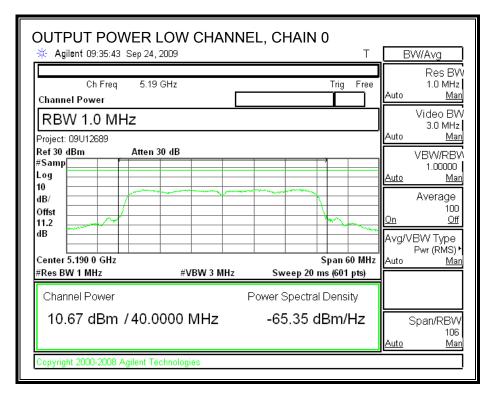
For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

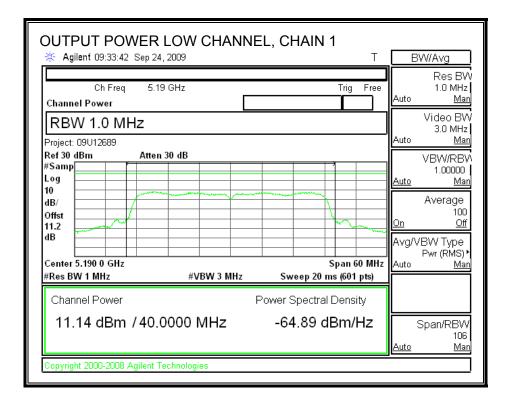
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

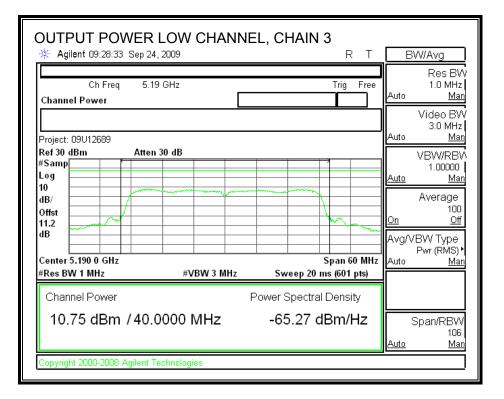
<u>RESULTS</u>

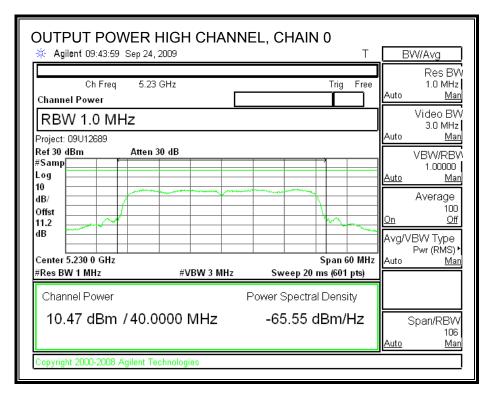

Limit

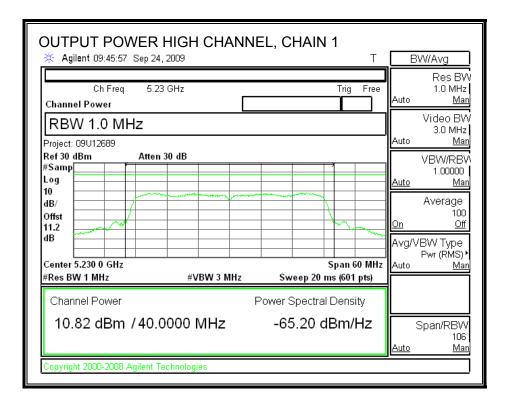

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5190	17	37.585	19.75	3	17.00
High	5230	17	38.251	19.83	3	17.00

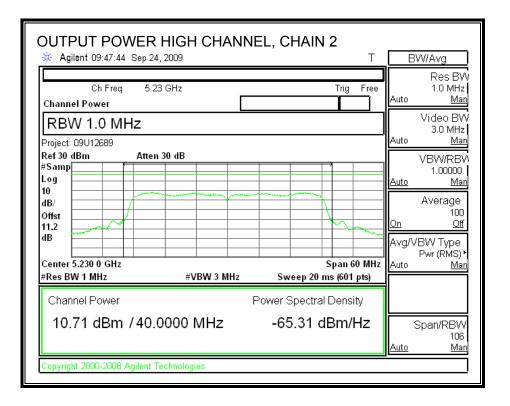
Individual Chain Results

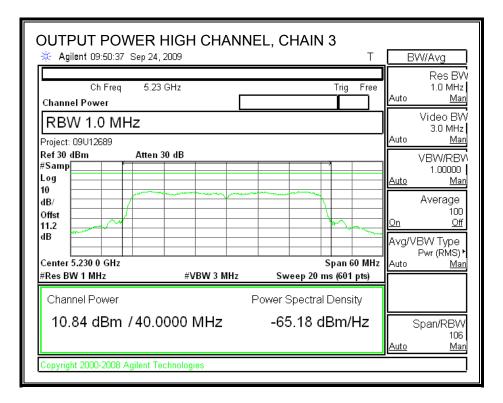
Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	10.67	11.14	10.86	10.75	16.88	17.00	-0.12
High	5230	10.47	10.82	10.71	10.84	16.73	17.00	-0.27


