

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

EA544D_2 ETHERNET ADAPTER CARD- 2.4 / 5 GHz DFS APPLICATIONS

MODEL NUMBER: 65-VN663-P2

FCC ID: J9C-EA544D2 IC: 2723A-EA544D2

REPORT NUMBER: 09U12689-7, Revision A

ISSUE DATE: MARCH 24, 2010

Prepared for QUALCOMM, INC. 3165 KIFER ROAD SANTA CLARA, CA 95051, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	10/26/09	Initial Issue	F. Ibrahim
А	03/24/10	Updated test results for modifications of EUT	F. Ibrahim

Page 2 of 358

TABLE OF CONTENTS

1.	ATTI	ESTATION OF TEST RESULTS	7
2.	TES	T METHODOLOGY	8
3.	FAC	ILITIES AND ACCREDITATION	8
4.	CAL	IBRATION AND UNCERTAINTY	8
4	.1.	MEASURING INSTRUMENT CALIBRATION	8
4	.2.	SAMPLE CALCULATION	8
4	.3.	MEASUREMENT UNCERTAINTY	8
5.	EQU	IIPMENT UNDER TEST	9
5	.1.	DESCRIPTION OF EUT	9
5	.2.	MAXIMUM OUTPUT POWER	9
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5	.4.	SOFTWARE AND FIRMWARE	10
5	.5.	WORST-CASE CONFIGURATION AND MODE	10
5	.6.	MODIFICATIONS	10
5	.7.	TEST RESULTS FOR MODIFIED SAMPLE	11
5	.8.	DESCRIPTION OF TEST SETUP	11
6.	TES	T AND MEASUREMENT EQUIPMENT	13
7			
7 .	ANT	ENNA PORT TEST RESULTS	14
		ENNA PORT TEST RESULTS 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 1. 26 dB and 99% BANDWIDTH	14 <i>14</i> 14
	ANT <i>.1.</i> 7.1.1 7.1.2	ENNA PORT TEST RESULTS 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 1. 26 dB and 99% BANDWIDTH 2. OUTPUT POWER	14 <i>14</i> 14 17
	ANT 7.1.1 7.1.2 7.1.3	ENNA PORT TEST RESULTS 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 1. 26 dB and 99% BANDWIDTH 2. OUTPUT POWER 3. AVERAGE POWER	14 14 14 17 21
	ANT <i>.1.</i> 7.1.1 7.1.2	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 1. 26 dB and 99% BANDWIDTH 2. OUTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY	14 14 17 21 22
	ANT 7.1.1 7.1.2 7.1.3 7.1.4	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 1. 26 dB and 99% BANDWIDTH 2. OUTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY 5. PEAK EXCURSION	14 14 17 21 22 25
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE. 1. 26 dB and 99% BANDWIDTH 2. OUTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY. 5. PEAK EXCURSION 5. CONDUCTED SPURIOUS EMISSIONS. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE	14 14 17 21 22 25 28
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 1. 26 dB and 99% BANDWIDTH 2. OUTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH	14 14 17 21 22 25 28 31 31
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 2.2 7.2.1 7.2.2	ENNA PORT TEST RESULTS 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 26 dB and 99% BANDWIDTH 2. OUTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY 5. PEAK EXCURSION 6. CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH 2. OUTPUT POWER	14 14 17 21 22 25 28 31 31 34
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1	ENNA PORT TEST RESULTS 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 26 dB and 99% BANDWIDTH 20 UTPUT POWER 3 AVERAGE POWER 4 PEAK POWER SPECTRAL DENSITY 5 PEAK EXCURSION 6 CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH 2 OUTPUT POWER 3 AVERAGE POWER	14 14 17 21 22 25 28 31 31 34 41
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3	ENNA PORT TEST RESULTS 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 26 dB and 99% BANDWIDTH 20 UTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 6. CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH 2. OUTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY	14 14 17 21 22 25 28 31 31 34 34 41 42 45
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4	ENNA PORT TEST RESULTS 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 26 dB and 99% BANDWIDTH 20 UTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 6. CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH 2. OUTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY	14 14 17 21 22 25 28 31 31 34 34 41 42 45
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE	14 14 17 21 22 25 28 31 31 34 41 42 45 48 51
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 3. 7.3.1	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE	14 14 17 21 22 28 28 31 31 34 41 42 45 48 51 51
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE. 26 dB and 99% BANDWIDTH. 20 UTPUT POWER. 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE. 6. CONDUCTED SPURIOUS EMISSIONS. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE. 99% & 26 dB BANDWIDTH. 2. OUTPUT POWER. 3. AVERAGE POWER 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE. 99% & 26 dB BANDWIDTH. 2. OUTPUT POWER. 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE. 6. CONDUCTED SPURIOUS EMISSIONS. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE. 99% & 26 dB BANDWIDTH. 2. OUTPUT POWER.	14 14 17 21 22 25 28 31 31 34 41 45 45 48 51 53
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 2. 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6 7.3.1 7.3.1 7.3.2	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 26 dB and 99% BANDWIDTH 20 UTPUT POWER 3 AVERAGE POWER 4 PEAK POWER SPECTRAL DENSITY 5 PEAK EXCURSION 6 CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH 2 OUTPUT POWER 3 AVERAGE POWER 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH 2 OUTPUT POWER 3 AVERAGE POWER 4 PEAK POWER SPECTRAL DENSITY 5 PEAK EXCURSION 6 CONDUCTED SPURIOUS EMISSIONS 7 ONDUCTED SPURIOUS EMISSIONS 6 CONDUCTED SPURIOUS EMISSIONS 7 ONDUCTED SPURIOUS EMISSIONS 6 OUTPUT POWER 99% & 26 dB BANDWIDTH 2 OUTPUT POWER 6 CONDUCTED SPURIOUS EMISSIONS 7 OUTPUT POWER 7 OUTPUT POWER 8 AVERAGE POWER	14 14 17 21 22 25 28 31 31 34 41 42 45 45 45 51 53 58
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6 7.3.1 7.3.2 7.3.1 7.3.2 7.3.3	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 26 dB and 99% BANDWIDTH 20 UTPUT POWER 3 AVERAGE POWER 4 PEAK POWER SPECTRAL DENSITY 5 PEAK EXCURSION 6 CONDUCTED SPURIOUS EMISSIONS 5 2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH 2 OUTPUT POWER 4 PEAK POWER SPECTRAL DENSITY 5 PEAK EXCURSION 6 CONDUCTED SPURIOUS EMISSIONS 5 2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH 2 OUTPUT POWER 3 AVERAGE POWER 4 PEAK POWER SPECTRAL DENSITY 5 PEAK EXCURSION 6 CONDUCTED SPURIOUS EMISSIONS 7 OUTPUT POWER 9 PEAK EXCURSION 9 PEAK POWER SPECTRAL DENSITY 9 PEAK POWER SPECTRAL DENSITY 9 PEAK POWER 99% & 26 dB BANDWIDTH 2 OUTPUT POWER 9 PEAK POWER SPECTRAL DENSITY 9 PEAK POWER SPECTRAL DENSITY	14 14 17 21 22 23 25 28 31 31 34 41 42 45 48 51 53 58 59
7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6 7.3.1 7.3.2 7.3.4 7.3.5	ENNA PORT TEST RESULTS 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 26 dB and 99% BANDWIDTH OUTPUT POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK POWER SPECTRAL DENSITY DEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY DEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER AVERAGE POWER 9% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER AVERAGE POWER PEAK POWER SPECTRAL DENSITY PEAK POWER SPECTRAL DENSITY PEAK POWER SPECTRAL DENSITY PEAK POWE	14 14 17 21 22 28 28 31 31 34 41 45 41 45 45 51 53 58 59 61
7 7 7 7 7	ANT 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6 7.3.1 7.3.2 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE. 26 dB and 99% BANDWIDTH. 20 OUTPUT POWER. 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE. 99% & 26 dB BANDWIDTH. 2. OUTPUT POWER. 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE. 99% & 26 dB BANDWIDTH. 2. OUTPUT POWER. 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE. 99% & 26 dB BANDWIDTH. 2. OUTPUT POWER 3. AVERAGE POWER 4. PEAK EXCURSION 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE. 99% & 26 dB BANDWIDTH. 2. OUTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE. 99% & 26 dB BANDWIDTH. 2. OUTPUT POWER 3. AVERAGE POWER 4. PEAK POWER SPECTRAL DENSITY. 5.2 GHZ BAND CHANNEL TESTS POR 20.212 NOTE	14 14 17 21 22 28 25 28 31 31 34 41 42 45 41 45 45 51 53 58 59 61

	7.3.6.	CONDUCTED SPURIOUS EMISSIONS	63
7.	<i>4. 5.3</i> 7.4.1.	GHz BAND CHANNEL TESTS FOR 802.11a MODE 26 dB and 99% BANDWIDTH	
	7.4.2.	OUTPUT POWER	
	7.4.3.	AVERAGE POWER	
	7.4.4.	PEAK POWER SPECTRAL DENSITY	
	7.4.5. 7.4.6.	PEAK EXCURSION CONDUCTED SPURIOUS EMISSIONS	
	-		
7.		GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE	
	7.5.1. 7.5.2.	99% & 26 dB BANDWIDTH OUTPUT POWER	
	7.5.3.	AVERAGE POWER	
	7.5.4.	PEAK POWER SPECTRAL DENSITY	
	7.5.5.	PEAK EXCURSION	97
	7.5.6.	CONDUCTED SPURIOUS EMISSIONS	100
7.	6. 5.3	GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE	
	7.6.1.	99% & 26 dB BANDWIDTH	
	7.6.2.		
	7.6.3. 7.6.4.	AVERAGE POWER PEAK POWER SPECTRAL DENSITY	
	7.6.5.	PEAK POWER SPECTRAL DENSITY	
	7.6.6.	CONDUCTED SPURIOUS EMISSIONS	
7	7 56	GHz BAND CHANNEL TESTS FOR 802.11a MODE	
1.	7.7.1.	26 dB and 99% BANDWIDTH	
	7.7.2.	OUTPUT POWER	
	7.7.3.	AVERAGE POWER	
	7.7.4.	PEAK POWER SPECTRAL DENSITY	
	7.7.5.		
	7.7.6. 7.7.7.	CONDUCTED SPURIOUS EMISSIONS CONDUCTED SPURIOUS (-20 dBc)	
_			
7.	8. 5.6 7.8.1.	GHz BAND CHANNEL TESTS FOR 802.11HT20 MODE 99% & 26 dB BANDWIDTH	
	7.8.2.	OUTPUT POWER	
	7.8.3.	AVERAGE POWER	
	7.8.4.	PEAK POWER SPECTRAL DENSITY	
	7.8.5.	PEAK EXCURSION	151
	7.8.6.	CONDUCTED SPURIOUS EMISSIONS	
	7.8.7.	CONDUCTED SPURIOUS (-20 dBc)	
7.		Hz BAND CHANNEL TESTS FOR 802.11HT40 MODE	
	7.9.1.	99% & 26 dB BANDWIDTH	
	7.9.2. 7.9.3.	OUTPUT POWER	
	7.9.3. 7.9.4.	PEAK POWER SPECTRAL DENSITY	
	7.9.5.	PEAK EXCURSION	
	7.9.6.	CONDUCTED SPURIOUS EMISSIONS	
	7.9.7.	CONDUCTED SPURIOUS (-20 dBc)	
8.	RECEIV	ER CONDUCTED SPURIOUS EMISSIONS	183
υ.			

Page 4 of 358

9.	RADIATE	D TEST R	ESULTS1	187
9	9.1. LIMI	TS AND P	ROCEDURE 1	187
	9.2.1. 9.2.2. 9.2.3. 9.2.4. 9.2.5. 9.2.6. 9.2.7. 9.2.8. 9.2.9. 9.2.10. 9.2.11. 9.2.12.	802.11a M TX ABOV 802.11n H 802.11a M TX ABOV 802.11a M 802.11a M 802.11a M TX ABOV 802.11a H 802.11n H 802.11n H	R ABOVE 1 GHz 1 MODE IN 5.2 GHz BAND 1 E 1 GHz FOR 802.11a DUAL CHAIN MODE IN 5.2 GHz BAND 1 IT20 MODE IN 5.2 GHz BAND 1 IT40 MODE IN 5.2 GHz BAND 2 MODE IN 5.3 GHz BAND 2 MODE IN 5.3 GHz BAND 2 MODE IN 5.3 GHz BAND 2 IT20 MODE IN 5.3 GHz BAND 2 MODE IN 5.3 GHz BAND 2 IT20 MODE IN 5.3 GHz BAND 2 IT20 MODE IN 5.3 GHz BAND 2 IT40 MODE IN 5.3 GHz BAND 2 IT20 MODE IN 5.3 GHz BAND 2 IT40 MODE IN 5.6 GHz BAND 2 IT20 MODE IN 5.6 GHz BAND 2 IT20 MODE 5.6 GHz BAND 2 IT40 MODE 5.6 GHz BAND 2	188 192 197 203 209 213 218 225 233 239 246 253
10.	AC PO	WER LINE	E CONDUCTED EMISSIONS2	262
11.	DYNA	MIC FREQ	UENCY SELECTION	266
•				
			D MEASUREMENT SYSTEM	
	11.1.3.	SETUP O	F EUT2	273
	11.1.4.		TION OF EUT2	-
	<i>1.2. M</i> AS 11.2.1.		ICE CONFIGURATION IN 20 MHz BANDWIDTH	
	11.2.1.		F RADAR WAVEFORMS AND WLAN TRAFFIC	
	11.2.3.		L AVAILABILITY CHECK TIME	
	11.2.4. 11.2.5.		PPING CHANNEL TESTS	
	11.2.5.		ON BANDWIDTH	
	11.2.7.	IN-SERVI	CE MONITORING2	298
•	1.3. SLA	VE DEVIC	E CONFIGURATION IN 20 MHz BANDWIDTH	305
	11.3.1.		ANNEL	
	11.3.2. 11.3.3.		F RADAR WAVEFORM AND WLAN TRAFFIC	
		-	ICE CONFIGURATION IN 40 MHz BANDWIDTH	
	11.4. 1//AC		ANNEL	
	11.4.2.		F RADAR WAVEFORMS AND WLAN TRAFFIC	
	11.4.3.			
	11.4.4. 11.4.5.		PPING CHANNEL TESTS	
	11.4.6.		CUPANCY PERIOD	
	11.4.7.	DETECTI	ON BANDWIDTH	332
	11.4.8.	IN-SERVI	CE MONITORING	334
		-	E CONFIGURATION IN 40 MHz BANDWIDTH	-

Page 5 of 358

-	11.6. MOVE AND CLOSING TIME 11.6.1. SLAVE NON-OCCUPANCY	
	12. MAXIMUM PERMISSIBLE EXPOSURE	12
	13. SETUP PHOTOS	13

Page 6 of 358

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	QUALCOMM, INC.
	3165 KIFER RD
	SANTA CLARA, CA 95051
	U.S.A.

EUT DESCRIPTION: EA544D_2 ETHERNET ADAPTER CARD- 2.4 / 5 GHz DFS APPLICATIONS

MODEL: 65-VN663-P2

SERIAL NUMBER: 7813, 8286, 9021, 8263, and 9086 FOR ANTENNA PORT, 7908 and 9021 FOR RADIATED EMISSIONS, and 7901 FOR DFS

DATE TESTED: JUNE 24, 2009 – MARCH 23, 2010

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 Part 15 Subpart E	Pass			
INDUSTRY CANADA RSS-210 Issue 7 Annex 9	Pass			
INDUSTRY CANADA RSS-GEN Issue 2	Pass			

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

FRANK IBRAHIM EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

VIEN TRAN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 7 of 358

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 8 of 358

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n WLAN transceiver module for 2.4 / 5 GHz Applications that include DFS bands. It is equipped with four identical transmitter / receiver chains and an Ethernet port.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5.2 GHz BAND	•		
5180 - 5240	802.11a	12.10	16.22
5180 - 5240	802.11n HT20	13.67	23.28
5190 - 5230	802.11n HT40	16.73	47.10
5.3 GHz BAND	•	-	
5260 - 5320	802.11a	18.62	72.78
5260 - 5320	802.11n HT20	20.50	112.20
5270 - 5310	802.11n HT40	23.62	230.14
5.6 GHz BAND			
5500 - 5700	802.11a	19.76	94.62
5500 - 5700	802.11n HT20	20.60	114.82
5510 - 5670	802.11n HT40	23.89	244.91

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dual band omni monopole (4 identical) antenna, each with a maximum gain of 3 dBi in the 5 GHz bands.

For the 802.11a legacy mode only two chains are transmitting, therefore the effective legacy antenna gain is:

Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain	
(dBi)	(dB)	(dBi)	
3	3.01	6.01	

Page 9 of 358

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Keyspan, rev. 3.7.0.2.

The test utility software used during testing was PTT GUI, rev. 5.1.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module connected to a host Laptop PC via a test fixture.

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11a Mode (20 MHz BW operation): 6 Mbps, OFDM. 802.11n MIMO HT20 Mode: MCS31, 260 Mbps, 4 Spatial Streams. 802.11n MIMO HT40 Mode: MCS31, 540 Mbps, 4 Spatial Streams.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power, that was determined to be 11n HT40, high channel.

For 26 dB BW measurement preliminary testing showed that there is no significant difference among different chains, so the measurement was performed using Chain 0.

For conducted spurious measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore, final measurement was performed using combiner for all channels and modes.

For PPSD measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore, final measurement was performed using combiner for all channels and modes.

For Radiated Band Edge measurements preliminary testing showed that the worst case was vertical polarization, so final measurements were performed with vertical polarization.

5.6. MODIFICATIONS

The EUT was modified during the project, as follows:

A shield was added to the bottom side of the PCB to meet ETSI receiver spurious limits. This shield was subsequently incorporated into all versions of this radio module.

The DFS capabilities of the EUT were changed from Master Device only to either Master Device or Slave Device without Radar Detection.

Page 10 of 358

5.7. TEST RESULTS FOR MODIFIED SAMPLE

As a result of the shield modification, the original data was analyzed to find worst-case modes and margins, then preliminary tests were performed to determine where additional final testing was required. This report is updated with all new final measurements that show degraded performance compared to the original configuration.

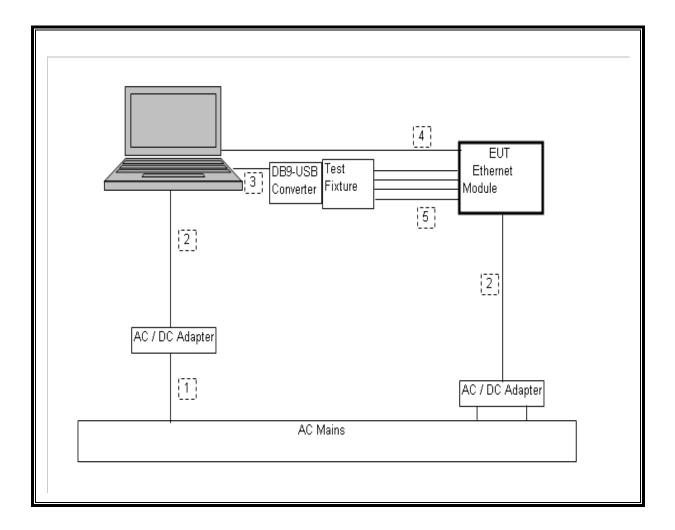
As a result of both the shield modification and the DFS modification, full DFS testing appropriate to the final device capabilities was performed on a sample with the new shield. This report is updated with the new DFS results.

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop	IBM	T43 ThinkPad	L3-F9978 05/06	DoC		
AC Adapter	IBM	08K8208	11S08K8208Z1Z6	DoC		
AC Adapter	Phihong	PSA15R-050P	N/A	N/A		
Serial (DB9)/USB	Keyspan	N/A	N/A	N/A		
Test Fixture	N/A	N/A	N/A	N/A		

I/O CABLES


	I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connecto Type	Cable Type	Cable Length	Remarks	
1	AC	2	US 115V	Shielded	1m	For laptop & EUT	
2	DC	2	DC	Un-shielded	2m	For laptop & EUT	
3	USB	1	USB	Shielded	.8m	From laptop to USB Converter	
4	Ethernet	1	RJ45	Un-shielded	1 m	From laptop to EUT	
5	Cable	1	Riibon	Un-shielded	.4 m	Test Fixture to EUT	

TEST SETUP

The EUT is installed in a host laptop computer via test fixture during the tests. Test software exercised the radio card.

Page 11 of 358

SETUP DIAGRAM FOR TESTS

Page 12 of 358

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/09	01/05/10
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/09	01/14/10
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	04/22/10
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	09/29/08	11/28/09
Antenna, Horn, 40 GHz	ARA	MWH-2640B	C00981	05/21/09	05/21/10
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	10/11/08	10/11/09
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/09	03/31/10
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	08/05/08	08/05/09
Peak Power Meter	Boonton	4541	C01186	01/19/09	01/19/10
Peak Power Sensor	Boonton	4541	C01189	01/15/09	01/15/10
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/29/08	10/29/09
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	02/06/08	08/06/09

The following test and measurement equipment was utilized for the additional tests with the modified shield:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/10	03/05/11
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	04/22/10
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	02/04/09	02/04/10
Peak Power Meter	Boonton	4541	C01186	01/19/09	01/19/10
Peak Power Sensor	Boonton	4541	C01189	01/15/09	01/15/10

Page 13 of 358

7. ANTENNA PORT TEST RESULTS

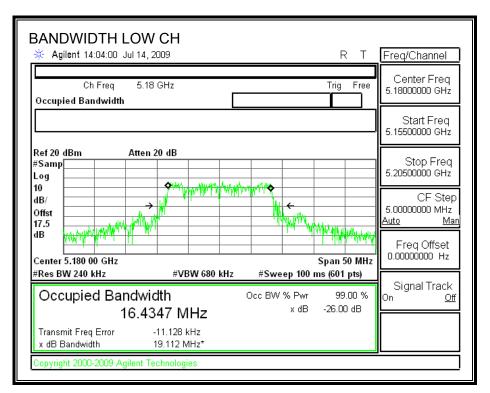
7.1. 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE

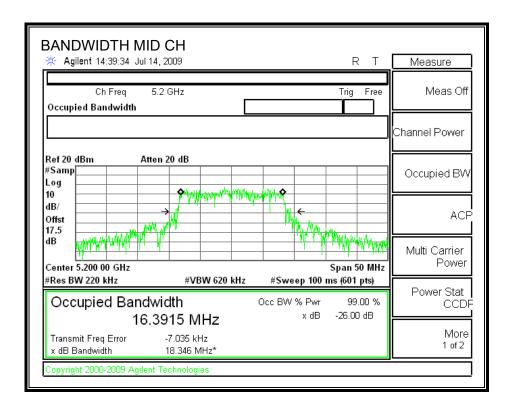
7.1.1. 26 dB and 99% BANDWIDTH

<u>LIMITS</u>

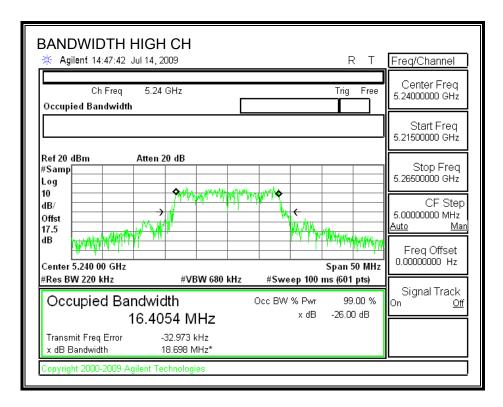
None; for reporting purposes only.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	19.1120	16.4340
Middle	5200	18.3460	16.3915
High	5240	18.6980	16.4054


Page 14 of 358

26 dB and 99% BANDWIDTH

Page 15 of 358

Page 16 of 358

7.1.2. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

Antenna Gain (dBi)	• • • •	Effective Legacy Gain (dBi)
3	3.01	6.01

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

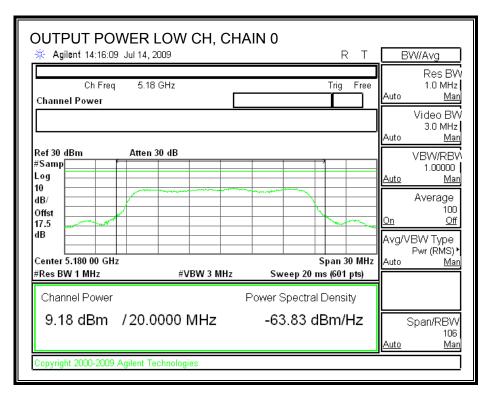
TEST PROCEDURE

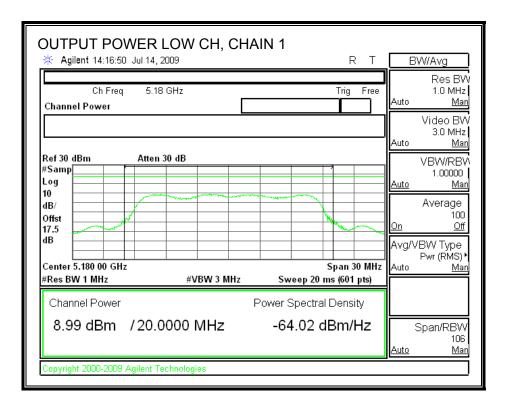
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

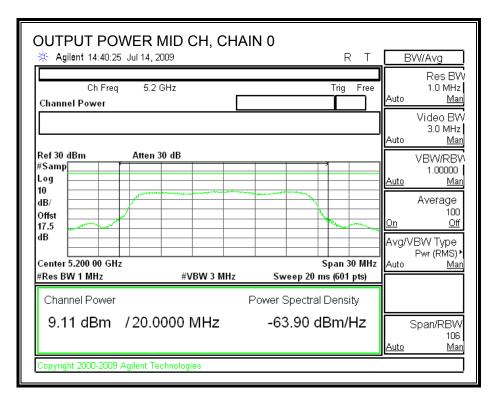
Channel	Frequency	Fixed	В	4 + 10 Log B	Effective	Limit
		Limit		Limit	Antenna Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	19.1120	16.81	6.01	16.80
Mid	5200	17	18.3460	16.64	6.01	16.63
High	5240	17	18.6980	16.72	6.01	16.71

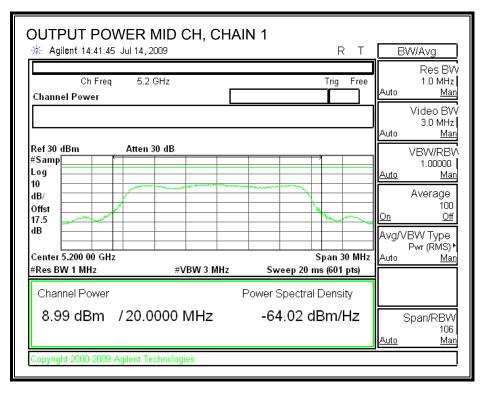

Limit


Individual Chain Results

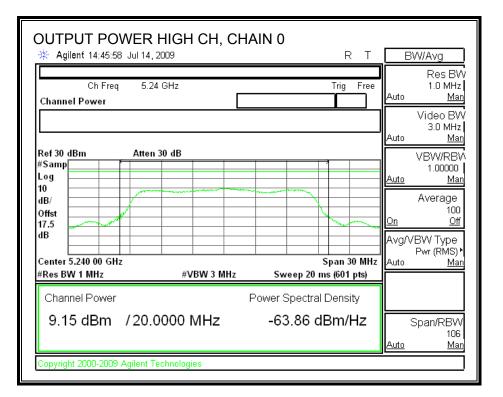
Channel	Frequency	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.18	8.99	12.10	16.80	-4.71
Mid	5200	9.11	8.99	12.06	16.63	-4.56
High	5240	9.15	8.96	12.07	16.71	-4.64

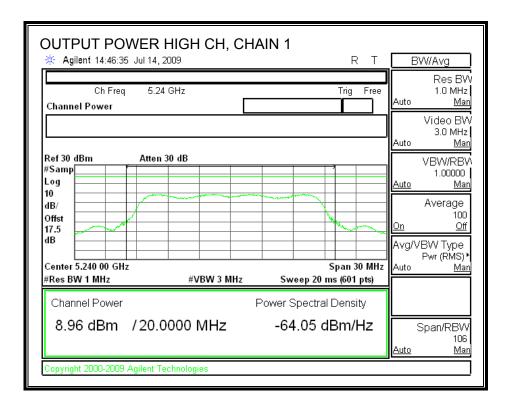
Page 17 of 358


OUTPUT POWER, LOW CHANNEL



Page 18 of 358


OUTPUT POWER, MID CHANNEL



Page 19 of 358

OUTPUT POWER, HIGH CHANNEL

Page 20 of 358

7.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	9.15	8.89	12.03
Middle	5200	9.10	8.98	12.05
High	5240	9.09	8.93	12.02

Page 21 of 358

7.1.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

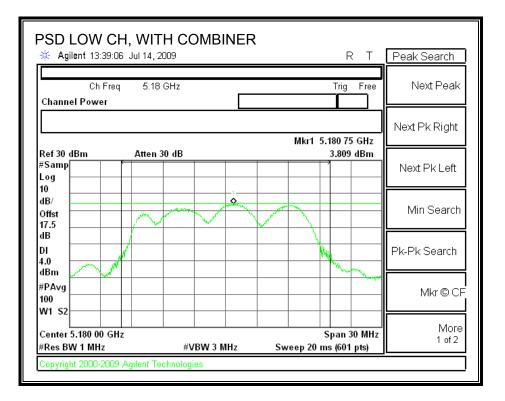
Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

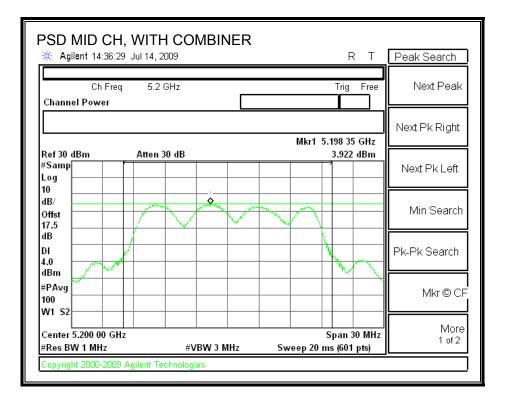
Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain
(dBi)	(dB)	(dBi)
3	3.01	6.01

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum effective antenna gain is less than or equal to 6.01 dBi, therefore the limit is 3.99 dBm.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.81	3.99	-0.18
Middle	5200	3.92	3.99	-0.07
High	5240	3.86	3.99	-0.13

Page 22 of 358

POWER SPECTRAL DENSITY WITH COMBINER

Page 23 of 358

PSD HIGH CH, WI			RТ	В	W/Avg
Ch Freq 5.24 Channel Power	GHz	T	rig Free	Auto	Res BV 1.0 MHz <u>Mar</u>
		Mkr1 5.23		Auto	Video BV 3.0 MHz <u>Mar</u>
Ref 30 dBm Atten 3 #Samp Log 10	30 dB	3.	858 dBm	<u>Auto</u>	VBW/RB\ 1.00000 <u>Mar</u>
10 dB/ Offst 17.5				<u>On</u>	Average 100 <u>Off</u>
dB 01 04.0 04.0 04.0 04.0 04.0 04.0 04.0 0			$\overline{\nabla}$	Avg/V Auto	BW Type Pwr (RMS) <u>Ma</u>
#PAvg 100 W1 S2					
Center 5.240 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Spa Sweep 20 ms (an 30 MHz 601 pts)	< <u>Auto</u>	Span/RBW 106 <u>Ma</u> i

Page 24 of 358

7.1.5. PEAK EXCURSION

LIMITS

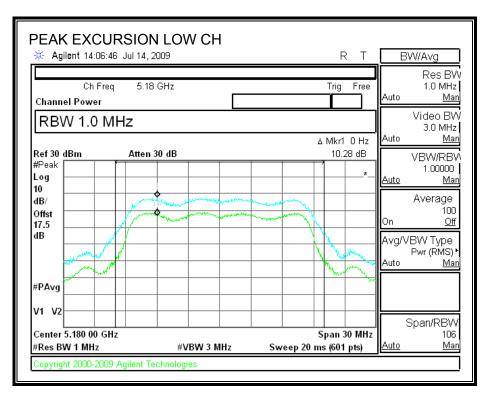
FCC §15.407 (a) (6)

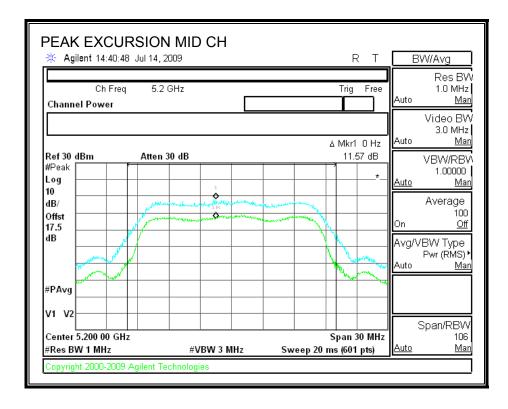
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.28	13	-2.72
Middle	5200	11.57	13	-1.43
High	5240	10.22	13	-2.78

Page 25 of 358

PEAK EXCURSION

Page 26 of 358

🔆 Agilent 14:48:51 Jul 14	, 2009	RT	BW/Avg
Ch Freq 5.2 Channel Power	24 GHz	Trig Fre	Res BV e 1.0 MHz Auto <u>Mar</u>
RBW 1.0 MHz		∆ Mkr1 0 H;	Video BV 3.0 MHz Auto <u>Mar</u>
Ref 30 dBm Atte #Peak Log 10	n 30 dB	10.22 dB	
0 dB/ 0ffst 17.5	Maria and a second and a second		Average 100 On <u>Off</u>
dB			Avg/VBW Type Pwr (RMS) Auto <u>Mar</u>
#PAvg			~
V1 V2			Span/RBW
Center 5.240 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 30 MH Sweep 20 ms (601 pts)	

Page 27 of 358

7.1.6. CONDUCTED SPURIOUS EMISSIONS

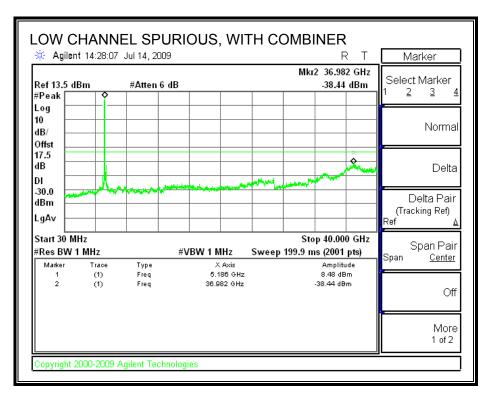
LIMITS

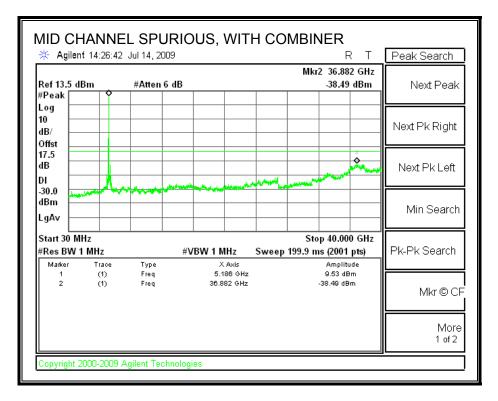
FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

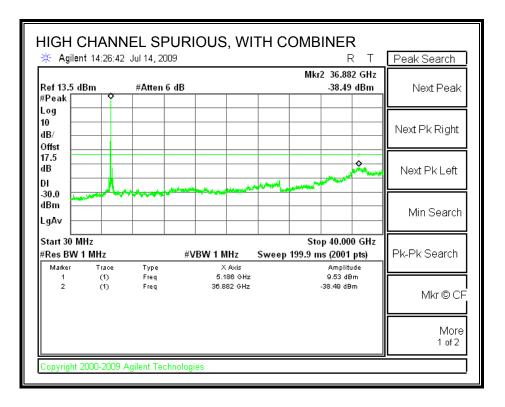
For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Page 28 of 358

SPURIOUS EMISSIONS WITH COMBINER

Page 29 of 358

Page 30 of 358

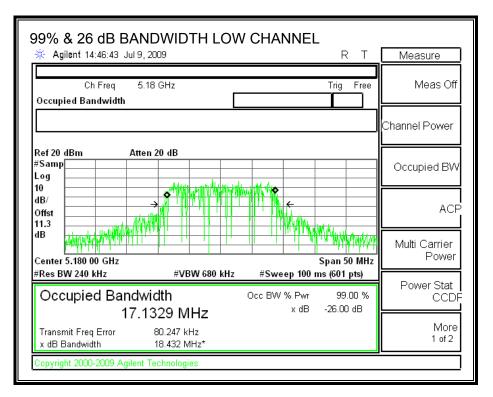
7.2. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

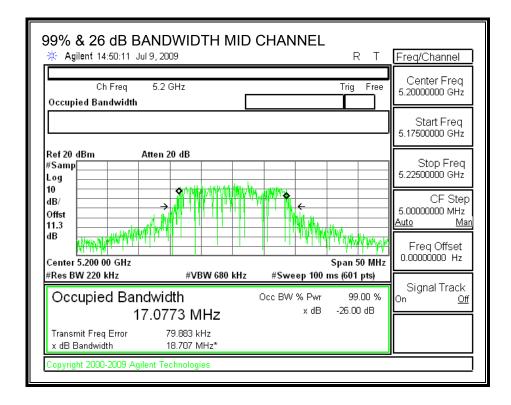
7.2.1. 99% & 26 dB BANDWIDTH

<u>LIMITS</u>

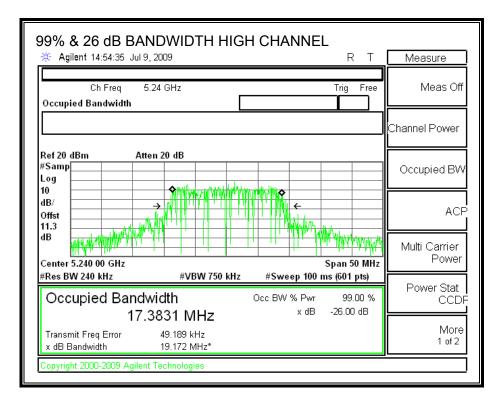
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5180	17.1329	18.432	
Middle	5200	17.0773	18.707	
High	5240	17.3831	19.172	


Page 31 of 358

99% & 26 dB BANDWIDTH

Page 32 of 358

Page 33 of 358

7.2.2. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

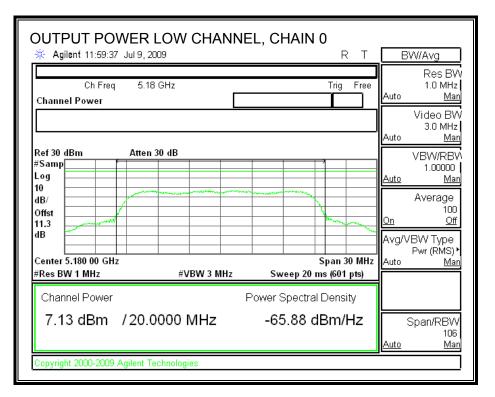
For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

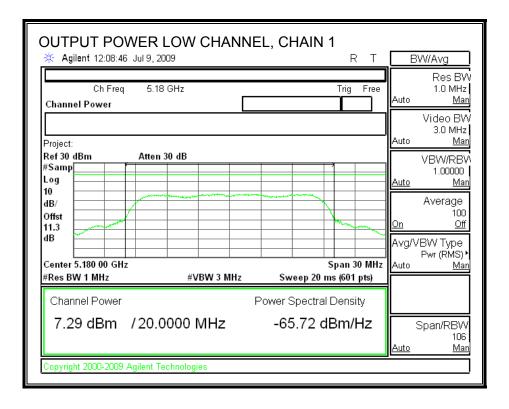
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

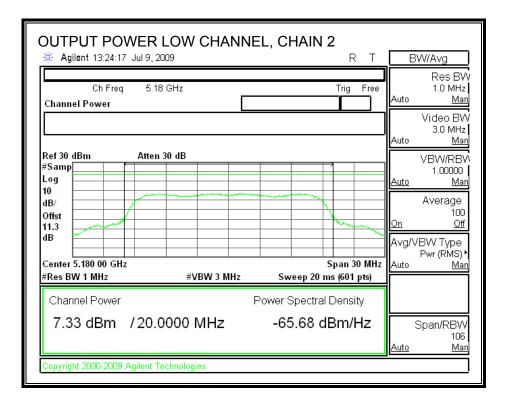
The transmitter output operates continuously therefore Method # 1 is used.

