

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

DC544D_2 PCIe DAUGHTER CARD FOR 2.4 / 5 GHz AP/ROUTER APPLICATIONS DFS

MODEL NUMBER: 65-VN780-P2

FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

REPORT NUMBER: 09U12687-7, Revision A

ISSUE DATE: MARCH 08, 2010

Prepared for QUALCOMM, INC. 3165 KIFER ROAD SANTA CLARA, CA 95051, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000

FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	10/21/09	Initial Issue	F. Ibrahim
Α	03/08/10	Updated test results for modifications of EUT	F. Ibrahim

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	6
2.	TES	T METHODOLOGY	7
3.	FAC	ILITIES AND ACCREDITATION	7
4.	CAL	IBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	SAMPLE CALCULATION	
	4.3.	MEASUREMENT UNCERTAINTY	7
5.	EQL	IIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	8
	5.2.	MAXIMUM OUTPUT POWER	8
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
	5.4.	SOFTWARE AND FIRMWARE	g
	5.5.	WORST-CASE CONFIGURATION AND MODE	
	5.6.	MODIFICATIONS	
	5.7.	TEST RESULTS FOR MODIFIED SAMPLE	
	5.8.	DESCRIPTION OF TEST SETUP	
6.		T AND MEASUREMENT EQUIPMENT	
7.	ANT	ENNA PORT TEST RESULTS	
	7.1.	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE	
	7.1. ² 7.1. ²		
	7.1.3		
	7.1.4		
	7.1.5		
	7.1.6		
	7.2.	5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE	
	7.2.		
	7.2.2		
	7.2.3 7.2.4		
	7.2.5		
	7.2.6		
	7.3.	5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE	50
	7.3.		
	7.3.2	2. OUTPUT POWER	52
	7.3.3		
	7.3.4	I. PEAK POWER SPECTRAL DENSITY	59
	7.3.5		60

DATE: MARCH 08, 2010

7.3.6.	CONDUCTED SPURIOUS EMISSIONS	62
7.4.1.	GHz BAND CHANNEL TESTS FOR 802.11a MODE	64
7.4.2.	OUTPUT POWER	
7.4.3.	AVERAGE POWER	
7.4.4. 7.4.5.	PEAK POWER SPECTRAL DENSITYPEAK EXCURSION	
7.4.5. 7.4.6.	CONDUCTED SPURIOUS EMISSIONS	
7.5. 5.3	GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE	82
7.5.1.	99% & 26 dB BANDWIDTH	
7.5.2.	OUTPUT POWER	
7.5.3.	AVERAGE POWER	
7.5.4.	PEAK POWER SPECTRAL DENSITY	
7.5.5. 7.5.6.	PEAK EXCURSIONCONDUCTED SPURIOUS EMISSIONS	
	GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE	
7.6.1.	99% & 26 dB BANDWIDTH	
7.6.2. 7.6.3.	OUTPUT POWER	
7.6.3. 7.6.4.	PEAK POWER SPECTRAL DENSITY	
7.6.5.	PEAK EXCURSION	
7.6.6.	CONDUCTED SPURIOUS EMISSIONS	
7.7. 5.6	GHz BAND CHANNEL TESTS FOR 802.11a MODE	118
7.7.1.	26 dB and 99% BANDWIDTH	
7.7.2.	OUTPUT POWER	
7.7.3.	AVERAGE POWER	125
7.7.4.	PEAK POWER SPECTRAL DENSITY	
7.7.5.	PEAK EXCURSION	
7.7.6.	CONDUCTED SPURIOUS EMISSIONS	
7.7.7.	CONDUCTED SPURIOUS (-20 dBc)	
	GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE	
7.8.1.	99% & 26 dB BANDWIDTH	
7.8.2. 7.8.3.	OUTPUT POWER	
7.8.4.	PEAK POWER SPECTRAL DENSITY	147 148
7.8.5.	PEAK EXCURSION	
7.8.6.	CONDUCTED SPURIOUS EMISSIONS	154
7.8.7.	CONDUCTED SPURIOUS (-20 dBc)	
7.9. 5.6	GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE	159
7.9.1.	99% & 26 dB BANDWIDTH	
7.9.2.	OUTPUT POWER	162
7.9.3.	AVERAGE POWER	
7.9.4.	PEAK POWER SPECTRAL DENSITY	
7.9.5.	PEAK EXCURSION	173
7.9.6.	CONDUCTED SPURIOUS EMISSIONS	
7.9.7.	CONDUCTED SPURIOUS (-20 dBc)	
7.10. RE	CEIVER CONDUCTED SPURIOUS EMISSIONS	180
8. RADIAT	ED TEST RESULTS	184
	Page 4 of 295	