OUTPUT POWER, LOW CHANNEL


Page 52 of 99


✤ Agilent 09:31:27 Sep 2:		EL, CHAIN 2	T BW/Avg
Ch Freq 5.* Channel Power	9 GHz	Trig Fr	ee 1.0 MHz Auto <u>Ma</u>
RBW 1.0 MHz Project: 09U12689			Video BV 3.0 MHz Auto <u>Ma</u>
Ref 30 dBm Atte #Samp Log	n 30 dB		VBW/RB ¹ 1.00000 <u>Auto Ma</u>
10 dB/ Offst 11.2			Average
dB Center 5.190 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 60 M Sweep 20 ms (601 pts	
Channel Power 10.86 dBm / 40.		Power Spectral Density -65.16 dBm/Hz	
10.00 dBm / 40.		-00.10 0011/12	. Spani/RBV 108 <u>Auto Ma</u>


Page 53 of 99


OUTPUT POWER, HIGH CHANNEL

Page 54 of 99

Page 55 of 99

7.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5190	10.48	11.32	11.08	11.40
High	5230	10.98	11.25	11.31	11.40

Page 56 of 99

7.3.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

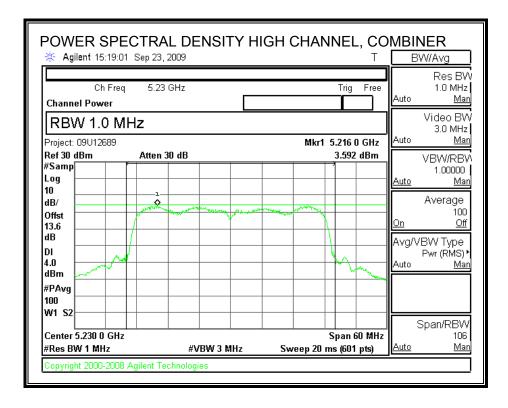
For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi, therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS

Channel	Frequency PSD with Combiner		Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5190	3.56	4	-0.44
High	5230	3.59	4	-0.41

Page 57 of 99

POWER SPECTRAL DENSITY

POWER SPECTRA		W CHANNEL, CO		NER 3VV/Ava
Ch Freq 5.19		Trig Free	Auto	Res BW 1.0 MHz <u>Man</u>
RBW 1.0 MHz Project: 09U12689		Mkr1 5.175 2 GHz	Auto	Video BW 3.0 MHz <u>Man</u>
Ref 30 dBm Atten 3 #Samp	0 dB	3.558 dBm	Auto	VBW/RBV 1.00000 <u>Man</u> Average
Offst 13.6 dB			<u>On</u> Avg/\	100 <u>Off</u> /BW Type
DI 4.0 dBm #PAvg			Auto	Pwr (RMS) ► <u>Man</u>
100 W1 S2 Center 5.190 0 GHz		Span 60 MHz		Span/RBW 106
Center 5.190 0 GHz #Res BW 1 MHz Copyright 2000-2008 Agilent Teo	#VBW 3 MHz	Span 60 MHz Sweep 20 ms (601 pts)	<u>Auto</u>	106 <u>Man</u>

Page 58 of 99

7.3.5. PEAK EXCURSION

<u>LIMITS</u>

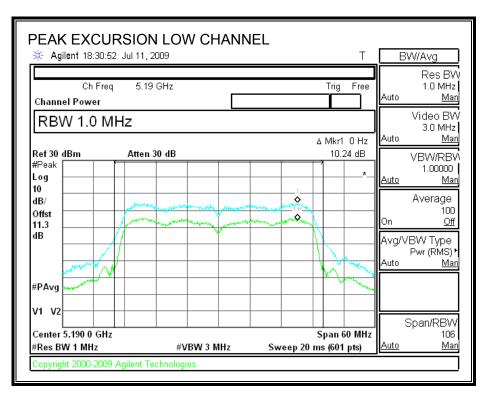
FCC §15.407 (a) (6)

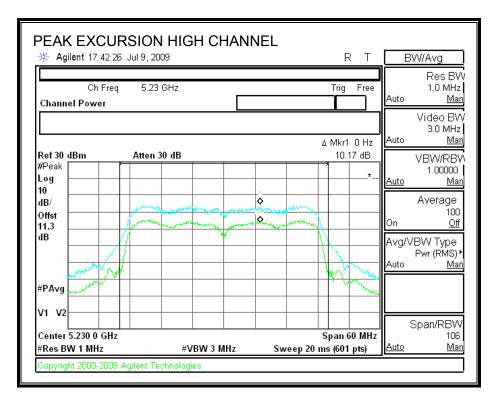
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	10.24	13	-2.76
High	5230	10.17	13	-2.83

Page 59 of 99

PEAK EXCURSION

Page 60 of 99

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

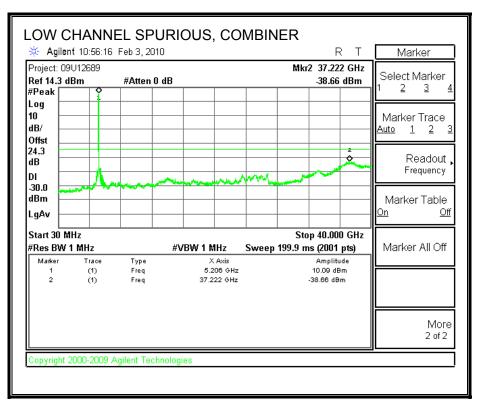
FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

