

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

DC544D_3 PCIe DAUGHTER CARD FOR 2.4 / 5 GHz AP/ROUTER APPLICATIONS_NON DFS

MODEL NUMBER: 65-VN780-P3

FCC ID: J9C-DC544D3 IC: 2723A-DC544D3

REPORT NUMBER: 09U12687-3, Revision B

ISSUE DATE: OCTOBER 12, 2009

Prepared for QUALCOMM, INC. 3165 KIFER ROAD SANTA CLARA, CA 95051, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	07/21/09	Initial Issue	F. Ibrahim
A	10/07/09	Revised PK power, AV power, PPSD, BE, Harmonics and Conducted Spurious for HT40 modes in all bands in this report.	F. Ibrahim
В	10/12/09	Removed the DFS bands data and setup photos from the report.	F. Ibrahim

Page 2 of 90

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	5				
2.	TEST METHODOLOGY6					
3.	FACILITIES AND ACCREDITATION	6				
4.	CALIBRATION AND UNCERTAINTY	6				
4	.1. MEASURING INSTRUMENT CALIBRATION	6				
4	.2. SAMPLE CALCULATION	6				
4	.3. MEASUREMENT UNCERTAINTY	6				
5.	EQUIPMENT UNDER TEST	7				
5	.1. DESCRIPTION OF EUT	7				
5	.2. MAXIMUM OUTPUT POWER	7				
5	.3. DESCRIPTION OF AVAILABLE ANTENNAS	7				
5	.4. SOFTWARE AND FIRMWARE	8				
5	.5. WORST-CASE CONFIGURATION AND MODE	8				
5	.6. DESCRIPTION OF TEST SETUP	9				
6.	TEST AND MEASUREMENT EQUIPMENT1	1				
7.	ANTENNA PORT TEST RESULTS	2				
7 7 7	1. 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE 1 7.1.1. 26 dB and 99% BANDWIDTH 1 7.1.2. OUTPUT POWER 1 7.1.3. AVERAGE POWER 1 7.1.4. PEAK POWER SPECTRAL DENSITY 2 7.1.5. PEAK EXCURSION 2 7.1.6. CONDUCTED SPURIOUS EMISSIONS 2 2. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 2 7.2.1. 99% & 26 dB BANDWIDTH 2 7.2.2. OUTPUT POWER 3 7.2.3. AVERAGE POWER 3 7.2.4. PEAK POWER SPECTRAL DENSITY 4 7.2.5. PEAK EXCURSION 4 7.2.6. CONDUCTED SPURIOUS EMISSIONS 4 3. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 4 7.3.1. 99% & 26 dB BANDWIDTH 4 7.3.1. 99% & 26 dB BANDWIDTH 4 7.3.2. OUTPUT POWER 5 7.3.3. AVERAGE POWER 5 7.3.4. PEAK POWER SPECTRAL DENSITY 5 7.3.5. PEAK EXCURSION 5 <td></td>					
7	7.3.6. CONDUCTED SPURIOUS EMISSIONS	1				
1	.4. RECEIVER CONDUCTED SPURIOUS EIVIISSIONS	3				

8.	RADIATED TEST RESULTS	65
٤	8.1. LIMITS AND PROCEDURE	65
٤	8.2. TRANSMITTER ABOVE 1 GHz 8.2.1. 802.11a MODE IN 5.2 GHz BAND 8.2.2. 802.11n HT20 MODE IN 5.2 GHz BAND 8.2.3. 802.11n HT40 MODE IN 5.2 GHz BAND	
8	8.3. WORST-CASE BELOW 1 GHz	77
9.	AC POWER LINE CONDUCTED EMISSIONS	79
10.	. MAXIMUM PERMISSIBLE EXPOSURE	83
11.	. SETUP PHOTOS	87

Page 4 of 90

1. ATTESTATION OF TEST RESULTS

	APPLICABLE STANDARDS
DATE TESTED:	JUNE 24 – JULY 18, 2009
SERIAL NUMBER:	7916 for Antenna Port, 7929 for Radiated Emission
MODEL:	65-VN780-P3
EUT DESCRIPTION:	DC544D_3 PCIe DAUGHTER CARD FOR 2.4 / 5 GHz AP/ROUTER APPLICATIONS_NON DFS
COMPANY NAME:	QUALCOMM INC. 3165 KIFER RD SANTA CLARA, CA 95051 USA

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
CFR 47 Part 15 Subpart E	Pass				
INDUSTRY CANADA RSS-210 Issue 7 Annex 9	Pass				
INDUSTRY CANADA RSS-GEN Issue 2	Pass				

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

FRANK IBRAHIM EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

VIEN TRAN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 5 of 90

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 90

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n WLAN transceiver module in a PCI form factor, for 2.4 / 5 GHz AP/Router Applications that do not include DFS bands. It is equipped with four identical transmitter / receiver chains.