8.1.	LIMITS AND PROCEDURE	184
8.2.	TRANSMITTER ABOVE 1 GHz	185
8.2.1.		
8.2.2.		
8.2.3.	802.11n HT40 MODE IN 5.2 GHz BAND	192
8.2.4.		
8.2.5.		
8.2.6.		
8.2.7.		
8.2.8.		
8.2.9.		
8.3.	WORST-CASE BELOW 1 GHz	216
9. AC P	OWER LINE CONDUCTED EMISSIONS	218
10. DY	NAMIC FREQUENCY SELECTION	222
10.1. 10.1.1	O <i>VERVIEW</i> I. LIMITS	
10.1.		
10.1.3		
10.1.4		
10.2	RESULTS FOR 20 MHz BANDWIDTH	
10.2.		
10.2.2		
10.2.3		_
10.2.4		
10.2.5		
10.2.6		
10.2.7		
10.3.	RESULTS FOR 40 MHz BANDWIDTH	259
10.3.1		
10.3.2		
10.3.3	B. CHANNEL AVAILABILITY CHECK TIME	266
10.3.4	I. OVERLAPPING CHANNEL TESTS	271
10.3.5		
10.3.6		
10.3.7		
10.3.8	3. IN-SERVICE MONITORING	281
11. MA	XXIMUM PERMISSIBLE EXPOSURE	288
12. SE	TUP PHOTOS	292

REPORT NO: 09U12687-7A DATE: MARCH 08, 2010 FCC ID: J9C-DC544D2

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: QUALCOMM INC.

3165 KIFER RD

SANTA CLARA, CA 95051

U.S.A.

EUT DESCRIPTION: DC544D 2 PCIe DAUGHTER CARD FOR 2.4 / 5 GHz

AP/ROUTER APPLICATIONS DFS

MODEL: 65-VN780-P2

SERIAL NUMBERS: Conducted: 7916, Radiated: 7929, DFS: 02324 for DFS

Version with modified shield: 9021

DATE TESTED: JUNE 24 - OCTOBER 15, 2009

JANUARY 28 - FEBRUARY 15, 2010

APPLICABLE STANDARDS

AFFLICABLE STANDARDS						
STANDARD	TEST RESULTS					
CFR 47 Part 15 Subpart E	Pass					
INDUSTRY CANADA RSS-210 Issue 7 Annex 9	Pass					
INDUSTRY CANADA RSS-GEN Issue 2	Pass					

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

FRANK IBRAHIM **EMC SUPERVISOR** COMPLIANCE CERTIFICATION SERVICES Tested By:

VIEN TRAN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

IC: 2723A-DC544D2

Page 6 of 295

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n WLAN transceiver module in a PCI form factor, for 2.4 / 5 GHz AP/Router Applications that include DFS bands. It is equipped with four identical transmitter / receiver chains.