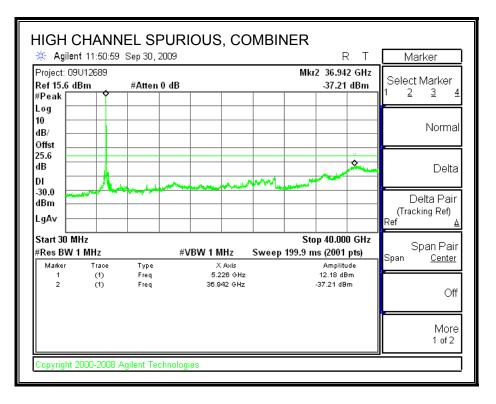
For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 61 of 99

LOW CHANNEL SPURIOUS EMISSIONS

HIGH CHANNEL SPURIOUS EMISSIONS

Page 62 of 99

8. RECEIVER CONDUCTED SPURIOUS EMISSIONS

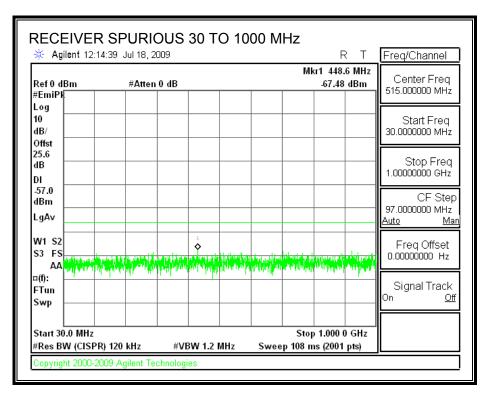
<u>LIMITS</u>

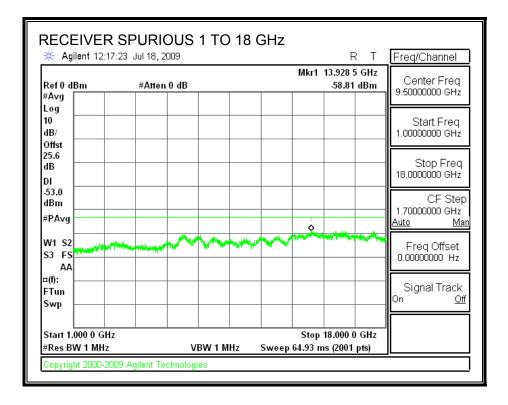
IC RSS-GEN 7.2.3.1

Antenna Conducted Measurement: Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

TEST PROCEDURE

IC RSS-GEN 4.10, Conducted Method


The receiver antenna port is connected to a spectrum analyzer.


The spectrum from 30 MHz to 18 GHz is investigated with the receiver set to the middle channel of each 5 GHz band.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 63 of 99

RECEIVER SPURIOUS EMISSIONS IN THE 5.2 GHz BAND

Page 64 of 99

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

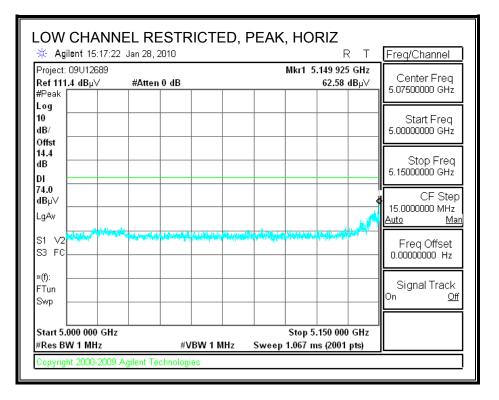
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

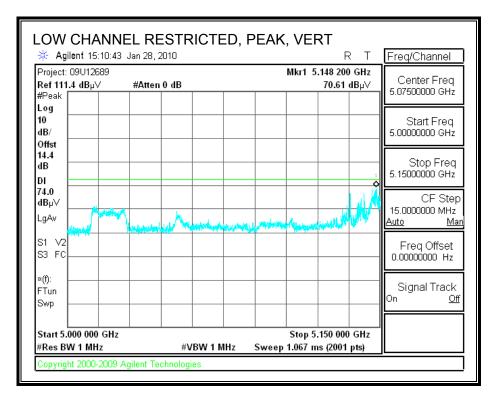

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

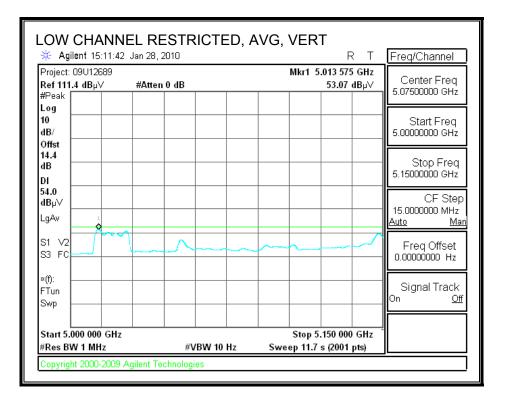
9.2. TRANSMITTER ABOVE 1 GHz

9.2.1. 802.11a MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



Page 66 of 99


🔆 Agilent 15:18:17 Jar	. RESTRICTED, / 28, 2010	R T	Freq/Channel
Project: 09U12689 Ref 111.4 dB µ∨ #. #Peak	Atten 0 dB	Mkr1 5.148 050 GHz 44.06 dBµ∨	Center Freq 5.07500000 GHz
Log 10 dB/ Offst			Start Freq 5.00000000 GHz
dB			Stop Freq 5.15000000 GHz
54.0 dBµ∨ LgAv			CF Step 15.0000000 MHz <u>Auto Mar</u>
S1 V2 S3 FC			Freq Offset 0.00000000 Hz
*(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.000 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.150 000 GHz Sweep 11.7 s (2001 pts)	