The radio module is manufactured by Qualcomm, Inc.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power				
(MHz)) (dBm)		(mW)				
5.2 GHz BAND	5.2 GHz BAND						
5180 - 5240	802.11a	12.18	16.52				
5180 - 5240	802.11n HT20	13.23	21.04				
5190 - 5230	802.11n HT40	16.67	46.45				

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dual band omni monopole (4 identical) antenna, each with a maximum gain of 3 dBi in the 5 GHz bands.

For the 802.11a legacy mode only two chains are transmitting, therefore the effective legacy antenna gain is:

Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain	
(dBi)	(dB)	(dBi)	
3	3.01	6.01	

Page 7 of 90

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Qualcomm, rev. 0.0.500.5.

The test utility software used during emissions testing was PTT Gui, rev. 5.1.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module installed in a test jig board connected to a host Laptop PC.

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11a Mode (20 MHz BW operation): 6 Mbps, OFDM. 802.11n MIMO HT20 Mode: MCS31, 260 Mbps, 4 Spatial Streams. 802.11n MIMO HT40 Mode: MCS31, 540 Mbps, 4 Spatial Streams.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power, that was determined to be 11n HT40, high channel.

For bandwidth measurement preliminary testing showed that there is no significant difference among different chains, so the measurements were performed using Chain 0.

For conducted spurious measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore final measurements were performed using combiner for all channels and modes.

For PPSD measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore final measurements were performed using combiner for all channels and modes.

For Radiated Band Edge measurements preliminary testing showed that the worst case was vertical polarization, so final measurements were performed with vertical polarization.

Page 8 of 90

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop	IBM	T43 ThinkPad	L3-XDLXW06/02	DoC		
AC Adapter	IBM	08K8204	11S08K8204Z1Z9	DoC		
DC Power Supply	Tektronic	PS2521G	N/A	N/A		
DC Power Supply	HP	336108	KR24104150	N/A		
Extender PCI	ALLION	V1 EC-PEM V1.0	A073	N/A		

I/O CABLES

I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connecto Type	Cable Type	Cable Length	Remarks	
1	AC	2	US115	Un-shielded	1.5 m	For laptop	
2	DC	1	DC	Un-shielded	1.5 m	For laptop	
3	DC	1	Cable	Un-shielded	1.0 m	For EUT	
4	Ribbon	1	Ribbon	Un-shielded	.4 m	Test Fixture	

TEST SETUP

The EUT is connected to a host laptop computer via a test fixture during the tests. Test software exercised the radio card.

Page 9 of 90

SETUP DIAGRAM FOR TESTS

Page 10 of 90

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Asset	Cal Date	Cal Due			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/09	01/05/10			
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/09	01/14/10			
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	04/22/10			
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	09/29/08	11/28/09			
Antenna, Horn, 40 GHz	ARA	MWH-2640B	C00981	05/21/09	05/21/10			
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	10/11/08	10/11/09			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/09	03/31/10			
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	08/05/08	08/05/09			
Peak Power Meter	Boonton	4541	C01186	01/19/09	01/19/10			
Peak Power Sensor	Boonton	4541	C01189	01/15/09	01/15/10			
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/29/08	10/29/09			
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	02/06/08	08/06/09			

Page 11 of 90

7. ANTENNA PORT TEST RESULTS

7.1. 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE

7.1.1. 26 dB and 99% BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth	
	(MHz)	(MHz)	(MHz)	
Low	5180	18.0690	16.5410	
Middle	5200	18.2250	16.4197	
High	5240	19.5230	16.3303	

Page 12 of 90

26 dB and 99% BANDWIDTH

Page 13 of 90

Page 14 of 90

7.1.2. OUTPUT POWER

<u>LIMITS</u>

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain	
(аы)	(ab)	(аы)	
3	3.01	6.01	

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

<u>RESULTS</u>

Channel	Freq	Fixed	В	4 + 10 Log B	Effective	Limit
		Limit		Limit	AntennaGain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	18.069	16.57	6.01	16.56
Mid	5200	17	18.225	16.61	6.01	16.60
High	5240	17	19.523	16.91	6.01	16.90

Limit

Individual Chain Results

Channel	Freq	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.12	9.22	12.18	16.56	-4.38
Mid	5200	9.15	8.96	12.07	16.60	-4.53
High	5240	9.18	9.13	12.17	16.90	-4.73