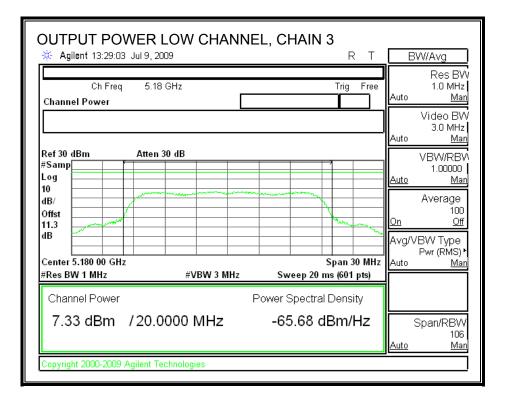
<u>RESULTS</u>

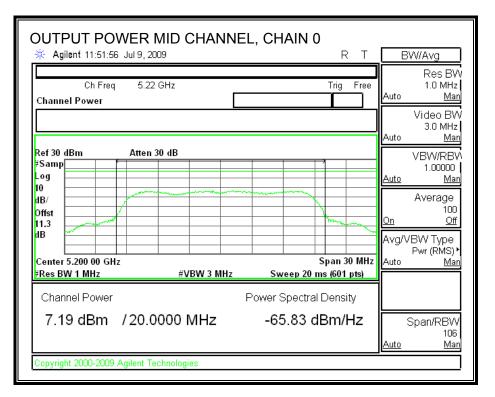

Limit

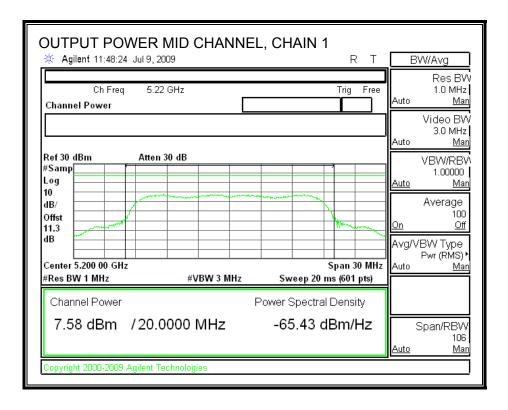

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	18.432	16.66	3	16.66
Mid	5200	17	18.707	16.72	3	16.72
High	5240	17	19.172	16.83	3	16.83

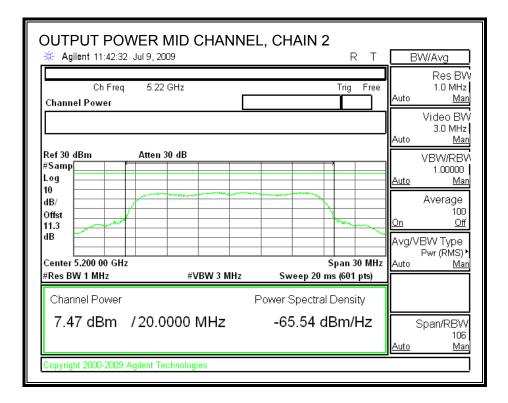
Individual Chain Results

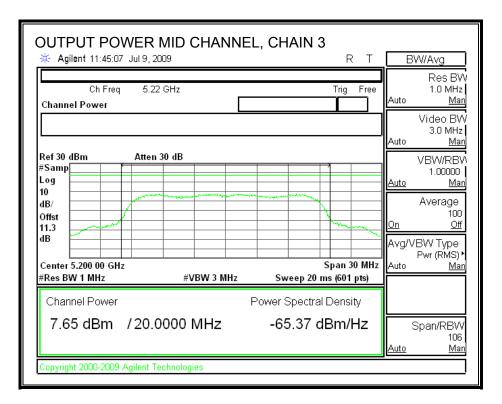

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	7.13	7.29	7.33	7.33	13.29	16.66	-3.36
Mid	5200	7.19	7.58	7.47	7.65	13.50	16.72	-3.22
High	5240	7.22	7.86	7.85	7.65	13.67	16.83	-3.15

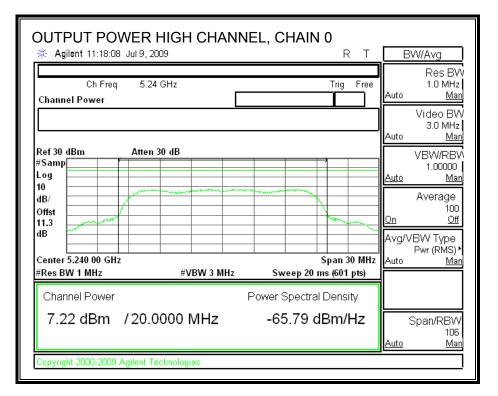

OUTPUT POWER, LOW CHANNEL

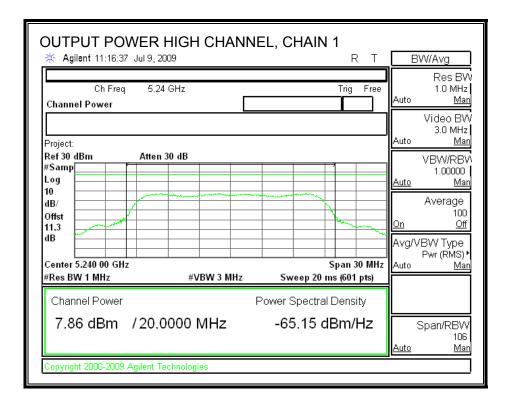

Page 35 of 358

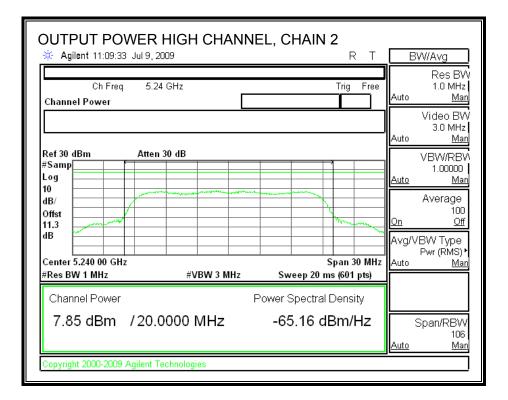


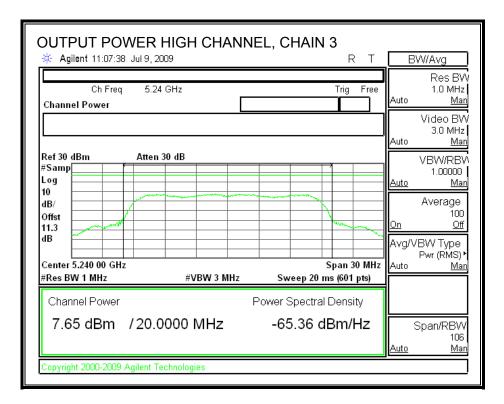

Page 36 of 358


OUTPUT POWER, MID CHANNEL


Page 37 of 358




Page 38 of 358


OUTPUT POWER, HIGH CHANNEL

Page 39 of 358

Page 40 of 358

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	7.41	7.51	7.69	7.89
Middle	5200	7.11	8.23	8.01	8.05
High	5240	7.82	7.85	8.04	8.11

Page 41 of 358

7.2.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

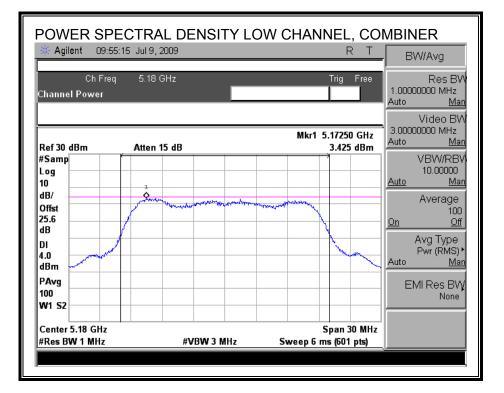
IC RSS-210 A9.2 (2)

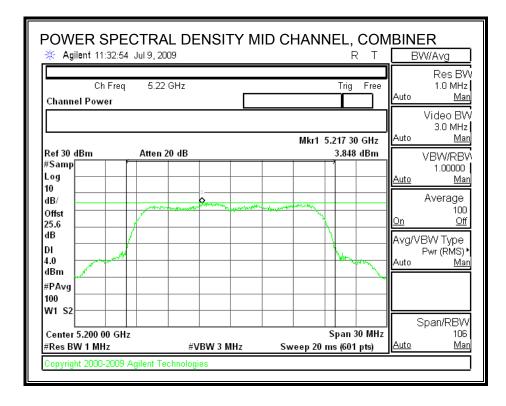
For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi, therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.43	4	-0.58
Middle	5200	3.85	4	-0.15
High	5240	3.65	4	-0.35

RESULTS

Page 42 of 358

POWER SPECTRAL DENSITY

Page 43 of 358

POWER SPECTR/		IIGH CHANI	NEL, CO R T		NIAVg
Ch Freq 5.24 Channel Power	1 GHz		Trig Free	Auto	Res BV 1.0 MHz <u>Mar</u> Video BV 3.0 MHz
	20 dB	Mkr1 5.3	242 40 GHz 3.652 dBm	Auto	Mar VBW/RB\
#Samp Log 10		1		<u>Auto</u>	1.00000 <u>Mar</u>
dB/ Offst 25.6	and the second second			<u>On</u>	Average 100 <u>Off</u>
dB DI 4.0 dBm			manny		BW Type Pwr (RMS) <u>Ma</u>
#PAvg					
W1 S2 Center 5.240 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Sweep 20 m	5pan 30 MHz s <i>(</i> 601 nts)	S Auto)pan/RBV 106 Mai
Copyright 2000-2009 Agilent T		5466p 20 m	o (oo i praj		

Page 44 of 358

7.2.5. PEAK EXCURSION

<u>LIMITS</u>

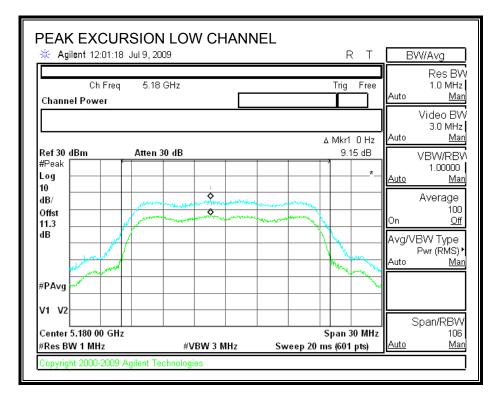
FCC §15.407 (a) (6)

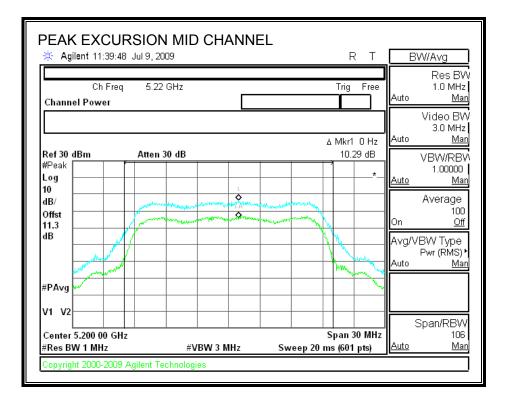
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.15	13	-3.85
Middle	5200	10.29	13	-2.71
High	5240	11.12	13	-1.88

Page 45 of 358

PEAK EXCURSION

Page 46 of 358

🔆 Agilent 11:20:19 Jul 9, 2	009		RΤ	B	W/Avg
Ch Freq 5.24 Channel Power	GHz	T	rig Free	Auto	Res BV 1.0 MHz <u>Mar</u>
		ΔM	kr1 0 Hz	Auto	Video BV 3.0 MHz <u>Mar</u>
Ref 30 dBm Atten #Peak	30 dB		11.12 dB	<u>Auto</u>	VBW/RB\ 1.00000 <u>Mar</u>
dB/ Offst 11.3		warman warma		On	Average 100 <u>Off</u>
dB			A long to	A∨g/∖ Auto	/BW Type Pwr (RMS) ' <u>Mar</u>
#PAvg					
V1 V2					Span/RBW
Center 5.240 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Spa Sweep 20 ms (n 30 MHz 501 pts)	Auto	106 <u>Mai</u>

Page 47 of 358

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

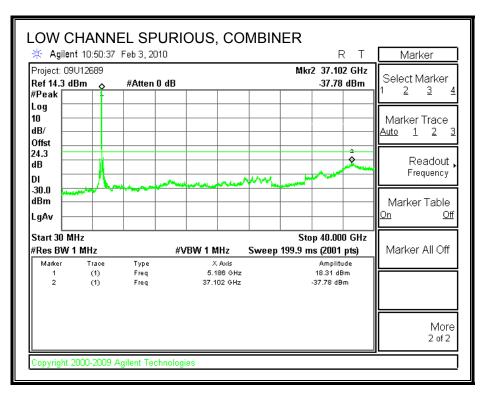
FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

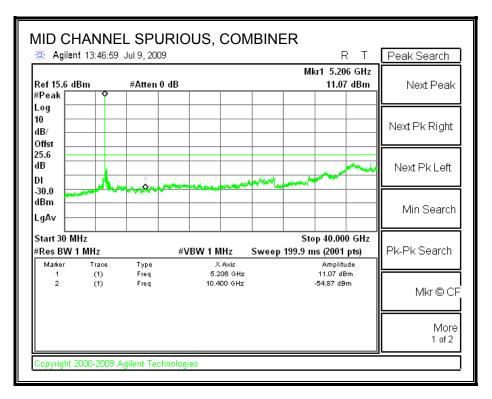
For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

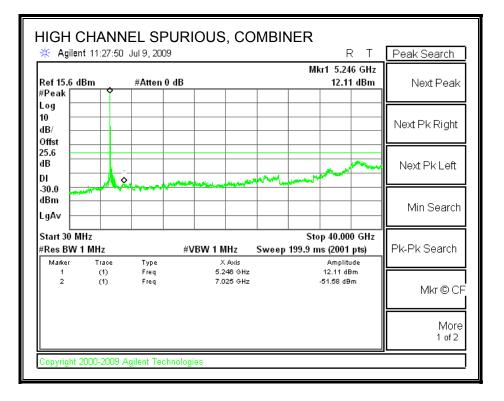

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 48 of 358

LOW CHANNEL SPURIOUS EMISSIONS



MID CHANNEL SPURIOUS EMISSIONS

Page 49 of 358

HIGH CHANNEL SPURIOUS EMISSIONS

Page 50 of 358

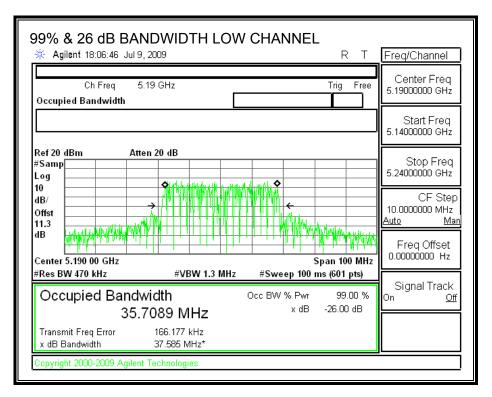
7.3. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

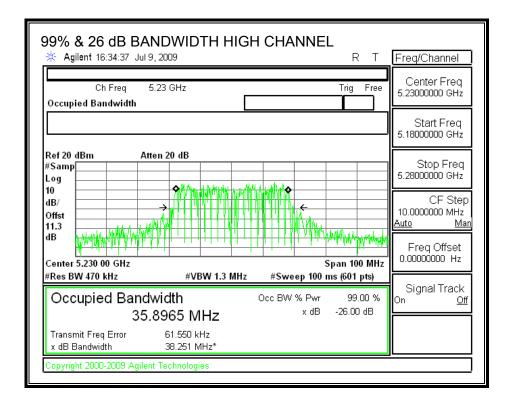
7.3.1. 99% & 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5190	35.7089	37.585
High	5230	35.8965	38.251

Page 51 of 358

99% & 26 dB BANDWIDTH

Page 52 of 358

7.3.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

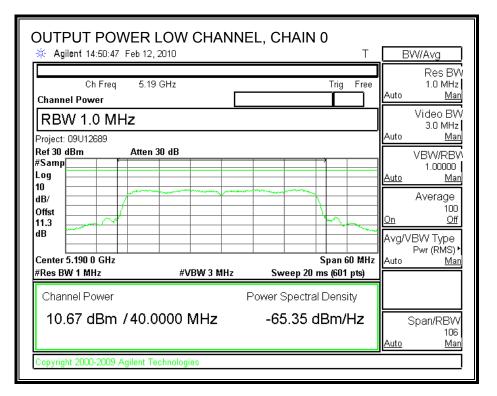
For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

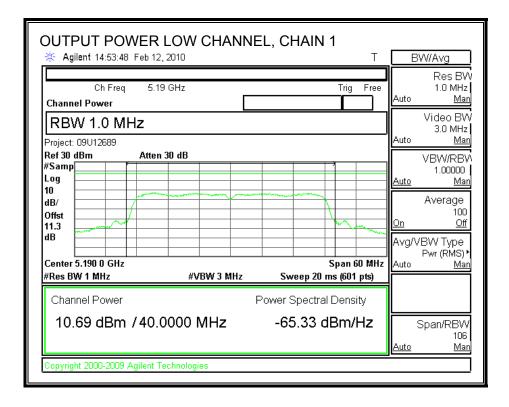
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

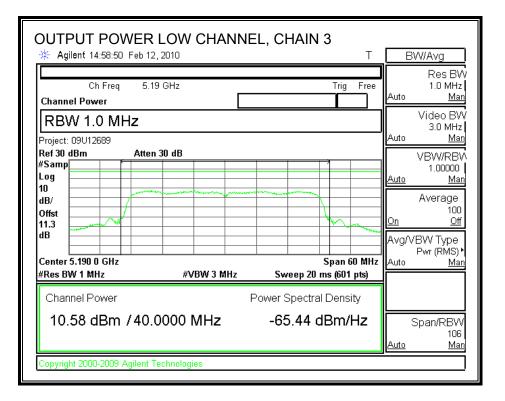
<u>RESULTS</u>

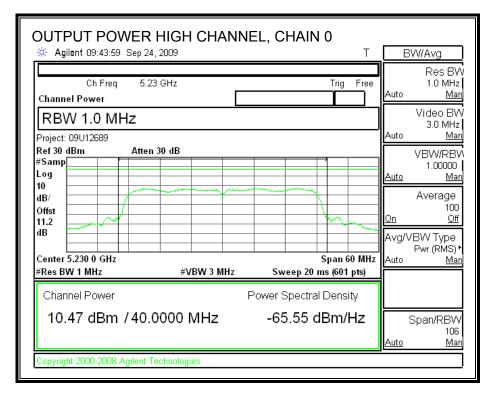

Limit

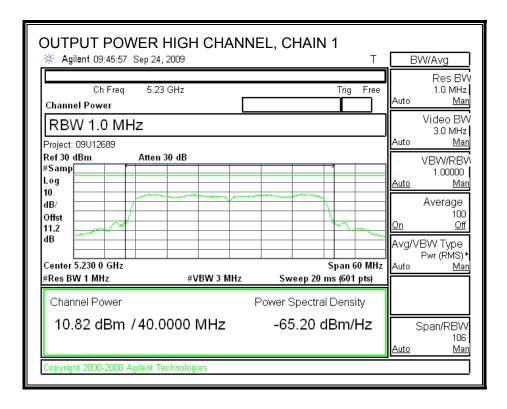

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5190	17	37.585	19.75	3	17.00
High	5230	17	38.251	19.83	3	17.00

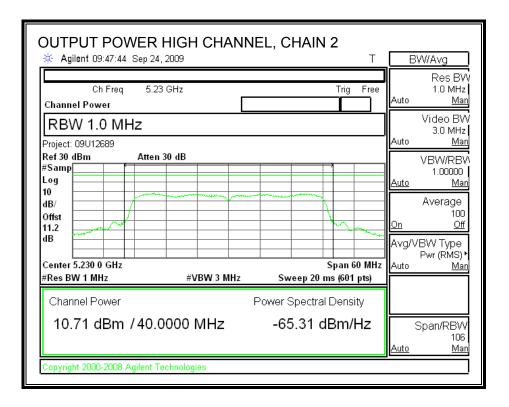
Individual Chain Results

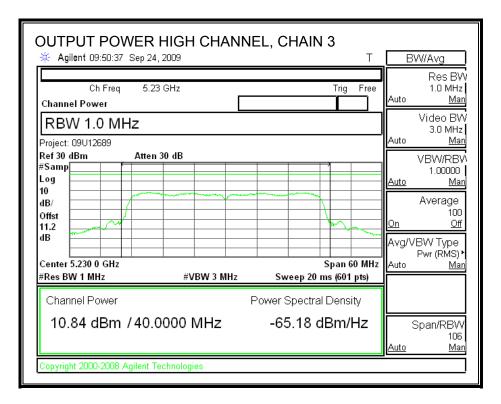
Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	10.67	10.69	10.27	10.58	16.58	17.00	-0.42
High	5230	10.47	10.82	10.71	10.84	16.73	17.00	-0.27


OUTPUT POWER, LOW CHANNEL


Page 54 of 358


Agilent 14:56:14 Feb 12,	2010		T BW/Avg
Ch Freq 5.19 Channel Power	GHz	Trig Fr	Res B\ ee 1.0 MH: Auto <u>Ma</u> Video B\
RBW 1.0 MHz Project: 09U12689			3.0 MH: Auto <u>Ma</u>
Ref 30 dBm Atten 3 #Samp Log	30 dB		VBW/RB 1.00000 Auto Ma
10 dB/ Offst 11.3			Average 100 <u>On Of</u>
dB		Span 60 M	Avg/VBW Type Pwr (RMS) IHz Auto Ma
#Res BW 1 MHz	#VBW 3 MHz	Sweep 20 ms (601 pts)	<u></u>
Channel Power	F	Power Spectral Density	
10.27 dBm /40.0	000 MHz	-65.75 dBm/Hz	Span/RBV 108 Auto Ma


Page 55 of 358


OUTPUT POWER, HIGH CHANNEL

Page 56 of 358

Page 57 of 358

7.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5190	10.40	9.90	9.60	10.30
High	5230	10.98	11.25	11.31	11.40

Page 58 of 358

7.3.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

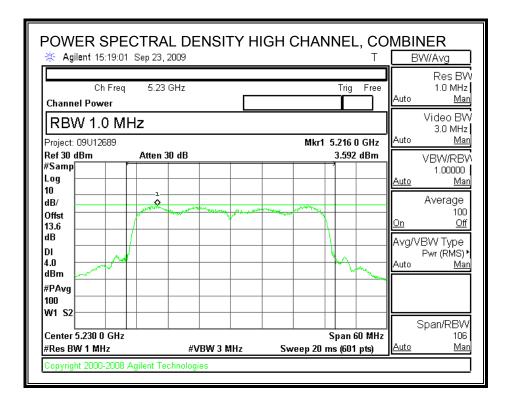
For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi, therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5190	3.56	4	-0.44
High	5230	3.59	4	-0.41

Page 59 of 358

POWER SPECTRAL DENSITY

POWER SPECTRAL	DENSITY LOW (CHANNEL, CO	MBI	NER
🔆 Agilent 15:29:30 Sep 23, 2009	9	Т		3VV/Avg
Ch Freq 5.19 GHz Channel Power	<u>.</u>	Trig Free	Auto	Res BW 1.0 MHz <u>Man</u>
RBW 1.0 MHz Project: 09U12689		Mkr1 5.175 2 GHz	Auto	Video BW 3.0 MHz <u>Man</u>
Ref 30 dBm Atten 30 d #Samp Log	B	3.558 dBm	Auto	VBW/RBV 1.00000 <u>Man</u>
0ffst 13.6	water and a start and a start and a start a st		<u>On</u>	Average 100 <u>Off</u>
dB			A∨g/\ Auto	/BW Type Pwr (RMS) ► <u>Man</u>
#PAvg				
Center 5.190 0 GHz #Res BW 1 MHz	#VBW 3 MHz Sw	Span 60 MHz veep 20 ms (601 pts)	<u>Auto</u>	Span/RBW 106 <u>Man</u>
Copyright 2000-2008 Agilent Techno	logies			

Page 60 of 358

7.3.5. PEAK EXCURSION

LIMITS

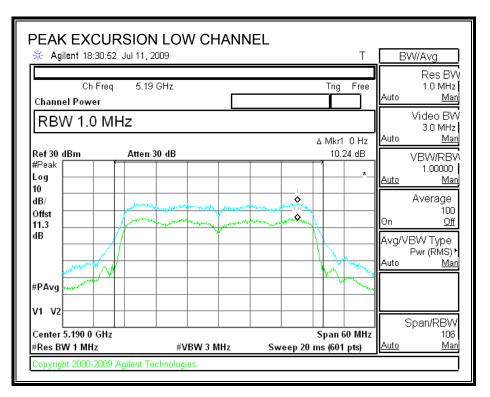
FCC §15.407 (a) (6)

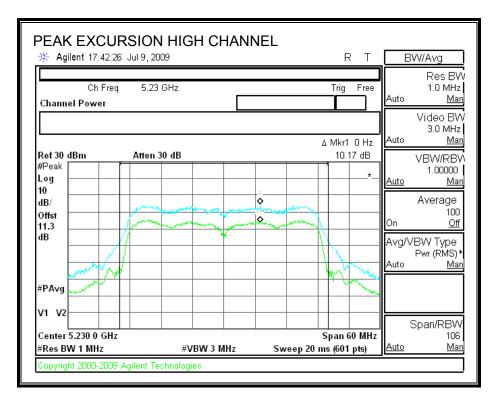
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	10.24	13	-2.76
High	5230	10.17	13	-2.83

Page 61 of 358

PEAK EXCURSION

Page 62 of 358

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

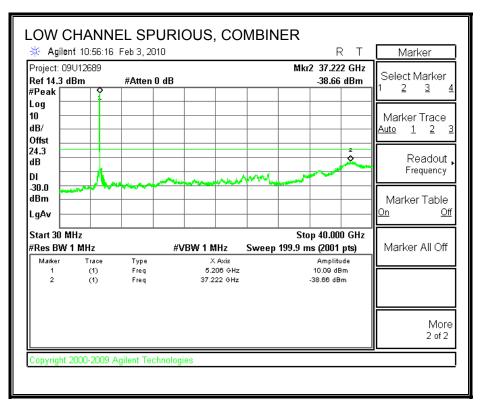
FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

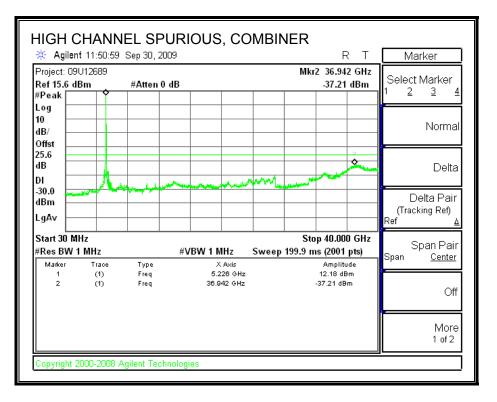
For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 63 of 358

LOW CHANNEL SPURIOUS EMISSIONS

HIGH CHANNEL SPURIOUS EMISSIONS

Page 64 of 358

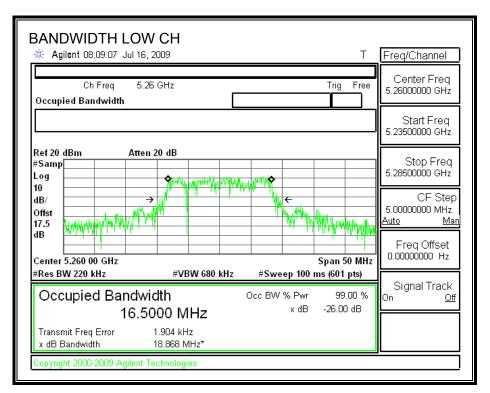
7.4. 5.3 GHz BAND CHANNEL TESTS FOR 802.11a MODE

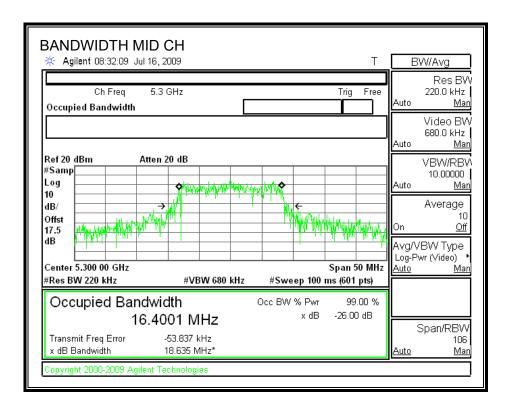
7.4.1. 26 dB and 99% BANDWIDTH

<u>LIMITS</u>

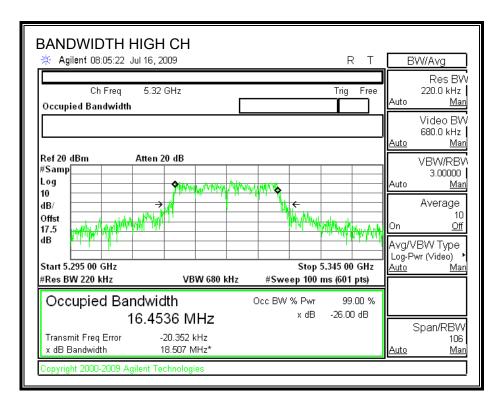
None; for reporting purposes only.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5260	18.8680	16.5000
Middle	5300	18.6350	16.4001
High	5320	18.5070	16.4536


Page 65 of 358

26 dB and 99% BANDWIDTH

Page 66 of 358

Page 67 of 358

7.4.2. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

Antenna Gain 10 Log (# Tx Chains)		Effective Legacy Gain	
(dBi) (dB)		(dBi)	
3	3.01	6.01	

For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

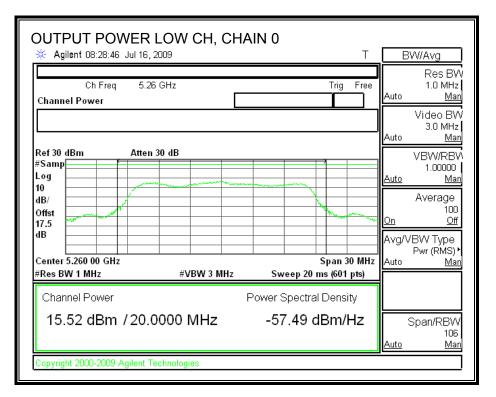
TEST PROCEDURE

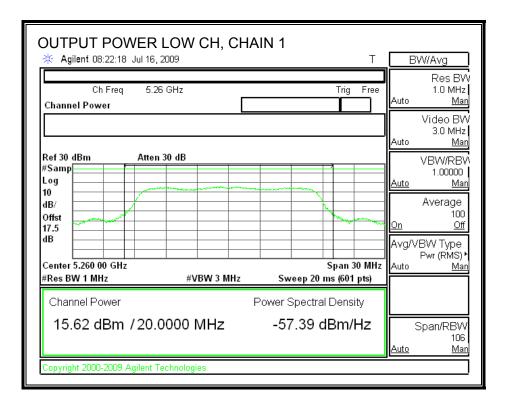
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

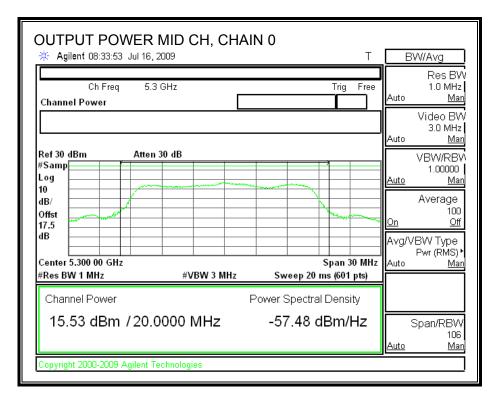
Limit

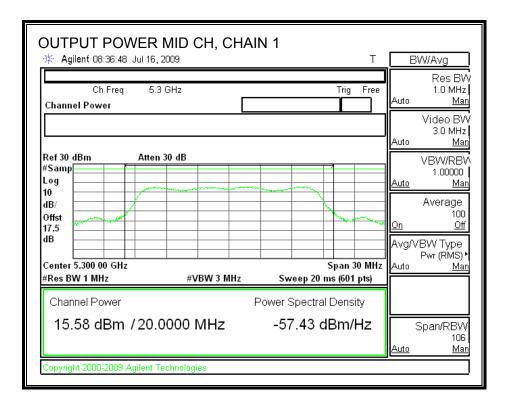

Channel	Frequency	Fixed	В	11 + 10 Log B	Effective	Limit
		Limit		Limit	Ant Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5260	24	18.8680	23.76	6.01	23.75
Mid	5300	24	18.6350	23.70	6.01	23.69
High	5320	24	18.5070	23.67	6.01	23.66


Individual Chain Results

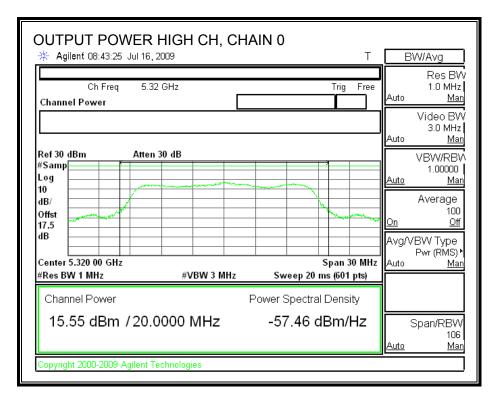
Channel	Frequency	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	15.52	15.62	18.58	23.75	-5.17
Mid	5300	15.53	15.58	18.57	23.69	-5.13
High	5320	15.55	15.66	18.62	23.66	-5.05

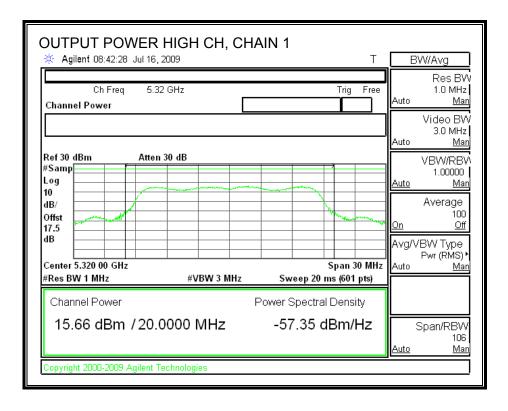
Page 68 of 358


OUTPUT POWER, LOW CHANNEL



Page 69 of 358


OUTPUT POWER, MID CHANNEL



Page 70 of 358

OUTPUT POWER, HIGH CHANNEL

Page 71 of 358

7.4.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5260	15.33	15.55	18.45
Middle	5300	15.57	15.55	18.57
High	5320	15.61	15.52	18.58

Page 72 of 358

7.4.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

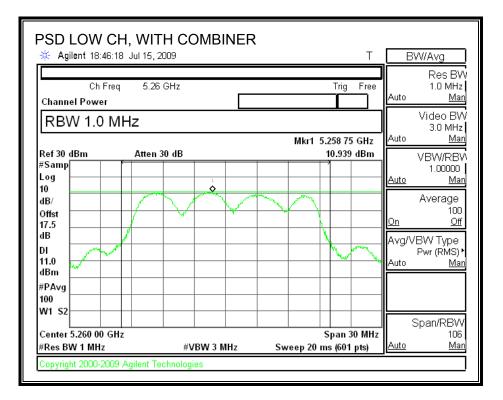
Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

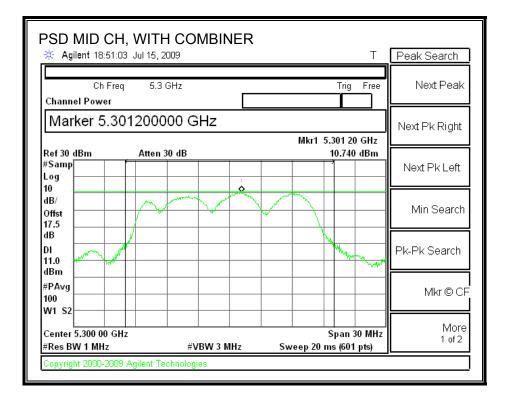
	10 Log (# Tx Chains) (dB)	Effective Legacy Gain (dBi)
3	3.01	6.01

For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum effective antenna gain is 6.01 dBi, therefore the limit is 10.99 dBm.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5260	10.94	10.99	-0.05
Middle	5300	10.74	10.99	-0.25
High	5320	10.85	10.99	-0.14

Page 73 of 358

POWER SPECTRAL DENSITY WITH COMBINER

Page 74 of 358

🔆 Agilent 08:40:41 Jul 16, 20	009	7	- BW/Avg
Ch Freq 5.32 Channel Power	GHz	Trig Fre	Res BV 2e 1.0 MHz Auto <u>Ma</u>
RBW 1.0 MHz		Mkr1 5.326 25 GH	Video BV 3.0 MHz z Auto <u>Ma</u>
Ref 30 dBm Atten 3 #Samp		10.851 dBr	n VBW/RB\ 1.00000 <u>Auto Mai</u> Average 100
17.5 dB DI 11.0 dBm			<u>On Off</u> Avg/VBW Type Pwr (RMS) Auto <u>Ma</u>
#PAvg 100 W1 S2 Center 5.320 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 30 Mi Sweep 20 ms (601 pts)	Hz Span/RBW Auto Ma

Page 75 of 358

7.4.5. PEAK EXCURSION

LIMITS

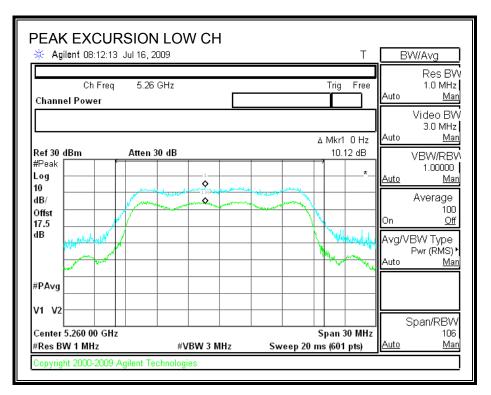
FCC §15.407 (a) (6)

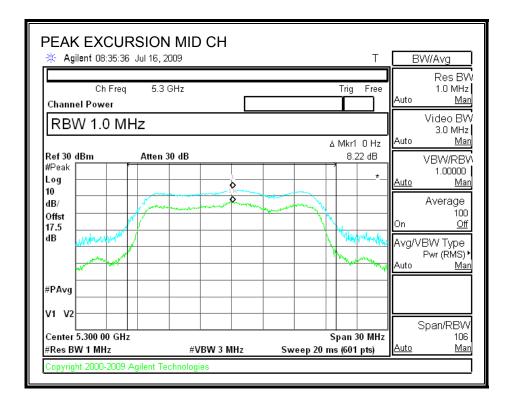
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5260	10.12	13	-2.88
Middle	5300	8.22	13	-4.78
High	5320	9.77	13	-3.23

Page 76 of 358

PEAK EXCURSION

Page 77 of 358

🔆 Agilent 08:06:24 Jul 16,	2009		Т	B٧	W/Avg
Ch Freq 5.3; Channel Power	2 GHz		Trig Free	Auto	Res BV 1.0 MHz <u>Mar</u>
RBW 1.0 MHz		۵	Mkr1 0 Hz	Auto	Video BV 3.0 MHz <u>Mar</u>
#Peak Log	30 dB		9.77 dB	<u>Auto</u>	VBW/RB\ 1.00000 <u>Mar</u>
10 dB/ Offst 17.5		Margare and A		On	Average 100 <u>Off</u>
dB				Avg/VI Auto	BW Type Pwr (RMS) ' <u>Mar</u>
#PAvg					
V1 V2				S	pan/RBV
Center 5.320 00 GHz #Res BW 1 MHz	#VBW 3 MHz	S Sweep 20 ms	pan 30 MHz s (601 pts)	<u>Auto</u>	106 <u>Mar</u>

Page 78 of 358

7.4.6. CONDUCTED SPURIOUS EMISSIONS

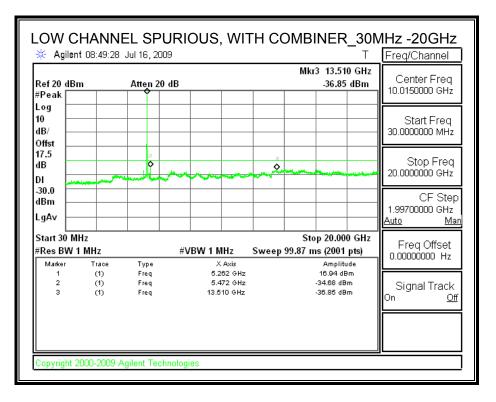
LIMITS

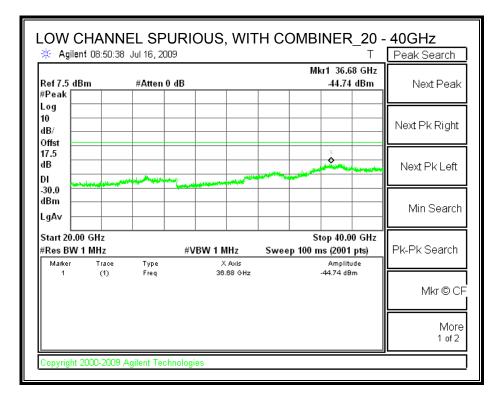
FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

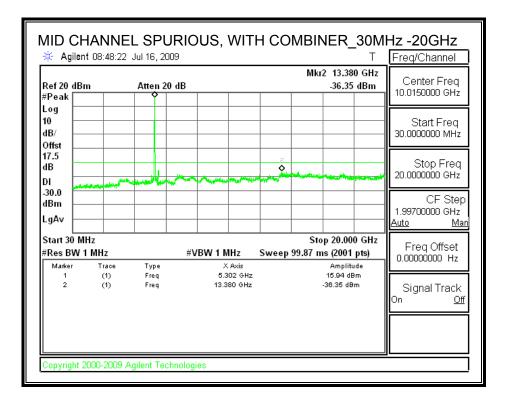
For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