Page 67 of 99

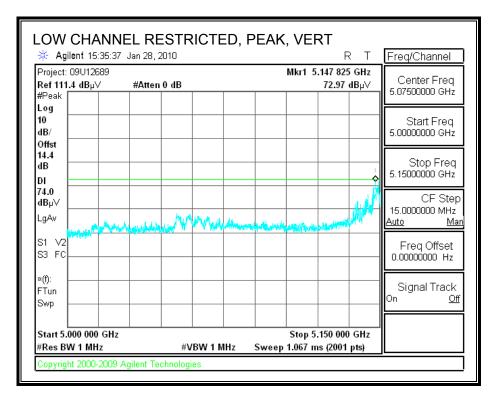
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 68 of 99

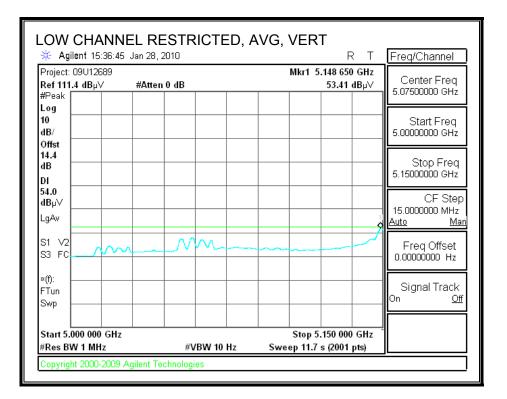
Page 69 of 99

9.2.2. TX ABOVE 1 GHz FOR 802.11a DUAL CHAIN MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



Page 70 of 99

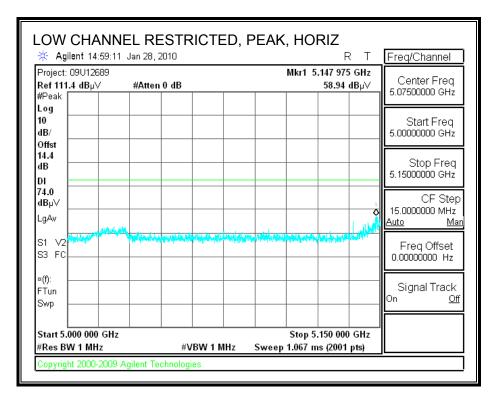

LOW CHANNEL R		AVG, HORIZ	Peak Search
Project: 09U12689	n 0 dB	Mkr1 5.150 000 GHz 43.26 dBµ∀	Next Peak
HPeak Log 10 dB/ Offst			Next Pk Right
14.4 dB DI			Next Pk Left
54.0 dBµ∨ LgAv			Min Search
S1 V2 S3 FC			Pk-Pk Search
*(f): FTun Swp			Mkr © CF
Start 5.000 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.150 000 GHz Sweep 11.7 s (2001 pts)	More 1 of 2

Page 71 of 99

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 72 of 99

Page 73 of 99

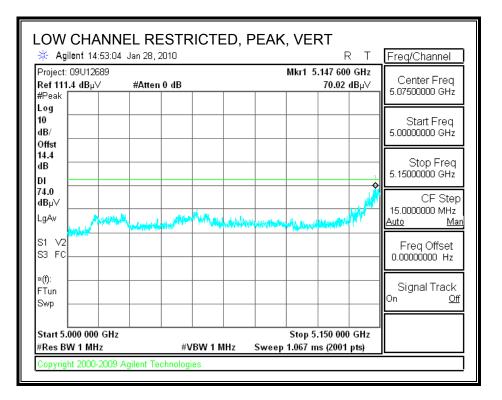

HARMONICS AND SPURIOUS EMISSIONS

Test Engr:		Thanh N	zuven												
Date:		07/15/09	•••												
Project #:		09U1265													
Company:		QualCo													
EUT Descrig	ption:	Etherne	t card												
EUT M/N:		65-VN66	3-P2												
Test Target		FCC 15.3	247/15.4	107											
Mode Oper		Transmi													
t	f	Measuren	Measurement Frequency Amp Preamp Gain								Field Stren;				
1	Dist	Distance			D Corr	Distance Correct to 3 meters					ld Strength				
	Read	Analyzer			Avg					Margin vs. Average Limit					
	AF	Antenna			Peak	Calculate			ength	Margin v	rs. Peak Lir	nit			
0	CL	Cable Los	55		HPF	High Pass	; Filter								
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dВ	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm -	Degree	
Low ch 518	0														
15.540	3.0	35.8			-34.8	0.0	0.7	51.7	74.0	- 22. 3	V	P	147.8	304.8	
15.540	3.0	23.7	38.7	¢	-34.8	0.0	0.7	39.6	54.0	-14.4	V	A	147.8	304.8	
15.540	3.0	34.6	38.7		-34.8	0.0	0.7	50.7	74.0	-24.7	H	P	156.5	346.0	
15.540	3.0	21.3	38.7	11.3	-34.8	0.0	0.7	37.2	54.0	- 16.3	H	A	156.5	346.0	
Mid ch 520(15.600	U 3.0	37.1	38.5	114	-34.8	0.0	0.7	52.9	74.0	-21.1	v	Р	147.8	296.5	
15.600	3.0	24.4	38.5		-34.8	0.0	0.7	40.2	74.0 54.0	-13.8	v V	A	147.8	296.5	
15.600	3.0	37.1	38.5		-34.8	0.0	0.7	52.9	74.0	-13.8	v H	P	150.5	300.0	
	3.0	23.4			-34.8	0.0	0.7	39.4	54.0	-14.6	H	Ā	150.5	300.0	
15.600															
15.600 High ch 524		36.6	38.2	11.4	-34.7	0.0	0.7	52.2	74.0	-21.8	V	Р	166.9	200.0	
15.600 High ch 524 15.720	3.0			11.4	-34.7	0.0	0.7	41.2	54.0	-12.8	V	A	166.9	200.0	
High ch 524 15.720 15.720	3.0 3.0	25.5				• • • • • • • • • • • • • • • • • • • •						Р	140.6	310.0	
High ch 524 15.720 15.720 15.720 15.720	3.0 3.0 3.0	25.5 36.4	38.2	11.4	-34.7	0.0	0.7	52.1	74.0	-21.9	H		¢		
High ch 524 15.720 15.720	3.0 3.0	25.5		11.4		• • • • • • • • • • • • • • • • • • • •	0.7 0.7	52.1 39.8	74.0 54.0	-21.9 -14.2	н Н	Å	140.6	310.0	