The radio module is manufactured by Qualcomm, Inc.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5.2 GHz BAND		•	
5180 - 5240	802.11a	12.18	16.52
5180 - 5240	802.11n HT20	13.23	21.04
5190 - 5230	802.11n HT40	16.67	46.45
5.3 GHz BAND			
5260 - 5320	802.11a	19.15	82.22
5260 - 5320	802.11n HT20	20.65	116.14
5270 - 5310	802.11n HT40	23.24	210.86
5.6 GHz BAND			
5500 - 5700	802.11a	19.88	97.27
5500 - 5700	802.11n HT20	20.24	105.68
5510 - 5670	802.11n HT40	23.80	239.88

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dual band omni monopole (4 identical) antenna, each with a maximum gain of 3 dBi in the 5 GHz bands.

For the 802.11a legacy mode only two chains are transmitting, therefore the effective legacy antenna gain is:

	,	Effective Legacy Gain (dBi)	
3	3.01	6.01	

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Qualcomm, rev. 0.0.500.5.

The test utility software used during emissions testing was PTT Gui, rev. 5.1.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module installed in a test jig board connected to a host Laptop PC.

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11a Mode (20 MHz BW operation): 6 Mbps, OFDM.

802.11n MIMO HT20 Mode: MCS31, 260 Mbps, 4 Spatial Streams.

802.11n MIMO HT40 Mode: MCS31, 540 Mbps, 4 Spatial Streams.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power, that was determined to be 11n HT40, high channel.

For bandwidth measurement preliminary testing showed that there is no significant difference among different chains, so the measurements were performed using Chain 0.

For conducted spurious measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore final measurements were performed using combiner for all channels and modes.

For PPSD measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore final measurements were performed using combiner for all channels and modes.

For Radiated Band Edge measurements preliminary testing showed that the worst case was vertical polarization, so final measurements were performed with vertical polarization.

5.6. MODIFICATIONS

The EUT was modified during the project, as follows:

A shield was added to the bottom side of the PCB to meet ETSI receiver spurious limits. This shield was subsequently incorporated into all versions of this radio module.

5.7. TEST RESULTS FOR MODIFIED SAMPLE

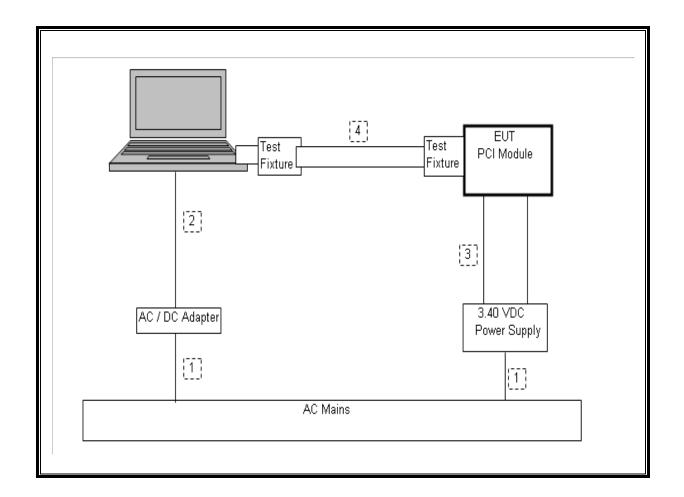
As a result of the shield modification, the original data was analyzed to find worst-case modes and margins, then preliminary tests were performed to determine where additional final testing was required. This report is updated with all new final measurements that show degraded performance compared to the original configuration.

As a result of the shield modification, full DFS testing was performed on a sample with the new shield. This report is updated with the new DFS results.

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	FCC ID			
Laptop	IBM	T43 ThinkPad	L3-XDLXW06/02	DoC			
AC Adapter	IBM	08K8204	11S08K8204Z1Z9	DoC			
DC Power Supply	Tektronic	PS2521G	N/A	N/A			
DC Power Supply	HP	336108	KR24104150	N/A			
Extender PCI	ALLION	V1 EC-PEM V1.0	A073	N/A			