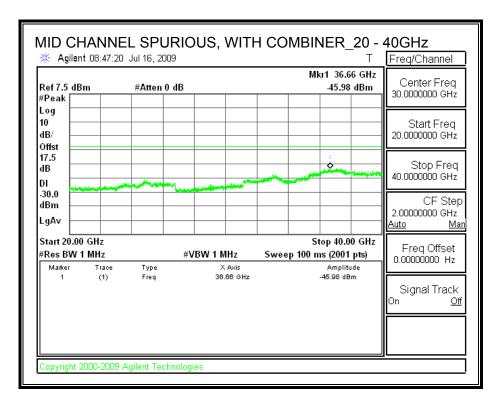
TEST PROCEDURE

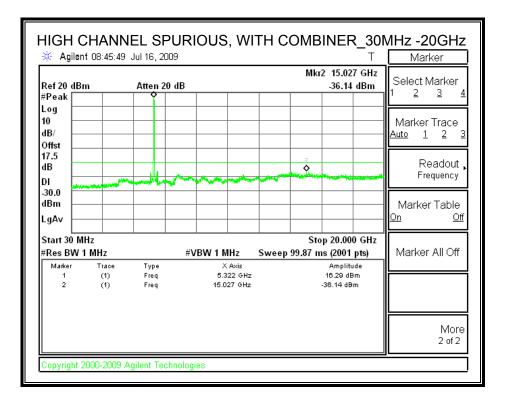

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

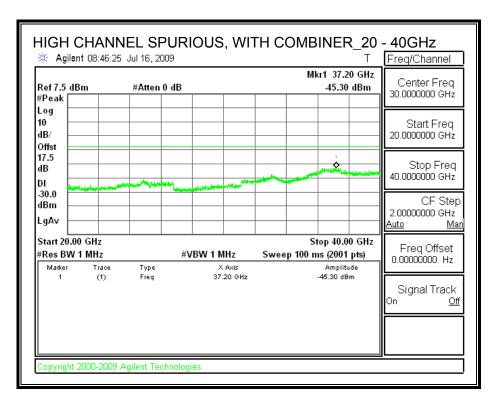

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Page 79 of 358


SPURIOUS EMISSIONS WITH COMBINER




Page 80 of 358

Page 81 of 358

Page 82 of 358

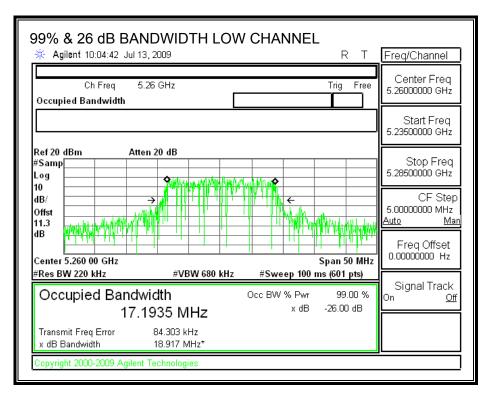
7.5. 5.3 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

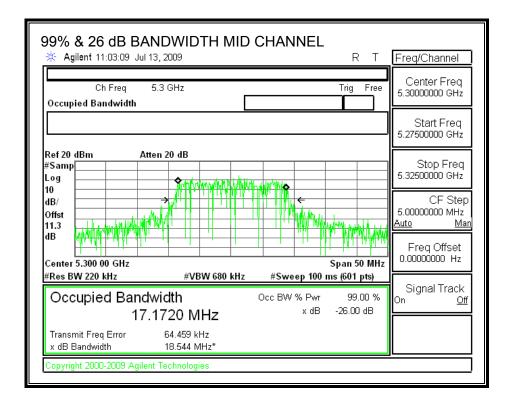
7.5.1. 99% & 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5260	17.1935	18.917
Middle	5300	17.172	18.544
High	5320	17.44	19.006

Page 83 of 358

99% & 26 dB BANDWIDTH

Page 84 of 358

99% & 26 dB BANDWIDTH	HIGH CHANNEL	RТ	Freq/Channel
Ch Freq 5.32 GHz Occupied Bandwidth		Trig Free	Center Freq 5.32000000 GHz
			Start Freq 5.29500000 GHz
Ref 20 dBm Atten 20 dB #Samp			Stop Freq 5.34500000 GHz CF Step 5.0000000 MHz <u>Auto Man</u> Freq Offset
Center 5.320 00 GHz #Res BW 220 kHz #VBW 68		ipan 50 MHz s (601 pts)	0.00000000 Hz
Occupied Bandwidth 17.4401 MHz	Occ BW % Pwr x dB	99.00 % -26.00 dB	Signal Track On <u>Off</u>
Transmit Freq Error 28.814 kHz x dB Bandwidth 19.006 MHz*			
Copyright 2000-2009 Agilent Technologies			

Page 85 of 358

7.5.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

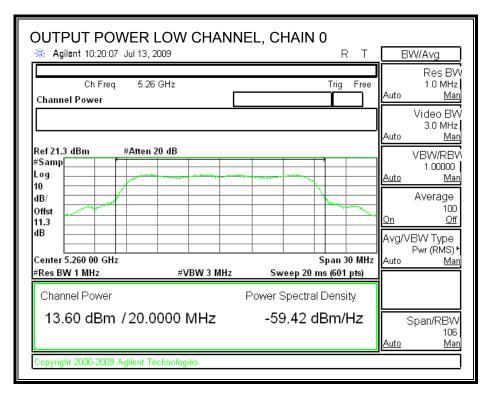
TEST PROCEDURE

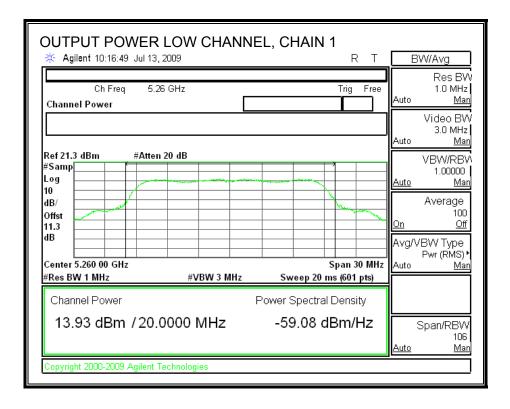
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

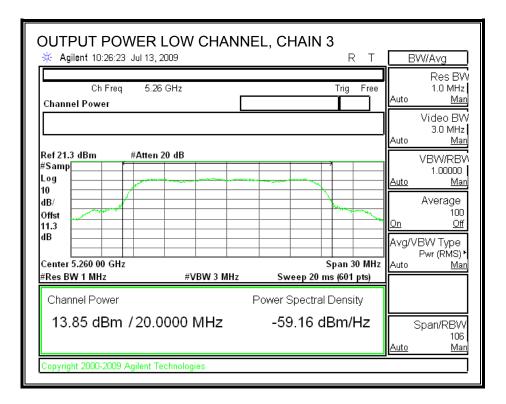
Limit

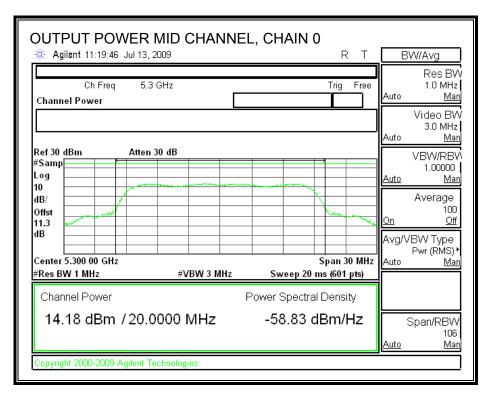

Channel	Freq	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5260	24	18.917	23.77	3	23.77
Mid	5300	24	18.544	23.68	3	23.68
High	5320	24	19.006	23.79	3	23.79

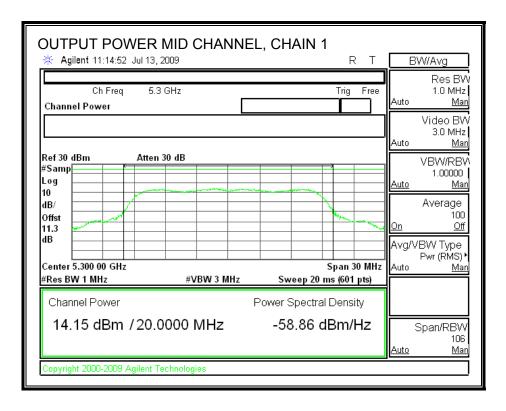

Individual Chain Results

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	13.60	13.93	14.04	13.85	19.88	23.77	-3.89
Mid	5300	14.18	14.15	14.58	14.54	20.39	23.68	-3.29
High	5320	14.36	14.57	14.42	14.58	20.50	23.79	-3.28

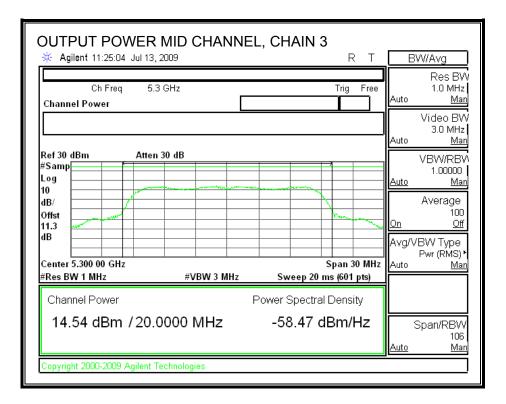
Page 86 of 358

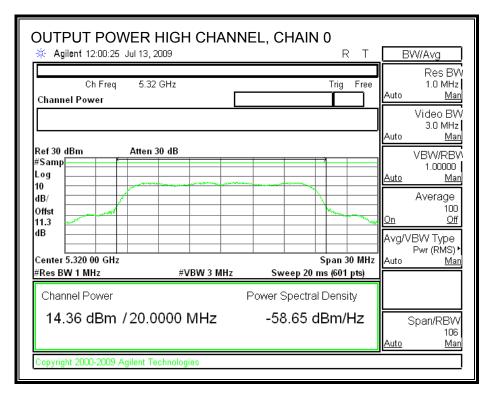

OUTPUT POWER, LOW CHANNEL

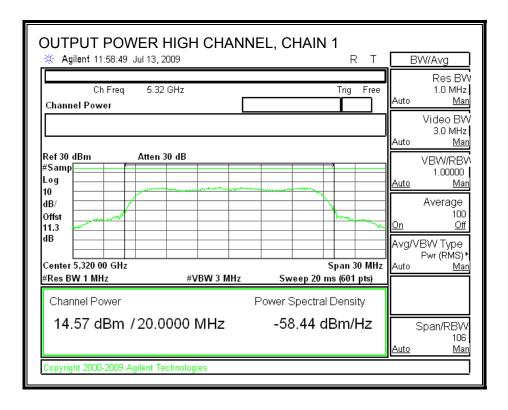

Page 87 of 358


Agilent 10:21:38 Jul 13,	2009		R T	BV	WAvg
Ch Freq 5.2 Channel Power	6 GHz		Trig Free	Auto	Res B\ 1.0 MH: <u>Ma</u>
				Auto	Video B\ 3.0 MH: <u>Ma</u>
Ref 21.3 dBm #Atten Samp .og 0				<u>Auto</u>	VBW/RB 1.00000 <u>Ma</u>
IB/				<u>On</u>	Average 100 <u>Of</u> 3VV Type
Center 5.260 00 GHz Res BW 1 MHz	#VBW 3 MHz	Sweep 20 m	ipan 30 MHz s (601 pts)		Pwr (RMS) <u>Ma</u>
Channel Power		⊃ower Spectral [Density		
14.04 dBm /20.0	0000 MHz	-58.97 dE	3m/Hz	S Auto	pan/RBV 100 Ma

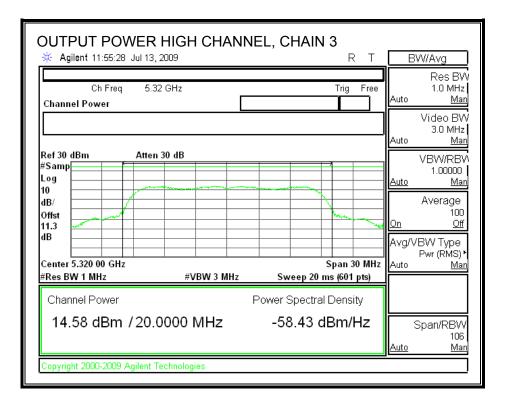
Page 88 of 358


OUTPUT POWER, MID CHANNEL


Page 89 of 358


Ch Freq 5.3 GHz Trig Free 1.0 MHz Channel Power Image: Channel Power	OUTPUT POWER		L, CHAIN 2 R	T BW/Avg
3.0 MHz Auto Mar Auto Mar Auto Mar Auto Mar Jog Mar Jog Mar Jog Mar Mar Mar Auto Mar Jog Mar Jog Mar Jog Mar Average 100 On Offst J1.3 Average Average Neg/VBW Type Pwr (RMS) ⁴ Average		GHz	Trig Fr	
#Samp Log 10 dB/ 0ffst 11.3 dB			• •	Video BV 3.0 MHz Auto <u>Mar</u>
dB/ Offst 11.3 dB ////////////////////////////////////	#Samp Log	0 dB		
Avg/VBVV Type Pwr (RMS)	dB/ Offst		Mungan	100
			Span 30 M	Pwr (RMS)
	Channel Power 14.58 dBm /20.0			106
14.58 dBm / 20.0000 MHz -58.43 dBm/Hz Span/RBW 106	Copyright 2000-2009 Agilent Te	chnologies		<u>Auto Ma</u>

Page 90 of 358


OUTPUT POWER, HIGH CHANNEL

Page 91 of 358

🌾 Agilent 11:56:51 Jul 13, :	2009	R T	BW/Avg
Ch Freq 5.32 Channel Power	GHz	Trig Free	Res B\ 1.0 MH; Auto <u>Ma</u>
			Video BV 3.0 MH: Auto <u>Ma</u>
Ref 30 dBm Atten Samp	30 dB		VBW/RB 1.00000 <u>Auto Ma</u> Average 100
Center 5.320 00 GHz		Span 30 MHz	Avg/VBW Type Pwr (RMS) Auto <u>Ma</u>
Res BW 1 MHz	#VBW 3 MHz	Sweep 20 ms (601 pts)	
Channel Power	ł	Power Spectral Density	
14.42 dBm / 20.0	0000 MHz	-58.59 dBm/Hz	Span/RBV 108 Auto Ma

Page 92 of 358

7.5.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5260	14.08	14.42	14.24	14.19
Middle	5300	14.21	14.50	14.75	14.60
High	5320	14.12	14.41	14.42	14.26

Page 93 of 358

7.5.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

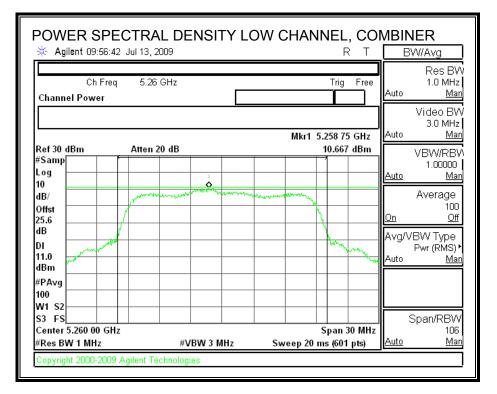
IC RSS-210 A9.2 (2)

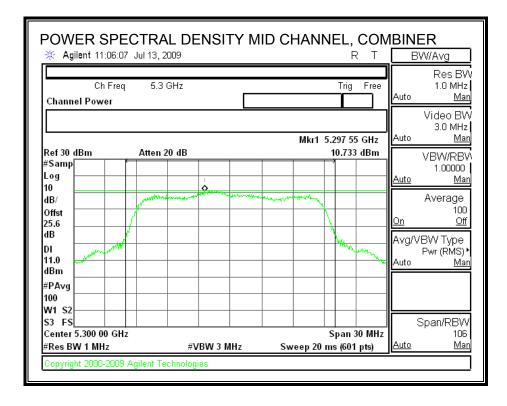
For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi, therefore the limit is 11 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5260	10.67	11.00	-0.33
Middle	5300	10.73	11.00	-0.27
High	5320	10.52	11.00	-0.48

RESULTS

Page 94 of 358

POWER SPECTRAL DENSITY

Page 95 of 358

POWER SPECTRA		GH CHANNEL, CC	
	GHz	Trig Free	Res BV 1.0 MHz Auto <u>Mar</u> Video BV
Ref 30 dBm Atten 2	20 dB	Mkr1 5.318 05 GHz 10.520 dBm	3.0 MHz Auto <u>Mar</u> VBW/RBV
			1.00000 <u>Auto Mar</u> Average
Offst 25.6 dB DI		- Norman	100 <u>On Off</u> Avg/VBW Type Pwr (RMS) ¹
11.0 dBm			Auto <u>Ma</u>
W1 S2 S3 FS Center 5.320 00 GHz		Span 30 MHz	Span/RBV
#Res BW 1 MHz Copyright 2000-2009 Agilent Te	#VBW 3 MHz chnologies	Sweep 20 ms (601 pts)	<u>Auto Mar</u>

Page 96 of 358

7.5.5. PEAK EXCURSION

LIMITS

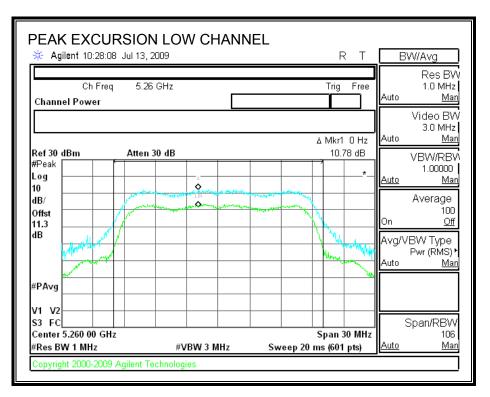
FCC §15.407 (a) (6)

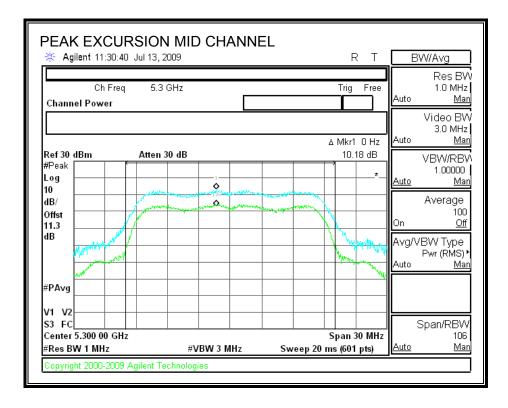
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5260	10.78	13	-2.22
Middle	5300	10.18	13	-2.82
High	5320	9.33	13	-3.67

Page 97 of 358

PEAK EXCURSION

Page 98 of 358

🔆 Agilent 12:12:53 Jul 13,	2009		RΤ	В	W/Avg
Ch Freq 5.3. Channel Power	2 GHz		Trig Free	Auto	Res BV 1.0 MHz <u>Mar</u>
RBW 1.0 MHz		۵	Mkr1 0 Hz	Auto	Video BV 3.0 MHz <u>Mar</u>
Ref 30 dBm Atten #Peak Log 10	30 dB		9.33 dB	<u>Auto</u>	VBW/RBV 1.00000 <u>Mar</u>
dB/ Offst 11.3		A Company and a company an a company and a c	4,	On	Average 100 <u>Off</u>
dB			March 1944	A∨g/∖ Auto	/BW Type Pwr (RMS) • <u>Mar</u>
#PAvg					
V1 V2 S3 FC					Span/RBW
Center 5.320 00 GHz #Res BW 1 MHz	#VBW 3 MHz	S Sweep 20 ms	pan 30 MHz s (601 pts)	<u>Auto</u>	106 <u>Mar</u>

Page 99 of 358

7.5.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (3)

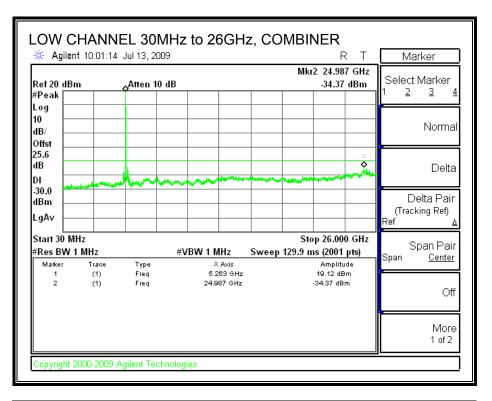
IC RSS-210 A9.3 (3)

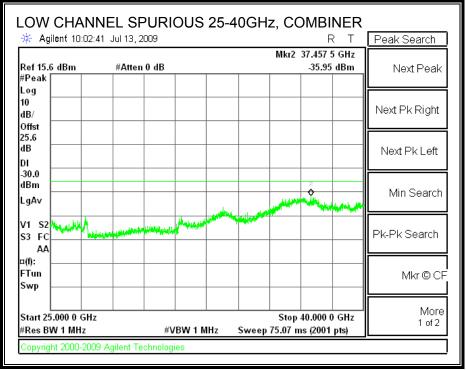
For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

TEST PROCEDURE

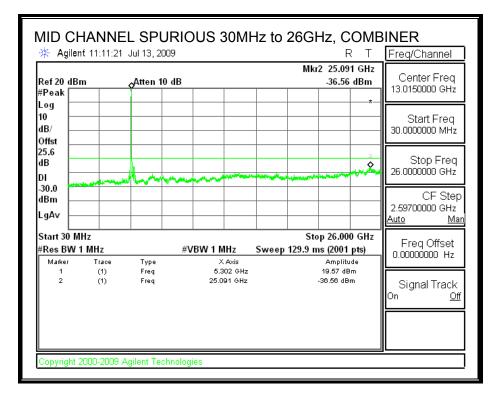
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

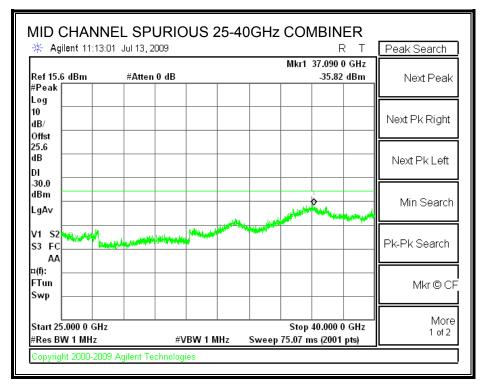

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

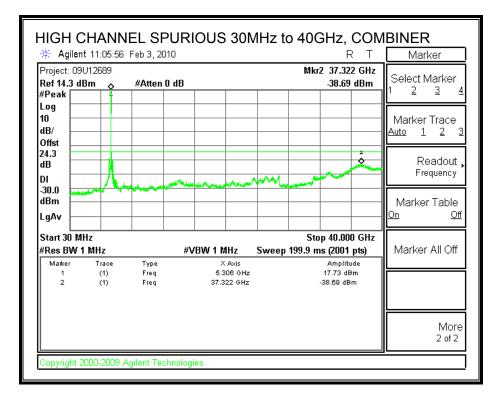
Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 100 of 358


LOW CHANNEL SPURIOUS EMISSIONS



Page 101 of 358


MID CHANNEL SPURIOUS EMISSIONS

Page 102 of 358

HIGH CHANNEL SPURIOUS EMISSIONS

Page 103 of 358

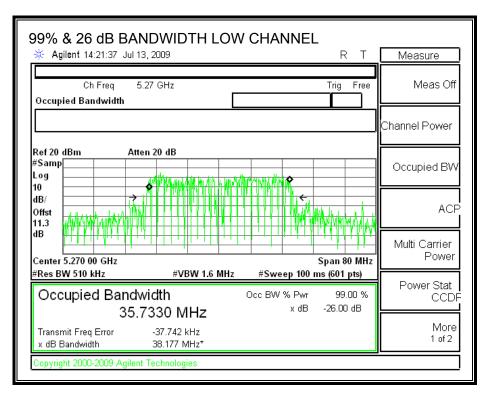
7.6. 5.3 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

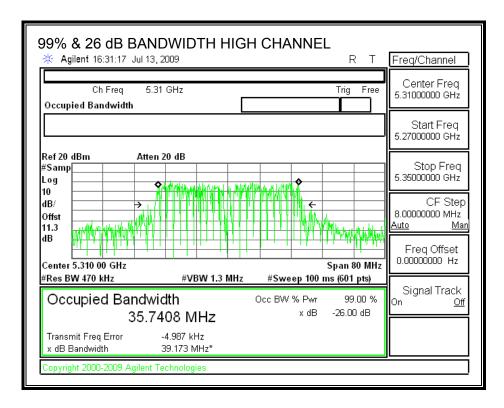
7.6.1. 99% & 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5270	35.733	38.177	
High	5310	35.7408	39.174	

Page 104 of 358

99% & 26 dB BANDWIDTH

Page 105 of 358

7.6.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

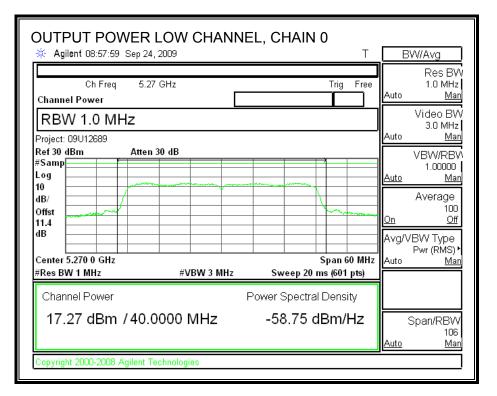
For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

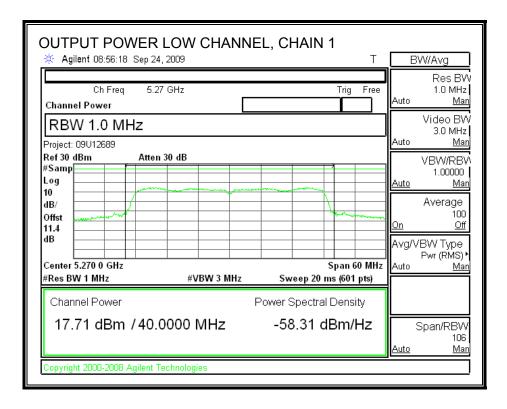
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

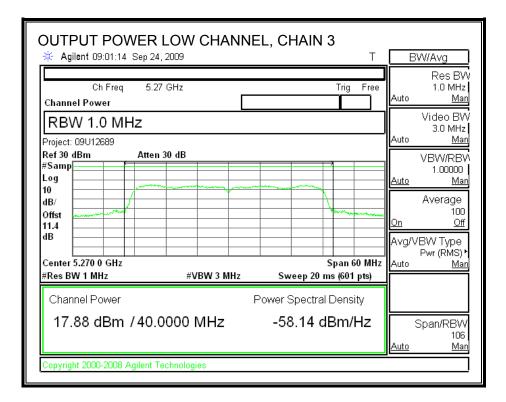
RESULTS

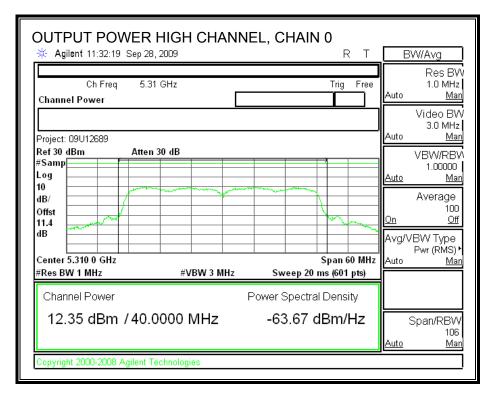

Limit

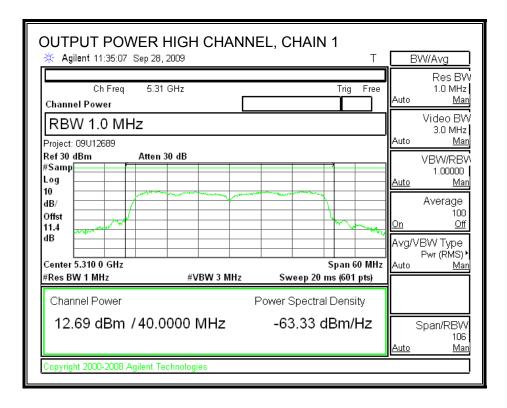

Channel	Freq	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5270	24	38.177	26.82	3	24.00
High	5310	24	39.174	26.93	3	24.00

Individual Chain Results

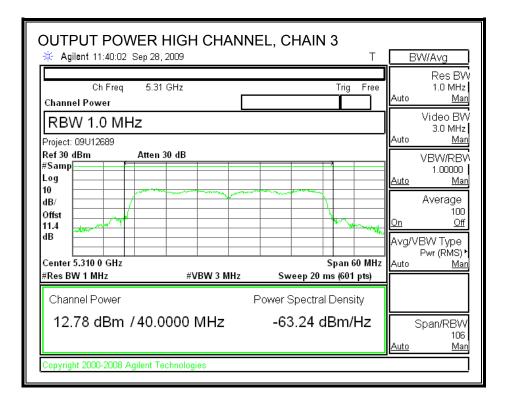
Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	17.27	17.71	17.53	17.88	23.62	24.00	-0.38
High	5310	12.35	12.69	12.30	12.78	18.56	24.00	-5.44


OUTPUT POWER, LOW CHANNEL


Page 107 of 358


🔆 Agilent 08:59:34 Sep 24,	2009	L	BW/Avg
Ch Freq 5.27 Channel Power RBW 1.0 MHz	GHz	Trig Fr	Auto <u>Ma</u> Video BV
Project: 09U12689 Ref 30 dBm Atten	30 dB		3.0 MH; Auto <u>Ma</u>
#Samp			VBVWRB 1.00000 <u>Auto Ma</u>
dB/ Offst			Average 100 0n 0f
dB			Avg/VBW Type Pwr (RMS)
Center 5.270 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 60 M Sweep 20 ms (601 pts)	
Channel Power		Power Spectral Density	
17.53 dBm /40.0	000 MHz	-58.49 dBm/Hz	Span/RBV 100 Auto Ma

Page 108 of 358


OUTPUT POWER, HIGH CHANNEL

Page 109 of 358

OUTPUT POWER		EL, CHAIN 2	BW/Avg
Channel Power	1 GHz	Trig Free	Res BW 1.0 MHz Auto Man
RBW 1.0 MHz Project: 09U12689 Ref 30 dBm Atter	30 dB		Video BV 3.0 MHz Auto <u>Man</u>
#Samp Log 10			VBW/RBV 1.00000 <u>Auto Man</u>
dB/ Offst 11.4 dB			
Center 5.310 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 60 MHz Sweep 20 ms (601 pts)	Avg/VBW Type Pwr (RMS) • Auto <u>Mar</u>
Channel Power	F	^o ower Spectral Density	
12.30 dBm /40.	0000 MHz	-63.72 dBm/Hz	Span/RBW 106 <u>Auto Mar</u>
Copyright 2000-2008 Agilent 1	echnologies		

Page 110 of 358

7.6.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5270	16.69	16.82	17.03	17.57
High	5310	12.65	12.52	12.53	12.72

Page 111 of 358

7.6.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

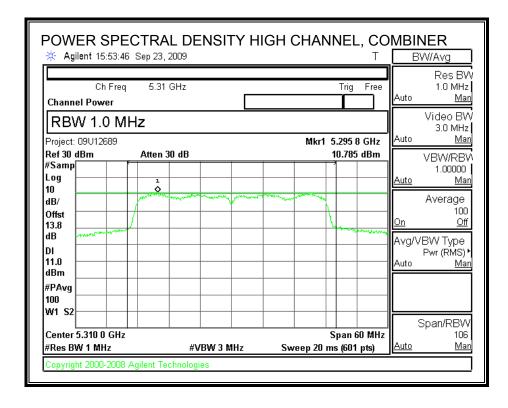
For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi, therefore the limit is 11 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5270	10.69	11.00	-0.31
High	5310	10.79	11.00	-0.21

Page 112 of 358

POWER SPECTRAL DENSITY

		DW CHANNEL, CC	
☆ Agilent 15:46:51 Sep 23,	2009		BVV/Avg
Ch Freq 5.27 Channel Power	GHz	Trig Free	Res BW 1.0 MHz Auto <u>Man</u>
RBW 1.0 MHz Project: 09U12689		Mkr1 5.254 9 GHz	Video BW 3.0 MHz Auto Man
Ref 30 dBm Atten #Samp Log 1	30 dB	10.689 dBm	VBW/RBV 1.00000 Auto Man
10 dB/ Offst 13.8 dB / / / / / / / / / / / / / / / / / / /			Average 100 On Off
DI 11.0 dBm			Avg/VBW Type Pwr (RMS) • Auto <u>Man</u>
#PAvg 100 W1 S2			 Span/RBW
Center 5.270 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 60 MHz Sweep 20 ms (601 pts)	
Copyright 2000-2008 Agilent Te	echnologies		

Page 113 of 358

7.6.5. PEAK EXCURSION

LIMITS

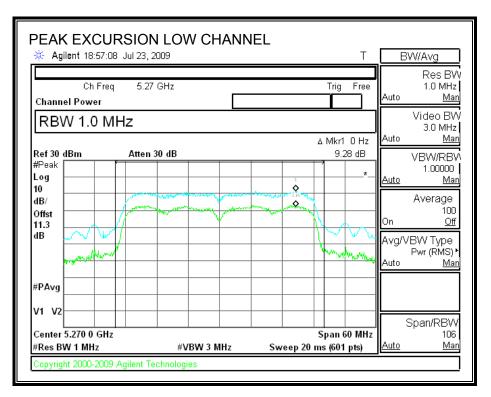
FCC §15.407 (a) (6)

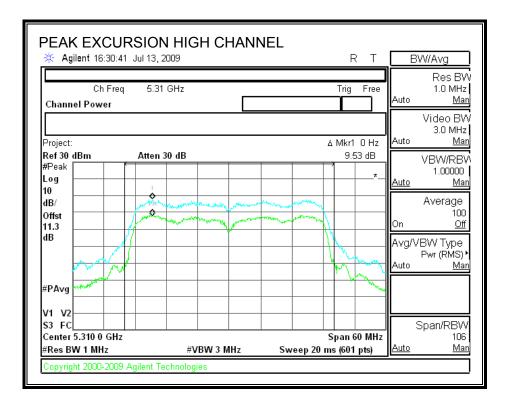
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


<u>RESULTS</u>

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5270	9.28	13	-3.72
High	5310	9.53	13	-3.47

Page 114 of 358

PEAK EXCURSION

Page 115 of 358

7.6.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (3)

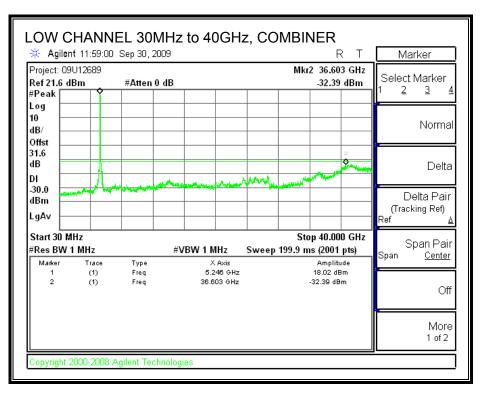
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

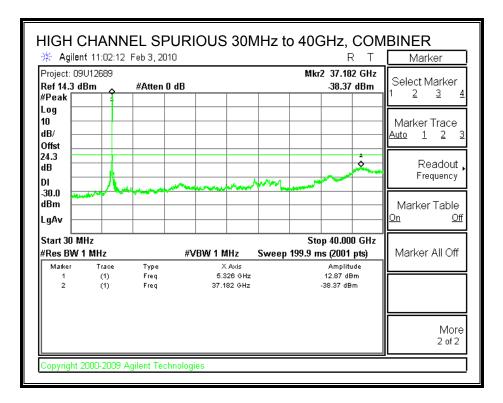
Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 116 of 358

LOW CHANNEL SPURIOUS EMISSIONS

HIGH CHANNEL SPURIOUS EMISSIONS

Page 117 of 358

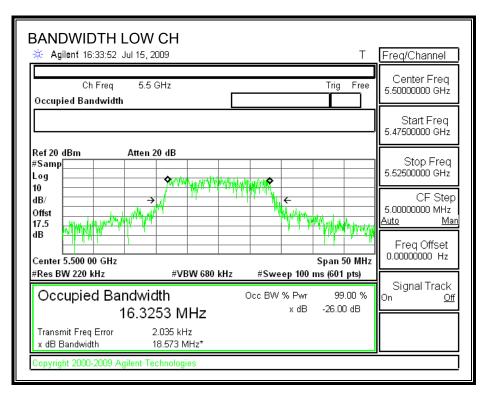
7.7. 5.6GHz BAND CHANNEL TESTS FOR 802.11a MODE

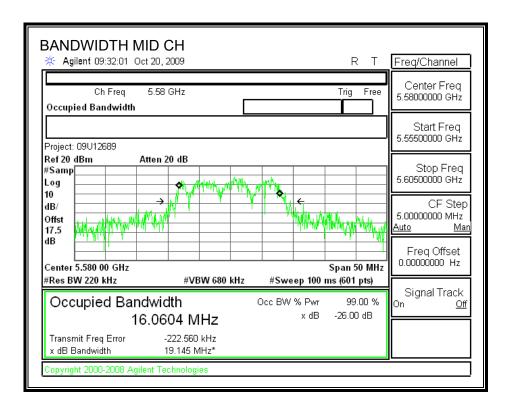
7.7.1. 26 dB and 99% BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5500	18.573	16.3253
Middle	5580	19.145	16.0604
High	5700	19.048	16.4891

Page 118 of 358

26 dB and 99% BANDWIDTH

Page 119 of 358

BANDWIDTH HIGH CH Agilent 11:27:31 Jul 15, 2009		T F	Freq/Channel
Ch Freq 5.7 GHz Occupied Bandwidth	Trig	Free	Center Freq 5.70000000 GHz
			Start Freq 5.67500000 GHz
Ref 20 dBm Atten 20 dB #Samp	P4494498		Stop Freq 5.72500000 GHz
dB/ → w Offst 17.5			CF Step 5.00000000 MHz <u>suto Man</u>
Center 5.700 00 GHz	Span 5		Freq Offset 0.00000000 Hz
	3W 680 kHz #Sweep 100 ms (601	pts)	Signal Track
Occupied Bandwidth 16.4891 N		••••)n <u>Off</u>
Transmit Freq Error -50.367 I x dB Bandwidth 19.048 N			
Copyright 2000-2009 Agilent Technolog	es		

Page 120 of 358

7.7.2. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

Antenna Gain (dBi)		Effective Legacy Gain (dBi)
3	3.01	6.01

For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

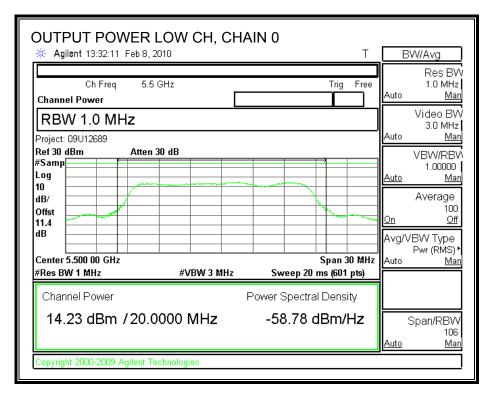
TEST PROCEDURE

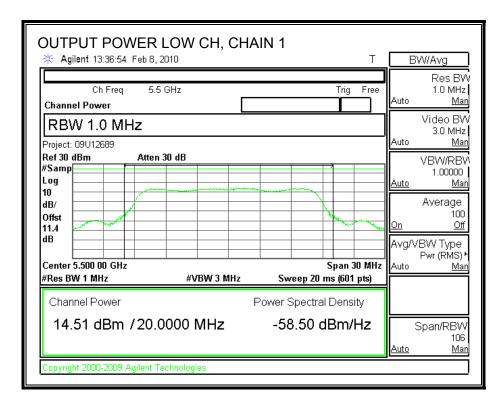
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

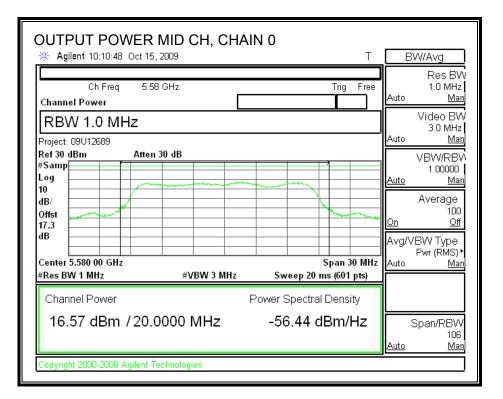
Limit


Channel	Frequency	Fixed	В	11 + 10 Log B	Effective	Limit
		Limit		Limit	Ant Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5500	24	18.573	23.69	6.01	23.68
Mid	5580	24	19.145	23.82	6.01	23.81
High	5700	24	19.048	23.80	6.01	23.79