Page 15 of 90

OUTPUT POWER, LOW CHANNEL

Page 16 of 90

OUTPUT POWER, MID CHANNEL

Page 17 of 90

OUTPUT POWER, HIGH CHANNEL

Page 18 of 90

7.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 1	Chain 2	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	9.12	9.08	12.11
Middle	5200	9.21	9.05	12.14
High	5240	9.16	8.99	12.09

Page 19 of 90

7.1.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain	
(dBi)	(dB)	(dBi)	
3	3.01	6.01	

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum effective antenna gain is 6.01 dBi, therefore the limit is 3.99 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

Channel	Frequency	ncy PPSD With Combiner		Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.86	3.99	-0.13
Middle	5200	3.91	3.99	-0.08
High	5240	3.82	3.99	-0.18

Page 20 of 90

POWER SPECTRAL DENSITY WITH COMBINER

Page 21 of 90

Page 22 of 90

7.1.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.69	13	-3.31
Middle	5200	9.45	13	-3.55
High	5240	10.20	13	-2.80

Page 23 of 90

PEAK EXCURSION

Page 24 of 90

PEAK EXCURSION	N HIGH CH		
🔆 🔆 Agilent 18:03:07 Jul 14, 2	2009		T BW/Avg
Ch Freq 5.24 Channel Power	GHz	Trig Fr	ree Auto <u>Man</u>
RBW 1.0 MHz		۸ Mkrt D I	Video BVV 3.0 MHz Hz Auto Man
Ref 30 dBm Atten #Peak Log 10 dB/ Offst 17.5 dB	30 dB		B VBW/RBW
#PAvg			Span/RBW
Center 5.240 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 30 N Sweep 20 ms (601 pts	IHz 106) <u>Auto Man</u>
Copyright 2000-2009 Agilent Te	chnologies]

Page 25 of 90

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Page 26 of 90

SPURIOUS EMISSIONS WITH COMBINER

Page 27 of 90

Page 28 of 90

7.2. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

7.2.1. 99% & 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5180	17.4954	18.700
Middle	5200	17.5643	18.757
High	5240	17.5132	18.413

Page 29 of 90

99% & 26 dB BANDWIDTH

Page 30 of 90

Page 31 of 90

7.2.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2) For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

Limit

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	18.700	16.72	3	16.72
Mid	5200	17	18.757	16.73	3	16.73
High	5240	17	18.413	16.65	3	16.65

Individual Chain Results

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	7.17	7.03	7.07	7.23	13.15	16.72	-3.57
Mid	5200	7.16	7.17	7.22	7.28	13.23	16.73	-3.50
High	5240	7.16	7.14	7.18	7.28	13.21	16.65	-3.44

OUTPUT POWER, LOW CHANNEL

Page 33 of 90

Page 34 of 90

OUTPUT POWER, MID CHANNEL

Page 35 of 90

Page 36 of 90
OUTPUT POWER, HIGH CHANNEL

Page 37 of 90

Page 38 of 90

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Frequency	Chain 0	Chain 1	Chain 2	Chain 3
	Power	Power	Power	Power
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
5180	7.14	7.26	7.10	7.23
5200	7.15	7.21	7.24	7.23
5240	7.35	7.32	7.39	7.28

Page 39 of 90

7.2.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi; therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.69	4	-0.31
Middle	5200	3.70	4	-0.30
High	5240	3.67	4	-0.33

RESULTS

Page 40 of 90

POWER SPECTRAL DENSITY

Page 41 of 90

Page 42 of 90

7.2.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	11.51	13	-1.49
Middle	5200	11.79	13	-1.21
High	5240	9.82	13	-3.18

Page 43 of 90

PEAK EXCURSION

Page 44 of 90

* Agilent 11:17:40 Jul 9,	2009				Т	E	W/Avg
Ch Freq 5. Channel Power	24 GHz	[Trig	Free	Auto	Res B\ 1.0 MH: <u>Ma</u>
RBW 1.0 MHz			۵	. Mkr1	0 Hz	Auto	Video B\ 3.0 MH: <u>Ma</u>
Ref 30 dBm Atte	n 30 dB			9.8	12 dB	<u>Auto</u>	VBW/RB 1.00000 <u>M</u> a
0 dB/ 0ffst			and the second of the			On	Average 100 <u>01</u>
iB A A A A A A A A A A A A A A A A A A A				A A A A A A A A A A A A A A A A A A A	balle rey	A∨g/\ Auto	/BW Type Pwr (RMS) Ma
#PAvg					\sim		
V1 V2				nan 3	0 MHz		Span/RBV
#Res BW 1 MHz	#VBW 3 M	/Hz Sw	~ /eep 20 m	s (601	pts)	<u>Auto</u>	<u>Ma</u>