I/O CABLES

	I/O CABLE LIST								
Cable No.	Port	# of Identical Ports	Connecto Type	Cable Type	Cable Length	Remarks			
1	AC	2	US115	Un-shielded	1.5 m	For laptop			
2	DC	1	DC	Un-shielded	1.5 m	For laptop			
3	DC	1	Cable	Un-shielded	1.0 m	For EUT			
4	Ribbon	1	Ribbon	Un-shielded	.4 m	Test Fixture			

TEST SETUP

The EUT is connected to a host laptop computer via a test fixture during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

DATE: MARCH 08, 2010

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

The following test and measurement equipment was utilized for the additional tests with the

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Date	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/09	01/05/10		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/09	01/14/10		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	04/22/10		
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	09/29/08	11/28/09		
Antenna, Horn, 40 GHz	ARA	MWH-2640B	C00981	05/21/09	05/21/10		
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	10/11/08	10/11/09		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/09	03/31/10		
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	08/05/08	08/05/09		
Peak Power Meter	Boonton	4541	C01186	01/19/09	01/19/10		
Peak Power Sensor	Boonton	4541	C01189	01/15/09	01/15/10		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/29/08	10/29/09		
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	02/06/08	08/06/09		

modified shield:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Date	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01159	11/07/08	02/07/11		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/08	04/22/10		
Preamplifier	Agilent / HP	8449B	C01052	02/04/09	02/04/11		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/09	01/14/11		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	12/16/08	12/16/10		

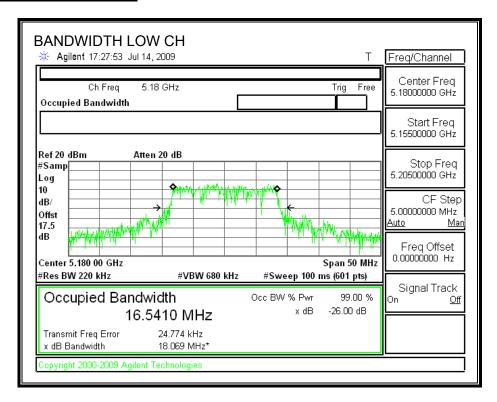
7. ANTENNA PORT TEST RESULTS

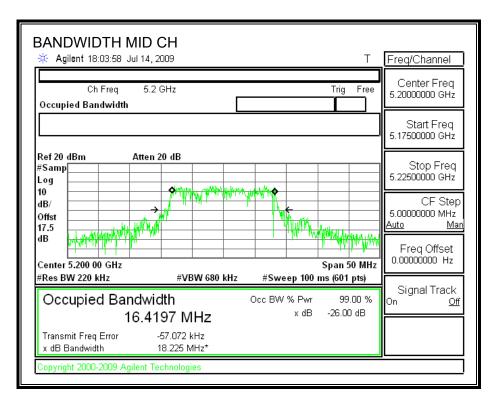
7.1. 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE

7.1.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	18.0690	16.5410
Middle	5200	18.2250	16.4197
High	5240	19.5230	16.3303

26 dB and 99% BANDWIDTH

opyright 2000-2009 Agilent Technologies

DATE: MARCH 08, 2010

7.1.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

	• ,	Effective Legacy Gain (dBi)	
3	3.01	6.01	

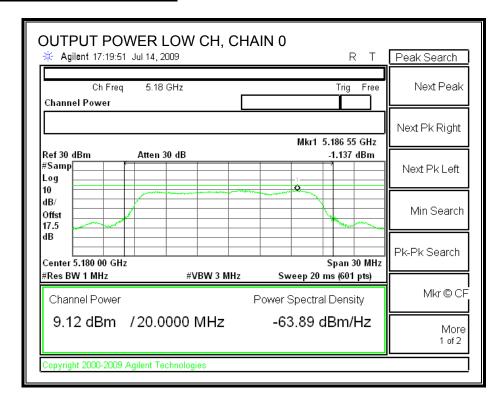
For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