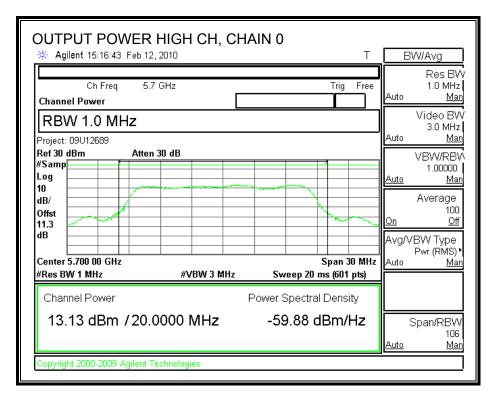

Individual Chain Results

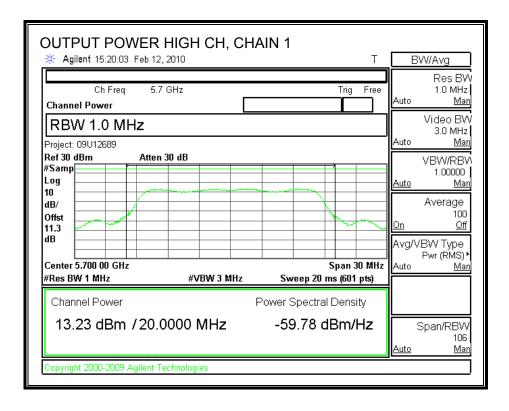
Channel	Frequency	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	14.23	14.51	17.38	23.68	-6.30
Mid	5580	16.57	16.92	19.76	23.81	-4.05
High	5700	13.13	13.23	16.19	23.79	-7.60

Page 121 of 358


OUTPUT POWER, LOW CHANNEL

Page 122 of 358


OUTPUT POWER, MID CHANNEL



OUTPUT POWER	-	I <mark>N 1</mark>	BW/Avg
Ch Freq 5.58 Channel Power	GHz	Trig Free	Res BW 1.0 MHz Auto <u>Man</u> Video BW
RBW 1.0 MHz Project: 09U12689 Ref 30 dBm Atten: #Samp	30 dB		3.0 MHz Auto <u>Man</u> VBW/RBW 1.00000 Auto <u>Man</u> Average 100 On <u>Off</u>
I7.3 dB Center 5.580 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 30 MHz Sweep 20 ms (601 pts)	Avg/VBW Type Pwr (RMS) •
Channel Power 16.92 dBm /20.0 Copyright 2000-2008 Agilent Te	000 MHz	Power Spectral Density -56.09 dBm/Hz	Span/RBW 106 <u>Auto Man</u>

Page 123 of 358

OUTPUT POWER, HIGH CHANNEL

Page 124 of 358

7.7.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5500	14.20	14.30	17.26
Middle	5580	16.97	16.68	19.84
High	5700	12.30	12.40	15.36

Page 125 of 358

7.7.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

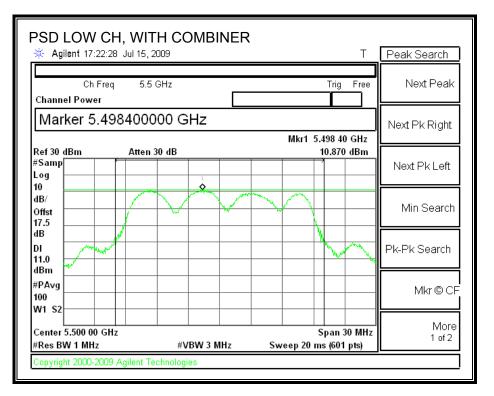
Use this table if antenna gain for Chain 0 = antenna gain for Chain 1

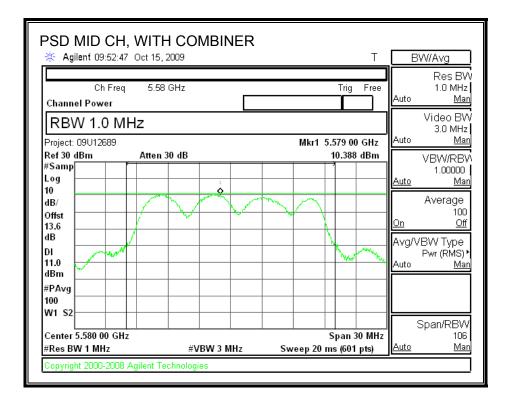
Antenna Gain (dBi)		Effective Legacy Gain (dBi)	
3	3.01	6.01	

For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

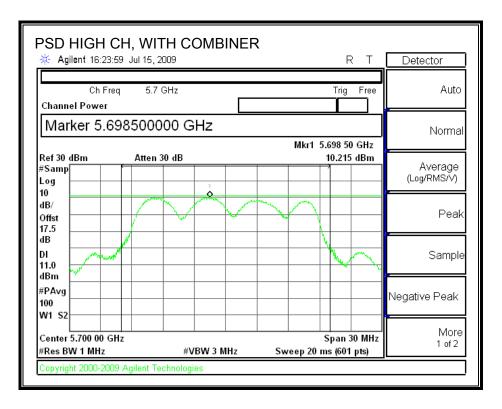
The maximum effective antenna gain is 6.01 dBi, therefore the limit is 10.99 dBm.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	10.870	10.99	-0.12
Middle	5580	10.388	10.99	-0.60
High	5700	10.215	10.99	-0.78


Page 126 of 358

POWER SPECTRAL DENSITY WITH COMBINER

Page 127 of 358

Page 128 of 358

7.7.5. PEAK EXCURSION

<u>LIMITS</u>

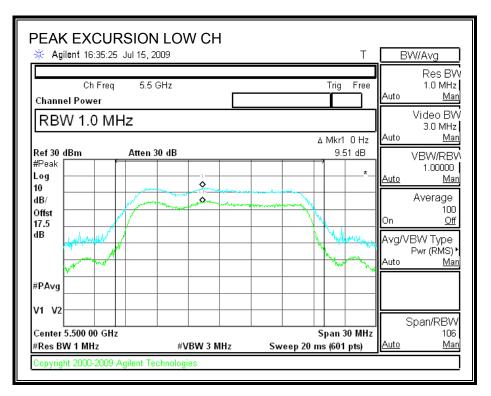
FCC §15.407 (a) (6)

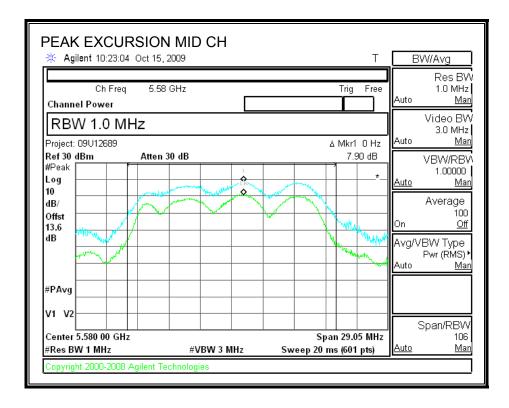
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	9.51	13	-3.49
Middle	5580	7.90	13	-5.10
High	5700	7.97	13	-5.03

Page 129 of 358

PEAK EXCURSION

Page 130 of 358

PEAK EXCURSION			Т	B	///Avg
Ch Freq 5.7 Channel Power	GHz	Triç 1	Free	Auto	Res BV 1.0 MHz <u>Man</u>
RBW 1.0 MHz		ے۔ ۸ Mki	1 O Hz	Auto	Video BW 3.0 MHz <u>Man</u>
Ref 30 dBm Atten 3 #Peak Log 10	0 dB	7	.97 dB	<u>Auto</u>	VBW/RBV 1.00000 <u>Man</u>
10 dB/ Offst 17.5				On	Average 100 <u>Off</u>
dB				Avg/V Auto	BW Type Pwr (RMS)≛ <u>Man</u>
#PAvg					
V1 V2					Span/RBW
Center 5.700 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span Sweep 20 ms (60	30 MHz 1 pts)	<u>Auto</u>	106 <u>Man</u>

Page 131 of 358

7.7.6. CONDUCTED SPURIOUS EMISSIONS

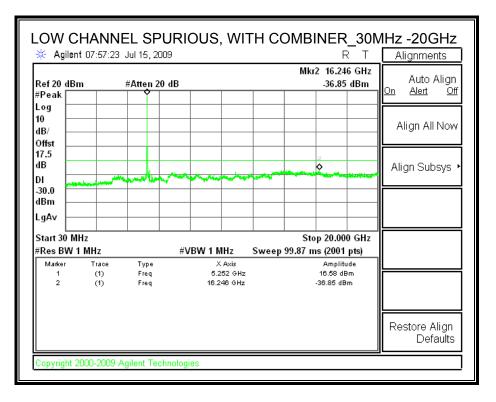
LIMITS

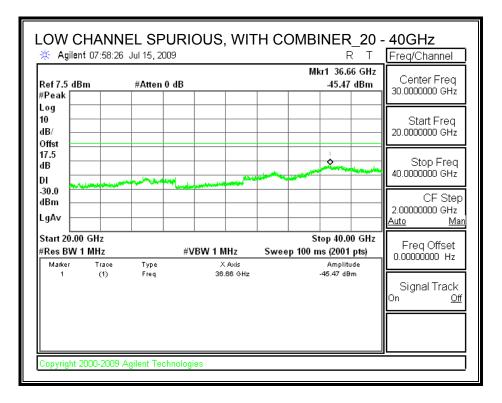
FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

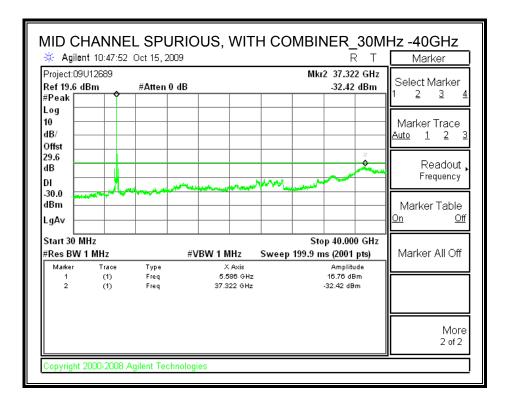
For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

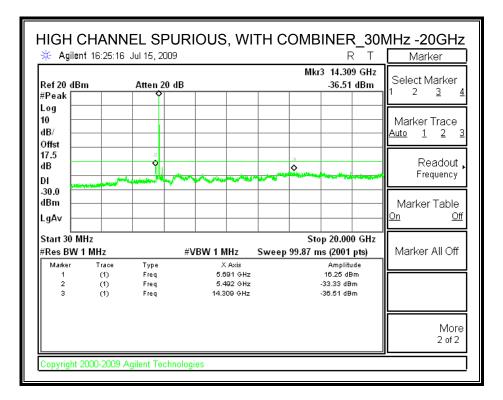

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

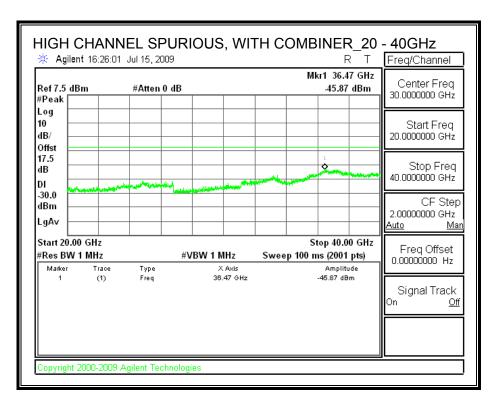

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

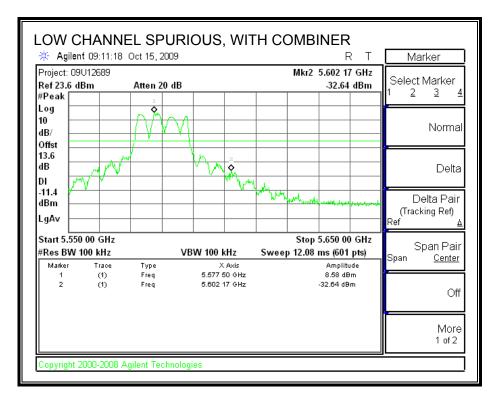

Page 132 of 358

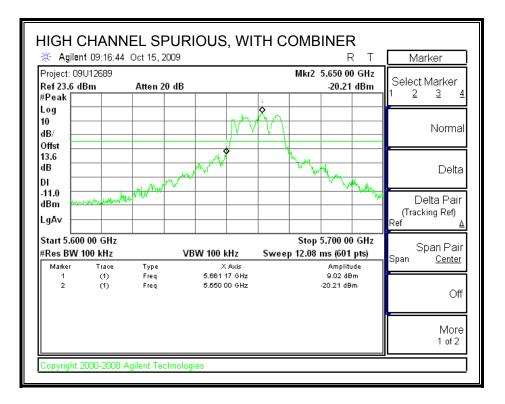
SPURIOUS EMISSIONS WITH COMBINER





Page 133 of 358


Page 134 of 358



Page 135 of 358

7.7.7. CONDUCTED SPURIOUS (-20 dBc)

Page 136 of 358

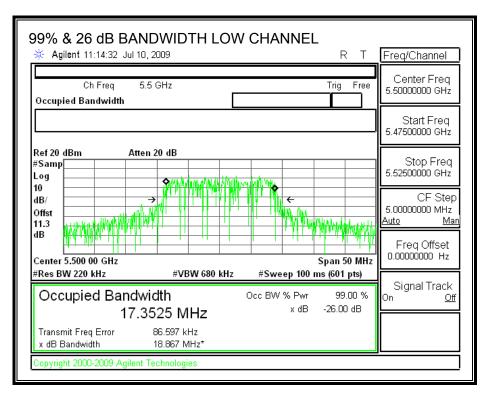
7.8. 5.6 GHz BAND CHANNEL TESTS FOR 802.11HT20 MODE

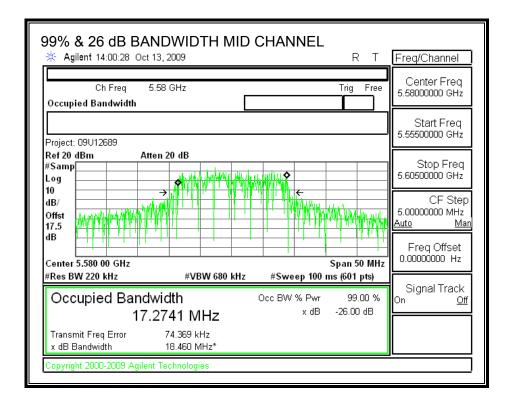
7.8.1. 99% & 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5500	17.3525	18.867
Middle	5580	17.2741	18.460
High	5700	17.4728	18.394

Page 137 of 358

99% & 26 dB BANDWIDTH

Page 138 of 358

99% & 26 dB BANDWIDTH	HIGH CHANNEL	RТ	Freq/Channel
Ch Freq 5.7 GHz Occupied Bandwidth		Trig Free	Center Freq 5.70000000 GHz
			Start Freq 5.67500000 GHz
Ref 20 dBm Atten 20 dB #Samp Log 10 Structure Atten 20 dB			Stop Freq 5.72500000 GHz
dB/ Offst 11.3		n an	CF Step 5.0000000 MHz <u>Auto Man</u>
dB Center 5.700 00 GHz #Res BW 220 kHz #VBW 6	SF	an 50 MHz	Freq Offset 0.00000000 Hz
Occupied Bandwidth 17.4728 MHz	Occ BW % Pwr		Signal Track On <u>Off</u>
Transmit Freq Error 72.384 kHz x dB Bandwidth 18.394 MHz*			
Copyright 2000-2009 Agilent Technologies			

Page 139 of 358

7.8.2. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

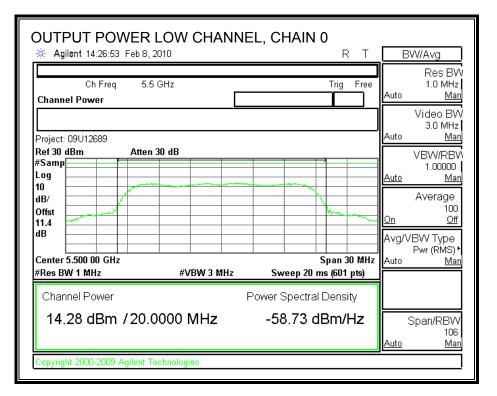
For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

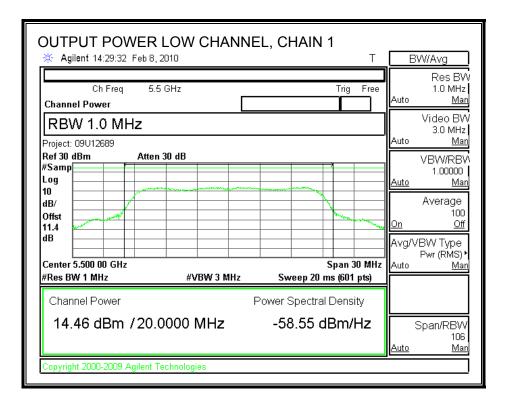
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

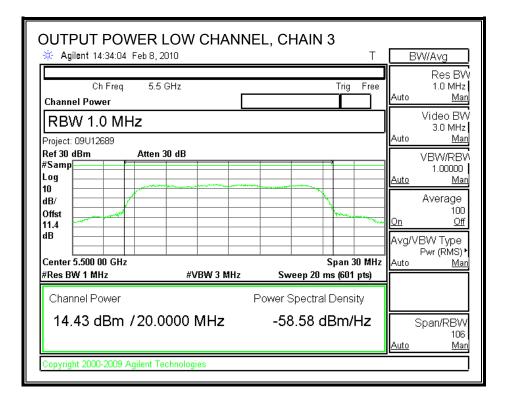
RESULTS

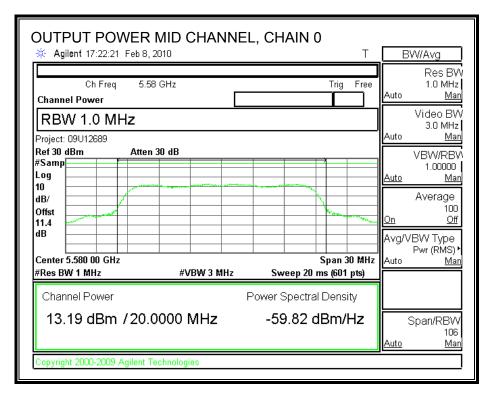

Limit

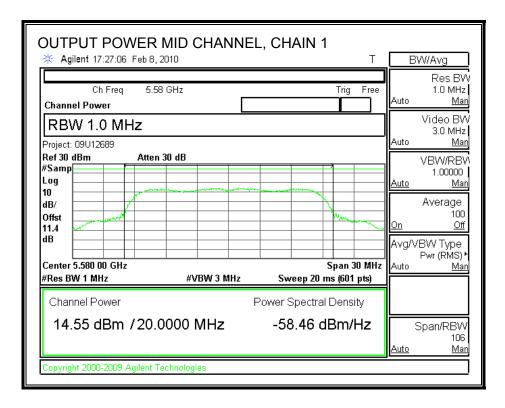

Channel	Freq	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5500	24	18.867	23.76	3	23.76
Mid	5580	24	18.460	23.66	3	23.66
High	5700	24	18.394	23.65	3	23.65

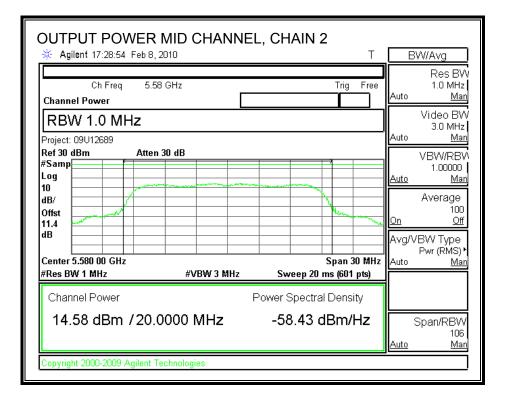
Individual Chain Results

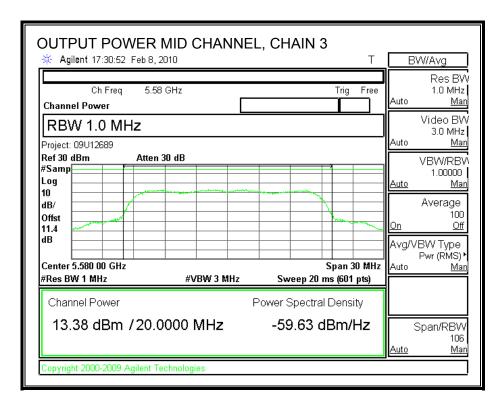
Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	14.28	14.46	15.11	14.43	20.60	23.76	-3.15
Mid	5580	13.19	14.55	14.58	13.38	19.99	23.66	-3.67
High	5700	12.46	13.54	13.31	13.22	19.17	23.65	-4.48

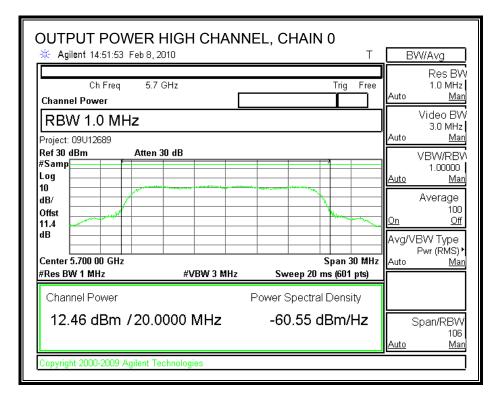

OUTPUT POWER, LOW CHANNEL

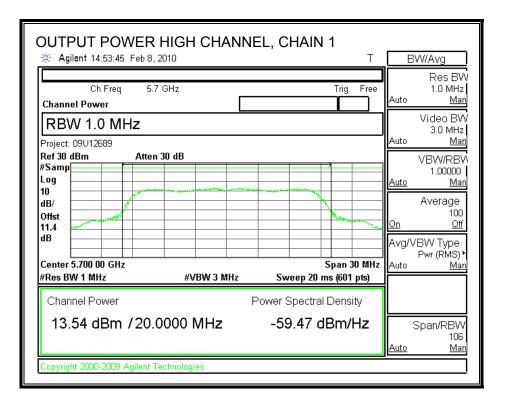

Page 141 of 358

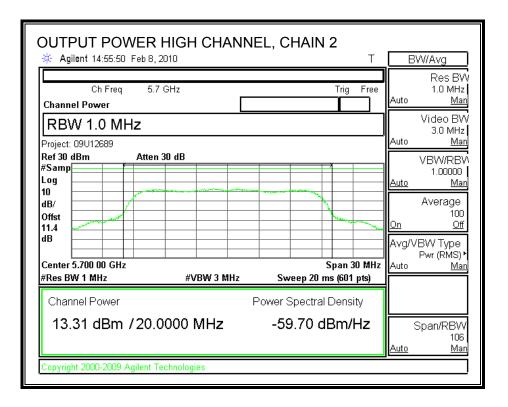

OUTPUT POWER LOW CHANNEL, CHAIN 2	BW/Avg
Ch Freq 5.5 GHz Trig Free Channel Power RBW 1.0 MHz	Res BW 1.0 MHz Auto <u>Man</u> Video BW
CDVV I.U IVINZ Project: 09U12689 Ref 30 dBm Atten 30 dB #Samp Image: Comparison of the second sec	3.0 MHz Auto <u>Man</u> VBW/RBW 1.00000 <u>Auto Man</u> Average 100 On Off
II.4 dB Center 5.500 00 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (601 pts)	Avg/VBW Type Pwr (RMS) ► Auto <u>Man</u>
Channel Power Power Spectral Density 15.11 dBm / 20.0000 MHz -57.90 dBm/Hz	Span/RBW 106 <u>Auto Man</u>
Copyright 2000-2009 Agilent Technologies	

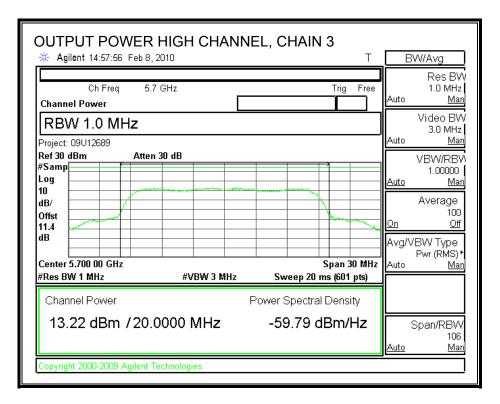

Page 142 of 358


OUTPUT POWER, MID CHANNEL


Page 143 of 358




Page 144 of 358


OUTPUT POWER, HIGH CHANNEL

Page 145 of 358

Page 146 of 358

7.8.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5500	13.60	14.10	14.90	14.30
Middle	5580	12.90	14.00	14.30	12.90
High	5700	12.30	13.10	13.00	13.00

Page 147 of 358

7.8.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

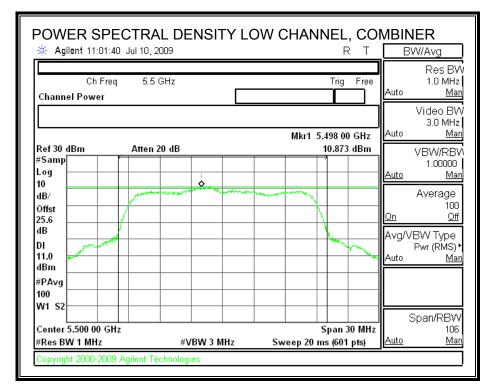
IC RSS-210 A9.2 (2)

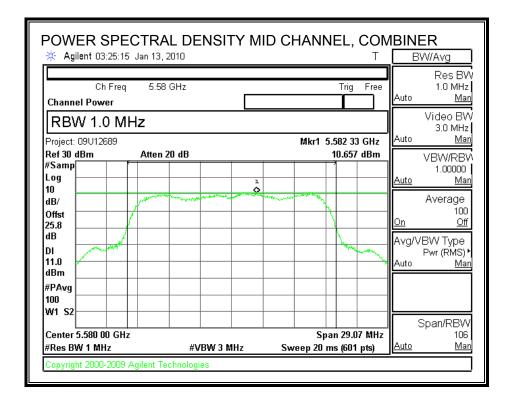
For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi, therefore the limit is 11 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	10.873	11.00	-0.13
Middle	5580	10.657	11.00	-0.34
High	5700	10.423	11.00	-0.58

RESULTS

Page 148 of 358

POWER SPECTRAL DENSITY

Page 149 of 358

POWER SPECTRA		IGH CHANNEL, CC	
Ch Freq 5.7		Trig Free	Res BW 1.0 MHz Auto <u>Man</u>
Ref 30 dBm Atten 2	20 dB	Mkr1 5.697 95 GHz 10.423 dBm	Video BW 3.0 MHz Auto <u>Man</u> VBW/RBV
#Samp Log 10 dB/	I A A A A A A A A A A A A A A A A A A A		1.00000 <u>Auto Man</u> Average
Offst 25.6 dB			100 <u>On Off</u> Avg/VBW Type Pwr (RMS)►
11.0 ###################################			Auto <u>Man</u>
100 W1 S2 Center 5.700 00 GHz		Span 30 MHz	Span/RBW
#Res BW 1 MHz Copyright 2000-2009 Agilent Te	#VBW 3 MHz chnologies	Sweep 20 ms (601 pts)	<u>Auto Man</u>

Page 150 of 358

7.8.5. PEAK EXCURSION

LIMITS

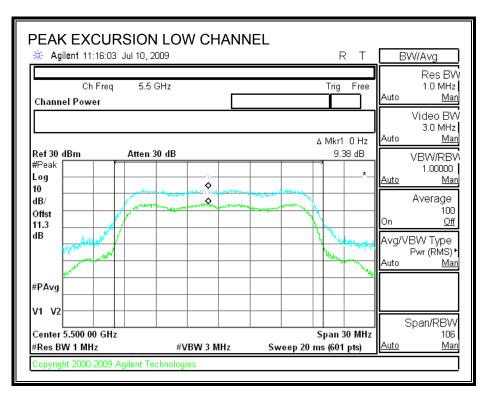
FCC §15.407 (a) (6)

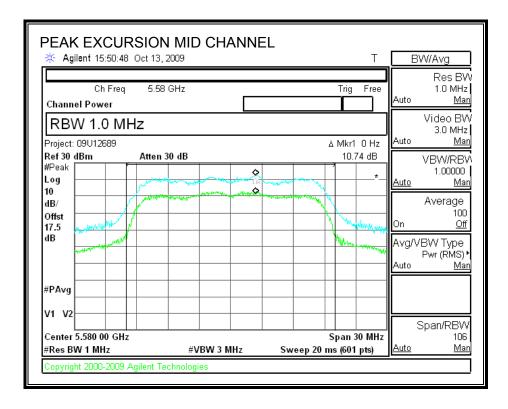
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	9.38	13	-3.62
Middle	5580	10.74	13	-2.26
High	5700	10.70	13	-2.30

Page 151 of 358

PEAK EXCURSION

Page 152 of 358

🔆 Agilent 14:36:25 Jul 10,	2009		RΤ	E	W/Avg
Ch Freq 5.7 Channel Power	′ GHz		Trig Free	Auto	Res BV 1.0 MHz <u>Mar</u>
RBW 1.0 MHz		۵	Mkr1 0 Hz	Auto	Video BV 3.0 MHz <u>Mar</u>
Ref 30 dBm Atten #Peak Log 10	1 30 dB	,	10.70 dB	<u>Auto</u>	VBW/RBV 1.00000 <u>Mar</u>
dB/ Offst 11.3			Yı,	On	Average 100 <u>Off</u>
dB			Mildrendy	A∨g/\ Auto	/BW Type Pwr (RMS) <u>Mar</u>
#PAvg					
V1 V2			pan 30 MHz		Span/RBW
#Res BW 1 MHz	#VBW 3 MHz	Sweep 20 ms	-	Auto	Mar

Page 153 of 358

7.8.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

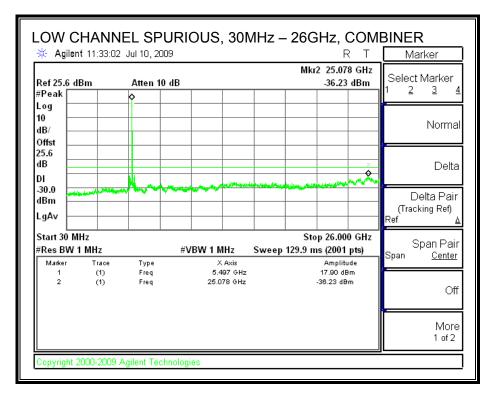
FCC §15.407 (b) (3)

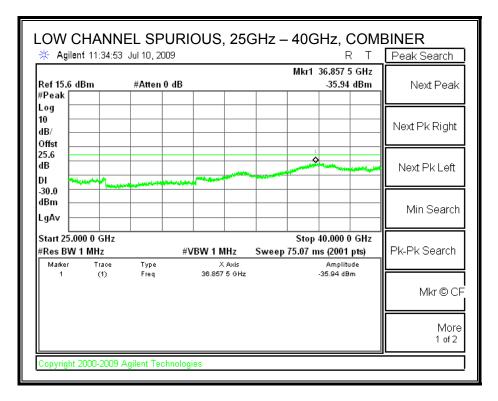
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

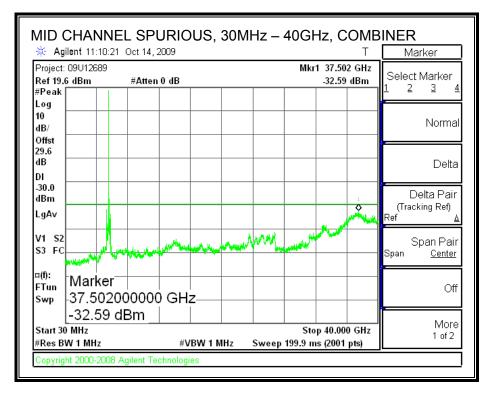
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

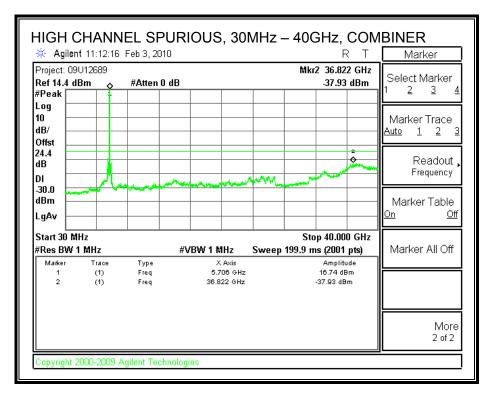

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

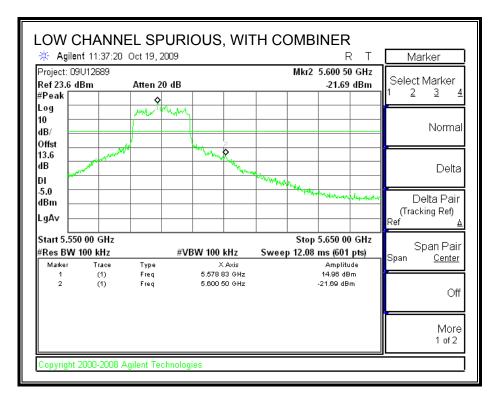
Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

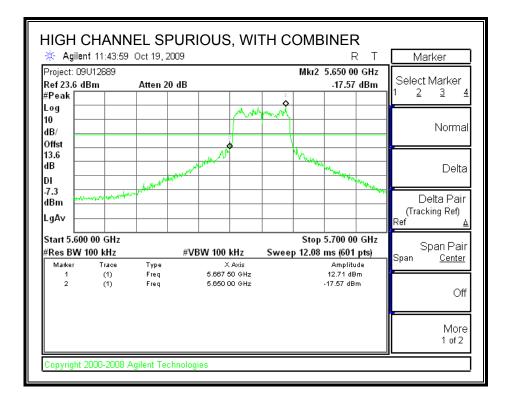
Page 154 of 358


LOW CHANNEL SPURIOUS EMISSIONS


Page 155 of 358

MID CHANNEL SPURIOUS EMISSIONS


Page 156 of 358


HIGH CHANNEL SPURIOUS EMISSIONS

Page 157 of 358

7.8.7. CONDUCTED SPURIOUS (-20 dBc)

Page 158 of 358

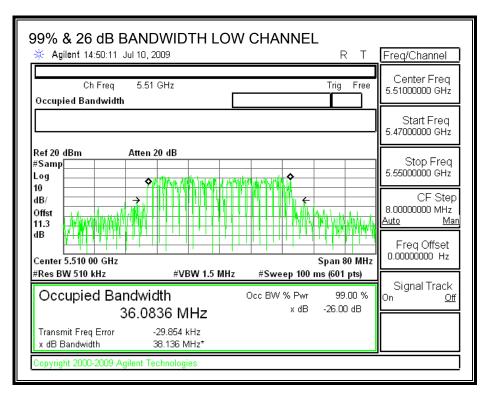
7.9. 5.6 Hz BAND CHANNEL TESTS FOR 802.11HT40 MODE

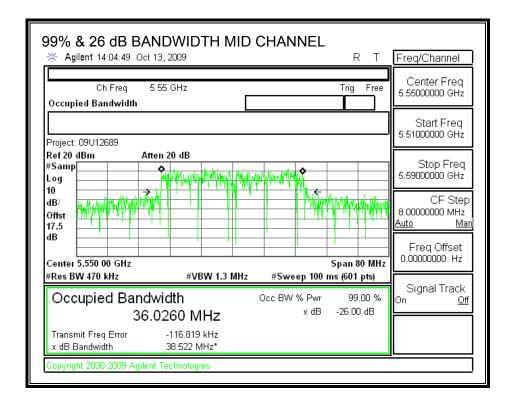
7.9.1. 99% & 26 dB BANDWIDTH

<u>LIMITS</u>

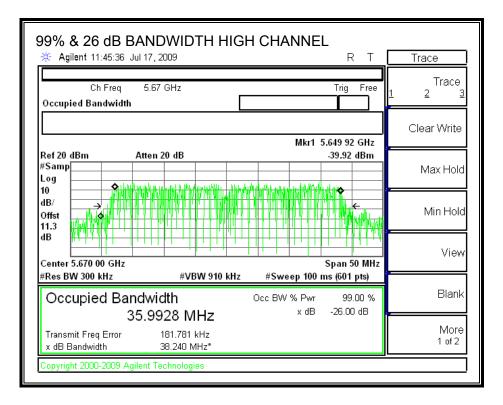
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5510	36.0836	38.136	
Middle	5550	36.0260	38.522	
High	5670	35.9928	38.24	


Page 159 of 358

99% & 26 dB BANDWIDTH

Page 160 of 358

Page 161 of 358

7.9.2. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

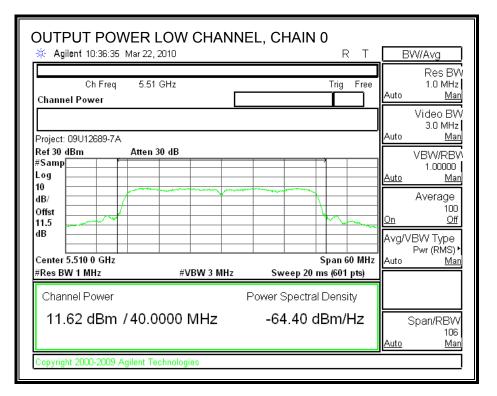
For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

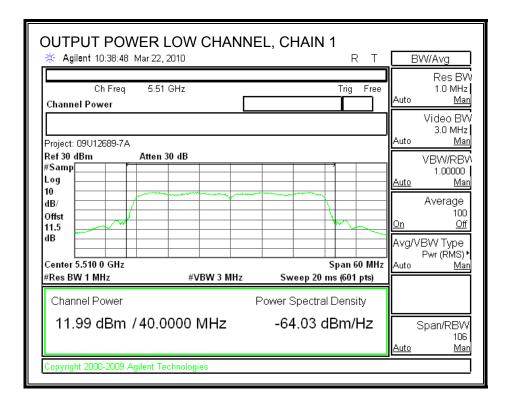
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

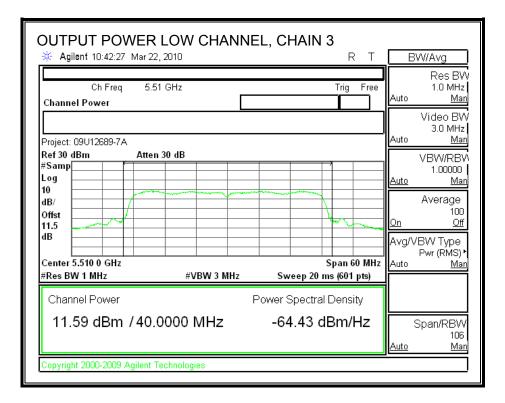
RESULTS

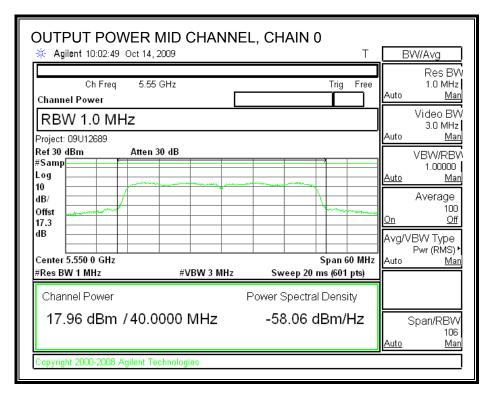

Limit

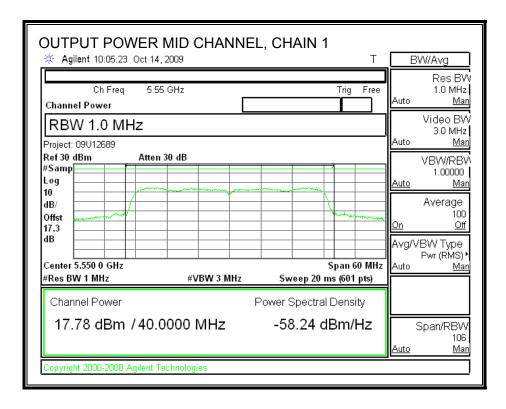

Channel	Freq	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5510	24	38.136	26.81	3	24.00
Mid	5550	24	38.522	26.86	3	24.00
High	5670	24	38.24	26.83	3	24.00

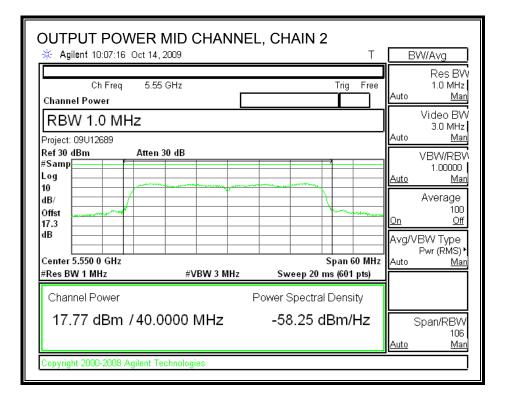
Individual Chain Results

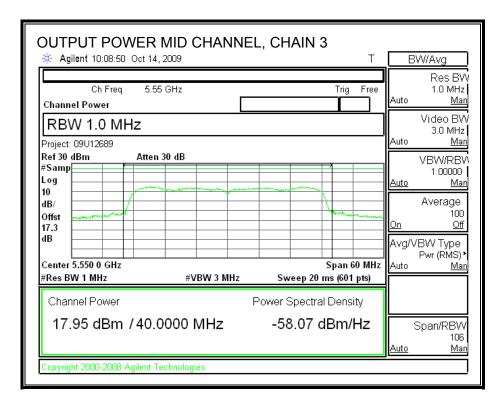
Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	11.62	11.99	11.88	11.59	17.79	24.00	-6.21
Mid	5550	17.96	17.78	17.77	17.95	23.89	24.00	-0.11
High	5670	12.86	13.44	13.57	12.63	19.16	24.00	-4.84