Page 45 of 90

7.2.6. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 46 of 90

LOW CHANNEL SPURIOUS EMISSIONS

MID CHANNEL SPURIOUS EMISSIONS

Page 47 of 90

HIGH CHANNEL SPURIOUS EMISSIONS

Page 48 of 90

7.3. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

7.3.1. 99% & 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5190	35.5585	39.138
High	5230	36.0503	38.381

Page 49 of 90

99% & 26 dB BANDWIDTH

Page 50 of 90

7.3.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2) For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

Limit

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5190	17	39.138	19.93	3	17.00
High	5230	17	38.381	19.84	3	17.00

Individual Chain Results

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	10.35	10.67	10.63	10.87	16.65	17.00	-0.35
High	5230	10.56	10.79	10.54	10.70	16.67	17.00	-0.33

Page 51 of 90

OUTPUT POWER, LOW CHANNEL

Page 52 of 90

Page 53 of 90

OUTPUT POWER, HIGH CHANNEL

Page 54 of 90

Page 55 of 90

7.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Frequency	Chain 0	Chain 1	Chain 2	Chain 3
	Power	Power	Power	Power
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
5190	10.57	10.98	10.59	10.82
5230	10.47	10.70	10.52	10.66

Page 56 of 90

7.3.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi; therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5190	2.559	4	-1.44
High	5230	3.892	4	-0.11

RESULTS

Page 57 of 90

POWER SPECTRAL DENSITY

Page 58 of 90

7.3.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	11.96	13	-1.04
High	5230	10.57	13	-2.43

PEAK EXCURSION

Page 60 of 90

7.3.6. CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 61 of 90

LOW CHANNEL SPURIOUS EMISSIONS

HIGH CHANNEL SPURIOUS EMISSIONS

Page 62 of 90

7.4. RECEIVER CONDUCTED SPURIOUS EMISSIONS

<u>LIMITS</u>

IC RSS-GEN 7.2.3.1

Antenna Conducted Measurement: Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

TEST PROCEDURE

IC RSS-GEN 4.10, Conducted Method

The receiver antenna port is connected to a spectrum analyzer.

The spectrum from 30 MHz to 18 GHz is investigated with the receiver set to the middle channel of each 5 GHz band.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 63 of 90

RECEIVER SPURIOUS EMISSIONS IN THE 5.2 GHz BAND

Page 64 of 90

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. 802.11a MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 66 of 90

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 67 of 90

HARMONICS AND SPURIOUS EMISSIONS

Complian	uency: ice Cer	Measuren tification	nent Services, I	Fremo	ont 5m (hamber									
Test Engr: Date: Project #:	ı		Thanh Ng 07/14/09 09U12652	çuyen 2											
Company EUT Desci EUT M/N:	: ription:		QualCon 5000 Seri 65-VN780	nm ies PC)-P2	I Card										
Test Targe	et:		FCC 15.2	47/15.	407										
Mode Ope	èr:										-				
	f	Measuren	nent Freque	ncy	Amp	Preamp (Jain	_		Average	Field Stren	gth Limit			
	Dist	Distance	Distance to Antenna D Co Analyzer Reading Avg			Distance	Correc	rt to 3 me	ters	Peak Fie	ld Strength	Limit			
	Read	Analyzer	Reading		Avg	Average I	Field S	trength @	3 m	Margin v	rs. Average	Limit			
	AF	Antenna	Factor		Peak	Calculate	d Peak	: Field Stre	ength	Margin v	rs. Peak Lii	mit			
	CL	Cable Los	is		HPF	High Pas:	s Filter	r							
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	สมิ	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch 5	180MH	7		<u> </u>	1										
15.540	3.0	36.0	38.9	11.3	-34.8	0.0	10.0	61.4	74.0	-12.6	v	Р	145.0	233.3	
15.540	3.0	23.7	38.9	11.3	-34.8	0.0	10.0	49.1	54.0	-4.9	v	Ā	145.0	233.3	
Mid Ch 53	200MH	.i		+											
15.600	3.0	37.2	38.7	11.4	-34.8	0.0	10.0	62.5	74.0	-11.5	v	Р	199.8	319.8	
15.600	3.0	24.3	38.7	11.4	-34.8	0.0	10.0	49.6	54.0	-4.4	V	A	199.8	319.8	
High Ch 🗄	5240MI	Īz		1	1	°									
15.720	3.0	36.9	38.4	11.4	-34.7	0.0	10.0	62.0	74.0	-12.0	V	P	200.0	75.6	
15.720	3.0	24.2	38.4	11.4	-34.7	0.0	10.0	49.3	54.0	-4.7	V	A	200.0	75.6	
10.480	3.0	36.1	37.5	9.0	-36.7	0.0	10.0	55.8	74.0	-18.2	H	P	121.7	358.7	
10.480	3.0	23.8	37.5	9.0	-36.7	0.0	10.0	43.5	54.0	-10.5	H	A	121.7	358.7	
								ļ							
Rev. 4.1.2.	.7														
Note: No	other e	missions	were dete	cted al	bove the	system 1	noise t	floor.							
						-									