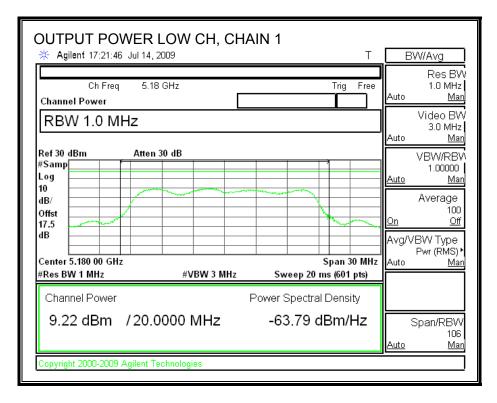
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

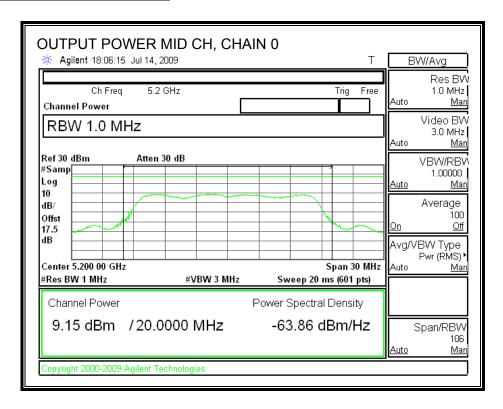
The transmitter output operates continuously therefore Method # 1 is used.

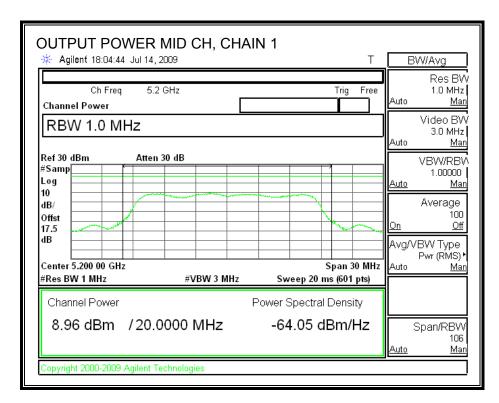
RESULTS

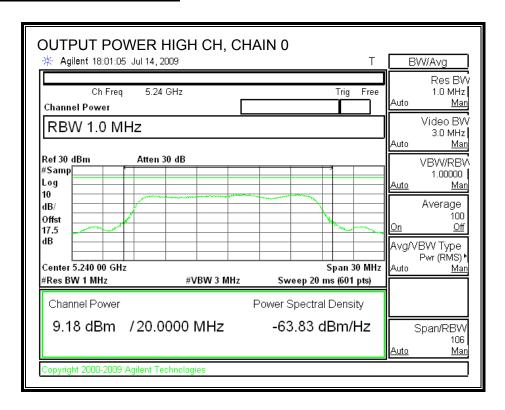

Limit

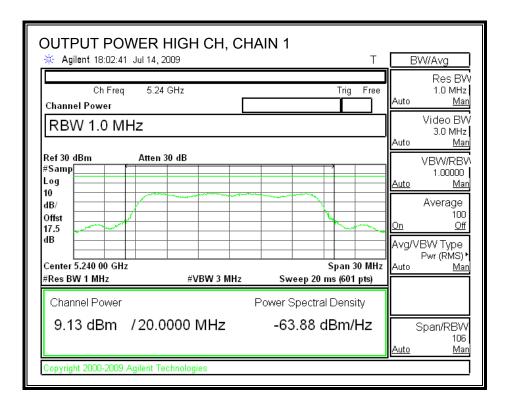

Channel	Freq	Fixed	В	4 + 10 Log B Effective		Limit
		Limit		Limit Antenna G		
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	18.069	16.57	6.01	16.56
Mid	5200	17	18.225	16.61	6.01	16.60
High	5240	17	19.523	16.91	6.01	16.90

Individual Chain Results


Channel	Freq	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.12	9.22	12.18	16.56	-4.38
Mid	5200	9.15	8.96	12.07	16.60	-4.53
High	5240	9.18	9.13	12.17	16.90	-4.73