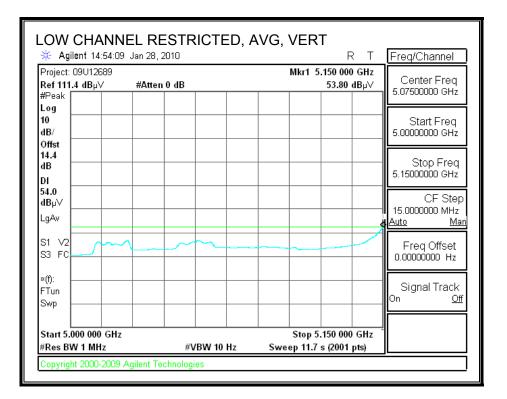
Page 74 of 99

9.2.3. 802.11n HT20 MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

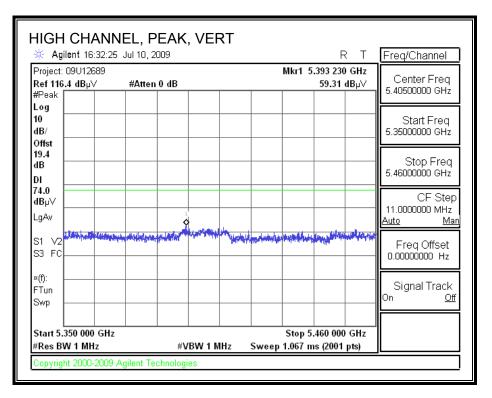


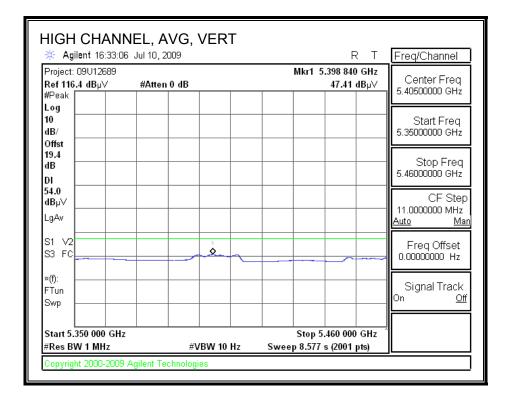
Page 75 of 99


LOW CHANNEL R Agilent 15:00:10 Jan 28		R T	Freq/Channel
Project: 09U12689 Ref 111.4 dB µ∨ #Atte #Peak	en 0 dB	Mkr1 5.150 000 GHz 43.89 dBµ∨	Center Freq 5.07500000 GHz
Log 10 dB/ Offst			Start Freq 5.00000000 GHz
dB			Stop Freq 5.15000000 GHz
54.0 dBµ√ LgAv			CF Step 15.0000000 MHz <u>Auto Man</u>
S1 V2 S3 FC			Freq Offset 0.00000000 Hz
×(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.000 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.150 000 GHz Sweep 11.7 s (2001 pts)	