Page 68 of 90

8.2.2. 802.11n HT20 MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 69 of 90

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 70 of 90

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

				- <u>Freqenann</u>	
oject: U9012687	// · · · · · · · · · · · · · · · · · ·	I	Akr1 5.394 605 0	GHZ Center Fr	ea
et116.4 dBµ∨ Desk	#Atten 0 dB		57.98 dE	5.40500000 G	ЭНz
a					
					en
3/				5.35000000 G	3Hz
ífst					
.4				Stop Er	ron
3					eq Hz
.0 3.37				CFS	Ste
				11.0000000 N	ЛНz
	Å.			Auto	M
A CONTRACTOR OF THE OWNER	CHARMENTER SWITCHING THE MAY SAY	All and a second second	an and a ball of the ball of the		
3 EC		ter an	1 . I the date in	Freq Offs	set.
					ΗZ
D:					_
un				Signal Tra	ack
vp				U^n	U
					_
art 5 350 000 GHz			Stop 5 460 000 @	Hz	
ant 51555 555 5112	#\/ D \/		067 mg (2001 m		

Page 71 of 90

HARMONICS AND SPURIOUS EMISSIONS

omulia	High nce Ce	Frequency rtification	y Measurem Services Fr	ent emont	5m Ch	amher									
ompus	ince ce	Tuncation	Services, FI	entone	Sin en	anoer									
mpan	y: Qual #- 0011	comm													
te: 01	#: 090 7/09/09	12087													
st En	gineer:	Doug And	erson												
onfigu ode: 1	ration: Fx / HT	EUT w/Sup 20	port Notebo	ok PC											
st Eq	uipmen	t:													
Horn 1-18GHz Pre-amplifer 1-26GH					GHz	Pre-amplifer 26-40GHz Horn > 18GHz							Limit		
T73; S/N: 6717 @3m T144 Miteq 3008A00)31 🗸			•		-	. FCC 15.205					
Hi Freq	juency Ca	bles													
3' cable 22807700 12' cable 22807				28076	500	20' cable 22807500 HPF Reject Filter						r Peak	<u>Measurements</u> V=VBW=1MHz		
3' c	able 22	307700	12' ca	ble 228	07600		20' cab	le 2280	07500 _	HP	F_7.6GHz			Averag	ge Measurements
			•						•		-			RBW=1	MHz; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
w Ch. 5	180														
.540	3.0	44.5	29.6	38.7	113	-34.8	0.0	0.7	60.4	45.5	74	54	-13.6	-8.5	H (Noise Floor)
540	3.0	44.5	29.6	38.7	11.3	-34.8	0.0	0.7	60.4	45.5	74	54	-13.6	-8.5	V (Neise Floor)
1d Ch. 5	200														
600	3.0	43.6	29.8	38.5	11.4	-34.8	0.0	0.7	59.4	45.7	74	54	-14.6	-83	H (Noise Floor)
	3.0	43.4	29.9	38.5	11.4	-34.8	U.U	U./	39.2	43./	/4	34	-14.8	-8-3	H (1961Se F160r)
gh Ch.	<u>5240</u>								•						
720	20	427	20.6	29.2	11.4	24.7	0.0	0.7	50.2	45.2	74	54	14.7	97	H (Naica Flaar)
.720	3.0 3.0	43.6	29.0	38.2	11.4	-34.7	0.0	0.7	59.3	45.3	74	54 54	-14.7	-8.7	H (Noise Floor)
				l	I			l				l			
v. 11.10	.08														
	<u>_</u>							a :				A T.		2110 1	T : :,
	1 Dist	Distance to	ent Frequency Antenna	7		Amp D Corr	Distance	Jain Correi	ct to 3 mete	rs		Avg Lim Pk Lim	Average 1 Peak Field	neid Strength 1 Strength Lie	nit
Read Analyzer Reading Avg AF Antenna Factor Pea				Avg	Average Field Strength @, 3 m Avg Mar Margin vs. Avera						. Average Li	nit			
				Peak	Calculate	d Peal	c Field Stre	ngth		Pk Mar	Margin vs	Peak Limit			
	CL	Cable Los	s			HPF	High Pas	s Filter							