OUTPUT POWER, LOW CHANNEL




OUTPUT POWER, MID CHANNEL

OUTPUT POWER, HIGH CHANNEL

7.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 1	Chain 2	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	9.12	9.08	12.11
Middle	5200	9.21	9.05	12.14
High	5240	9.16	8.99	12.09

7.1.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

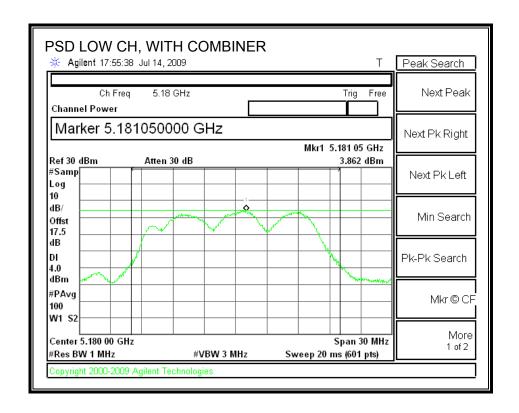
IC RSS-210 A9.2 (1)

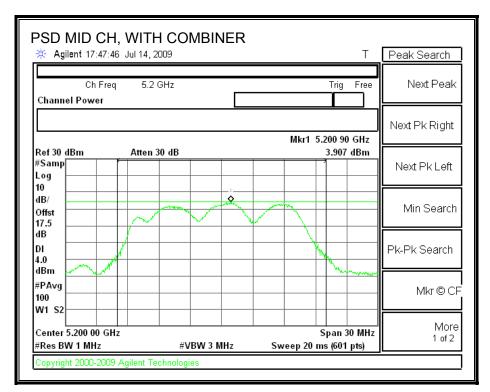
Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

	• ,	Effective Legacy Gain (dBi)	
3	3.01	6.01	

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum effective antenna gain is 6.01 dBi, therefore the limit is 3.99 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

Channel	Frequency PPSD With Combiner		Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.86	3.99	-0.13
Middle	5200	3.91	3.99	-0.08
High	5240	3.82	3.99	-0.18

POWER SPECTRAL DENSITY WITH COMBINER

Center 5.240 00 GHz

#Res BW 1 MHz

#VBW 3 MHz

DATE: MARCH 08, 2010

More

1 of 2

Span 30 MHz

Sweep 20 ms (601 pts)

7.1.5. PEAK EXCURSION

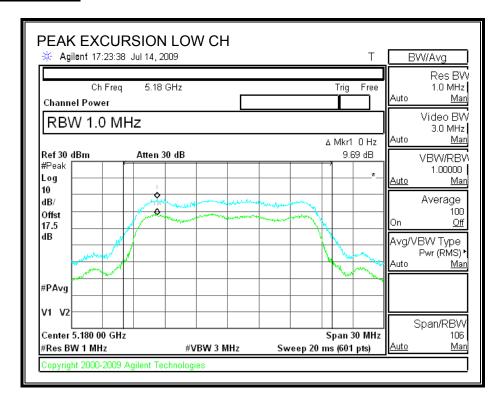
LIMITS

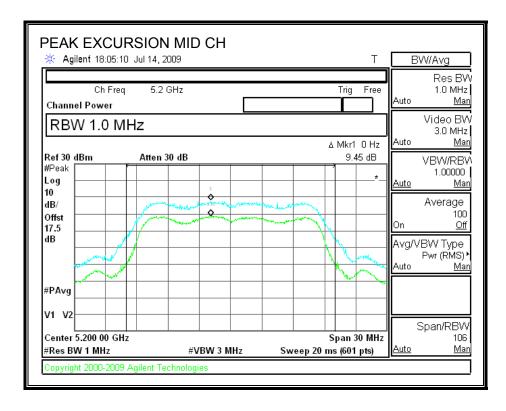
FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.69	13	-3.31
Middle	5200	9.45	13	-3.55
High	5240	10.20	13	-2.80