Page 76 of 99

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

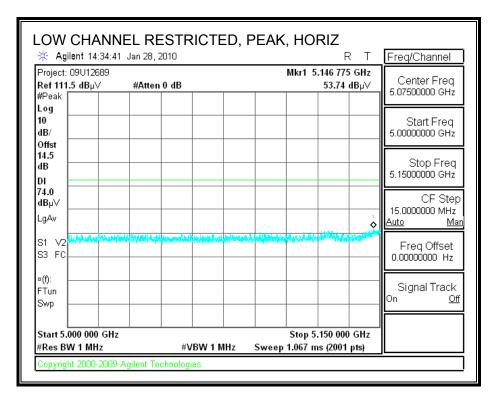



Page 77 of 99

Page 78 of 99

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 79 of 99

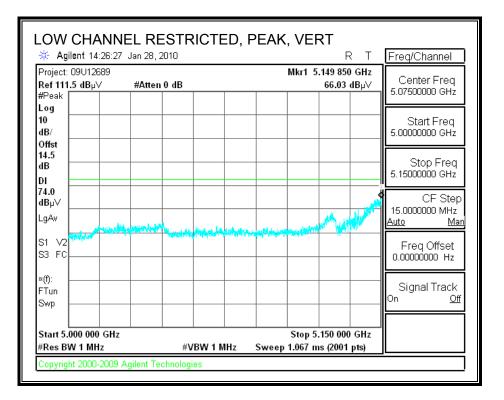

HARMONICS AND SPURIOUS EMISSIONS

- Company:	~		y Measurem Services, Fr		5m ("h	amhar									
	ice Ce	runcation	services, Fi	emont	om Ch	anver									
		12689													
Date: 07/1 Fest Engi		Doug And	erson												
			port Notebo	ok											
Mode: Ta	x / HT	20													
fest Equi	inmen	t:													
eve z qu	-pinei														
Ho	rn 1-	18GHz	Pre-ar	nplife	1-260	GHz	Pre-am	plifer	26-40GH	Iz	н	orn > 18	GHz		Limit
T73; S/I	N: 6717	7 @3m	▼ T144 I	/liteq 30	08A009	931 🖵				-				-	FCC 15.205 🗸
 Hi Freque	ency Cal	blec					1								
			101				001 65	h	2807500					Post	Measurements
3' ca	able 2	2807700	12' c	able 2	28076	500	20 ca	pre 22	2807500		HPF	Re	ject Filte		W=VBW=1MHz
3' cat	ble 228	307700	 12' ca 	nble 228	07600	-	20' cab	le 228	07500 🖕	НР	F_7.6GHz	-			ge Measurements
														RBW=	1MHz ; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB		dBuV/m			dB	dB	(V/H)
	00.7									ļ					
<u>ow Ch.: 51</u>	180 (Pe	wer = 14 dBı	<u>n)</u>												
5.540	3.0	43.5	29.7	38.7	113	-34.8	0.0	0.7	59.4	45.7	74	54	-14.6	-83	V (Noise Floor)
5.540	3.0	43.4	29.7	38.7	11.3	-34.8	0.0	0.7	59.3	45.6	74	54	-14.7	-8.4	H (Noise Floor)
		<u> </u>													
<u>lid. Ch.: 52</u>	200 (Po	wer = 14 dB	<u>m)</u>												
5.600	3.0	43.1	29.4	38.5	11.4	-34.8	0.0	0.7	58.9	45.2	74	54	-15.1	- <mark>8.8</mark>	V (Noise Floor)
5.600	3.0	43.1	31.9	38.5	11.4	-34.8	0.0	0.7	58.9	47.8	74	54	-15.1	-6.2	H (Noise Floor)
ligh Ch.: 5	240 (P	<u>ower = 14 dB</u>	<u>m)</u>												
5.720	3.0	42.3	31.4	38.2	11.4	-34.7	0.0	0.7	58.0	47.0	74	54	-16.0	-7.0	V (Noise Floor)
5.720	3.0	43.0	29.0	38.2	11.4	-34.7	0.0	0.7	58.6	44.6	74	54	-15.4	-9,4	H (Noise Floor)

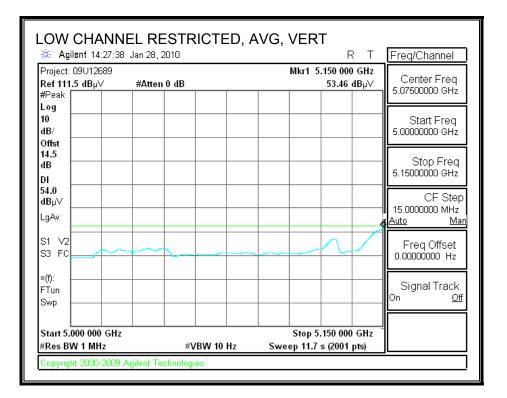
Page 80 of 99

9.2.4. 802.11n HT40 MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

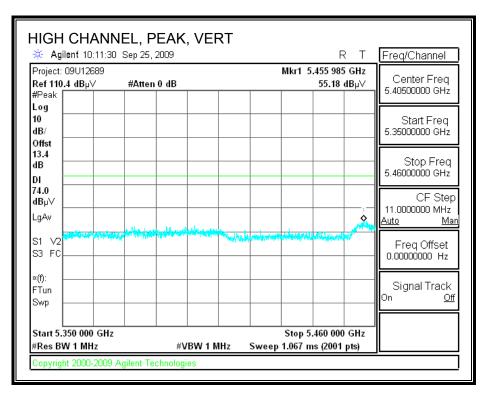


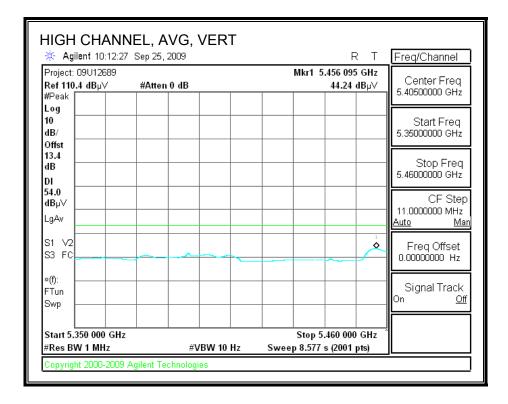
Page 81 of 99


🔆 Agilent 14:36:02	IEL RESTRIC ⁻ 9 Jan 28, 2010			RТ	Freq/Channel
Project: 09∪12689 Ref 111.5 dB µ∨ #Peak	#Atten 0 dB		Mkr1 5.150 42.5	000 GHz 54 dBµ∀	Center Freq 5.07500000 GHz
Log 10 dB/ Offst					Start Freq 5.00000000 GHz
14.5 dB					Stop Freq 5.1500000 GHz
DI					CF Step 15.0000000 MHz <u>Auto Man</u>
S1 V2 S3 FC					Freq Offset 0.00000000 Hz
×(f): FTun Swp					Signal Track ^{On <u>Off</u>}
Start 5.000 000 GHz #Res BW 1 MHz	#VBW	10 Hz	Stop 5.150 (Sweep 11.7 s (20)		