Page 72 of 90
8.2.3. 802.11n HT40 MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 73 of 90

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Page 74 of 90

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 75 of 90

HARMONICS AND SPURIOUS EMISSIONS

09U12687 09/30/09 Thanh Nguyen EUT w/Support Not Tx HT 40, MCS : Pre-amp T144 Mite 700 12' cab 12' cab 12' cab 12' cab	bitebook PC 31 plifer 1-26GH teq 3008A00931 ble 22807600 le 22807600	IZ P	Pre-amplif 20' cable :	er 26-40GH 22807500	z	н	orn > 180	GHz	-	Limit FCC 15.205
09/30/09 Thanh Nguyen EUT w/Support Not Tx HT 40, MCS : Pre-amp T144 Mite 700 12' cat 12' cat 12' cat 12' cat 4 Pk Read Avg uV dBuV d	ntebook PC 31 plifer 1-26GH teq 3008A00931 ble 22807600 le 22807600		Pre-amplifi 20' cable :	er 26-40GH 22807500	z	н	orn > 180	SHz	-	Limit FCC 15.205
Thanh Nguyen EUT w/Support Not Tx HT 40, MCS : Pre-amp T144 Mite 700 12' cat 12' cat 12' cabl d Pk Read Avg uV dBuV d	tebook PC 31 plifer 1-26GH teq 3008A00931 ble 22807600 le 22807600	IZ P	Pre-amplifi 20' cable :	er 26-40GH 22807500	z •	н	orn > 180	SHz		Limit FCC 15.205 -
Iz Pre-amp Iz Pre-amp Iz 12' cat 700 12' cat Iz 12' cat Iz Iz' cat	tebook PC 31 plifer 1-26GH teq 3008A00931 ble 22807600 le 22807600		Pre-amplifi 20' cable :	er 26-40GH 22807500	z •	н	orn > 180	ЭНz	•	Limit FCC 15.205
Iz Pre-amp T144 Mite 700 12' cat 12' cabl d Pk Read Avg. uV dBuV d	plifer 1-26GH teq 3008A00931 ble 22807600 le 22807600	IZ P	Pre-amplifi 20' cable :	er 26-40GH 22807500	z	Н	orn > 18(ЭНz	-	Limit FCC 15.205
Iz Pre-amp T144 Mite 700 12' cate 12' cate	plifer 1-26GH teq 3008A00931 ble 22807600 le 22807600	iz P •	Pre-amplifi 20' cable :	er 26-40GH 22807500	z	н	orn > 180	ЗНz	-	Limit FCC 15.205
Iz Pre-amp 1 - 700 12' cat 2 12' cat 12' cat 12' cat 12' cat 12' cat 2 12' cat 4 Pk Read Avg uV dBuV	plifer 1-26GH teq 3008A00931 ble 22807600 le 22807600	iz P • •	Pre-amplif 20' cable :	er 26-40GH 22807500	z -	н	orn > 180	GHz	-	Limit FCC 15.205
700 12' cak 12' cak 12' cabl 12'	teq 3008A00931 ble 22807600 le 22807600	· [20' cable :	22807500	- - -				-	FCC 15.205
700 12' cab 12' cabl 12' cabl 12	ble 22807600 le 22807600) 2	20' cable :	22807500						
700 12' cat 12' cat 12' cat 12' cat 12' cat 12' cat 12' cat 12' cat 12' cat	ble 22807600 le 22807600		20' cable :	22807500						
d Pk Read Avg. uV dBuV d	le 22807600					HPF	Re	ject Filter	Peak	Measurements
d Pk Read Avg. uV dBuV d	le 22807600		201 11 27	007500				-	RBV	V=VBW=1MHz
d Pk Read Avg. uV dBuV d			20 cable 22	2807 500		F_7.6GHZ	-		RBW=1	<u>re Measurements</u> .MHz ; VBW=10Hz
uV dBuV d	AF CL A	Amp D	D Corr Flt	r Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
	dB/m dB	dB	dB dI	3 dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
								·		
i.4 23.4 3	38.6 11.4 -3	34.8	.0 Q.O	7 52.3	39 <i>.</i> 3	74	54	-21.7	-14.7	V (Noise Floor)
8 23.4 2	38.6 11.4 -3	34.8	.0 0.0	7 50.6	39.3	74	54	-23.4	-14.7	H (Neise Fleer)
5 23.8	38.3 11.4 -3	34.7	.0 0.0	7 53.1	39.5	74	54	-20.9	-14.5	H (Noise Floor)
A 23.8 :	38.3 11.4 -3	34.7	.0 0.0	7 54.1	39 <i>.</i> 5	74	54	-19 9	-14.5	V (Noise Floor)
iA 8 75	23 <i>A</i> 23 <i>A</i> 23 <i>B</i> 23 <i>B</i> 23 <i>B</i>	23A 38.6 11.4 - 23.4 38.6 11.4 - 23.8 38.3 11.4 - 23.8 38.3 11.4 - 23.8 38.3 11.4 -	23.4 38.6 11.4 -34.8 23.4 38.6 11.4 -34.8 23.4 38.6 11.4 -34.8 23.8 38.3 11.4 -34.7 23.8 38.3 11.4 -34.7	23.4 38.6 11.4 -34.8 0.0 0.' 23.4 38.6 11.4 -34.8 0.0 0.' 23.4 38.6 11.4 -34.8 0.0 0.' 23.4 38.6 11.4 -34.8 0.0 0.' 23.8 38.3 11.4 -34.7 0.0 0.' 23.8 38.3 11.4 -34.7 0.0 0.'	23.4 38.6 11.4 -34.8 0.0 0.7 52.3 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 23.8 38.3 11.4 -34.7 0.0 0.7 53.1 23.8 38.3 11.4 -34.7 0.0 0.7 53.1 23.8 38.3 11.4 -34.7 0.0 0.7 54.1	23.4 38.6 11.4 -34.8 0.0 0.7 52.3 39.3 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 39.3 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 39.3 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 39.3 23.8 38.3 11.4 -34.7 0.0 0.7 53.1 39.5 23.8 38.3 11.4 -34.7 0.0 0.7 54.1 39.5	23.4 38.6 11.4 -34.8 0.0 0.7 52.3 39.3 74 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 39.3 74 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 39.3 74 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 39.3 74 23.8 38.3 11.4 -34.7 0.0 0.7 53.1 39.5 74 23.8 38.3 11.4 -34.7 0.0 0.7 54.1 39.5 74	23A 386 11A -348 0.0 0.7 52.3 39.3 74 54 23A 38.6 11.4 -34.8 0.0 0.7 50.6 39.3 74 54 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 39.3 74 54 23.8 38.3 11.4 -34.7 0.0 0.7 53.1 39.5 74 54 23.8 38.3 11.4 -34.7 0.0 0.7 54.1 39.5 74 54	23.4 38.6 11.4 -34.8 0.0 0.7 52.3 39.3 74 54 -21.7 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 39.3 74 54 -21.7 23.4 38.6 11.4 -34.8 0.0 0.7 50.6 39.3 74 54 -23.4 23.8 38.3 11.4 -34.7 0.0 0.7 53.1 39.5 74 54 -20.9 23.8 38.3 11.4 -34.7 0.0 0.7 54.1 39.5 74 54 -20.9 23.8 38.3 11.4 -34.7 0.0 0.7 54.1 39.5 74 54 -19.9	23A 38.6 11.4 .34.8 0.0 0.7 52.3 39.3 74 54 .21.7 .14.7 23A 38.6 11.4 .34.8 0.0 0.7 50.6 39.3 74 54 .21.7 .14.7 23.4 38.6 11.4 .34.8 0.0 0.7 50.6 39.3 74 54 .23.4 .14.7 23.8 38.3 11.4 .34.7 0.0 0.7 53.1 39.5 74 54 .20.9 .14.5 23.8 38.3 11.4 .34.7 0.0 0.7 54.1 39.5 74 54 .20.9 .14.5