PEAK EXCURSION

DATE: MARCH 08, 2010

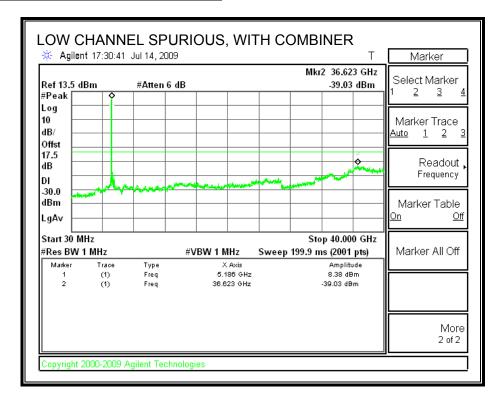
7.1.6. CONDUCTED SPURIOUS EMISSIONS

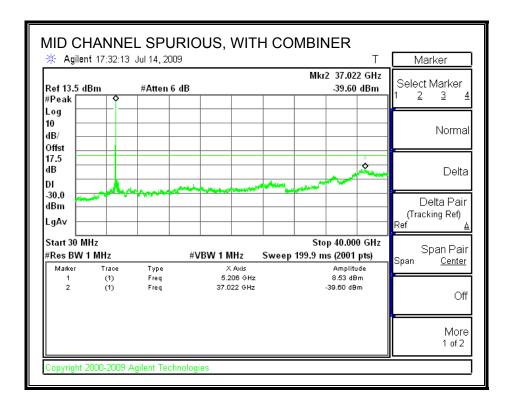
LIMITS

FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.


TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

SPURIOUS EMISSIONS WITH COMBINER

opyright 2000-2009 Agilent Technologies

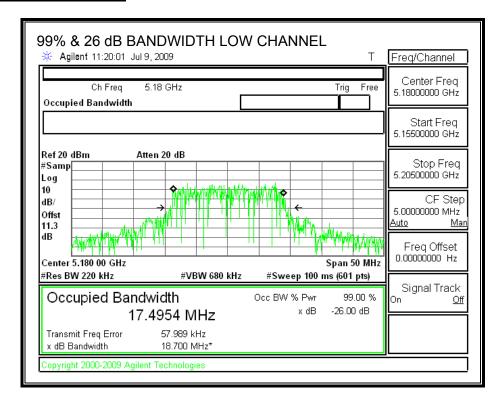
DATE: MARCH 08, 2010

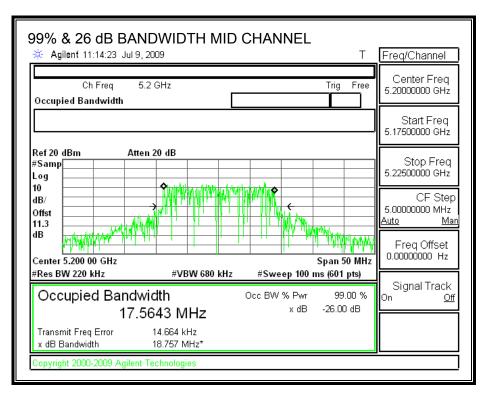
7.2. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

7.2.1. 99% & 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

RESULTS

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5180	17.4954	18.700	
Middle	5200	17.5643	18.757	
High	5240	17.5132	18.413	

99% & 26 dB BANDWIDTH

DATE: MARCH 08, 2010

7.2.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

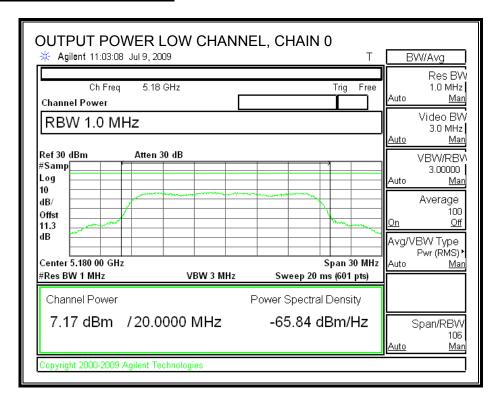
For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