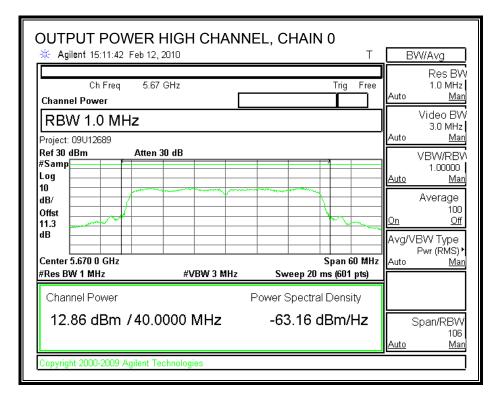

OUTPUT POWER, LOW CHANNEL

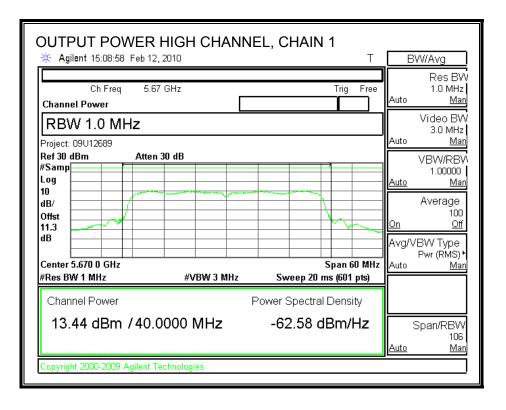

Page 163 of 358

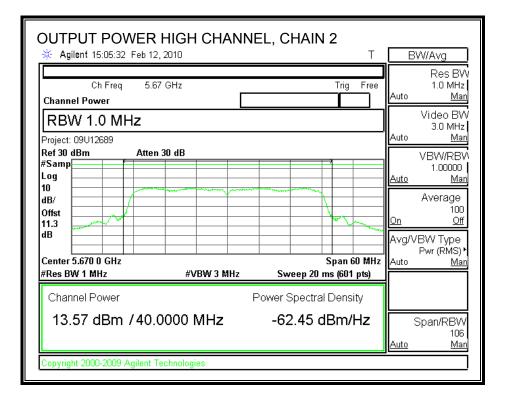

Agilent 10:41:03 Mar 22,	2010	R T	BW/Avg
Ch Freq 5.51 Channel Power	GHz	Trig Free	Res BN 4 1.0 MH; Auto <u>Ma</u> Video BN 3.0 MH;
Project: 09U12689-7A Ref 30 dBm Atten	30 dB		Auto <u>Ma</u> VBW/RB
#Samp Log			V BVV/RB 1.00000 <u>Auto Ma</u>
dB/ Offst			Average
dB			Avg/VBW Type Pwr (RMS)
Center 5.510 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 60 MH Sweep 20 ms (601 pts)	
Channel Power	F	^o ower Spectral Density	7
11.88 dBm /40.0	000 MHz	-64.15 dBm/Hz	Span/RBV 108 Auto Ma

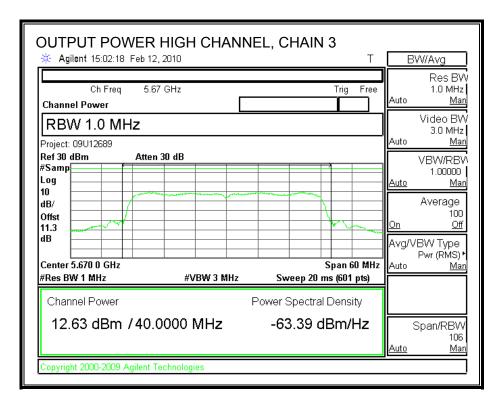

Page 164 of 358


OUTPUT POWER, MID CHANNEL


Page 165 of 358




Page 166 of 358


OUTPUT POWER, HIGH CHANNEL

Page 167 of 358

Page 168 of 358

7.9.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5510	11.50	11.77	11.71	11.59
Middle	5550	17.96	18.03	17.56	18.12
High	5700	12.30	13.00	13.00	12.20

Page 169 of 358

7.9.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

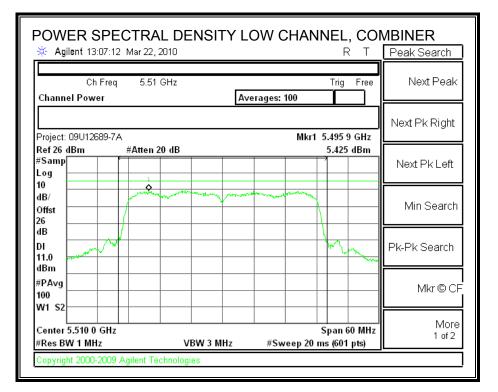
IC RSS-210 A9.2 (2)

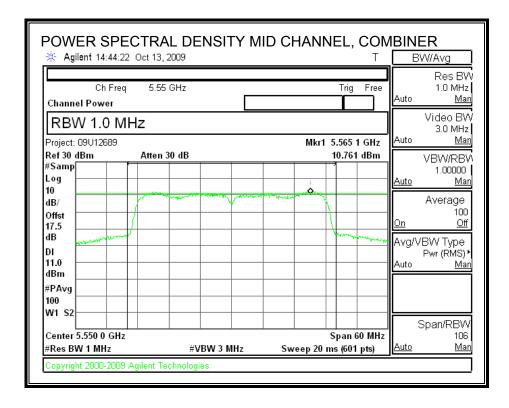
For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi, therefore the limit is 11 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5510	5.425	11.00	-5.58
Middle	5550	10.761	11.00	-0.24
High	5670	9.038	11.00	-1.96

RESULTS

Page 170 of 358

POWER SPECTRAL DENSITY

Page 171 of 358

POWER SPECTRA		GH CHANNEL, CO	
	GHz	Trig Free	Res BW 1.0 MHz Auto Man
RBW 1.0 MHz	20.10	Mkr1 5.683 5 GHz	Video BW 3.0 MHz Auto <u>Man</u>
Ref 30 dBm Atten 2 #Samp Log 10		9.038 dBm	VBW/RBW 1.00000 <u>Auto Man</u>
dB/ Offst 25.6 dB			Average 100 <u>On Off</u>
DI 11.0 dBm		hin junitika	Avg/VBW Type Pwr (RMS) • « Auto <u>Man</u>
#PAvg 100 W1 S2			
Center 5.670 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 60 MHz Sweep 20 ms (601 pts)	Span/RBW 106 <u>Auto Man</u>
Copyright 2000-2009 Agilent Te	chnologies		

Page 172 of 358

7.9.5. PEAK EXCURSION

LIMITS

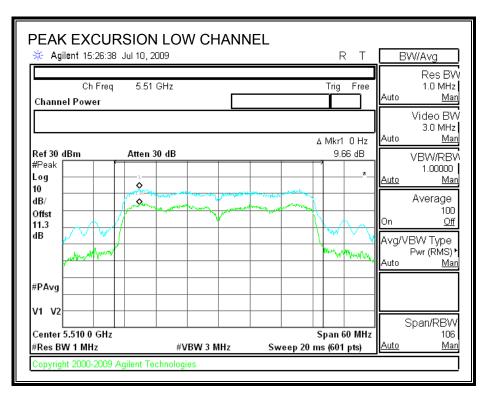
FCC §15.407 (a) (6)

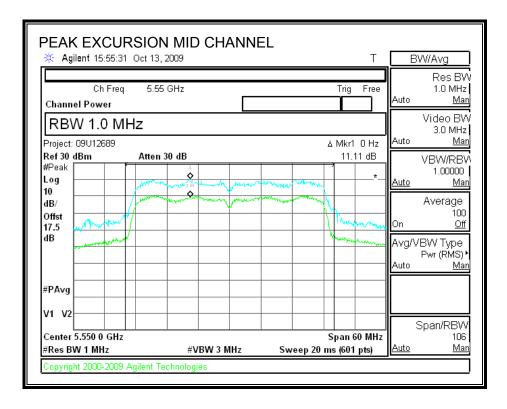
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5510	9.66	13	-3.34
Middle	5550	11.11	13	-1.89
High	5670	10.26	13	-2.74

Page 173 of 358

PEAK EXCURSION

Page 174 of 358

🔆 Agilent 13:19:40 Jul 17	2009		RТ	BW/Avg	
Ch Freq 5.8 Channel Power	i7 GHz		Trig Free	Auto	Res BV 1.0 MHz <u>Mar</u>
		۵	Mkr1 0 Hz	Auto	Video BV 3.0 MHz <u>Mar</u>
#Peak	n 30 dB		10.26 dB	<u>Auto</u>	VBW/RBV 1.00000 <u>Mar</u>
dB/ Offst 11.3		and a second		On	Average 100 <u>Off</u>
dB			with the second	Avg/v Auto	/BW Type Pwr (RMS) • <u>Mar</u>
#PAvg					
V1 V2					Span/RBW
Center 5.670 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Sweep 20 ms	pan 60 MHz (601 pts)	Auto	106 Mar

Page 175 of 358

7.9.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

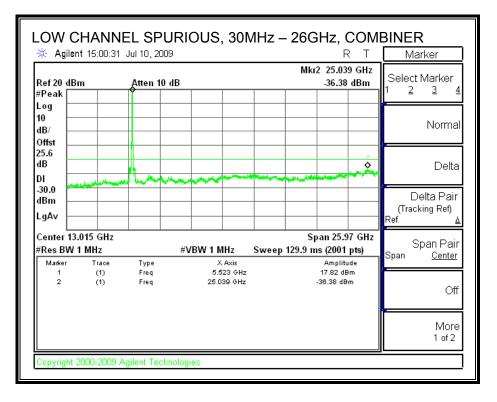
FCC §15.407 (b) (3)

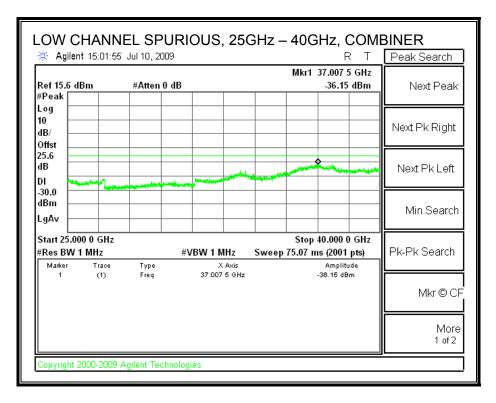
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

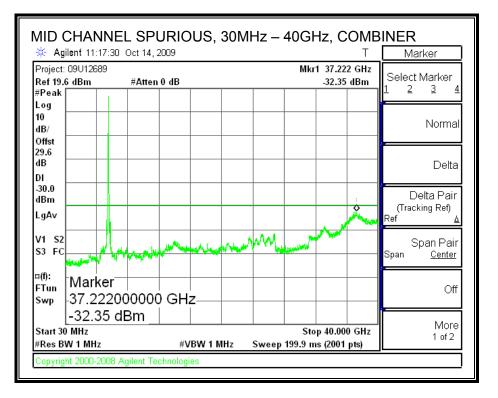
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

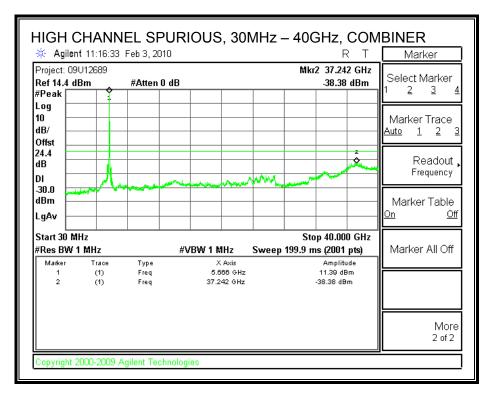

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

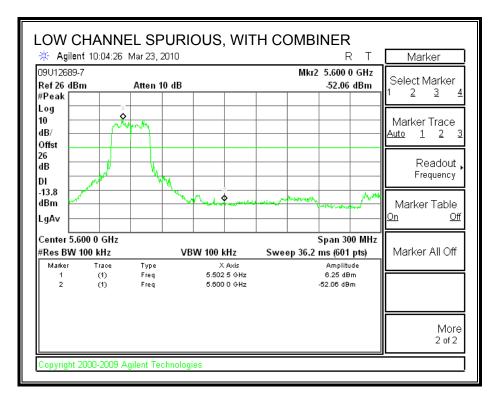
Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 176 of 358

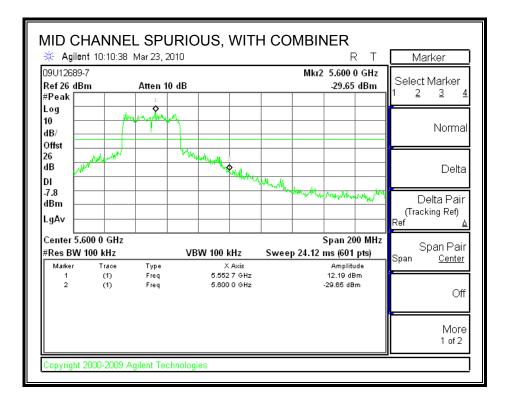

LOW CHANNEL SPURIOUS EMISSIONS


Page 177 of 358

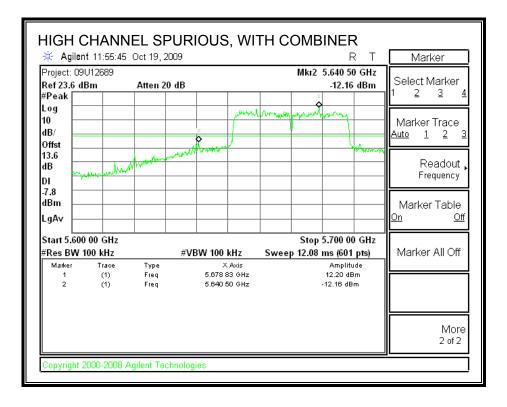
MID CHANNEL SPURIOUS EMISSIONS


Page 178 of 358

HIGH CHANNEL SPURIOUS EMISSIONS



Page 179 of 358


7.9.7. CONDUCTED SPURIOUS (-20 dBc)

Page 180 of 358

Page 181 of 358

Page 182 of 358

8. RECEIVER CONDUCTED SPURIOUS EMISSIONS

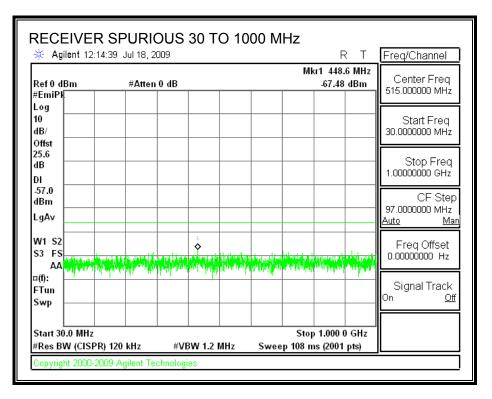
<u>LIMITS</u>

IC RSS-GEN 7.2.3.1

Antenna Conducted Measurement: Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

TEST PROCEDURE

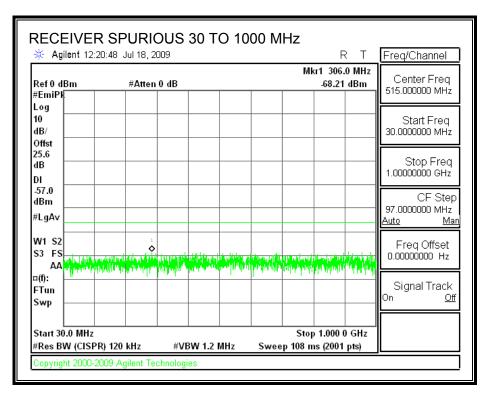
IC RSS-GEN 4.10, Conducted Method


The receiver antenna port is connected to a spectrum analyzer.

The spectrum from 30 MHz to 18 GHz is investigated with the receiver set to the middle channel of each 5 GHz band.

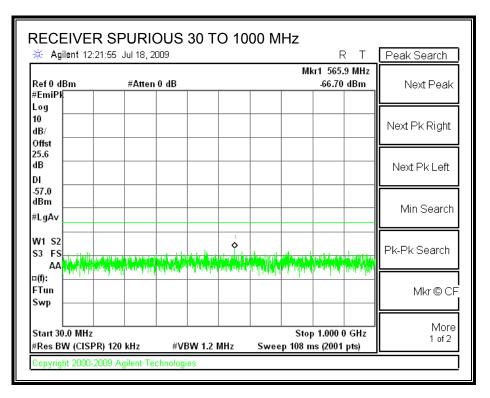
Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

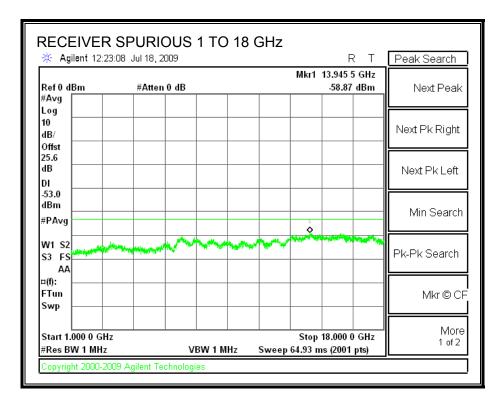
Page 183 of 358


RECEIVER SPURIOUS EMISSIONS IN THE 5.2 GHz BAND



Page 184 of 358


RECEIVER SPURIOUS EMISSIONS IN THE 5.3 GHz BAND



Page 185 of 358

RECEIVER SPURIOUS EMISSIONS IN THE 5.5 GHz BAND

Page 186 of 358

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

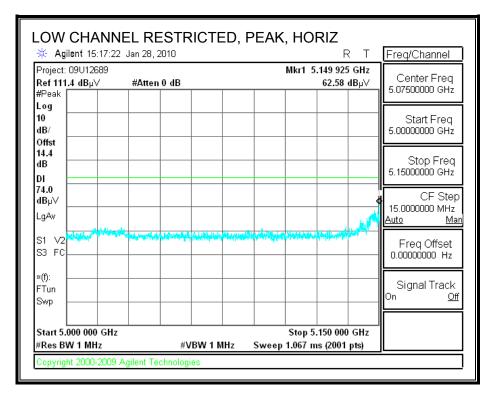
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

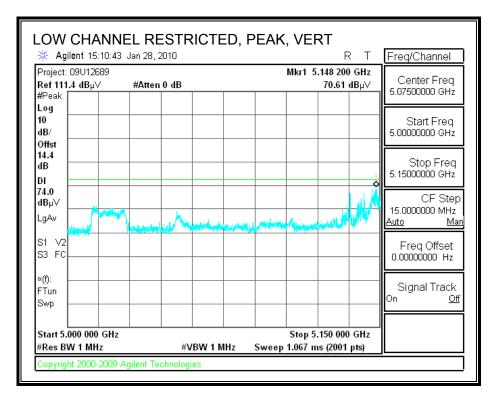

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

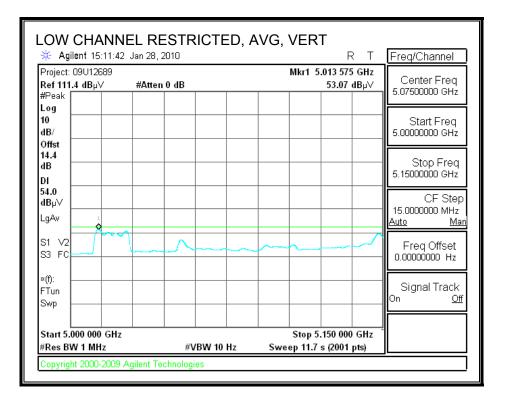
9.2. TRANSMITTER ABOVE 1 GHz

9.2.1. 802.11a MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

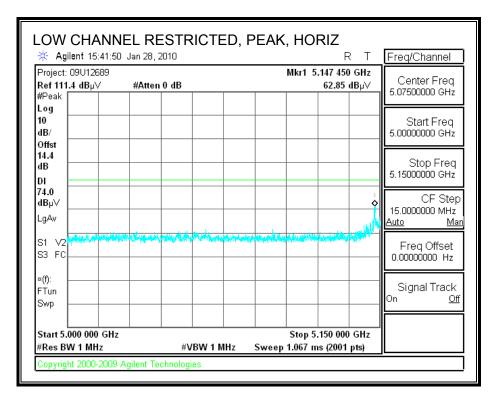


Page 188 of 358


🔆 Agilent 15:18:17 Jan	RESTRICTED, A 28, 2010	R T	Freq/Channel
Project: 09∪12689 Ref 111.4 dB µ∨ #A #Peak	tten 0 dB	Mkr1 5.148 050 GHz 44.06 dBµ∨	Center Freq 5.07500000 GHz
Log 10 dB/ Offst			Start Freq 5.00000000 GHz
dB			Stop Freq 5.15000000 GHz
54.0 dBµ√ LgAv			CF Step 15.0000000 MHz <u>Auto Man</u>
S1 V2			Freq Offset 0.00000000 Hz
»(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.000 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.150 000 GHz Sweep 11.7 s (2001 pts)	

Page 189 of 358

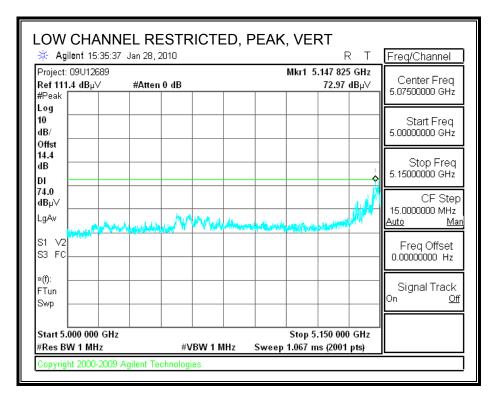
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


Page 190 of 358

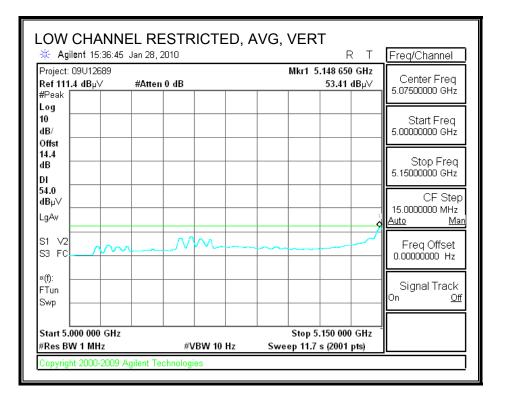
Page 191 of 358

9.2.2. TX ABOVE 1 GHz FOR 802.11a DUAL CHAIN MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



Page 192 of 358

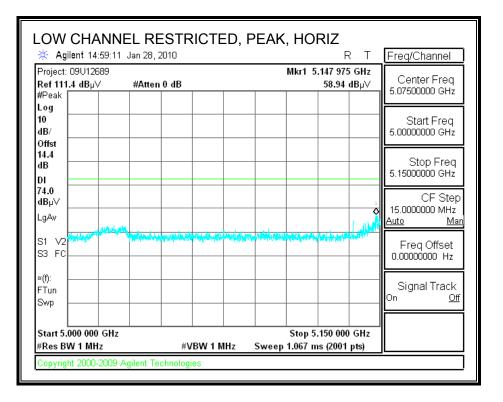

🔆 Agilent 15:43:18 Jan	RESTRICTED, <i>J</i> 28, 2010	R T	Peak Search
Project: 09∪12689 Ref 111.4 dB µ∨ #/ #Peak	Atten 0 dB	Mkr1 5.150 000 GHz 43.26 dBµ∨	Next Peak
Log 10 dB/			Next Pk Right
Offst 14.4 dB			Next Pk Left
54.0 dBμV			Min Search
S1 V2 S3 FC			Pk-Pk Search
«(f): FTun Swp			Mkr © CF
Start 5.000 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.150 000 GHz Sweep 11.7 s (2001 pts)	More 1 of 2

Page 193 of 358

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 194 of 358

Page 195 of 358

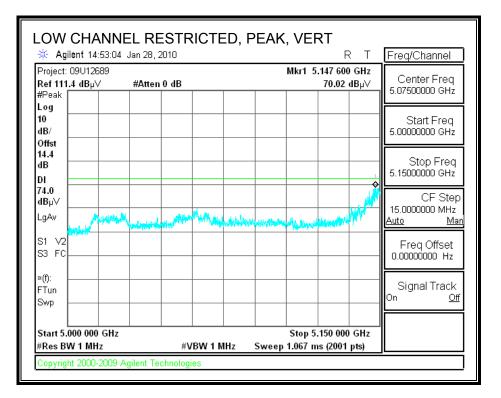

HARMONICS AND SPURIOUS EMISSIONS

Test Engr		Thanh N	lguyen												
Date:	•	07/15/09													
Project #:		09U1265													
Company		QualCo	-												
		Etherne													
EUT M/N:	-	65-VN66	3-P2												
Test Targ	et:	FCC 15.	247/15.4	407											
Mode Op	er:	Transmi													
	f	Measurer	nent Fred	quency		Preamp G					Field Stren;				
	Dist	Distance			$D \; Corr$	Distance					ld Strength				
	Read	Analyzer	~	;	Avg	Average I		~ ~	~		vs. Average				
	AF	Antenna			Peak	Calculate			ength	Margin v	rs. Peak Lir	nit			
	CL	Cable Lo:	55		HPF	High Pass	s Filter	:							
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	:	dB	dB	:	1	dBuV/m		V/H	P/A/QP	cm	Degree	
Low ch 51	80														
15.540	3.0	35.8	38.7		-34.8	0.0	0.7	51.7	74.0	-22.3	V	Р	147.8	304.8	
15.540	3.0	23.7	38.7	·	-34.8	0.0	0.7	39.6	54.0	-14.4	V	A	147.8	304.8	
15.540	3.0	34.6	38.7		-34.8	0.0	0.7	50.7	74.0	-24.7	H	P	156.5	346.0	
15.540	3.0	21.3	38.7	11.3	-34.8	0.0	0.7	37.2	54.0	- 16.3	H	A	156.5	346.0	
Mid ch 52 15.600	3.0	37.1	38.5	114	-34.8	0.0	0.7	52.9	74.0	-21.1	v	Р	147.8	296.5	
15.600	3.0	24.4	38.5	11.4		0.0	0.7	40.2	54.0	-13.8	v	Ă	147.8	296.5	
15.600	3.0	37.1	38.5		-34.8	0.0	0.7	52.9	74.0	-21.1	Ĥ	P	150.5	300.0	
15.600	3.0	23.4	38.5		-34.8	0.0	0.7	39.4	54.0	-14.6	H	A	150.5	300.0	
High ch 🗄	240	1		1	[1				<u> </u>			<u> </u>		
15.720	3.0	36.6	38.2	11.4		0.0	0.7	52.2	74.0	-21.8	V	Р	166.9	200.0	
15.720	3.0	25.5			-34.7	0.0	0.7	41.2	54.0	-12.8	V	A	166.9	200.0	
15.720	3.0	36.4			-34.7	0.0	0.7	52.1	74.0	-21.9	H	P	140.6	310.0	
15.720	3.0	24.2	38.2	11.4	-34.7	0.0	0.7	39.8	54.0	-14.2	H	A	140.6	310.0	
		+		<u> </u>		+									
Rev. 4.1.2	.7	:	:	<u>. </u>	<u>. </u>				:				:		
								e floor.							

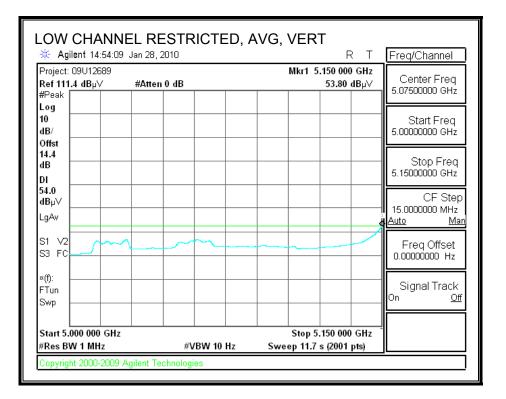
Page 196 of 358

9.2.3. 802.11n HT20 MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

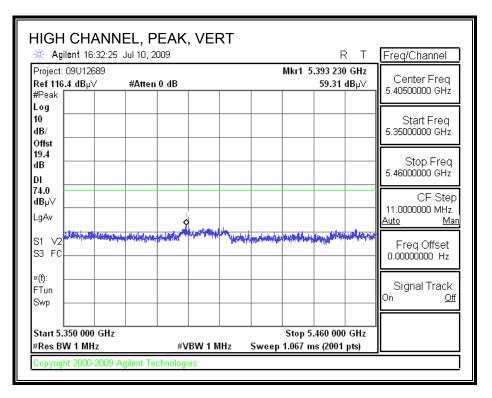


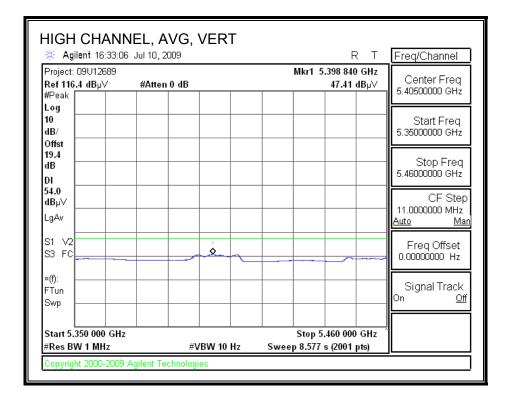
Page 197 of 358


Project: 09/12689 Mkr1 5.150 000 GHz Center Freq 5.07500000 GHz #Peak 43.89 dBµV Center Freq 5.07500000 GHz Start Freq 5.0000000 GHz 10 dB/ dB/ dB/ dB/ dB/ dB/ dB/ dB/ common db/ dB/ dB/ dB/ dB/ common db/ dB/ dB/ dB/ dB/ dB/ dB/ common db/ dB/ dB/ dB/ common db/ dB/ dB/ common db/ dB/ dB/ common db/ dB/ common db/ common db/ commond	LOW CHANNEL R		AVG, HORIZ	Freq/Channel
Ref 111.4 dBµ√ #Atten 0 dB 43.89 dBµ√ Center Freq 5.07500000 GHz #Peak		, 2010		
10 dB/ Start Freq 0 dB/ 0 ffst 5.0000000 GHz 14.4 dB Stop Freq 10 0 0 14.4 0 0 14.4 0 0 14.4 0 0 10 0 0 11 0 0 11 0 0 11 0 0 12 0 0 13 0 0 14.4 0 0 10 0 0 11 0 0 14 0 0 15 0 0 15 0 0 15 0 0 15 0 0 15 0 0 16 0 0 17 0 0 18 0 0 17 0 0	Ref 111.4 dBµ∨ #Atte	n0dB		
14.4 dB dB DI 54.0 dBµV Stop Freq 5.15000000 GHz LgAv CF Step 15.0000000 MHz Auto S1 V2 S3 FC Freq Offset 0.0000000 Hz *(f): FTun Swp Stop 5.150 000 GHz Start 5.000 000 GHz Stop 5.150 000 GHz	10 dB/			
54.0 dBµ√ CF Step LgAv CF Step S1 V2 Stop 5.150 000 GHz	14.4 dB			
S3 FC Freq Oilset s(): FTun Swp Swp Signal Track On Start 5.000 000 GHz Stop 5.150 000 GHz	54.0 dBµ∨			15.0000000 MHz
FTun Swp Signal Track On Signal Track On Start 5.000 000 GHz Stop 5.150 000 GHz Stop 5.150 000 GHz	- · · · -			Freq Offset 0.00000000 Hz
	FTun			
#Res DW T WITZ #VBW 10 HZ Sweep 11.7 s (2001 pts)	Start 5.000 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.150 000 GHz Sweep 11.7 s (2001 pts)	

Page 198 of 358

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

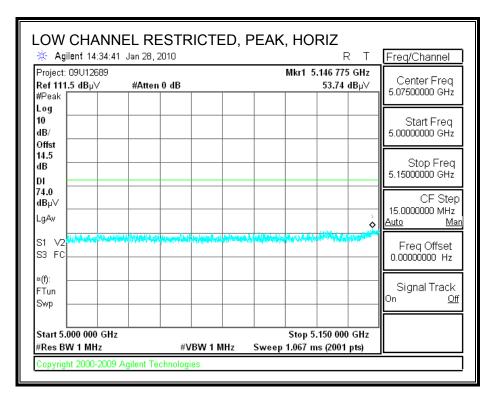



Page 199 of 358

Page 200 of 358

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 201 of 358

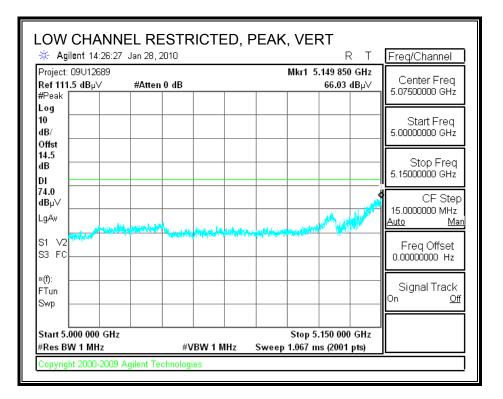

HARMONICS AND SPURIOUS EMISSIONS

Complis	~		y Measurem Services, Fr		5m Ch	amber									
-			Services, FI	emont	on on	anoei									
	iy: Qual														
	#: 09U 7/13/09	12689													
		Doug And	erson												
			port Notebo	ok											
Mode: 1	Tx / HT	20													
Fest Eq	uipmen	<u>t:</u>													
ш	orn 1	18GHz	Pre-ar	nnlifer	1.260	247	Pre-am	nlifer	26-40GH	17	н	orn > 18(247		Limit
				· ·			T TC-am	piner	20-4001				5112		FCC 15.205
1/3; 9	S/N: 671	/@3m	▼ 1144 M	/liteq 30	08A009)31				•				•	FCC 15.205
Hi Free	quency Ca	bles													
3' (cable 2	2807700	12' c	able 2	28076	500	20' ca	ble 22	2807500		HPF	Re	ject Filte		<u>« Measurements</u>
3' -	able 228	207700	421	LL- 220	07606		20' cab	10 2204	07500		F_7.6GHz			RB	W=VBW=1MHz ge Measurements
3 6	abre ZZG	01100	▼ 12° ca	nble 228	07600	•	20 cab	16 2200	•1300		_7.00HZ	•			1MHz ; VBW=10Hz
f	Dist	Read Pl	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB			dBuV/m	dBuV/m	dB	dB	(V/H)
			İ.									-			
Low Ch.:	<u>5180 (Pe</u>	wer = 14 dBr	<u>n)</u>												
15.540	3.0	43.5	29.7	38.7	113	-34.8	0.0	0.7	59.4	45.7	74	54	-14.6	-8.3	V (Noise Floor)
15.540	3.0	43.4	29.7	38.7	113	-34.8	0.0	0.7	59.3	45.6	74	54	-14.7	- 8 .4	H (Noise Floor)
	5000 0	1	İ.,								*				
	<u>5200 (Pc</u>	wer = 14 dB	<u>m)</u>												
5.600	3.0	43.1	29.4	38.5	11.4	-34.8	0.0	0.7	58.9	45.2	74	54	-15.1	-8.8	V (Noise Floor)
15.600	3.0	43.1	31.9	38.5	11.4	-34.8	0.0	0.7	58.9	47.8	74	54	-15.1	-6.2	H (Noise Floor)
т. <u>.</u> 1. сч	5040 0	ower = 14 dB	1												
	: 5 240 (P	Ĭ													
15.720 15.720	3.0 3.0	42.3 43.0	31.4 29.0	38.2 38.2	11.4 11.4	-34.7 -34.7	0.0 0.0	0.7 0.7	58.0 58.6	47.0 44.6	74 74	54 54	-16.0 -15.4	-7.0 -9.4	V (Noise Floor) H (Noise Floor)
2.740		43.0	27.0	304	11.4		0.0	0./		44.0			-104	-7.4	11(10156 11001)
Rev. 11.10	0.00														
(ev. 11.10	5.08														
							r	a .							
	f Dist	Measurem Distance to	ent Frequency	У		Amp D.Corr	Preamp (ct to 3 met			-	-	Field Strengt d Strength L	
		Analyzer R				Avg			Strength @					: Average L	
	AF	Antenna Fa				Peak	-		k Field Stre			-	-	. Peak Limit	
	CL	Cable Los:	s			HPF	High Pas	s Filter					_		

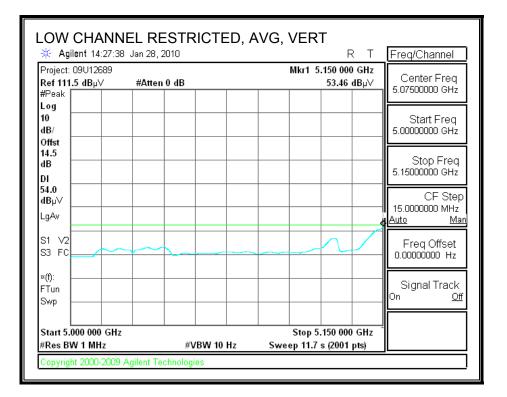
Page 202 of 358

9.2.4. 802.11n HT40 MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

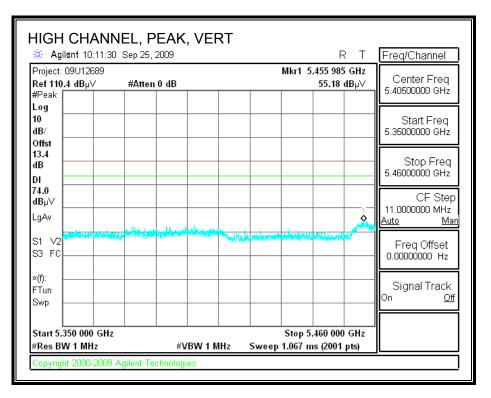


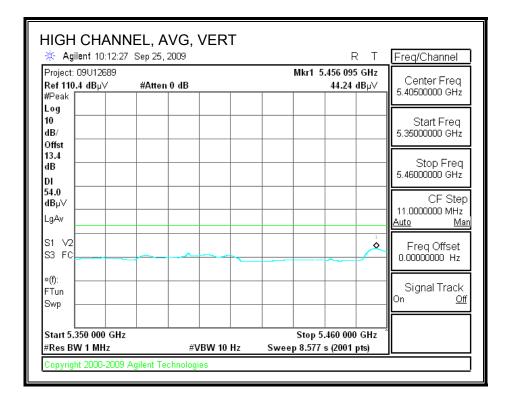
Page 203 of 358


★ Agilent 14:36:02 Jan	RESTRICTED, A 28, 2010	R T	Freq/Channel
Project: 09U12689 Ref 111.5 dB µ∨ #A #Peak	tten 0 dB	Mkr1 5.150 000 GHz 42.54 dBµ∨	Center Freq 5.07500000 GHz
Log 10 dB/ Offst			Start Freq 5.00000000 GHz
dB			Stop Freq 5.15000000 GHz
54.0 dBμV LgAv			CF Step 15.000000 MHz <u>Auto Mar</u>
S1 V2 S3 FC			Freq Offset 0.00000000 Hz
»(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.000 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.150 000 GHz Sweep 11.7 s (2001 pts)	Å

Page 204 of 358

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

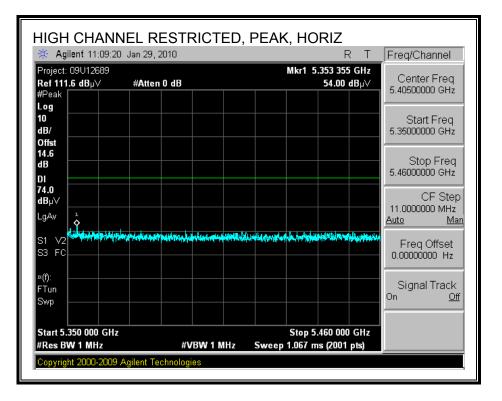



Page 205 of 358

Page 206 of 358

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 207 of 358


HARMONICS AND SPURIOUS EMISSIONS

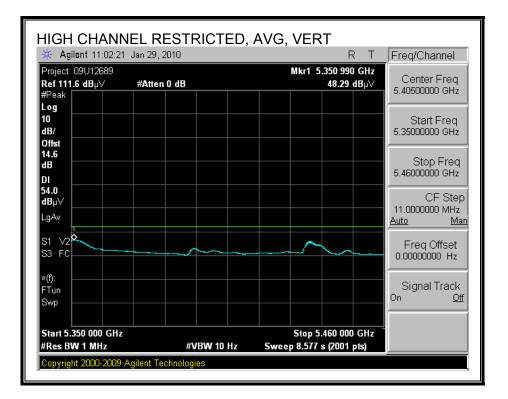
Cest Engr: Date: Project #: Company Configurs Mode Ope	: ation:	William 09/25/09 09U1268 Qualcon EUT w/St Tx HT40	19 nm upport P	-	ook										
	f Dist Read AF CL	Measuren Distance Analyzer Antenna Cable Los	to Anter Reading Factor	nna		-	Correc Field S I Peak	trength @ : Field Stre	3 m	Peak Fie Margin v	Field Stren, ld Strength 75. Average 75. Peak Lir	Limit Limit			
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m		dB	dB		: :	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
190MHz	Power	Setting=	12 dBm		1										
5.570	3.0	35.5	38.6	11.4	-34.8	0.0	0.7	51.3	74.0	-22.7	V	Р	170.4	360.0	
5.570	3.0	23.1	38.6	11.4	-34.8	0.0	0.7	39.0	54.0	-15.0	V	A	170.4	360.0	
5.570	3.0	35.0	38.6	11.4	-34.8	0.0	0.7	50.9	74.0	- 23.1	H	Р	122.4	156.9	
5.570	3.0	23.0	38.6	11.4	-34.8	0.0	0.7	38.9	54.0	-15.1	H	A	122.4	156.9	
230MHz	, Power	Setting=	12 dBm												
5.690	3.0	35.2	38.3	11.4	-34.7	0.0	0.7	50.9	74.0	-23.1	V	Р	121.6	357.2	
5.690	3.0	22.8	• • • • • • • • • • • • • • • • • • • •	11.4		0.0	0.7	38.5	54.0	-15.5	V	A	121.6	357.2	
5.690	3.0	36.2			-34.7	0.0	0.7	51.9	74.0	-22.1	H	Р	100.0	87.3	
5.690	3.0	22.8	38.3	11.4	-34.7	0.0	0.7	38.5	54.0	-15.5	Н	A	100.0	87.3	
lote: No	other e	missions ·	were de	tected	l above i	the syster	n nois	se floor.							