Page 82 of 99

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


Page 83 of 99

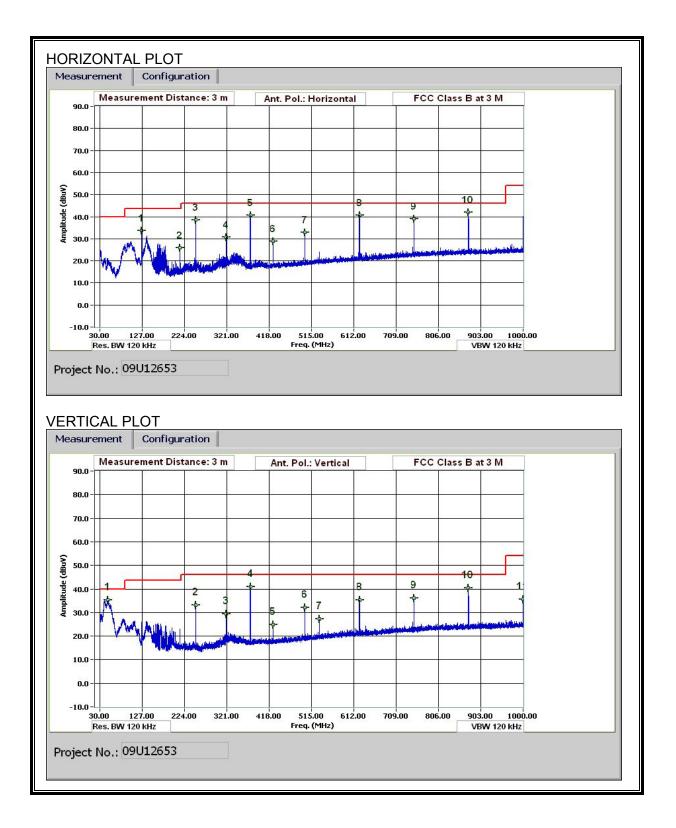


COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 84 of 99

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 85 of 99


HARMONICS AND SPURIOUS EMISSIONS

Test Engr: William Zhuang Date: 09/25/09 Project #: 09U12689 Company: Qualcomm Configuration: EUT w/Support Notebook Mode Oper: Tx HT40			ook												
	f	Measurer			-	Preamp (-	Field Stren	-			
	Dist	Distance				Distance					ld Strength				
	Read	Analyzer			Avg			trength @			s. Average				
	AF	Antenna			Peak			: Field Stre	ngth	Margin v	rs. Peak Lir	nut			
	CL	Cable Lo:	55		HPF	High Pass	futer	<i>.</i>							
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Согт.	Limit	Margin	Ant Pol	Det	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB		dBuV/m		dB	V/H	P/A/QP	cm	Degree	
	1 3 6	Setting=													
5.570	3.0	35.5		11.4	-34.8	0.0	0.7	51.3	74.0	-22.7	v	Р	170.4	360.0	
5.570	3.0	23.1	38.6	11.4		0.0	0.7	39.0	54.0	-15.0	v	A	170.4	360.0	
5.570	3.0	35.0	38.6	11.4	-34.8	0.0	0.7	50.9	74.0	- 23.1	H	Р	122.4	156.9	
5.570	3.0	23.0	38.6	11.4	-34.8	0.0	0.7	38.9	54.0	-15.1	H	A	122.4	156.9	
		Setting=												ļ	
5.690	3.0	35.2			-34.7	0.0	0.7	50.9	74.0	-23.1	V	Р	121.6	357.2	
5.690	3.0	22.8	38.3	11.4		0.0	0.7	38.5	54.0	-15.5	V	A	121.6	357.2	
5.690	3.0	36.2	38.3		-34.7	0.0	0.7	51.9	74.0	-22.1	H	P	100.0	87.3	
5.690		22.8	38.3	11.4	-34.7	0.0	0.7	38.5	54.0	-15.5	Н	A	100.0	87.3	
ev. 4.1.2		22.8 missions			-34.7 1 above -	0.0 the syster	0.7 n nois	38.5 se floor.	54.0	-15.5	Н	A	100.0	87.3	