Page 76 of 90

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

30-1000MHz Frequency Measurement Compliance Certification Services, Fremont 5m Chamber													
Test Engr:		Thanh Ng	guyen										
Date:		06/25/09											
Project #:		09U12653	2										
Company		QualCor	n Inc.		_								
EUT Descr	cription: 802.11n 4x4 WLAN module												
UT M/N: 65-VN780-PI													
lest Targe	est Target: FCC Class B fede Conner, The superior and UNIT based												
Mode Ope	r:	Ix worst case UNII band Moorganization fragmentation and Amp								.			
	I	Measurem	urement Frequency Amp F			Preamp	Gain			Margin	Margin vs.	Limit	
	Pard	Distance t	io Anteni Pooling	la	Filter	Elter In	Correct	to 5 meters					
Kead Analyzer Keading		Com	Corr Calculated Field Strength										
	CL	Cable Los:	s		Limit	Field Stre	ength Lir	nit					
f	Diet	Read	AF	CL	Ann	DCom	Filter	Com	Limit	Margin	Ant Dol	Det	Notes
MH ₂	(m)	dBuV	dBim	JB	JB	JB	JB	dBuW/m	dBuW/m	AB	W/H	PIAIOP	110123
	3.0	521	7.6	0.8	283	0.0	00	32.2	43.5	-113	н	FD	
00.002	3.0	51.0	11.9	1.3	28.2	0.0	0.0	36.0	46.0	-10.0	H	EP	
20.002 234.608	3.0	51.5	13.4	1.5	28.1	0.0	0.0	38.2	46.0	-7.8	H	EP	
20.002 234.608 299.171		45.8	15.4	1.9	28.0	0.0	0.0	35.1	46.0	-10.9	н	EP	
90.002 234.608 299.171 429.136	3.0	44.1	18.9	2.3	27.4	0.0	0.0	37.9	46.0	- 8.1	H	EP	
90.002 234.608 299.171 429.136 539.985	3.0 3.0			:	1	1	:	:		:	1		
90.002 234.608 299.171 429.136 639.985 Rev. 1.27.0	3.0 3.0)9		1										