Page 208 of 358

9.2.5. 802.11a MODE IN 5.3 GHz BAND

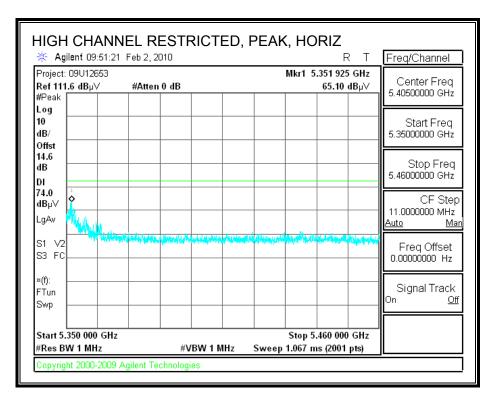
RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 209 of 358


🔆 Agilent 11:10:13 -	Jan 29, 2010	R T	Freq/Channel
Project: 09U12689 Ref 111.6 dB µV #Peak	#Atten 0 dB	Mkr1 5.350 000 GHz 41.11 dBµ∨	Center Freq 5.40500000 GHz
Log 10 dB/ Offst			Start Freq 5.35000000 GHz
14.6 dB DI			Stop Freq 5.46000000 GHz
54.0 dBµ√ LgAv			CF Step 11.0000000 MHz
S1 V2. S3 F00			Auto Man Freq Offset 0.00000000 Hz
*(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.350 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 000 GHz Sweep 8.577 s (2001 pts)	

Page 210 of 358

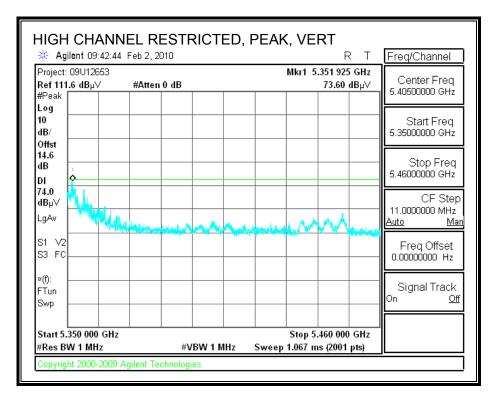
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)


Page 211 of 358

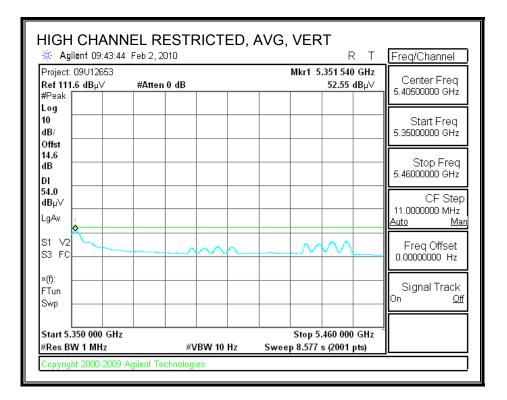
Page 212 of 358

9.2.6. TX ABOVE 1 GHz FOR 802.11a DUAL CHAIN MODE IN 5.3 GHz BAND

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 213 of 358

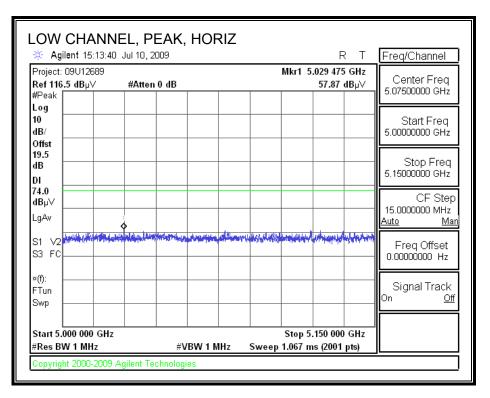

HIGH CHANNEL R		AVG, HORIZ	Freq/Channel
Project: 09∪12653 Ref 111.6 dB µ∨ #Atter #Peak		Mkr1 5.351 210 GHz 45.30 dBµ∀	Center Freq 5.40500000 GHz
Log 10 dB/ Offst			Start Freq 5.35000000 GHz
14.6 dB			Stop Freq 5.46000000 GHz
54.0 dBμV LgAv			CF Step 11.0000000 MHz <u>Auto Man</u>
S1 V2 S3 FC			Freq Offset 0.00000000 Hz
×(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.350 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 000 GHz Sweep 8.577 s (2001 pts)	

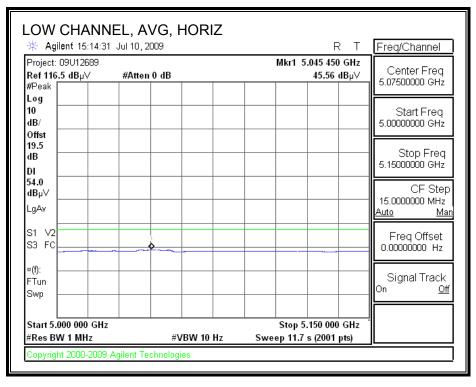
Page 214 of 358

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 215 of 358

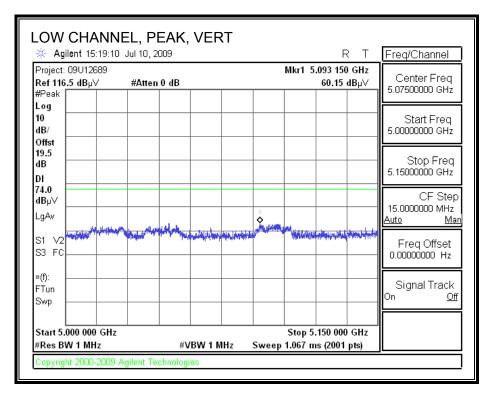
Page 216 of 358

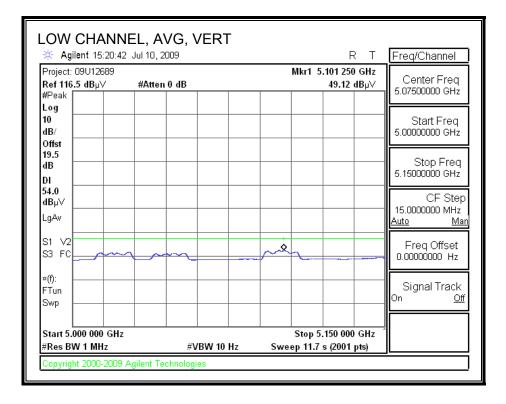

HARMONICS AND SPURIOUS EMISSIONS


			2689	oto	Natak	alt									
Mode:	ration.		2 chains, 11a		Notes	00K									
Fest Eq	uipmen	<u>t:</u>													
н	lorn 1-	18GHz	Pre-ar	mplifer	1-260	GHz	Pre-am	plifer	26-40GH	z	н	orn > 18	GHz		Limit
173; 9	S/N: 6717	7 @3m	▼ T144 №	Miteq 30	08A009	J31 🖵				-				-	FCC 15.205 🗸
I ┌─ Hi Free	quency Cal	bles													
3'	cable 2	2807700	12' c	able 2	28076	500	20' cal	ble 22	2807500		HPF	Re	ject Filte		<u>k Measurements</u>
	able 228		12' 67	able 228	07600		20' cab	le 228/	07500		F_7.6GHz			RB	3W=VBW=1MHz age Measurements
				DIG LLG	11000	•									=1MHz; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
	5260Mhz						ļ	ļ		ļ					
15.780 15.780	3.0 3.0	41.4 38.3	28.4 26.4	38.0 38.0	115 115	-34.6 -34.6	0.0 0.0	0.7 0.7	56.9 53.8	43.9 41.9	74 74	54 54	-17.1 -20.2	-10.1 -12.1	V H
Mid. Ch.:	<u>5300</u>			••••••••						•			•		
10.600 15.900	3.0 3.0	38.2 39.3	28.4 28.2	37.7 37.7	9.0 11.5	-36.6 -34.6	0.0 0.0	0.8	49.2 54.7	39.3 43.6	74 74	54 54	-24.8 -19.3	-14.7 -10.4	V V (Noise Floor)
10.600	3.0	38.6	26.2	37.7	9.0	-36.6	0.0	0.8	49.5	37.2	74	54	-24.5	- 16.8	Н
15,900	3.0	38.5	26.4	37.7	11.5	-34.6	0.0	0.7	53.8	41.7	74	54	-20.2	-12.3	H (Noise Floor)
<u>High Ch.</u> 10.640	<u>: 5320</u> 3.0	46.7	35.6	37.7	9.1	-36.6	0.0	0.8	57.7	46.6	74	54	-16.3	-7.4	v
15.960	3.0	42.4	29.1	37.5	115	-34.5	0.0	0.7	57.7	44.4	74	54	-16.3	-9.6	V (Noise Floor)
10.640	3.0	38.3	26.2	37.7	9.1	-36.6	0.0	0.8	49.3	37.2	74	54	-24.7	- 16.8	Н
15.960	3.0	41.1	28.7	37.5	11.5	-34.5	0.0	0.7	56.4	43.9	74	54	-17.6	-10.1	H (Noise Floor)
Rev. 11.10	f Dist	Measureme Distance to Analyzer R Antenna Fa Cable Loss	leading actor	y		Amp D Corr Avg Peak HPF	Average	Correc Field S ed Peak	ct to 3 mete Strength @ k Field Stre	3 m		Pk Lim Avg Mar	Peak Field Margin vs	Field Strengt d Strength L . Average L . Peak Limit	.imit .imit

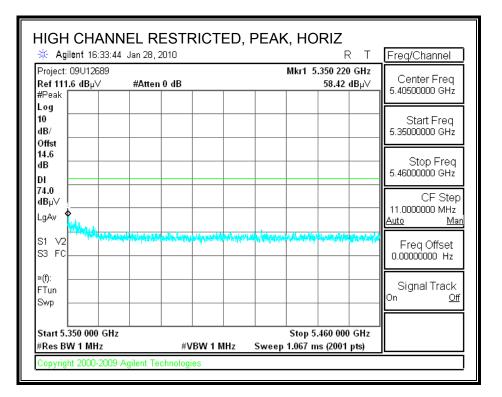
Page 217 of 358

9.2.7. 802.11n HT20 MODE IN 5.3GHz BAND


AUTHORIZED BANDEDGE (LOW CHANNEL, HORIZONTAL)

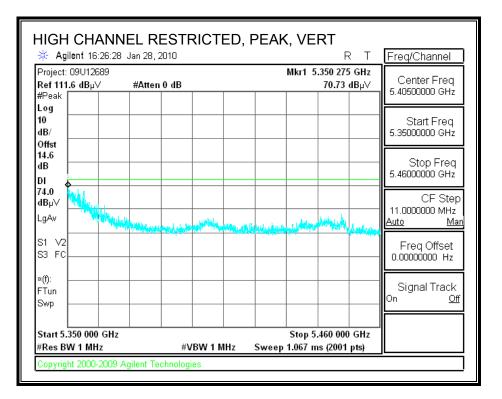


Page 218 of 358


AUTHORIZED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 219 of 358

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 220 of 358

HIGH CHANNEL R		AVG, HORIZ	Freq/Channel
#Peak	n 0 dB	Mkr1 5.350 000 GHz 42.91 dBµ∨	Center Freq 5.40500000 GHz
Log 10 dB/ Offst			Start Freq 5.35000000 GHz
14.6 dB			Stop Freq 5.46000000 GHz
54.0 dBµ∨ LgAv			CF Step 11.0000000 MHz <u>Auto Man</u>
S1 V2 S3 FC			Freq Offset 0.00000000 Hz
×(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.350 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 000 GHz Sweep 8.577 s (2001 pts)	

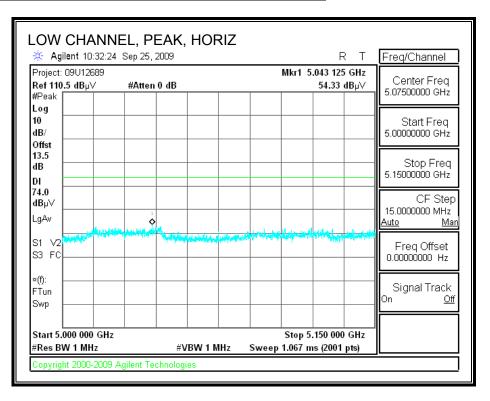
Page 221 of 358

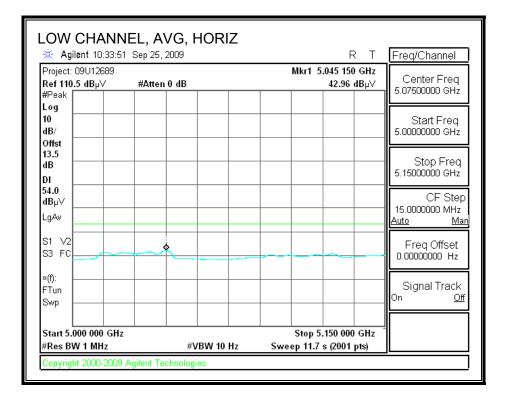
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 222 of 358

HIGH CHANNEL R Agilent 16:27:52 Jan 28,	,	R T	Freq/Channel
Project: 09∪12689 Ref 111.6 dBµ∨ #Atten #Peak	n0dB	Mkr1 5.350 000 GHz 52.72 dBµ∨	Center Freq 5.40500000 GHz
Log 10 dB/ Offst			Start Freq 5.35000000 GHz
14.6 dB DI			Stop Freq 5.46000000 GHz
54.0 dBµ∨ LgAv			CF Step 11.0000000 MHz <u>Auto Man</u>
S1 V2 S3 FC			Freq Offset 0.00000000 Hz
»(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.350 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 000 GHz Sweep 8.577 s (2001 pts)	Å

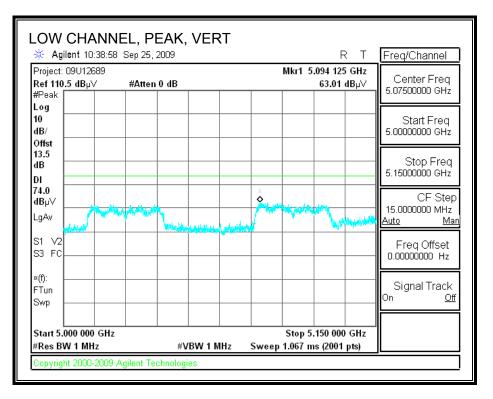
Page 223 of 358

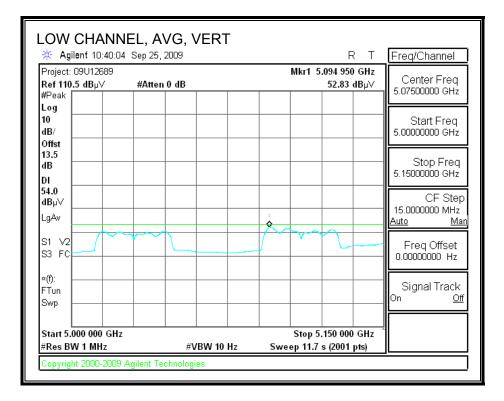

HARMONICS AND SPURIOUS EMISSIONS


	-		7 Measurem												
omplia	nce Ce	ertification	Services, Fr	emont	5m Ch	amber									
ompan	y: Qua	lcomm													
oject i	#: 09U														
	7/10/09 dinaar	Doug And	orcon												
			port Notebo	ok											
Iode: 7	Tx / HT	20													
est Eq	uipmen	ıt:													
		_	_				_								
н	orn 1-	18GHz	Pre-ar	nplifer	1-260	SHZ	Pre-am	plifer	26-40GH	z	н	orn > 18(GHz		Limit
173; S	5/N: 671	7 @3m	▼ T144 M	/liteq 30	08A009	31 🗸				-				-	FCC 15.205
Hi Freq	uency Ca	bles				_									
3' d	able 2	22807700	12' c	able 2	28076	00	20' ca	ble 22	807500		HPF	Re	ject Filte		<u> Measurements</u>
2'	able 22	207700	401		07000		20' cab	1. 2200	7500		F_7.6GHz		,	RB	W=VBW=1MHz ge Measurements
36	able 22	507700	▼ 12° ca	nble 228	07600	•	20 Cab	1e 2200	•		F_7.6GH2	-			1MHz; VBW=10Hz
		-	- , 		ar		D d	T TD -			-				
f GHz	Dist (m)	dBuV	Read Avg. dBuV	AF dB/m	dB dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	-	PK Mar dB	Avg Mar dB	Notes (V/H)
														-	(
w Ch.: :	<u>5260</u>														
.780	3.0	35.2	24.5	38.0	11.5	-34.6	0.0	0.7	50.7	40.1	74	54	-23.3	-13.9	V (Noise Floor)
.780	3.0	36.8	24.1	38.0	11.5	-34.6	0.0	0.7	52.3	39.7	74	54	-21.7	-14.3	H (Noise Floor)
id. Ch.:	£200														
0.600 5.900	3.0 3.0	46.4 42.6	39.3 29.1	37.7 37.7	9.0 11.5	-36.6 -34.6	0.0 0.0	0.8 0.7	57.3 57.9	50.2 44.5	74 74	54 54	-16.7 -16.1	-3.8 -9.5	V V (Noise Floor)
).600	3.0	42.0	29.0	37.7	9.0	-34.0	0.0	0.8	53.1	44.5	74	54 54	-20.9	-14.0	H
5.780	3.0	43.0	29.0	38.0	11.5	-34.6	0.0	0.7	58 <i>.</i> 5	44.6	74	54	-15.5	-9.4	H (Noise Floor)
igh Ch.:	<u>5320</u>								•						
0.640	3.0	45.0	37.2	37.7	9.1	-36.6	0.0	0.8	56.0	48.2	74	54	-18.0	-5.8	v
960	3.0	42.5	28.9	37.5	115	-34.5	0.0	0.7	57.7	44.2	74	54	-16.3	- 9.8	V (Noise Floor)
0.640	3.0	44.1	33.6	37.7	9.1	-36.6	0.0	0.8	55.1	44.6	74	54	-18.9	-9.4	H
5.960	3.0	42.1	29.3	37.5	115	-34.5	0.0	0.7	57.4	44.6	74	54	-16.6	-9.4	H (Noise Floor)
v. 11.10	.08														
	f		ent Frequency	у		Amp	Preamp (Field Strengt	
	Dist Read	Distance to Analyzer R				D Corr Avg			ct to 3 mete Strength @					d Strength L: . Average L:	
	AF	Antenna Fa				Avg Peak			c Field Stre					. Average Li . Peak Limit	
	CL	Cable Loss				HPF	High Pas						2.200 801 00	. 2 our Lalille	
							0								

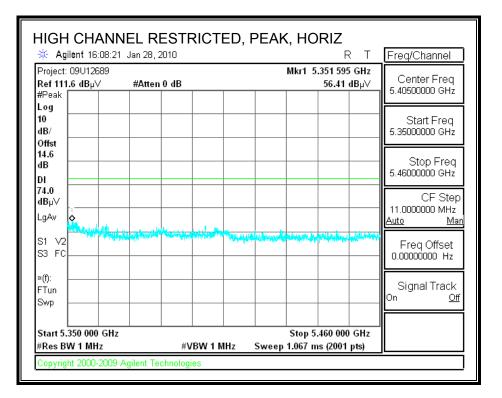
Page 224 of 358

9.2.8. 802.11n HT40 MODE IN 5.3GHz BAND


AUTHORIZED BANDEDGE (LOW CHANNEL, HORIZONTAL)

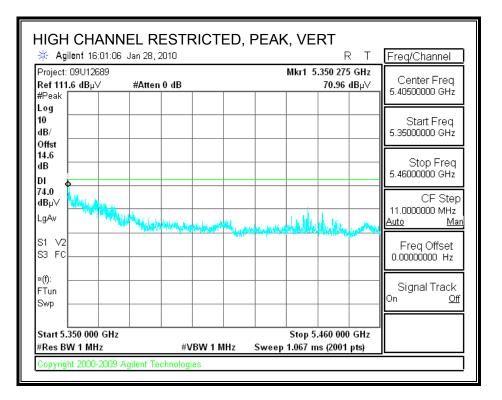


Page 225 of 358

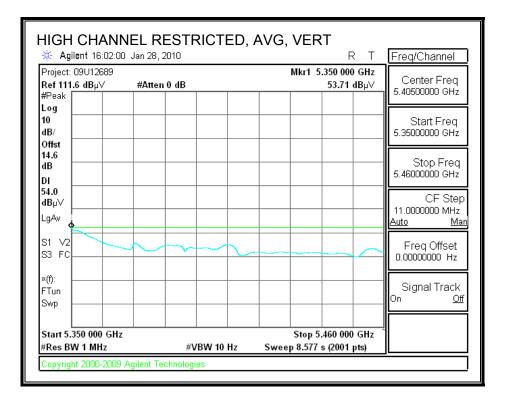

AUTHORIZED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 226 of 358

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 227 of 358


HIGH CHANNEL R Agilent 16:09:07 Jan 28,		AVG, HORIZ	Freq/Channel
Project: 09∪12689 Ref 111.6 dB µ∨ #Atte #Peak	n 0 dB	Mkr1 5.350 000 GHz 44.39 dBµ∀	Center Freq 5.40500000 GHz
Log 10 dB/ Offst			Start Freq 5.35000000 GHz
14.6 dB			Stop Freq 5.46000000 GHz
54.0 dBμ√ LgAv			CF Step 11.0000000 MHz <u>Auto Man</u>
S1 V2 S3 FC			Freq Offset 0.00000000 Hz
×(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.350 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 000 GHz Sweep 8.577 s (2001 pts)	

Page 228 of 358

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 229 of 358

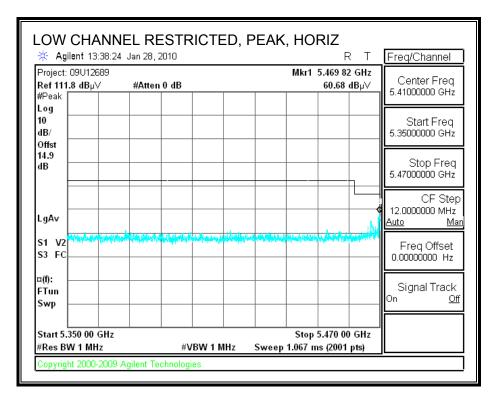
Page 230 of 358

HARMONICS AND SPURIOUS EMISSIONS

Low channel:

	William		g											
	09/25/09 09U1268													
	Qualcon													
: ation:	EUT w/Su		Jotoho	ak										
			101201	-on										
f	Measuren	nent Fred	piency	Amp	Preamp (Fain			Average					
Dist				D Corr					Peak Field Strength Limit					
Read	Analyzer Reading Avg													
								ngth	Margin v	rs. Peak Li	mit			
CL	Cable Los	55		HPF	High Pass	Filter	r							
Dist	Read	AF	CL	Amp			Corr.	Limit						Notes
				-	+		· · ·		+	:				
	Dist Read AF CL Dist (m) 3.0 3.0 3.0 3.0 7	f Measurer Dist Distance Read Analyzer AF Antenna CL Cable Lo: Dist Read (m) dBuV 3.0 36.6 3.0 24.4 3.0 36.0 3.0 23.2 7	f Measurement Free Dist Distance to Anten Read Analyzer Reading AF Antenna Factor CL Cable Loss Dist Read AF (m) dBuV dB/m 3.0 36.6 37.9 3.0 23.2 37.9 7.	f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss Dist Read AF CL (m) dBuV dB/m dB 3.0 36.6 37.9 11.5 3.0 24.4 37.9 11.5 3.0 36.0 37.9 11.5 3.0 23.2 37.9 11.5 7	f Measurement Frequency Amp Dist Distance to Antenna D Corr Read Analyzer Reading Avg AF Antenna Factor Peak CL Cable Loss HPF Dist Read AF CL (m) dBuV dB/m dB dB 3.0 36.6 37.9 11.5 -34.6 3.0 23.2 37.9 11.5 -34.6 3.0 23.2 37.9 11.5 -34.6	f Measurement Frequency Amp Preamp O Dist Distance to Antenna D Corr Distance Read Analyzer Reading Avg Average I AF Antenna Factor Peak Calculate CL Cable Loss HPF High Pass Dist Read AF CL Amp D Corr (m) dBuV dB/m dB dB dB 3.0 36.6 37.9 11.5 -34.6 0.0 3.0 36.0 37.9 11.5 -34.6 0.0 3.0 23.2 37.9 11.5 -34.6 0.0	f Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Corree Read Analyzer Reading Avg Average Field S AF Antenna Factor Peak Calculated Peal CL Cable Loss HPF High Pass Filte Dist Read AF CL Amp D Corr Filte 0.0 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 3.0 24.4 37.9 11.5 -34.6 0.0 0.7 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 3.0 23.2 37.9 11.5 -34.6 0.0 0.7	f Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 met Read Analyzer Reading Avg Average Field Strength @ AF Antenna Factor Peak Calculated Peak Field Strength @ CL Cable Loss HPF High Pass Filt Dist Read AF CL Amg D Corr Fltr Corr. (m) dBuV dB/m dB dB dB dB dB dBuV/mt 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 52.9 3.0 23.0 37.9 11.5 -34.6 0.0 0.7 51.6 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 38.7	f Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Read Analyzer Reading Avg Average Field Strength @ 3 m AF Antenna Factor Peak Calculated Peak Field Strength CL Cable Loss HPF High Pass Filter Dist Read AF CL Amp D Corr Ftr Corr. Limit (m) dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 38.7 54.0	f Measurement Frequency Amp Preamp Gain Average Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Read Analyzer Reading Aver Average Field Strength @ 3 m Margin v AF Antenna Factor Peak Calculated Peak Field Strength Margin v CL Cable Loss HPF High Pass Filter Margin v Dist Read AF CL Amp D Corr Fltr Corr. Limit Margin v (m) dBuV dB/m dB dB dB dB dB u dBuV/m dB dB 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 52.2 74.0 -21.8 3.0 24.4 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -21.8 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 58.7 54.0 -16.3 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 38.7	f Measurement Frequency Amp Preamp Gain Average Field Strength Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Li CL Cable Loss HPF High Pass Filter Margin Ant. Pol. (m) dBuV dB/m dB dB dB dBuV/m dB V/H 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -21.8 V 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -22.4 H 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 38.7 54.0 -15.3 H 7 7 74.0 -22.4 H 3.0 36.0 37.9 11.5 -34.6 0.0 0.7 38.7 54.0 -15.3 H 7 </td <td>f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HFF High Pass Filter Margin vs. Peak Limit Margin vs. Peak Limit MBuV dB/m dB dB dB dB uV/metage Margin vs. Peak Limit Det. (m) dBuV dB/m dB dB dB dB uV/metage V/H P/A/QP 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -21.8 V P 3.0 23.6 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -21.8 V P 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -22.4 H P</td> <td>f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HFF High Pass Filter Margin vs. Peak Limit Dist Read AF CL Amp D Corr Filt Corr. Limit Margin vs. Peak Limit (m) dBuV dB/m dB dB dB dB dB uV/mg dB V/H P/A/QP 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -21.8 V P 106.8 3.0 26.4 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -21.8 V P 106.8 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 <td< td=""><td>f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Average Limit CL Cable Loss HFF High Pass Filter Margin vs. Peak Limit Dist Read AF CL Amp D Corr Filt Corr. Limit Margin vs. Peak Limit (m) dBuV dB/m dB dB dB dB dB Margin vs. Peak Limit 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 52.2 74.0 -21.8 V P 106.8 63.8 3.0 24.4 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -22.4 H P 173.3 166.5 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 51.6</td></td<></td>	f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HFF High Pass Filter Margin vs. Peak Limit Margin vs. Peak Limit MBuV dB/m dB dB dB dB uV/metage Margin vs. Peak Limit Det. (m) dBuV dB/m dB dB dB dB uV/metage V/H P/A/QP 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -21.8 V P 3.0 23.6 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -21.8 V P 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -22.4 H P	f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HFF High Pass Filter Margin vs. Peak Limit Dist Read AF CL Amp D Corr Filt Corr. Limit Margin vs. Peak Limit (m) dBuV dB/m dB dB dB dB dB uV/mg dB V/H P/A/QP 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -21.8 V P 106.8 3.0 26.4 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -21.8 V P 106.8 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 <td< td=""><td>f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Average Limit CL Cable Loss HFF High Pass Filter Margin vs. Peak Limit Dist Read AF CL Amp D Corr Filt Corr. Limit Margin vs. Peak Limit (m) dBuV dB/m dB dB dB dB dB Margin vs. Peak Limit 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 52.2 74.0 -21.8 V P 106.8 63.8 3.0 24.4 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -22.4 H P 173.3 166.5 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 51.6</td></td<>	f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Average Limit CL Cable Loss HFF High Pass Filter Margin vs. Peak Limit Dist Read AF CL Amp D Corr Filt Corr. Limit Margin vs. Peak Limit (m) dBuV dB/m dB dB dB dB dB Margin vs. Peak Limit 3.0 36.6 37.9 11.5 -34.6 0.0 0.7 52.2 74.0 -21.8 V P 106.8 63.8 3.0 24.4 37.9 11.5 -34.6 0.0 0.7 51.6 74.0 -22.4 H P 173.3 166.5 3.0 23.2 37.9 11.5 -34.6 0.0 0.7 51.6

Page 231 of 358

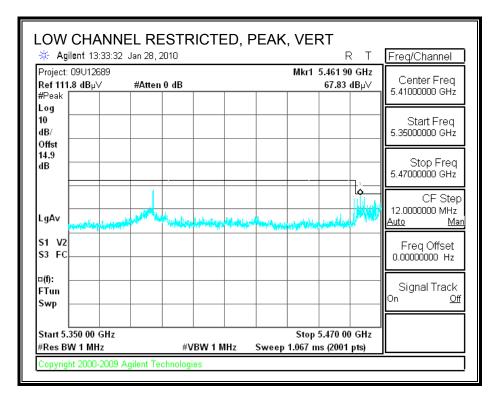

High channel:

Y	cy Measure:	ment												
Jompilance C	ertification	Service	s, Frei	mont 5n	n Chambe	r								
est Engr:	William	ı Zhuan	æ											
Date:	09/25/09													
roject #:	09U126	39												
Company:	Qualco	mm												
Configuration	: EUT w/S	upport l	lotebo	ok										
Iode Oper:	Tx HT40	I												
f	M	nent Fred			Preamp (A	Field Stren;	-+1. T :i+			
ı Dist		to Anter			Distance		t to 3 me	tors	-	ld Strength	-			
Read		Reading		Avg	Average I					75. Average				
AF	Antenna	-		Peak	Calculated				-	rs. Peak Lir				
CL	Cable Lo			HPF	High Pass									
f Di	st Read	AF	CL	Amp	D Corr	Fltr	Согт.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz (m	ı) dBuV	dB/m	dB	dB	dB		dBuV/m	dBuV/m		V/H	P/A/QP	cm	Degree	
0.620 3.0	0 44.8	37.7	9.1	-36.6	0.0	0.8	55.8	74.0	-18.2	v	Р	133.4	86.5	
0.620 3.0		37.7	9.1	-36.6	0.0	0.8	51.6	54.0	-2.4	V	A	133.4	86.5	
0.620 3.0		37.7	9.1	-36.6	0.0	0.8	48.2	74.0	-25.8	H	P	143.9	199.0	
0.620 3.0		37.7	9.1	-36.6	0.0	0.8	40.2	54.0	-13.8	H	<u>A</u>	143.9	199.0	
5.930 3.0 5.930 3.0		37.6 37.6	11.5 11.5		0.0 0.0	0.7 0.7	50.4 39.1	74.0 54.0	-23.6 -14.9	v v	P	197.2 197.2	188.8 188.8	
5.930 3.0		37.6	11.5		0.0	0.7	59.1 50.0	74.0	-14.9	ч Н	A P	157.2	35.2	
5.930 3.0			11.5		0.0	0.7	38.0	54.0	-16.0	H	Ā	158.9	35.2	
5.930 3.0 ev. 4.1.2.7 ote: No other								54.0	-16.0	H	Α	158.9	35.2	

Page 232 of 358

9.2.9. 802.11a MODE IN 5.6 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

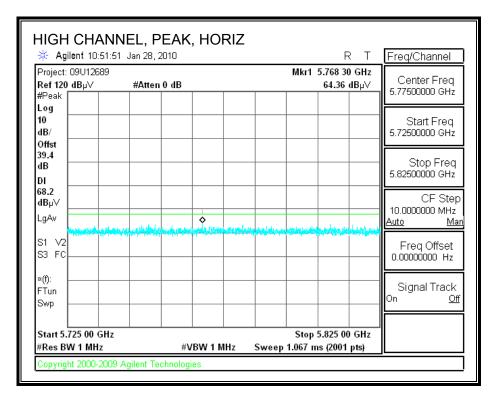


Page 233 of 358

🔆 Agilent 13:39:09 Jan 2	RESTRICTED, A	R T	Freq/Channel
Project: 09U12689 Ref 111.8 dB µ∨ #Att #Peak	ten 0 dB	Mkr1 5.372 605 GHz 41.24 dBµ∨	Center Freq 5.40500000 GHz
Log			Start Freq 5.35000000 GHz
dB			Stop Freq 5.46000000 GHz
54.0 dBµ∨ LgAv			CF Step 11.0000000 MHz <u>Auto Mar</u>
S1 V2 S3 FC			Freq Offset 0.00000000 Hz
*(f): FTun Swp			. Signal Track On <u>Off</u>
Start 5.350 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 000 GHz Sweep 8.577 s (2001 pts)	

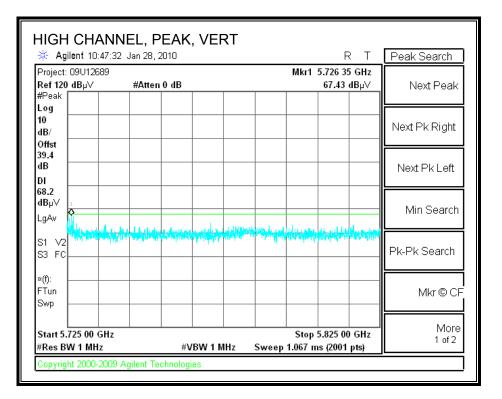
Page 234 of 358

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 235 of 358

🔆 Agilent 13:34:29 Ja	an 28, 2010	RT	Freq/Channel
Project: 09∪12689 Ref 111.8 dB µ∨ #Peak	#Atten 0 dB	Mkr1 5.381 295 GHz 51.28 dBµ∨	Center Freq 5.40500000 GHz
Log 10 dB/			Start Freq 5.35000000 GHz
Offst 14.9 dB DI			Stop Freq 5.4600000 GHz
54.0 dBµ∨ LgAv	L		CF Step 11.0000000 MHz <u>Auto Ma</u> i
S1 V2 S3 FC	- ^		Freq Offset 0.00000000 Hz
»(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.350 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 000 GHz Sweep 8.577 s (2001 pts)	


Page 236 of 358

AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

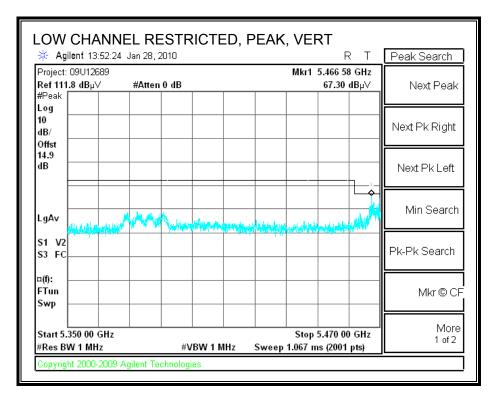
Page 237 of 358


AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

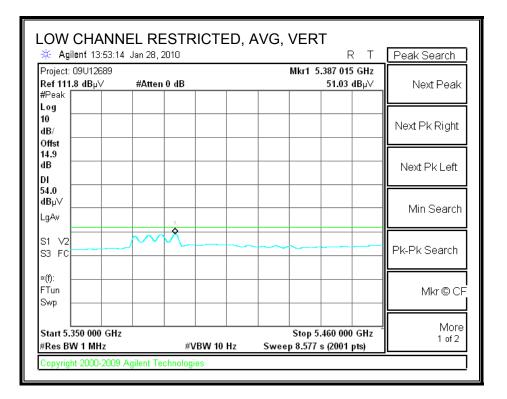
Page 238 of 358

9.2.10. TX ABOVE 1 GHz FOR 802.11a DUAL CHAIN MODE IN 5.6 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

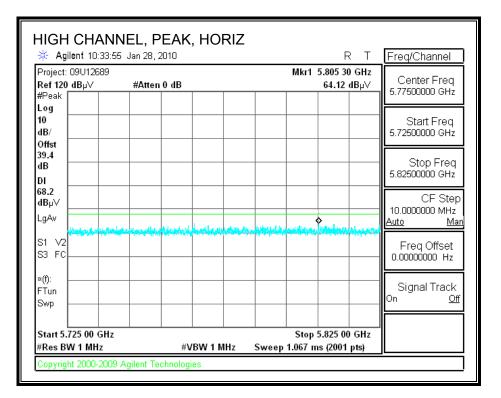


Page 239 of 358

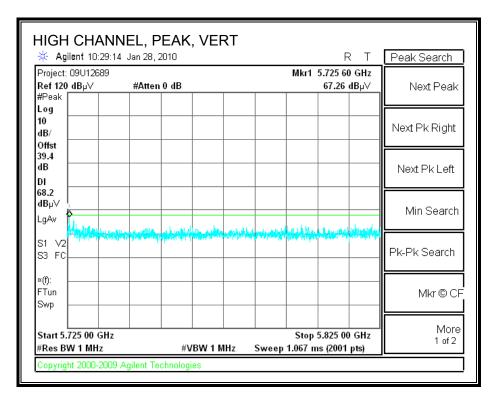

🔆 Agilent 13:58:04 J		ED, AVG, HORIZ	T Freq/Channel
Project: 09U12689 Ref 111.8 dB µ∨ #Peak	#Atten 0 dB	Mkr1 5.378 820 GI 42.56 dB _l	Contor Frog
Log 10 dB/ Offst			Start Freq 5.35000000 GHz
14.9 dB			Stop Freq
DI			CF Step 11.0000000 MHz <u>Auto Man</u>
S1 V2 S3 FC	1. Q		Freq Offset 0.00000000 Hz
×(f): FTun Swp			Signal Track
Start 5.350 000 GHz #Res BW 1 MHz	#VBW 10	Stop 5.460 000 Gl Hz Sweep 8.577 s (2001 pts)	

Page 240 of 358

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 241 of 358

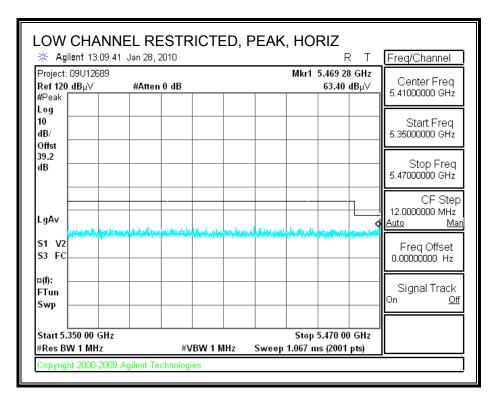

Page 242 of 358

AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 243 of 358

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 244 of 358

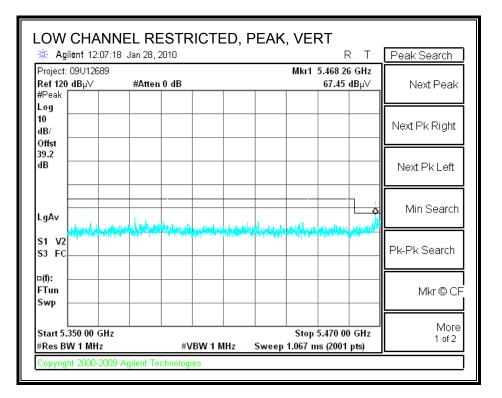

HARMONICS AND SPURIOUS EMISSIONS

Date: _		Thanh N 07/15/09	•••												
Project #:		09U1268	:7												
- Company		QualCo	mm												
		Etherne													
UT M/N:	-	65-VN66	3-P1												
lest Targe	et:	FCC15.2	247/15.4	07											
Mode Ope	er:	Transmi	it 2x4												
-	f	Measuren	nent Fred	puency	Amp	Preamp (Gain			Average	Field Stren	gth Limit			
	Dist					Distance	Correc	t to 3 me	ters	Peak Fie	ld Strength	Limit			
	Read	Analyzer	Reading		Avg	Average Field Strength @ 3 m				Margin vs. Average Limit					
	AF	Antenna	-		Peak			: Field Stre			rs. Peak Liz				
	CL	Cable Los	55		HPF	High Pas			Č.	Ť					
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	aB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/OP	cm	Degree	
low ch 55	00MTH-		<u>.</u>												
1.000	3.0	39.6	37.9	9.2	-36.3	0.0	0.7	51.1	74.0	-22.9	v	Р	172.9	139.5	
1.000	3.0	33.2	37.9	9.2	-36.3	0.0	0.7	44.8	54.0	-9.2	v	A	172.9	139.5	
1.000	3.0	37.7	37.9	9.2	-36.3	0.0	0.7	49.3	74.0	-24.7	Н	Р	139.5	199.3	
1.000	3.0	29.2	37.9	9.2	-36.3	0.0	0.7	40.8	54.0	- 13.2	H	A	139.5	199.3	
Aid ch 55	80			ļ											
1.160	3.0	38.8	38.1	9.3	-36.1	0.0	0.7	50.9	74.0	-23.1	V	Р	181.5	207.7	
1.160	3.0	32.1	38.1	9.3	-36.1	0.0	0.7	44.1	54.0	- 9.9	V	A	181.5	207.7	
1.160	3.0	37.9	38.1	9.3	-36.1	0.0	0.7	50.0	74.0	-24.0	H	Р	162.7	204.2	
1.160	3.0	31.3	38.1	9.3	-36.1	0.0	0.7	43.3	54.0	- 10.7	H	A	162.7	204.2	
ligh ch 5												-			
1.400	3.0	40.5	38.3	9.4	• • • • • • • • • • • • • • • • • • • •	0.0	0.7	53.0	74.0	-21.0	V	P	129.5	252.8	
1.400 1.400	3.0 3.0	35.7 36.0	38.3 38.3	9.4 9.4	·	0.0 0.0	0.7 10.0	48.3 57.8	54.0 74.0	-5.8 -16.2	V H	A P	129.5 142.1	252.8 230.6	
1.400	3.0	30.0 23.8	38.3	9.4 9.4	• • • • • • • • • • • • • • • • • • • •	0.0	10.0		74.0 54.0	-10.2 -8.4	п Н	P A	142.1	230.6	
1.400	J.U	£J.0	J		-32.7	0.0	10.0	47.0	2%U	-0.4		<u>а</u>	145.1	230.0	
				•	+	+				ti					
			1	·	·	<u>.</u>				1					
Rev. 4.1.2										•					
		missions	wara da	teste	l abour	the system	m no:-	a floor							
1016.110		112210112	were ue	LET LET		uie sysiei	10 110 12	е цоот.							