Page 86 of 99

9.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 87 of 99

EMISSIONS DATA 30-1000MHz Frequency Measurement **Compliance Certification Services, Fremont 5m Chamber** Test Engr: Vien Tran 06/26/09 Date: Project #: 09U12653 Company: Qualcomm EUT Description: 802.11n 4x4 WLAN Ethernet Adapter EUT M/N: Non-DFS:65-VN663-P1 **Test Target:** FCC Class B Tx HT20 MCS31, 5805MHz Mode Oper: f Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit Dist D Corr Distance Correct to 3 meters Distance to Antenna Filter Filter Insert Loss Read Analyzer Reading Calculated Field Strength AF Antenna Factor Corr. CL Cable Loss Limit Field Strength Limit f Dist Read AF CL Amp D Corr Filter Сотт. Limit Margin Ant. Pol. Det. Notes MHz (m) dBuV dB/m dB dB dB dB dBuV/m dBuV/m dB V/HP/A/QP 5805MHz_Horizontal 125.044 3.0 47.3 13.7 1.1 28.3 0.0 0.0 33.7 43.5 -9.8 н EP 213.368 3.0 40.9 11.9 1.3 28.2 0.0 0.0 25.943.5 -17.6 н EP 249.969 3.0 53.5 11.8 1.4 28.2 0.0 0.0 38.5 46.0 -7.5 н EP 319.932 3.0 43.6 13.7 1.6 28.1 0.0 0.0 30.8 46.0 -15.2 H EP 375.014 3.0 52.5 14.5 1.7 28.1 0.0 0.0 40.7 46.0 Н EP -5.3 426.616 3.0 39.5 15.4 1.9 28.0 0.0 0.0 28.8 46.0 -17.2 н EP 499.939 3.0 41.9 16.7 2.0 27.8 0.0 0.0 32.9 46.0 -13.1 н EP 624.985 3.0 47.2 18.7 2.3 27.4 0.0 0.0 40.7 46.0 -5.3 H EP 749.910 3.0 43.5 20.3 2.5 27.3 0.0 0.0 39.0 46.0 -7.0 н EP 3.0 874.955 45.4 21.6 2.8 27.7 0.0 42.1 46.0 -**3.9** н EP 0.0 5805MHz Vertical 48.001 3.0 53.6 9.3 0.6 28.4 0.0 35.2 40.0 EP 0.0 4.8 249.969 3.0 48.3 11.8 1.4 28.2 0.0 0.0 33.2 46.0 -12.8 v EP 320.052 3.0 42.2 13.7 28.1 0.0 0.0 29.4 46.0 -16.6 v EP 1.6 375.014 3.0 52.8 41.0 v 14.5 1.7 28.1 0.0 0.0 46.0 -5.0 EP 3.0 28.0 0.0 EP 426.736 35.5 15.4 1.9 0.0 24.8 46.0 -21.2 v 499.939 3.0 41.2 16.7 2.027.8 0.0 0.0 32.1 46.0 -13.9 v EP 533.301 3.0 35.7 17.3 2.1 27.7 0.0 0.0 27.3 46.0 -18.7 v EP 624.985 3.0 41.8 18.7 2.3 27.4 0.0 0.0 35.446.0 -10.6 v EP 749.910 3.0 40.6 20.3 2.527.3 0.0 0.0 36.1 46.0 -9.9 v EP 874.955 3.0 43.7 21.6 2.8 27.7 0.0 0.0 40.4 46.0 -5.6 v EP 999.880 3.0 37.9 22.5 3.0 27.9 0.0 0.0 35.4 54.0 -18.6 v EP Rev. 1.27.09 Note: No other emissions were detected above the system noise floor.

Page 88 of 99

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted L	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

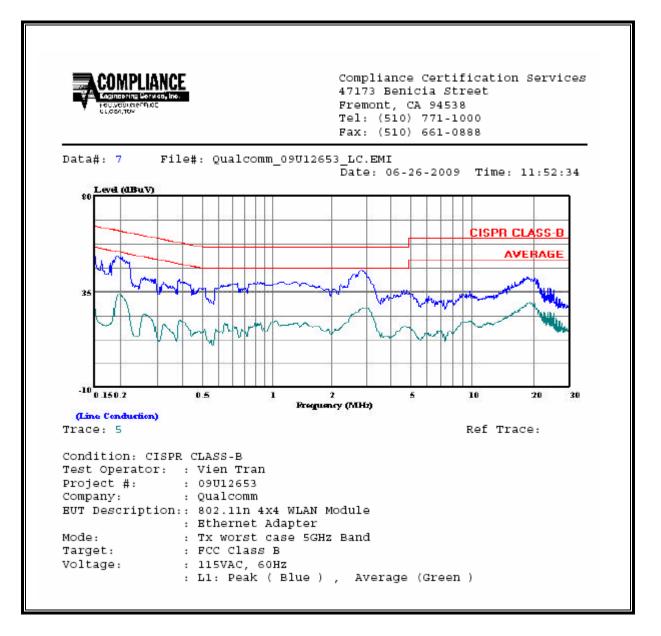
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 89 of 99


1

<u>6 WORST EMISSIONS</u>

Freq.		Reading		Closs	Limit	FCC_B	Margin		Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2
0.19	51.41		33.87	0.00	63.86	53.86	-12.45	-19.99	L1
2.95	44.80		27.60	0.00	56.00	46.00	-11.20	-18.40	L1
19.12	41.71		30.40	0.00	60.00	50.00	-18.29	-19.60	L1
0.19	51.34		33.94	0.00	63.86	53.86	-12.52	-19.92	L2
2.95	44.13		27.56	0.00	56.00	46.00	-11.87	-18.44	L2
19.12	40.89		29.56	0.00	60.00	50.00	-19.11	-20.44	L2
6 Worst I	Data								

Page 90 of 99

LINE 1 RESULTS

Page 91 of 99

LINE 2 RESULTS

Page 92 of 99

11. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

			()	
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6
30–300 300–1500	61.4	0.163	1.0 f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824 <i>/</i> f	2.19/f	*(180/f ²)	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 To TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-tions where a the exposure of the potential for exposure and the potential for exposure.

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 93 of 99

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm^2 .
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 94 of 99

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m² EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m²

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

<u>LIMITS</u>

From FCC 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

Page 95 of 99

RESULTS

(MPE distance equals 20 cm)

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
5.2 GHz	11a (2 Chains)	0.20	12.10	6.01	0.13	0.013
5.2 GHz	11n HT20 (4 Chains)	0.20	13.67	3.0	0.09	0.009
5.2 GHz	11n HT40 (4 Chains)	0.20	16.88	3.0	0.19	0.019

Page 96 of 99