Page 77 of 90

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Complian	iz frequ ce Certif	ency Meas ication Se	rvices, Fi	remoni	t 5m Ch	amber							
lest Engr:		Thanh Ng	guyen										
Date:		06/25/09											
Project #:		09012652 Onal Care Inc											
Company: TT D		QualCom Inc.											
LUI Descr.	pnon:	802.11n 4x4 WLAN module 22 XMT90 DI											
		RCC Cl-	J-P1										
uest targe Wodo Ono	L: 	Ty worst	ss D coco UN	Thand									
moue ope	r. f	Measurem	ent Fremi	ency	4 тр	Preamp (Gain			Margin	Marrin vs	Limit	
	Dist	Distance t	o Antenn	ia.	D Corr	Distance	Correct	to 3 meters			in a gar i s		
	Read	Analyzer l	Reading	-	Filter	Filter Ins	ert Loss						
	AF	Antenna I	Factor		Corr.	Calculate	d Field S	trength					
	CL	Cable Los:	5		Limit	Field Stre	ngth Lin	nit					
f	Dist	Read	AF	CL	Amp	D Corr	Filter	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
MHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
51.441	3.0	53.4	7.9	0.7	28.4	0.0	0.0	33.7	40.0	-6.3	V	EP	
142.925	3.0	45.9	13.1	1.1	28.3	0.0	0.0	31.8	43.5	-11.7	V	EP	
198.379	3.0	39.0	16.7	2.0	27.8	0.0	0.0	29.9	46.0	-16.1	V	EP	
200 202	3.0	41.0	18.4	2.2	27.5	0.0	0.0	34.1	46.0	-11.9	V	EP	
777.303	3.0	43.7	21.0	2.6	27.4	0.0	0.0	39.9	46.0	-6.1	V	EP	
799.952													
799.952		1					¥	:					
799.952	<u> </u>					:							

Page 78 of 90

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 "	56 to 46 "			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

Page 79 of 90

RESULTS

<u>6 WORST EMISSIONS</u>

		CONDUC	TED EMISS	IONS D.	CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.		Reading		Closs	Limit	EN_B	Marg	çin	Remark						
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2						
0.22	49.94		36.55	0.00	62.74	52.74	-12.80	-16.19	L1						
0.33	39.76		28.62	0.00	59.35	49.35	-19.59	-20.73	L1						
21.15	41.63		37.25	0.00	60.00	50.00	-18.37	-12.75	L1						
0.22	49.89		36.03	0.00	62.82	52.82	-12.93	-16.79	L2						
0.33	39.80		27.12	0.00	59.35	49.35	-19.55	-22.23	L2						
21.71	38.81		32.20	0.00	60.00	50.00	-21.19	-17.80	L2						
6 Worst I	 Data 														

Page 80 of 90

LINE 1 RESULTS

Page 81 of 90

LINE 2 RESULTS

Page 82 of 90

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	//Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 8
(B) Limits	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34	614 824 <i>1</i> f	1.63 2.19/f	*(100) *(180/f ²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500–100,000			1.0	

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-tions where a the exposure of the potential for exposure and the potential for exposure.

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000-150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000-300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm^2 .
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 84 of 90

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m² EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m²

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

<u>LIMITS</u>

From FCC 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

Page 85 of 90

RESULTS

(MPE distance equals 20 cm)

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
5.2 GHz	11a (2 Chains)	0.20	12.18	6.01	0.13	0.013
5.2 GHz	11n HT20 (4 Chains)	0.20	13.23	3.0	0.08	0.008
5.2 GHz	11n HT40 (4 Chains)	0.20	16.67	3.0	0.18	0.018

Page 86 of 90