Page 245 of 358

9.2.11. 802.11n HT20 MODE 5.6 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

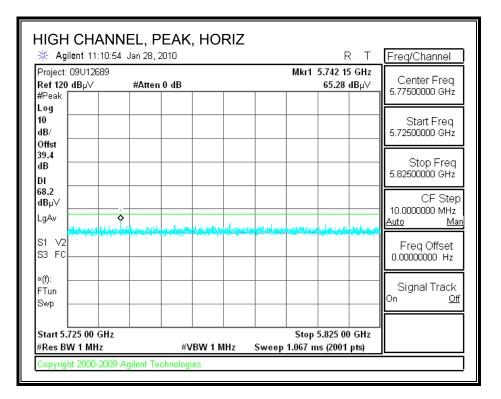


Page 246 of 358

Agilent 13:10:27 Jan 2	RESTRICTED, . 8, 2010	AVG, HORIZ	Freq/Channel
Project: 09U12689 Ref 120 dBµ∨ #And #Peak	ten 0 dB	Mkr1 5.393 890 GHz 51.30 dBµ∀	Center Freq 5.40500000 GHz
Log 10 dB/ Offst			Start Freq 5.35000000 GHz
39.2 dB			Stop Freq 5.4600000 GHz
DI 54.0 dBµ∨ LgAv			CF Step 11.000000 MHz <u>Auto Mar</u>
S1 V2			Freq Offset 0.00000000 Hz
×(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.350 000 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 000 GHz Sweep 8.577 s (2001 pts)	Å

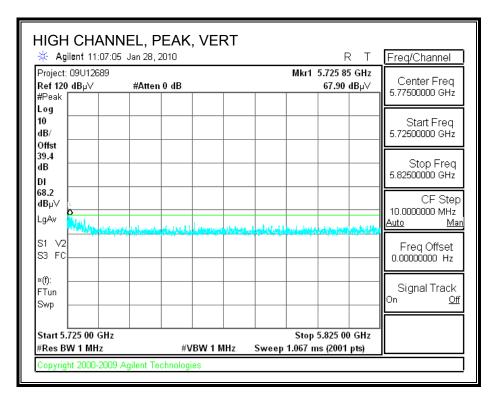
Page 247 of 358

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 248 of 358

🔆 Agilent 12:08:04	Jan 28, 2010	R T	Peak Search				
Project: 09U12689		Mkr1 5.386 355 GHz					
Ref 120 dBµ∨ #Peak	#Atten 0 dB	53.34 dBµ∨	Next Peak				
Log							
10			Next Pk Right				
dB/							
Offst 39.2							
dB			Next Pk Left				
DI							
54.0 dBµ∀							
LgAv			Min Search				
S1 V2							
S3 FC			Pk-Pk Search				
»(f):							
FTun			Mkr@CF				
Swp							
			More				
Start 5.350 000 GHz		Stop 5.460 000 GHz					
#Res BW 1 MHz	#VBW 10 H	z Sweep 8.577 s (2001 pts)	1 of 2				

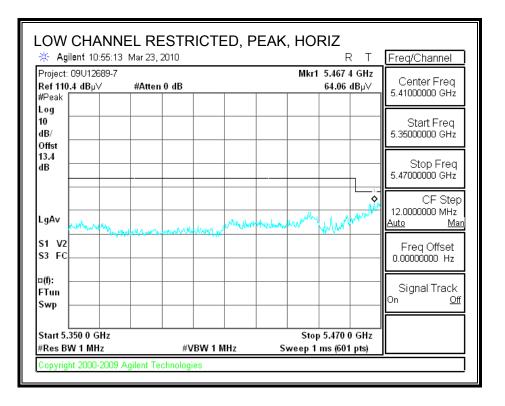

Page 249 of 358

AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 250 of 358

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 251 of 358

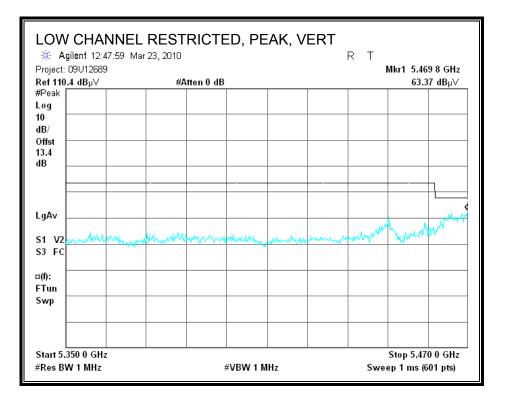

HARMONICS AND SPURIOUS EMISSIONS

Compan Project	#: 09U														
	7/06/09	Dama Aral													
		Doug And EUT w/Sup	erson port Notebo	ok											
fode: 1	Γx / HT	20	-												
est Eq	uipmen	.t:													
						211-7	Pre-amplifer 26-40GHz				Horn > 18GHz			Limit	
Horn 1-18GHz Pre-amplifer 1-26GH:					Fre-ampilier 20-40GHZ								FCC 15.205		
173; 5	5/N: 671	/@03m	- 1144 N	nited 30	08A009	31 -				-				-	PCC 15.205
	quency Ca														
3' cable 22807700 12' cable 228076				00	20' cable 22807500 HPF					Reject Filter Peak Measurements RBW=VBW=1MHz					
3' c	able 22	307700	- 12' ca	ble 228	07600	•	20' cab	le 2280	7500 🗸	HP	F_7.6GHz	-			ge Measurements
I		_							_					RBW=I	MHz; VBW=10Hz
f	Dist		Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim			Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
w Ch.:	<u>5500</u>								•						
1.000	3.0	47.0	40.8	37.9	9.2	-36.3	0.0	0.7	58.5	52.4	74	54	-15.5	-1.6	v
1.000	3.0	41.9	29.0	37.9	9.2	-36.3	0.0	0.7	53.5	40.6	74	54	-20.5	-13.4	H
/lid Ch.: :	5500														
	1														
1.160	3.0 3.0	44.6 44.3	35.2 34.4	38.0 38.0	93 93	-36.1 -36.1	0.0 0.0	0.7 0.7	56.5 56.2	47.1 46.4	74 74	54 54	-17.5 -17.8	-6.9 -7.6	V н
ligh Ch.:	5700														
1.400	3.0	41.3	35.3	38.3	9.4	-35.9	0.0	0.7	53.8	47.8	74	54	-20.2	-6.2	v
1.400	3.0	43.9	28.0	38.3	9.4	-35.9	۵٥	0.7	56.4	40.5	74	54	- 17.6	-13.5	H
				L			<u></u>	L	<u> </u>		<u> </u>		L	L	
Rev. 11.10	80.0														
	f		ent Frequency	7		Amp	Preamp (-	-	Field Strength	
	Dist Read	Distance to Analyzer R				D Corr Avg			ct to 3 mete Strength @					d Strength Lir . Average Lir	
	AF	Antenna Fa	0			Peak.	-		c Field Stre			-	-	. Peak Limit	
	CL	Cable Loss				HPF	High Pas	s Filter							

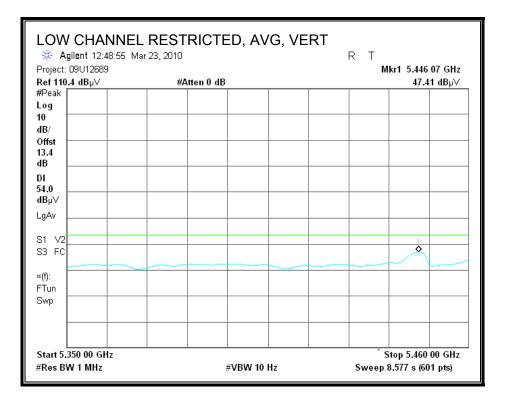
Page 252 of 358

9.2.12. 802.11n HT40 MODE 5.6 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

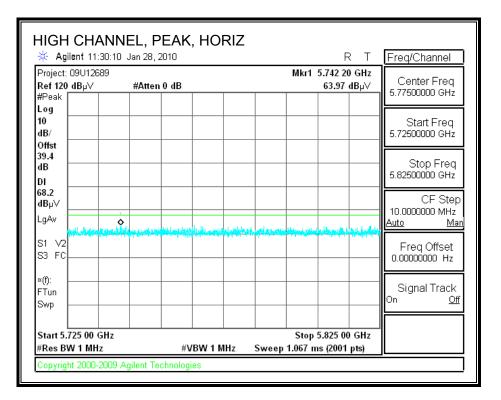


Page 253 of 358

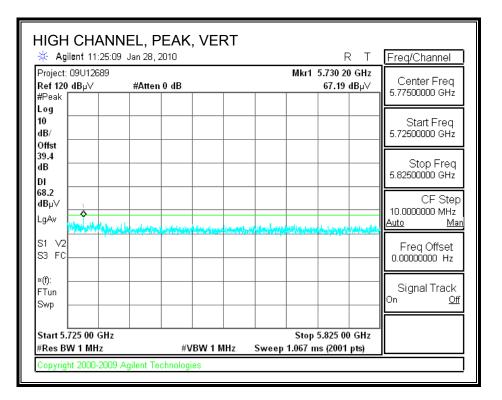

🔆 Agilent 11:06:10 M		D, AVG, HORIZ	Freq/Channel
Project: 09U12689-7 Ref 110.4 dB μ∨ #Peak	#Atten 0 dB	Mkr1 5.460 00 GHz 40.96 dBμ∀	Center Freq 5.40500000 GHz
Log 10 dB/ Offst			Start Freq 5.35000000 GHz
13.4 dB			Stop Freq 5.46000000 GHz
54.0 dBµ∀ LgAv			CF Step 11.0000000 MHz Auto Man
S1 V2 S3 FC			Freq Offset
×(f): FTun Swp			Signal Track On <u>Off</u>
Start 5.350 00 GHz #Res BW 1 MHz	#VBW 10 Hz	Stop 5.460 00 GHz Sweep 8.577 s (601 pts)	

Page 254 of 358

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 255 of 358

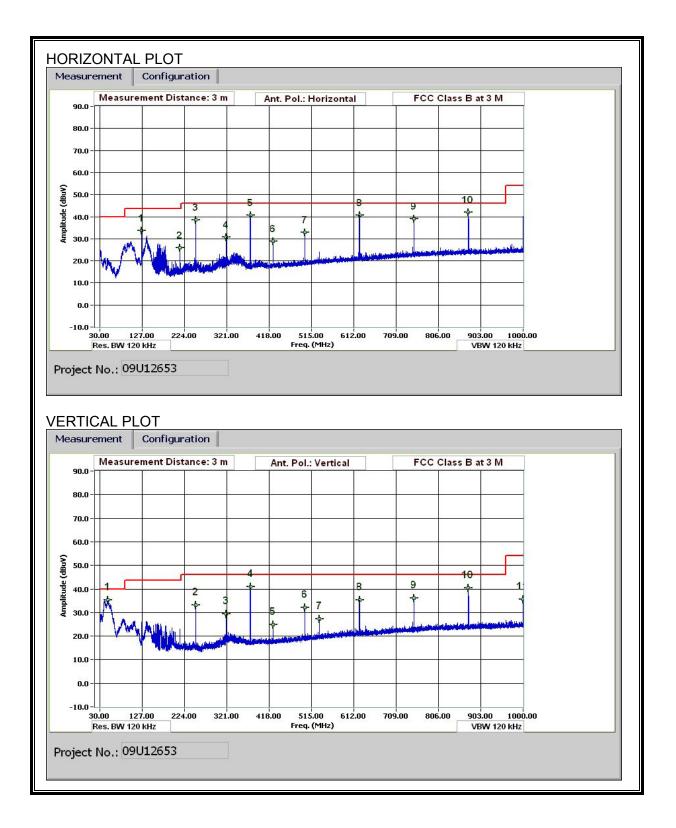

Page 256 of 358

AUTHORIZED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 257 of 358

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 258 of 358


HARMONICS AND SPURIOUS EMISSIONS

0.00 2.	quipmen	<u>t:</u>														
	lorn 1- S/N: 671			m <mark>plifer</mark> Aiteq 300			Pre-am	plifer	26-40GH	z T		H	orn > 180	GHz	-	Limit FCC 15.205
- Hi Fre	quency Ca	bles														
3'	cable 2	2807700	12' c	able 22	28076	00	20' ca	ble 22	807500			HPF	Re	ject Filte		<u>Measurements</u> W=VBW=1MHz
3, 0	able 228	07700	▼ 12' ca	nble 2280)7600	-	20' cab	le 2280	7500		HPF	7.6GHz	-			ge <u>Measurements</u> 1MHz ; VBW=10Hz
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m		Avg BuV/m	Pk Lim dBuV/m		Pk Mar dB	Avg Mar dB	Notes (V/H)
w Ch. .020	5510MHz 3.0	45.4	36.7	37.9	9.2	-36.3	0.0	0.7	57.0		48.3	74	54	-17.0	-5.7	v
.020 4 Ch	3.0 5550MHz	41.2	27.2	37.9	9.2	-36.3	0.0	0.7	52.8		38.8	74	54	-21.2	-15.2	Н
.100	3.0	41.5	27.4	38.0	9.3	-36.2	0.0	0.7	53.3		39.2	74	54	- 20.7	-14.8	v
.100 vh Ch	3.0 .5670MH	41.1	29.8	38.0	93	-36.2	0.0	0.7	52.9		41.7	74	54	-21.1	-12.3	H
.340	3.0	45.5	35.5	38.2	9.4	-36.0	0.0	0.7	57.9		47.8	74	54	- 16.1	-6.2	V
.340	3.0	41.9	28.4	38.2	9.4	-36.0	0.0	0.7	54.3	L	40.8	74	54	-19.7	-13.2	H
	f	Measurem	ent Frequency	v		Amp	Preamp (Gain					Avg Lim	Average H	Field Strength	1 Limit
		Distance to				D Corr			ct to 3 mete						d Strength Li	
		Analyzer R	-			Avg	-		Strength @				-	-	. Average Li	mit
	AF CL	Antenna F: Cable Los:				Peak HPF	Calculate High Pas		c Field Stre	engt	h		Pk Mar	Margin vs	. Peak Limit	
		04010 200														

Page 259 of 358

9.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 260 of 358

EMISSIONS DATA

Test Engr: Date: Project #: Company EUT Descr EUT M/N: Test Targe Mode Ope	iption: t:	Vien Trat 06/26/09 09U12653 Qualcom 802.11n 4 Non-DFS FCC Clas Tx HT20 1	3 m 1x4 WLA :65-VN66 ss B	63-P1		apter										
	f	ฟ้องการพ	ont From	oncuz	Amp	Preamp (Tain			Margin	Margin vs.	Limit				
				-	-		to 3 meters		marent	maigut vs.						
Read Analyzer Reading			~	Filter	Filter Ins		to 5 meters									
	AF	Analyzer I Antenna F			Filter Corr.											
	AF CL	Cable Loss			Corr. Limit	Calculate										
	CL.	Cable Loss	,		Limit	Field Stre	ngtn LB	tut								
f	Dist	Read	AF	CL	Amp	D Corr	Filter	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes			
MHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP				
5805MHz		· · · · · · · · · · · · · · · · · · ·														
125.044	3.0	47.3	13.7	1.1	28.3	0.0	0.0	33.7	43.5	- 9.8	H	EP				
213.368	3.0	40.9	11.9	1.3	28.2	0.0	0.0	25.9	43.5	-17.6	H	EP				
249.969	3.0	53.5	11.8	1.4	28.2	0.0	0.0	38.5	46.0	-7.5	H	EP				
319.932	3.0	43.6	13.7	1.6	28.1	0.0	0.0	30.8	46.0	-15.2	H	EP				
375.014	3.0	52.5	14.5	1.7	28.1	0.0	0.0	40.7	46.0	-5.3	H	EP				
426.616	3.0	39.5	15.4	1.9	28.0	0.0	0.0	28.8	46.0	-17.2	H	EP				
499.939	3.0	41.9	16.7	2.0	27.8	0.0	0.0	32.9	46.0	-13.1	H	EP				
624.985	3.0	47.2	18.7	2.3	27.4	0.0	0.0	40.7	46.0	-5.3	H	EP				
749.910	3.0	43.5	20.3	2.5	27.3	0.0	0.0	39.0	46.0	-7.0	H	EP				
874.955	3.0	45.4	21.6	2.8	27.7	0.0	0.0	42.1	46.0	- 3.9	H	EP				
5805MHz									40.0			FD				
48.001	3.0	53.6	9.3	0.6	28.4	0.0	0.0	35.2	40.0	-4.8	V	EP				
249.969	3.0	48.3	11.8	1.4	28.2	0.0	0.0	33.2	46.0	-12.8	V	EP				
320.052	3.0	42.2	13.7	1.6	28.1	0.0	0.0	29.4	46.0	-16.6	V	EP				
375.014	3.0	52.8	14.5	1.7	28.1	0.0	0.0	41.0	46.0	-5.0	V	EP				
426.736	3.0	35.5	15.4	1.9	28.0	0.0	0.0	24.8	46.0	-21.2	V	EP				
499.939	3.0	41.2	16.7	2.0	27.8	0.0	0.0	32.1	46.0	-13.9	V	EP EP				
533.301	3.0	35.7	17.3	2.1	27.7	0.0	0.0	27.3	46.0	-18.7	V	·····				
CO 4 00E	3.0	41.8	18.7	2.3	27.4	0.0	0.0	35.4	46.0	-10.6	V	EP				
	3.0	40.6 43.7	20.3 21.6	2.5 2.8	27.3	0.0	0.0	36.1 40.4	46.0	-9.9	V	EP EP				
749.910	20				27.7	0.0	0.0		46.0	-5.6	V	EP				
624.985 749.910 874.955 999.880	3.0 3.0	37.9	22.5	3.0	27.9	0.0	0.0	35.4	54.0	-18.6	v	EP				

Page 261 of 358

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

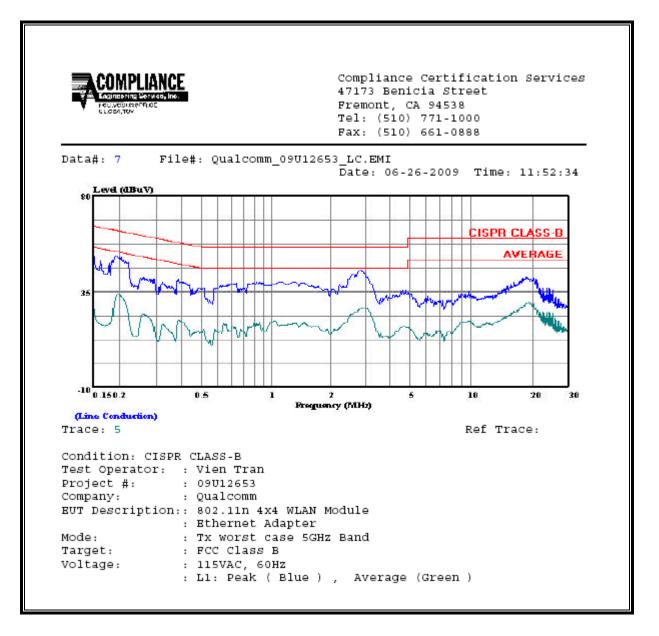
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

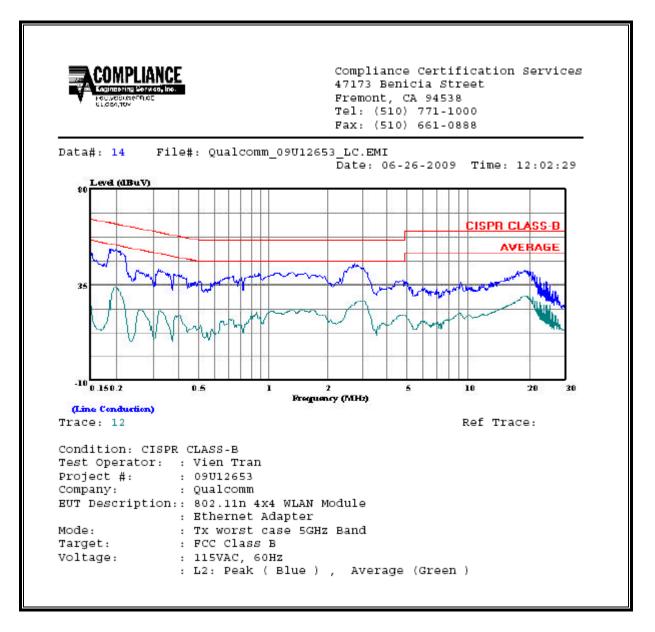
RESULTS

Page 262 of 358


1

6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)												
Freq.	Reading			Closs	Limit	FCC_B	Margin		Remark				
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2				
0.19	51.41		33.87	0.00	63.86	53.86	-12.45	-19.99	L1				
2.95	44.80		27.60	0.00	56.00	46.00	-11.20	-18.40	L1				
19.12	41.71		30.40	0.00	60.00	50.00	-18.29	-19.60	L1				
0.19	51.34		33.94	0.00	63.86	53.86	-12.52	-19.92	L2				
2.95	44.13		27.56	0.00	56.00	46.00	-11.87	-18.44	L2				
19.12	40.89		29.56	0.00	60.00	50.00	-19.11	-20.44	L2				
6 Worst I	Data												


Page 263 of 358

LINE 1 RESULTS

Page 264 of 358

LINE 2 RESULTS

Page 265 of 358

11. DYNAMIC FREQUENCY SELECTION

11.1. OVERVIEW

11.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

<u>FCC</u>

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Page 266 of 358

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational	Operational Mode						
	Master	Client	Client					
		(without DFS)	(with DFS)					
DFS Detection Threshold	Yes	Not required	Yes					
Channel Closing Transmission Time	Yes	Yes	Yes					
Channel Move Time	Yes	Yes	Yes					

Page 267 of 358

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value					
	(see note)					
≥ 200 milliwatt	-64 dBm					
< 200 milliwatt	-62 dBm					
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna						
Note 2: Throughout these test procedures an additional 1 dB h	as been added to the amplitude					
of the test transmission waveforms to account for variations in	measurement equipment. This					
will ensure that the test signal is at or above the detection three	shold level to trigger a DFS					
response.						

Parameter	Value						
Non-occupancy period	30 minutes						
Channel Availability Check Time	60 seconds						
Channel Move Time	10 seconds						
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period						
The instant that the Channel Move Time and the Char	nel Closina Transmission Time begins is						

Table 4: DFS Response requirement values

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

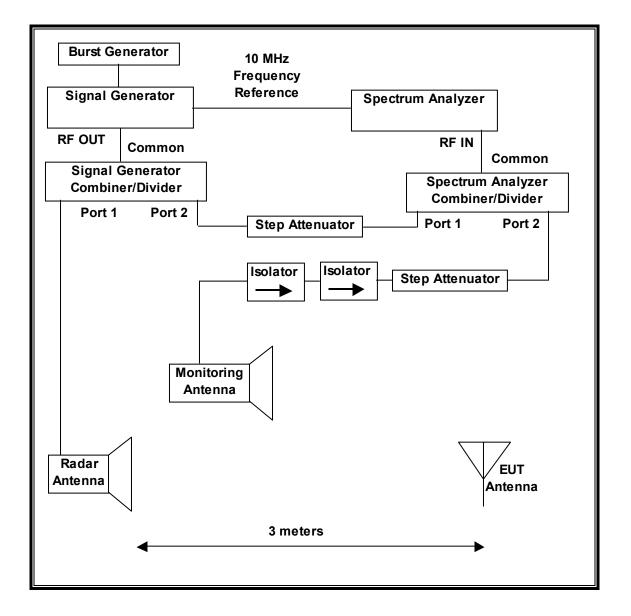
Page 268 of 358

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials
-				Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (F	Radar Types 1-4)			80%	120

Table 6 – Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30


Table 7 – Frequency Hopping Radar Test Signal

Radar Waveform	Pulse Width	PRI (usec)	Burst Length	Pulses per	Hopping Rate	Minimum Percentage of	Minimum Trials
	(µsec)	, , , , , , , , , , , , , , , , , , ,	(ms)	Нор	(kHz)	Successful Detection	
6	1	333	300	9	.333	70%	30

Page 269 of 358

11.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 270 of 358

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

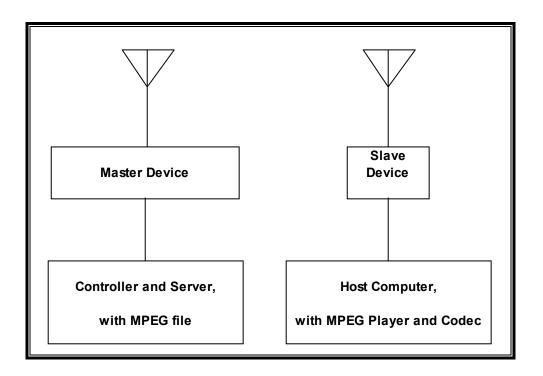
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 271 of 358

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset Number	Cal Due		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4446A	C00996	04/20/10		
Vector signal generator, 20GHz	Agilent / HP	E8267C	C01066	11/16/10		
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	05/04/10		

Page 272 of 358

11.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

Page 273 of 358

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

MASTER CONFIGURATION:

	PERIPHERAL	SUPPORT EQUIF	MENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
AC Adapter (EUT)	Phihong	PSA15R-050P	P93824329A3	DoC
Notebook PC (Host)	HP	Compaq 6710b	CNUL032TY1	DoC
AC Adapter (Host PC)	HP	PA-1900-18HN	9406310104	DoC
USB to RS-232 Adapter	Keyspan	USA-19HS	02300	DoC
Notebook PC (Client)	IBM	Type 2668-46U	L3-XDLW 06/02	DoC
AC Adapter (Client PC)	IBM	02K6749	11S02K6749ZJ1M	DoC
			N328Z9DE	
Dual Band Wireless	Linksys/Cisco	WUSB600N	001C10EB00CB	Q87-WUSB600N
USB Network Adapter				
(Slave Device)				

SLAVE CONFIGURATION:

	PERIPHERAL	SUPPORT EQ	JIPMENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
AC Adapter (EUT)	Phihong	PSA15R-050P	P93824329A3	DoC
Wireless Access Point	Cisco	AIR-AP1252AG	FTX120690N2	LDK102061
(Master Device)		A-K9		
AC Adapter (AP)	Delta	EADP-45BB B	DTH112490BD	DoC
	Electronics			
Notebook PC (Host)	Dell	PP18L	10657517255	DoC
AC Adapter (Host PC)	Lite On	LA65SN0-00	CN-ODF263-71615-687-	DoC
Notebook PC (Client)	Lenovo	Type 2668-46U	L3-XDVV 06/02	DoC
AC Adapter (Client PC)	Delta	02K6749	11S02K6749ZJ1MN328	DoC
USB to RS-232 Adapter	Keyspan	USA-19HS	02300	DoC

Page 274 of 358

11.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding channels that have emissions falling within 5600 to 5650 MHz range.

The EUT can be configured as a Master Device or a Slave Device without Radar Detection.

The highest power level within these bands is 26.62 dBm EIRP in the 5250-5350 MHz band and 26.89 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of 3 dBi; in the 802.11a legacy mode it has an effective transmit antenna gain of 6.01 dBi.

Four identical antennas are utilized to meet the diversity and MIMO operational requirement, except in the 802.11a mode where two identical antennas are active for the transmitter and four identical antennas are active for the receiver.

The EUT uses four transmitter/receiver chains, each connected to a 50-ohm coaxial antenna port. All antenna ports are connected to an antenna to perform radiated tests.

The rated output power of the EUT is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths are implemented: 20 MHz and 40 MHz.

The software installed in the access point under test is revision 5.0.301.66.

MANUFACTURER'S STATEMENT REGARDING UNIFORM CHANNEL SPREADING

This statement is in a separate document.

Page 275 of 358

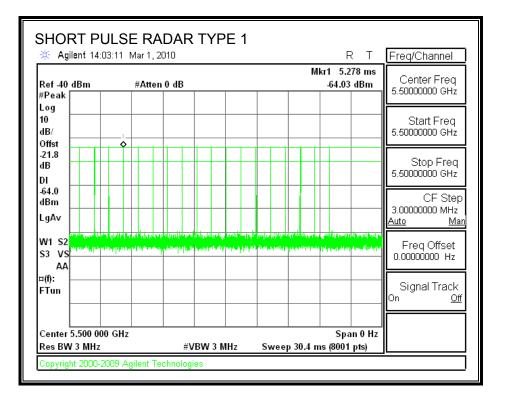
OVERVIEW OF MASTER DEVICE UTILIZED FOR SLAVE CONFIGURATION, WITH RESPECT TO §15.407 (h) REQUIREMENTS

The Master Device is a Cisco Access Point, FCC ID: LDK102061. The minimum antenna gain for the Master Device is 3.5 dBi.

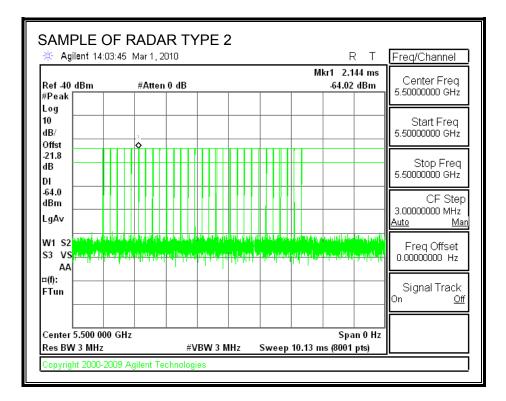
The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

Page 276 of 358

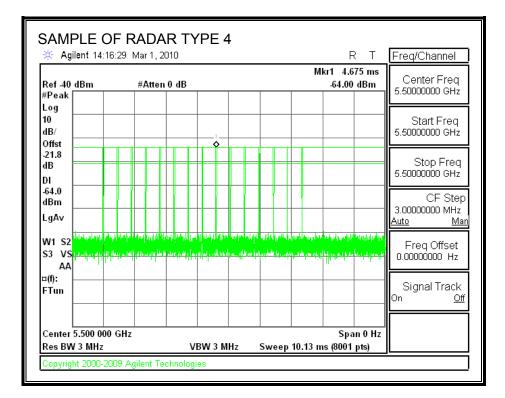

11.2. MASTER DEVICE CONFIGURATION IN 20 MHz BANDWIDTH

11.2.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5500 MHz.

11.2.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORMS

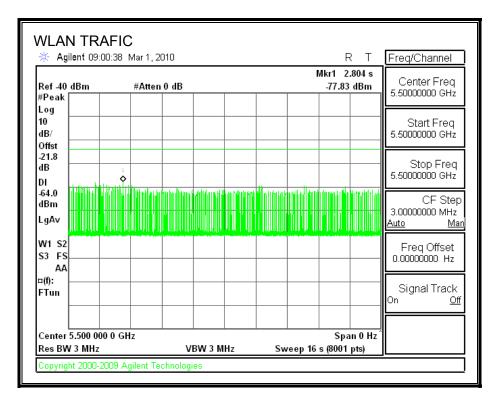

Page 277 of 358

Page 278 of 358

Ref-40 dBm		#Atten	0 dB				M	kr1 8.4 -64.02		Center Freq
#Peak								0.1102		5.50000000 GHz
Log 10 dB/ Offst					11					Start Freq 5.5000000 GHz
-21.8 dB					Ť					Stop Freq 5.5000000 GHz
DI -64.0 dBm LgAv										CF Step 3.0000000 MHz <u>Auto Ma</u>
W1 S2 S3 VS	ni pri anc bi _{li} na dhi	a panala panana Janala panana J	ene era sisar Maka, kaseda	TTERVET Albert Byla		a ne i në pre A të për pas	A TRANSFORME (MA 19.46.00.2020.001	niy nimmen Maharak	All Contropo S Madda ag Al	
¤(f): FTun										Signal Track On <u>Of</u>
Center 5.500 0 Res BW 3 MHz				BW 3 M		Sweep	45 47		in 0 Hz	

Page 279 of 358

Page 280 of 358


🔆 Agilent 14:2	1:20 Mar 1	2010					F	₹ T	Freq/Channel
Ref -40 dBm #Peak	#Att	en 0 dB				MI	kr1 4.4 -64.00		Center Freq 5.50000000 GHz
Log 10 dB/ Offst				1					Start Freq 5.50000000 GHz
-21.8 dB									Stop Freq 5.5000000 GHz
-64.0 dBm LgAv									CF Step 3.0000000 MHz <u>Auto Ma</u> i
W1 S2 S3 VS									Freq Offset 0.00000000 Hz
¤(f): FTun									Signal Track On <u>Off</u>
Center 5.500 000 Res BW 3 MHz) GHz		3W 3 MH	łz	Sw	reep 8 n	•	n 0 Hz pts)	

Page 281 of 358

🔆 Agilent 14:2	21:55 Mar 1, 2010				RT	Freq/Channel
Ref -40 dBm #Peak	#Atten 0	IB		M	kr1 2.665 ms _64.03 dBm	Center Freq 5.5000000 GHz
Log 10 dB/			1			Start Freq 5.5000000 GHz
-21.8 dB						Stop Freq 5.50000000 GHz
-64.0 dBm LgA∨						CF Step 3.0000000 MHz <u>Auto Mar</u>
	na salah na harang sa					
¤(f): FTun						Signal Track On <u>Off</u>
Center 5.500 00 Res BW 3 MHz	0 GHz	VBW 3 M		Sweep 5 r	Span 0 Hz ns (8001 pts)	

Page 282 of 358

PLOT OF WLAN TRAFFIC FROM MASTER

Page 283 of 358

11.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

QUANTITATIVE RESULTS

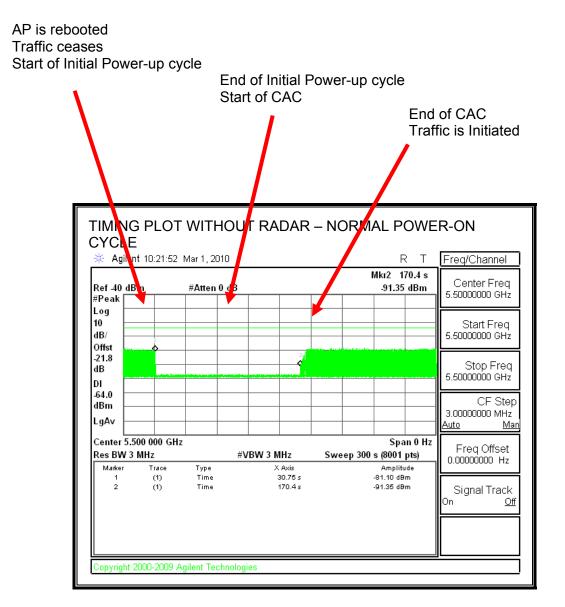
No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
30.75	170.4	139.7	79.7

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.38	110.7	80.4	0.7

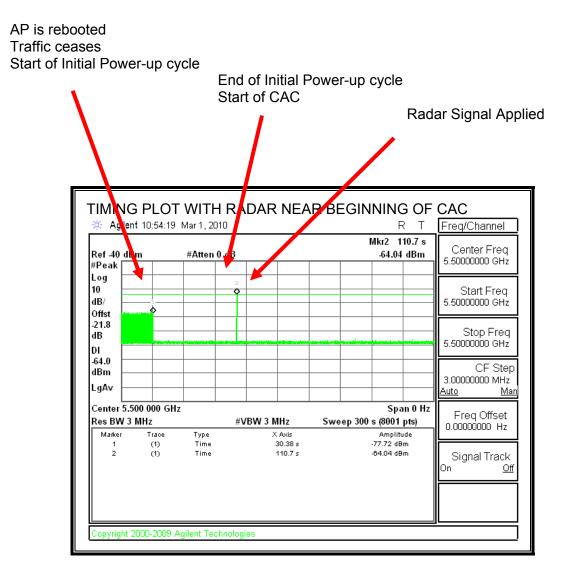
Radar Near End of CAC


Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
29.48	168.6	139.1	59.5

QUALITATIVE RESULTS

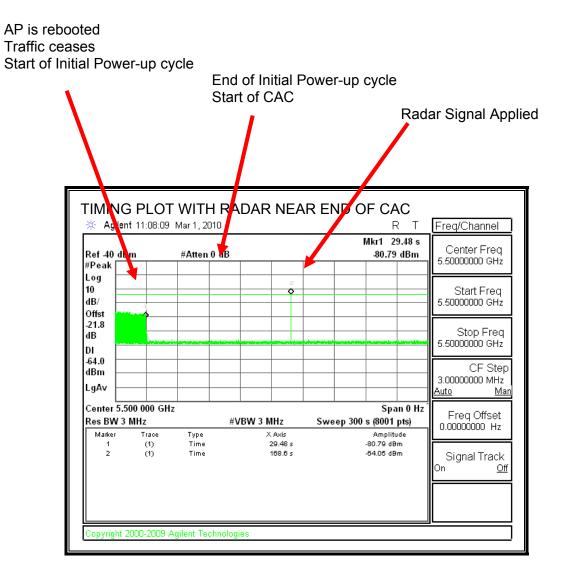
Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

Page 285 of 358


TIMING PLOT WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Page 286 of 358


TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

Page 287 of 358

TIMING PLOT WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

Page 288 of 358

11.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

Page 289 of 358

11.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

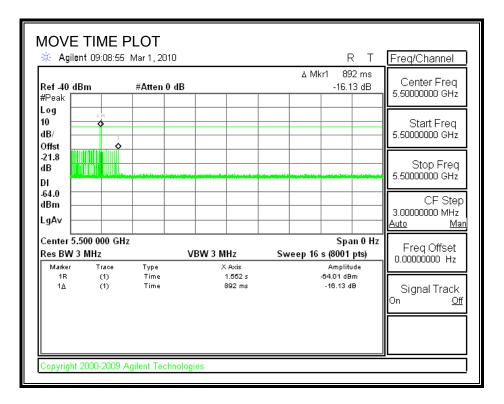
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

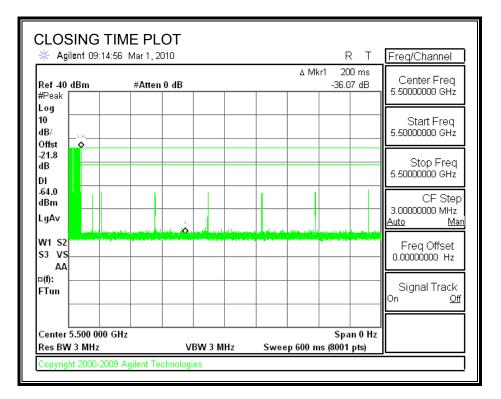
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

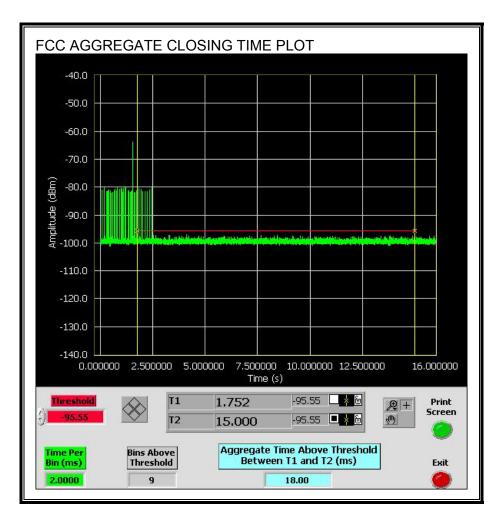
Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.892	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	18.0	60
IC	24.0	260

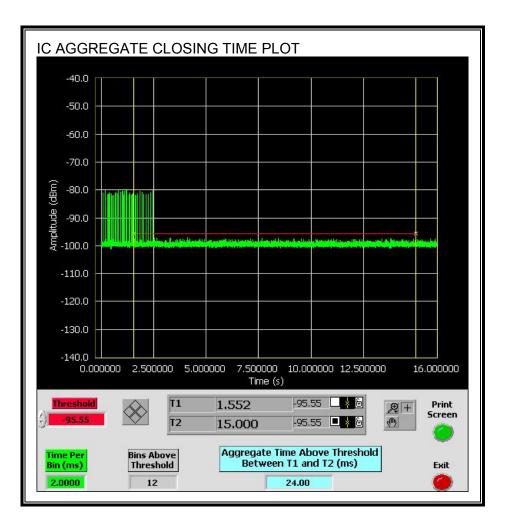

Page 290 of 358

MOVE TIME

Page 291 of 358

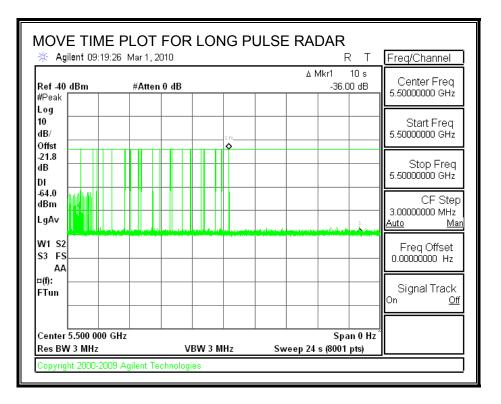

CHANNEL CLOSING TIME

Page 292 of 358


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

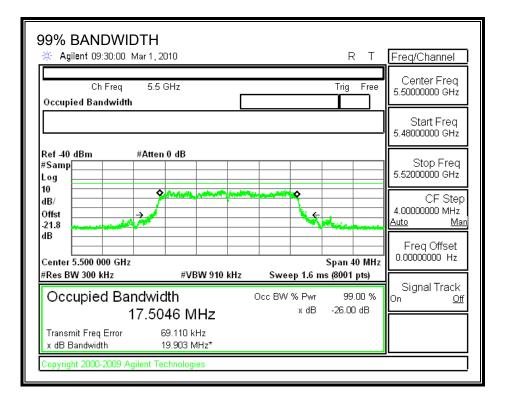
Only intermittent transmissions are observed during the FCC aggregate monitoring period.

Page 293 of 358


Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 294 of 358

LONG PULSE CHANNEL MOVE TIME


The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 295 of 358

11.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5492	5508	16	17.505	91.4	80

Page 296 of 358

DETECTION BANDWIDTH PROBABILITY

DETECTION E	ETECTION BANDWIDTH PROBABILITY RESULTS							
	Detection Bandwidth Test Results FCC Type 1 Waveform: 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst							
Frequence (MHz)		Number Detected		Mark				
5492	10	10	100	FL				
5493	10	10	100					
5494	10	10	100					
5495	10	10	100					
5496	10	10	100					
5497	10	10	100					
5498	10	10	100					
5499	10	10	100					
5500	10	10	100					
5501	10	10	100					
5502	10	10	100					
5503	10	10	100					
5504	10	10	100					
5505	10	10	100					
5506	10	10	100					
5507	10	10	100					
5508	10	10	100	FH				

Page 297 of 358

11.2.7. IN-SERVICE MONITORING

RESULTS

CC Radar Test Summ				
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	96.67	60	Pass
FCC Short Pulse Type 3	30	93.33	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		97.50	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	34	100.00	70	Pass

Page 298 of 358

TYPE 1 DETECTION PROBABILITY

	Data Sheet for FCC Short Pulse Radar Type 1 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst				
Trial	Successful Detection				
THA	(Yes/No)				
1	Yes				
2	Yes				
3	Yes				
4	Yes				
5	Yes				
6	Yes				
7	Yes				
8	Yes				
9	Yes				
10	Yes				
11	Yes				
12	Yes				
13	Yes				
14	Yes				
15	Yes				
16	Yes				
17	Yes				
18	Yes				
19	Yes				
20	Yes				
21	Yes				
22	Yes				
23	Yes				
24	Yes				
25	Yes				
26	Yes				
27	Yes				
28	Yes				
29	Yes				
30	Yes				

Page 299 of 358

TYPE 2 DETECTION PROBABILITY

Naveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	3.7	229.00	29	Yes
2002	2.8	151.00	29	Yes
2003	1.9	224.00	28	Yes
2004	4.7	167.00	28	Yes
2005	2.2	188.00	29	Yes
2006	3.4	214.00	24	Yes
2007	4.8	169.00	24	Yes
2008	3.8	163.00	26	Yes
2009	1.5	226.00	28	Yes
2010	1.7	164.00	28	Yes
2011	1.7	156.00	24	Yes
2012	2	196.00	27	Yes
2013	2.4	173.00	27	Yes
2014	3.8	221.00	28	Yes
2015	2.3	189.00	27	Yes
2016	5	188.00	28	Yes
2017	3.5	189.00	23	Yes
2018	4.5	175.00	23	Yes
2019	1.7	153.00	24	Yes
2020	2.4	172.00	26	Yes
2021	2.9	191.00	24	Yes
2022	2.2	190.00	29	Yes
2023	2.3	155.00	25	No
2024	1	226.00	28	Yes
2025	4.1	185.00	27	Yes
2026	3	225.00	26	Yes
2027	4.1	193.00	24	Yes
2028	3.7	191.00	26	Yes
2029	1.9	156.00	23	Yes

Page 300 of 358

TYPE 3 DETECTION PROBABILITY

Naveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
3001	6.5	464.00	17	Yes
3002	7.2	467.00	16	Yes
3003	6	282.00	16	Yes
3004	6.6	350.00	18	Yes
3005	8.4	349.00	16	Yes
3006	8.5	379.00	17	Yes
3007	7.2	306.00	16	Yes
3008	5.4	306.00	18	Yes
3009	9.1	377.00	17	No
3010	8.1	423.00	17	Yes
3011	9.2	353.00	16	Yes
3012	8.2	274.00	16	Yes
3013	7	339.00	16	Yes
3014	8.1	455.00	16	Yes
3015	5.2	362.00	16	Yes
3016	7.1	442.00	16	Yes
3017	7.2	307.00	18	Yes
3018	5.3	493.00	16	Yes
3019	6.6	335.00	18	Yes
3020	7.4	356.00	16	Yes
3021	6.3	266.00	18	No
3022	9	358.00	18	Yes
3023	8.5	425.00	17	Yes
3024	6.7	443.00	18	Yes
3025	5.5	296.00	17	Yes
3026	6.3	286.00	17	Yes
3027	6.3	303.00	18	Yes
3028	9.1	448.00	16	Yes
3029	8.5	419	17	Yes
3030	8.7	311	17	Yes

Page 301 of 358

TYPE 4 DETECTION PROBABILITY

4001	(us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	19	458.00	15	Yes
4002	14.8	424.00	14	Yes
4003	11.4	398.00	15	Yes
4004	17.4	385.00	13	Yes
4005	19.5	482.00	13	Yes
4006	17.9	317.00	16	Yes
4007	13.4	356.00	14	Yes
4008	11.1	273.00	14	Yes
4009	15.1	326.00	16	Yes
4010	12	442.00	12	Yes
4011	20	376.00	13	Yes
4012	18.8	325.00	13	Yes
4013	18.8	428.00	14	Yes
4014	18.9	387.00	14	Yes
4015	18.1	350.00	13	Yes
4016	17.3	446.00	16	Yes
4017	16.5	373.00	14	Yes
4018	16.8	319.00	15	Yes
4019	16.9	456.00	13	Yes
4020	18	296.00	15	Yes
4021	17.8	299.00	14	Yes
4022	16	417.00	15	Yes
4023	11.5	262.00	16	Yes
4024	17.7	491.00	12	Yes
4025	14.3	283.00	15	Yes
4026	11.2	321.00	12	Yes
4027	13.6	483.00	16	Yes
4028	10.7	389.00	15	Yes
4029	16.2	273.00	12	Yes

Page 302 of 358

TYPE 5 DETECTION PROBABILITY

Trial	Long Pulse Radar Type 5 Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

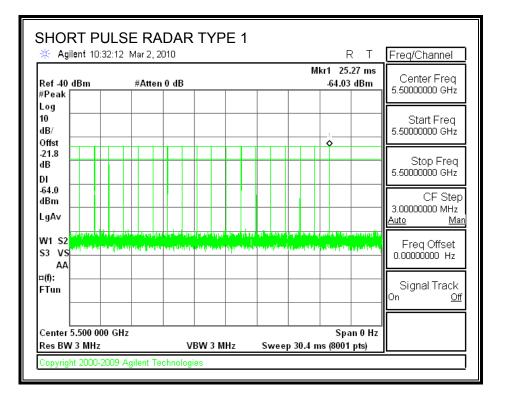
Note: The Type 5 randomized parameters are shown in a separate document.

Page 303 of 358

TYPE 6 DETECTION PROBABILITY

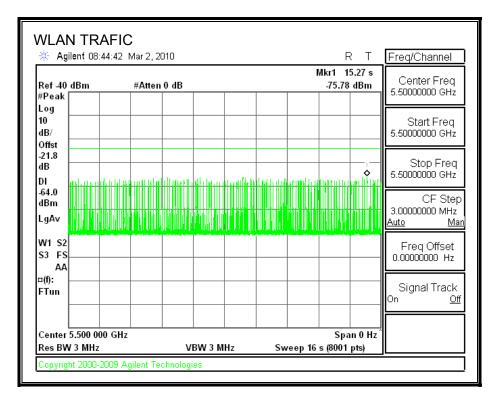
us Puls	e Width, 333 us PRI, S	9 Pulses per Burst,	1 Burst per Hop	•
TIA Aug	just 2005 Hopping Se	quence		
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	279	5492	5	Yes
2	754	5493	3	Yes
3	1229	5494	4	Yes
4	1704	5495	5	Yes
5	2179	5496	2	Yes
6	2654	5497	5	Yes
7	3129	5498	4	Yes
8	3604	5499	5	Yes
9	4079	5500	2	Yes
10	4554	5501	4	Yes
11	5029	5502	2	Yes
12	5504	5503	4	Yes
13	5979	5504	3	Yes
14	6454	5505	5	Yes
15	6929	5506	4	Yes
16	7404	5507	3	Yes
17	7879	5508	2	Yes
18	8354	5492	2	Yes
19	8829	5493	3	Yes
20	9304	5494	4	Yes
21	9779	5495	3	Yes
22	10254	5496	4	Yes
23	10729	5497	4	Yes
24	11204	5498	3	Yes
25	11679	5499	3	Yes
26	12154	5500	3	Yes
27	12629	5501	2	Yes
28	13104	5502	4	Yes
29	13579	5503	3	Yes
30	14054	5504	5	Yes
31	14529	5505	6	Yes
32	15004	5506	2	Yes
33	15479	5507	4	Yes
34	15954	5508	7	Yes

Page 304 of 358


11.3. SLAVE DEVICE CONFIGURATION IN 20 MHz BANDWIDTH

11.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz.


11.3.2. PLOTS OF RADAR WAVEFORM AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORM

Page 305 of 358

PLOT OF WLAN TRAFFIC

Page 306 of 358

11.3.3. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

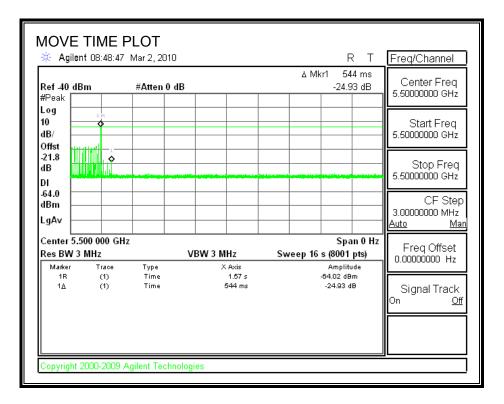
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

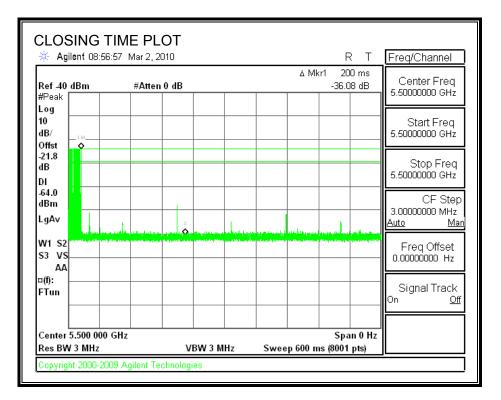
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

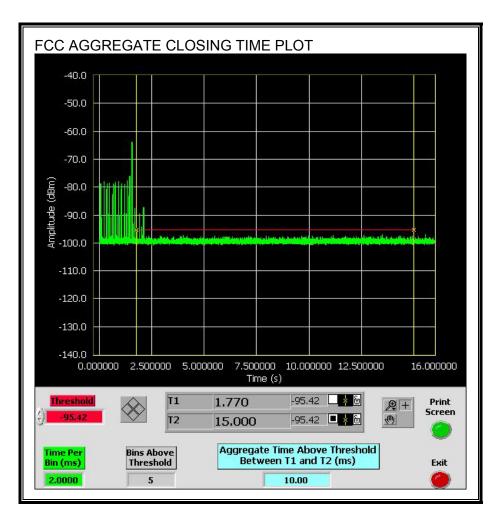
Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.544	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	10.0	60
IC	18.0	260

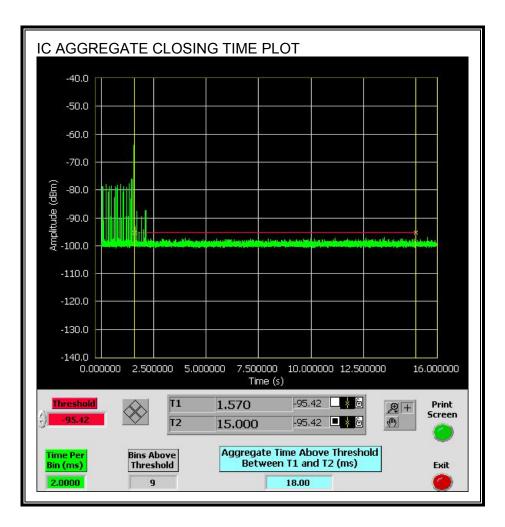

Page 307 of 358

MOVE TIME

Page 308 of 358


CHANNEL CLOSING TIME

Page 309 of 358

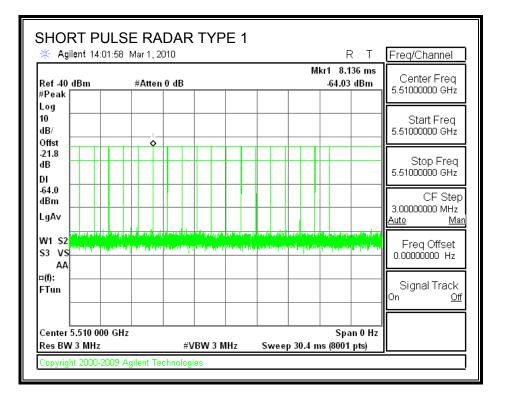

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.

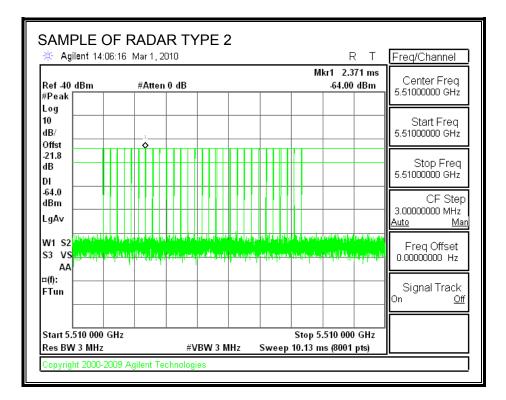
Page 310 of 358

Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 311 of 358

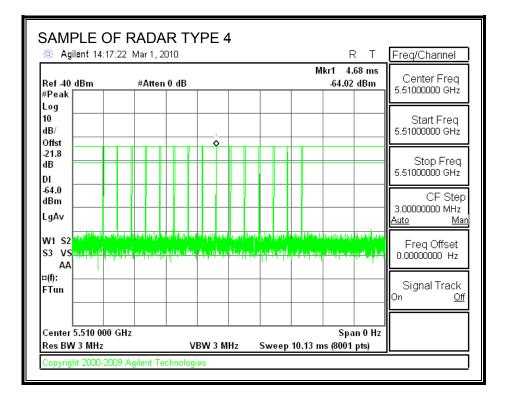

11.4. MASTER DEVICE CONFIGURATION IN 40 MHz BANDWIDTH

11.4.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5510 MHz.

11.4.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORMS

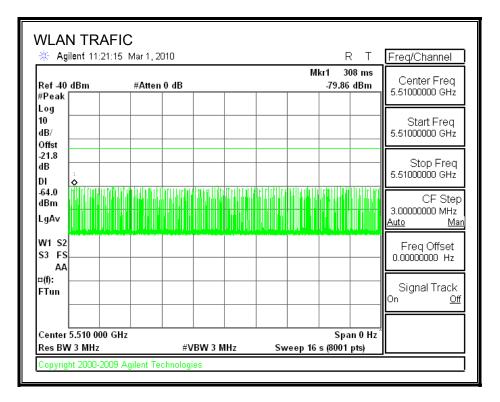

Page 312 of 358

Page 313 of 358

Ref -40 dBm	+	Atten 0	dB			M	cr1 2.8 -63.99	 Center Freq
#Peak		Aucho					-05.55	5.51000000 GHz
Log 10 dB/ Offst	1							Start Freq 5.5100000 GHz
-21.8 dB								Stop Freq 5.51000000 GHz
-64.0 dBm								 CF Step 3.00000000 MHz
Ŭ I	ryn yny diwyd yn y w y _{ny} iddiwlei y ydd							Auto Ma Freq Offset 0.00000000 Hz
¤(f): FTun								Signal Track On <u>Off</u>
Start 5.510 000 Res BW 3 MHz			#1	BW 3 1	 Swaan	Stop 5. 15.47 m		

Page 314 of 358

Page 315 of 358


Agilent 14:20:		URST OF	RADAR	R T	Freq/Channel
Ref -40 dBm #Peak	#Atten 0 dB		M	kr1 2.523 ms -64.00 dBm	Center Freq 5.51000000 GHz
Log 10 dB/ Offst	1				Start Freq 5.51000000 GHz
-21.8 dB					Stop Freq 5.5100000 GHz
-64.0 dBm LgAv					CF Step 3.00000000 MHz <u>Auto Mar</u>
W1 S2 S3 VS AA	ti tu unu unu i jula di mun plant ti tu unu i plant				
¤(f): FTun					Signal Track On <u>Off</u>
Center 5.510 000 (Res BW 3 MHz	Center 5.510 000 GHz Span 0 Hz Res BW 3 MHz VBW 3 MHz Sweep 8 ms (8001 pts)				

Page 316 of 358

	JRST OF 2:38 Mar 1, 20			LU	RT	Freq/Channel
Ref -40 dBm #Peak	#Atten) dB			Mkr1 2.332 ms -64.02 dBm	Center Freq 5.51000000 GHz
Log 10 dB/ Offst			_1			Start Freq 5.51000000 GHz
-21.8 dB			¥			Stop Freq 5.51000000 GHz
-64.0 dBm LgAv						CF Step 3.00000000 MHz Auto Mar
					the office of the first state of the second st	Erea Offset
¤(f): FTun						Signal Track On <u>Off</u>
Center 5.510 000 Res BW 3 MHz	GHz	VBW	3 MHz	Sweep	Span 0 Hz 5 ms (8001 pts)	

Page 317 of 358

PLOT OF WLAN TRAFFIC FROM MASTER

Page 318 of 358

11.4.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

QUANTITATIVE RESULTS

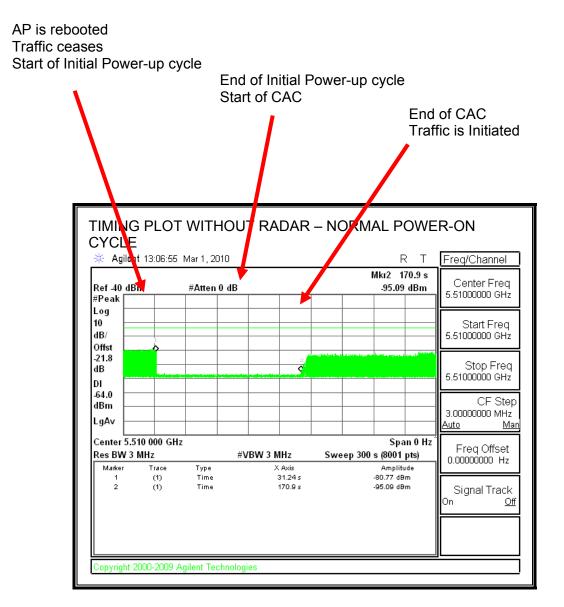
No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
31.24	170.9	139.7	79.7

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30	111.2	81.2	1.5

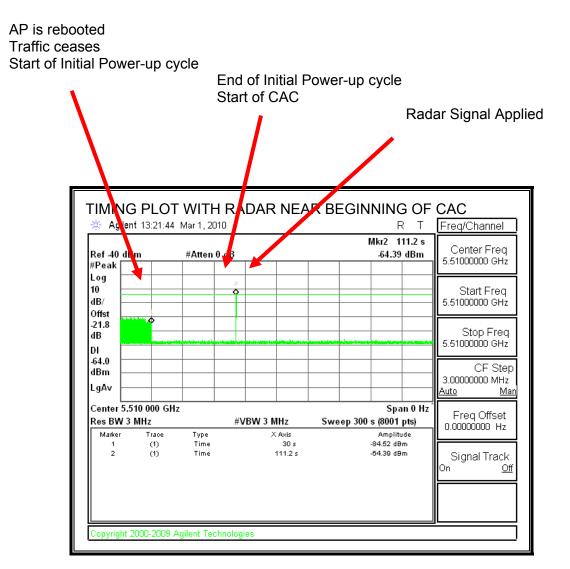
Radar Near End of CAC


Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.26	169.0	138.7	59.1

QUALITATIVE RESULTS

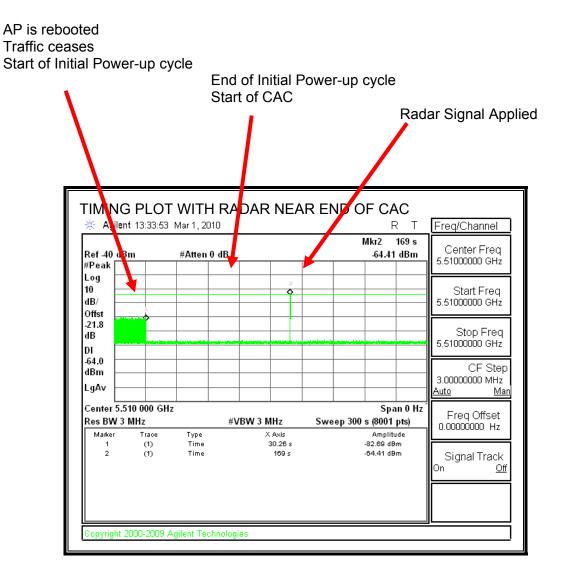
Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

Page 320 of 358


TIMING PLOT WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Page 321 of 358


TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

Page 322 of 358

TIMING PLOT WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

Page 323 of 358

11.4.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

Page 324 of 358

11.4.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

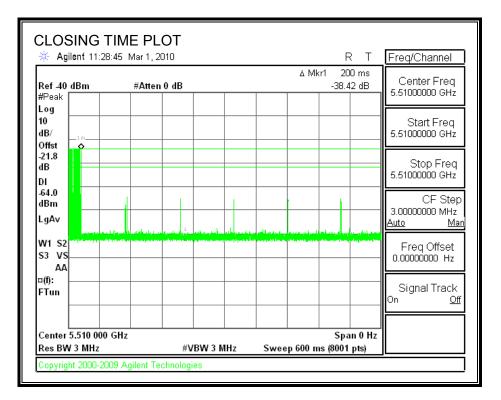
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

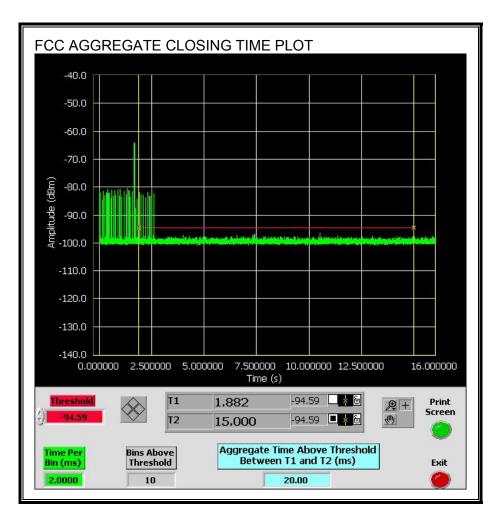
Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.928	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	20.0	60
IC	26.0	260

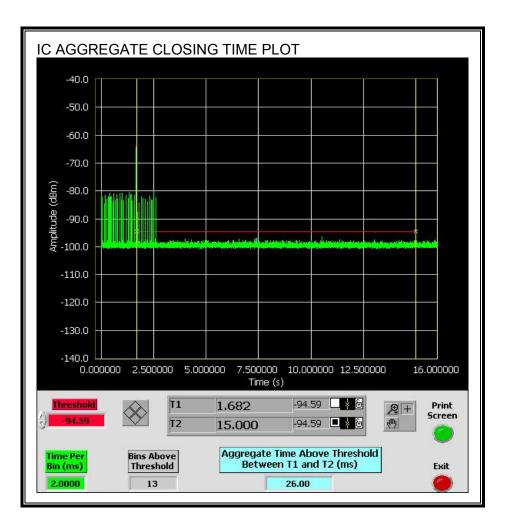

Page 325 of 358

MOVE TIME

Page 326 of 358

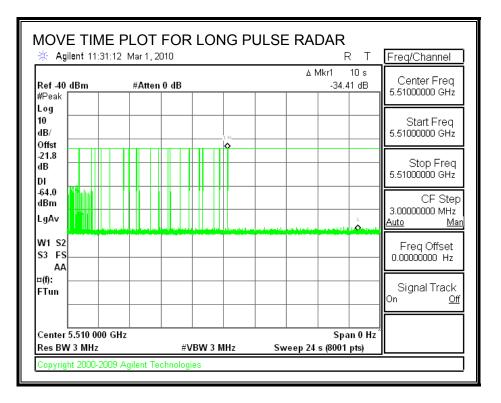

CHANNEL CLOSING TIME

Page 327 of 358


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.

Page 328 of 358


Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 329 of 358

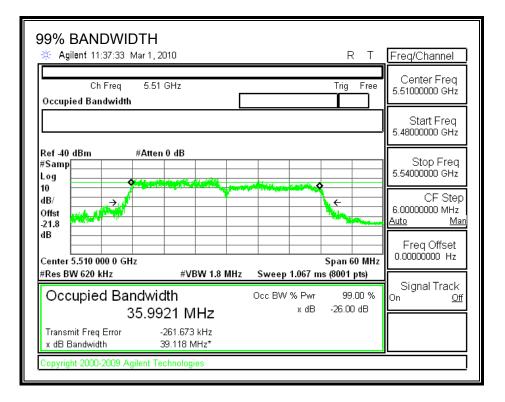
LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 330 of 358

11.4.6. NON-OCCUPANCY PERIOD

RESULTS


No EUT transmissions were observed on the test channel during the 30-minute observation time.

enter 5.510 000 (es BW 3 MHz		VBW 3 MHz	Sweep 2	Span 0 Hz Î ks (8001 pts)	
(f): Tun					Signal Track On <u>O</u>
/1 S2 3 FS AA					Freq Offset 0.00000000 Hz
4.0 Bm gAv				1. 1.	CF Ste 3.0000000 MHz <u>Auto M</u>
1.8 B I					Stop Frec 5.5100000 GHz
og) B/⊥R ffst ♢					Start Freq 5.51000000 GHz
ef-40 dBm ^{⊃eak}	#Atten 0 dB		۵ ۸	/kr1 1.8 ks -33.80 dB	Center Freq 5.51000000 GHz
Agilent 12:51:	-	RIOD PLC	, I	RТ	Freq/Channel

Page 331 of 358

11.4.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5492	5528	36	35.992	100.0	80

Page 332 of 358

DETECTION BANDWIDTH PROBABILITY

ETECTION BANE	OWIDTH PROBABI	LITY RESULTS		
Detection Bandy	width Test Results			
FCC Type 1 Wav	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per l	Burst
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5492	10	10	100	FL
5493	10	10	100	
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	
5509	10	10	100	
5510	10	10	100	
5511	10	10	100	
5512	10	10	100	
5513	10	10	100	
5514	10	10	100	
5515	10	10	100	
5516	10	10	100	
5517	10	10	100	
5518	10	10	100	
5519	10	10	100	
5520	10	10	100	
5521	10	10	100	
5522	10	10	100	
5523	10	10	100	
5524	10	10	100	
5525	10	10	100	
5526	10	10	100	
5527	10	10	100	
5528	10	10	100	FH

Page 333 of 358

11.4.8. IN-SERVICE MONITORING

RESULTS

CC Radar Test Summ	ary			
Signal Type	Number of Trials	Detection (%)	Limit (%)	Pass/Fail
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	37	100.00	70	Pass

Page 334 of 358

TYPE 1 DETECTION PROBABILITY

	Data Sheet for FCC Short Pulse Radar Type 1 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst				
Trial	Successful Detection				
inai	(Yes/No)				
1	Yes				
2	Yes				
3	Yes				
4	Yes				
5	Yes				
6	Yes				
7	Yes				
8	Yes				
9	Yes				
10	Yes				
11	Yes				
12	Yes				
13	Yes				
14	Yes				
15	Yes				
16	Yes				
17	Yes				
18	Yes				
19	Yes				
20	Yes				
21	Yes				
22	Yes				
23	Yes				
24	Yes				
25	Yes				
26	Yes				
27	Yes				
28	Yes				
29	Yes				
30	Yes				

Page 335 of 358

TYPE 2 DETECTION PROBABILITY

Naveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	3.7	229.00	29	Yes
2002	2.8	151.00	29	Yes
2003	1.9	224.00	28	Yes
2004	4.7	167.00	28	Yes
2005	2.2	188.00	29	Yes
2006	3.4	214.00	24	Yes
2007	4.8	169.00	24	Yes
2008	3.8	163.00	26	Yes
2009	1.5	226.00	28	Yes
2010	1.7	164.00	28	Yes
2011	1.7	156.00	24	Yes
2012	2	196.00	27	Yes
2013	2.4	173.00	27	Yes
2014	3.8	221.00	28	Yes
2015	2.3	189.00	27	Yes
2016	5	188.00	28	Yes
2017	3.5	189.00	23	Yes
2018	4.5	175.00	23	Yes
2019	1.7	153.00	24	Yes
2020	2.4	172.00	26	Yes
2021	2.9	191.00	24	Yes
2022	2.2	190.00	29	Yes
2023	2.3	155.00	25	Yes
2024	1	226.00	28	Yes
2025	4.1	185.00	27	Yes
2026	3	225.00	26	Yes
2027	4.1	193.00	24	Yes
2028	3.7	191.00	26	Yes
2029	1.9	156.00	23	Yes
2030	1.1	194.00	23	Yes

Page 336 of 358

TYPE 3 DETECTION PROBABILITY

Vaveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	6.5	464.00	17	Yes
3002	7.2	467.00	16	Yes
3003	6	282.00	16	Yes
3004	6.6	350.00	18	Yes
3005	8.4	349.00	16	Yes
3006	8.5	379.00	17	Yes
3007	7.2	306.00	16	Yes
3008	5.4	306.00	18	Yes
3009	9.1	377.00	17	Yes
3010	8.1	423.00	17	Yes
3011	9.2	353.00	16	Yes
3012	8.2	274.00	16	Yes
3013	7	339.00	16	Yes
3014	8.1	455.00	16	Yes
3015	5.2	362.00	16	Yes
3016	7.1	442.00	16	Yes
3017	7.2	307.00	18	Yes
3018	5.3	493.00	16	Yes
3019	6.6	335.00	18	Yes
3020	7.4	356.00	16	Yes
3021	6.3	266.00	18	Yes
3022	9	358.00	18	Yes
3023	8.5	425.00	17	Yes
3024	6.7	443.00	18	Yes
3025	5.5	296.00	17	Yes
3026	6.3	286.00	17	Yes
3027	6.3	303.00	18	Yes
3028	9.1	448.00	16	Yes
3029	8.5	419	17	Yes

Page 337 of 358

TYPE 4 DETECTION PROBABILITY

Naveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
4001	19	458.00	15	Yes
4002	14.8	424.00	14	Yes
4003	11.4	398.00	15	Yes
4004	17.4	385.00	13	Yes
4005	19.5	482.00	13	Yes
4006	17.9	317.00	16	Yes
4007	13.4	356.00	14	Yes
4008	11.1	273.00	14	Yes
4009	15.1	326.00	16	Yes
4010	12	442.00	12	Yes
4011	20	376.00	13	Yes
4012	18.8	325.00	13	Yes
4013	18.8	428.00	14	Yes
4014	18.9	387.00	14	Yes
4015	18.1	350.00	13	Yes
4016	17.3	446.00	16	Yes
4017	16.5	373.00	14	Yes
4018	16.8	319.00	15	Yes
4019	16.9	456.00	13	Yes
4020	18	296.00	15	Yes
4021	17.8	299.00	14	Yes
4022	16	417.00	15	Yes
4023	11.5	262.00	16	Yes
4024	17.7	491.00	12	Yes
4025	14.3	283.00	15	Yes
4026	11.2	321.00	12	Yes
4027	13.6	483.00	16	Yes
4028	10.7	389.00	15	Yes
4029	16.2	273.00	12	Yes

Page 338 of 358

TYPE 5 DETECTION PROBABILITY

Trial	Long Pulse Radar Type 5 Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

Page 339 of 358

TYPE 6 DETECTION PROBABILITY

	t for FCC Hopping Rada e Width, 333 us PRI, :		1 Burst per Hop)
	ust 2005 Hopping Se			
	Starting Index	Signal Generator	Hops within	Successful
Trial	Within Sequence	Frequency	Detection BW	Detection
		(MHz)		(Yes/No)
1	149	5492	6	Yes
2	624	5493	11	Yes
3	1099	5494	8	Yes
4	1574	5495	5	Yes
5	2049	5496	5	Yes
6	2524	5497	7	Yes
7	2999	5498	7	Yes
8	3474	5499	8	Yes
9	3949	5500	8	Yes
10	4424	5501	8	Yes
11	4899	5502	10	Yes
12	5374	5503	9	Yes
13	5849	5504	10	Yes
14	6324	5505	5	Yes
15	6799	5506	6	Yes
16	7274	5507	9	Yes
17	7749	5508	8	Yes
18	8224	5509	11	Yes
19	8699	5510	8	Yes
20	9174	5511	10	Yes
21	9649	5512	6	Yes
22	10124	5513	5	Yes
23	10599	5514	3	Yes
24	11074	5515	7	Yes
25	11549	5516	8	Yes
26	12024	5517	9	Yes
27	12499	5518	7	Yes
28	12974	5519	11	Yes
29	13449	5520	9	Yes
30	13924	5521	2	Yes
31	14399	5522	9	Yes
32	14874	5523	11	Yes
33	15349	5524	7	Yes
34	15824	5525	5	Yes
35	16299	5526	4	Yes
36	16774	5527	6	Yes

Page 340 of 358

11.5. SLAVE DEVICE CONFIGURATION IN 40 MHz BANDWIDTH

11.5.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5510 MHz.

11.6. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

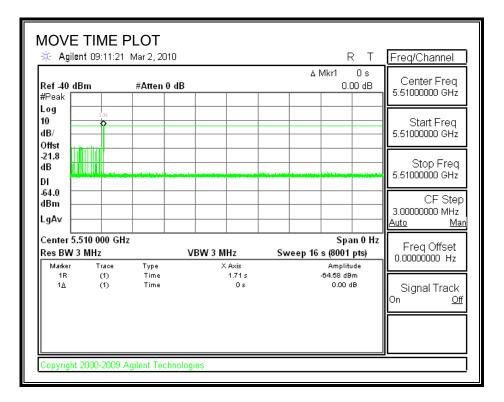
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

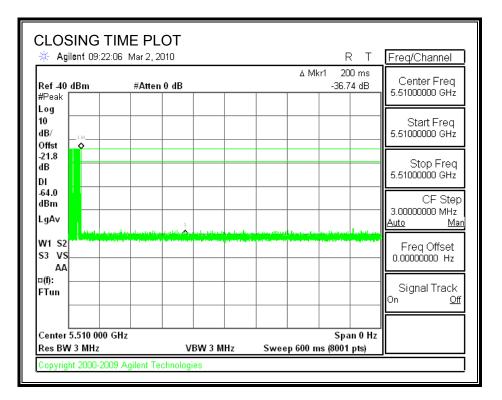
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).


<u>RESULTS</u>

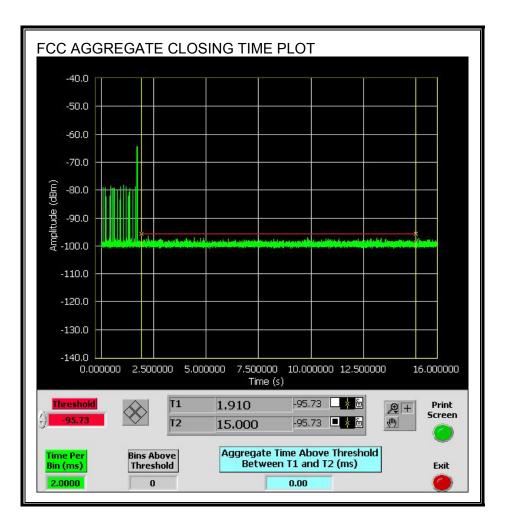
Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.0	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	0.0	260

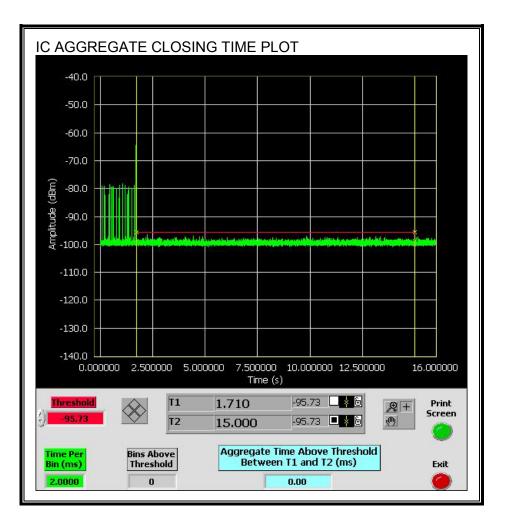

Page 341 of 358

MOVE TIME

Page 342 of 358


CHANNEL CLOSING TIME

Page 343 of 358


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Page 344 of 358

No transmissions are observed during the IC aggregate monitoring period.

Page 345 of 358

11.6.1. SLAVE NON-OCCUPANCY

TEST PROCEDURE

The spectrum analyzer is monitoring the emissions from the Slave.

The AP and Slave are linked in a 40 MHz bandwidth mode, with streaming video. The spectrum analyzer trace is started, then the radar is triggered, and the channel is monitored for > 30 minutes.

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

🔆 Agilent 10:03	:20 Mar 2, 2010	R T	Freq/Channel
Ref -40 dBm #Peak	#Atten 0 dB	∆ Mkr1 1.8 ks -34.11 dB	Center Freq 5.51000000 GHz
Log 10 dB/ Offst			Start Freq 5.51000000 GHz
-21.8 dB			Stop Freq 5.51000000 GHz
-64.0 dBm LgAv			CF Step 3.00000000 MHz <u>Auto Ma</u>
W1 S2 S3 FS AA			Freq Offset 0.00000000 Hz
¤(f): FTun			Signal Track On <u>Off</u>
Center 5.510 000 Res BW 3 MHz	GHz VBW 3 MHz	Span 0 H: Sweep 2 ks (8001 pts)	z

Page 346 of 358

12. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
(A) Limits for Occupational/Controlled Exposures								
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/F 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6				
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure					
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30				

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100.000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-tions where a transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 347 of 358

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm^2 .
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 348 of 358

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m² EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m²

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

<u>LIMITS</u>

From FCC 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

Page 349 of 358

RESULTS

(MPE distance equals 20 cm)

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
5.2 GHz	11a (2 Chains)	0.20	12.10	6.01	0.13	0.013
5.2 GHz	11n HT20 (4 Chains)	0.20	13.67	3.0	0.09	0.009
5.2 GHz	11n HT40 (4 Chains)	0.20	16.73	3.0	0.19	0.019
5.3 GHz	11a (2 Chains)	0.20	18.62	6.01	0.58	0.058
5.3 GHz	11n HT20 (4 Chains)	0.20	20.50	3.0	0.45	0.045
5.3 GHz	11n HT40 (4 Chains)	0.20	23.62	3.0	0.91	0.091
5.6 GHz	11a (2 Chains)	0.20	19.76	6.01	0.75	0.075
5.6 GHz	11n HT20 (4 Chains)	0.20	20.60	3.0	0.46	0.046
5.6 GHz	11n HT40 (4 Chains)	0.20	23.89	3.0	0.97	0.097

Page 350 of 358