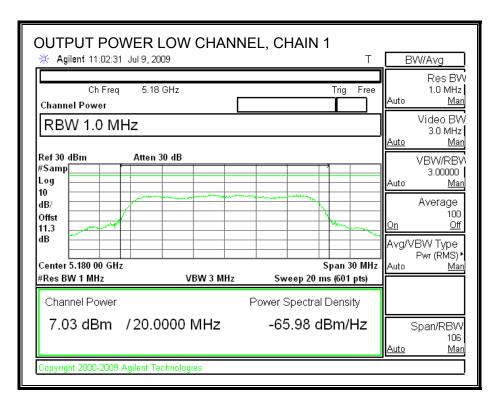
TEST PROCEDURE

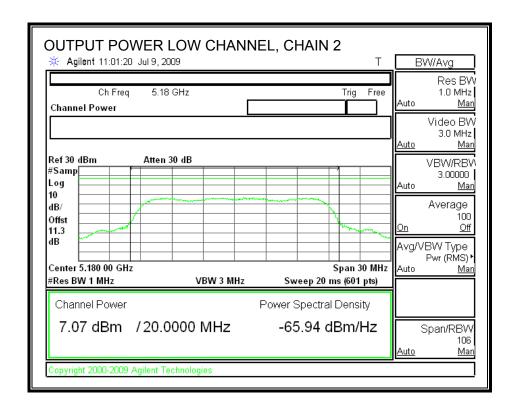
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

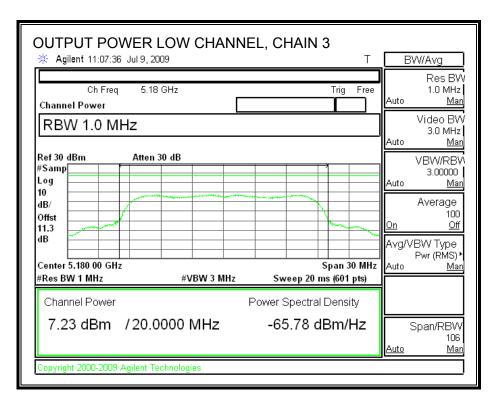
The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

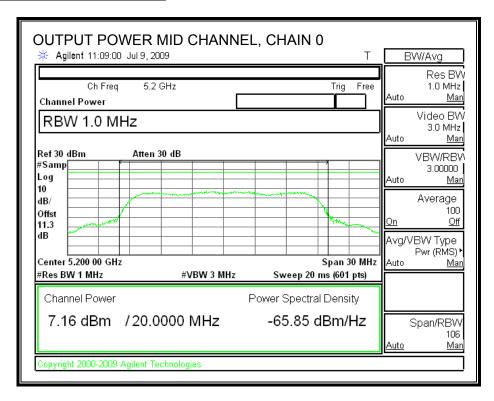

Limit

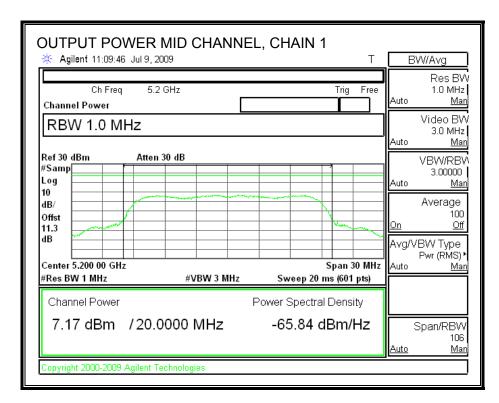

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	18.700	16.72	3	16.72
Mid	5200	17	18.757	16.73	3	16.73
High	5240	17	18.413	16.65	3	16.65

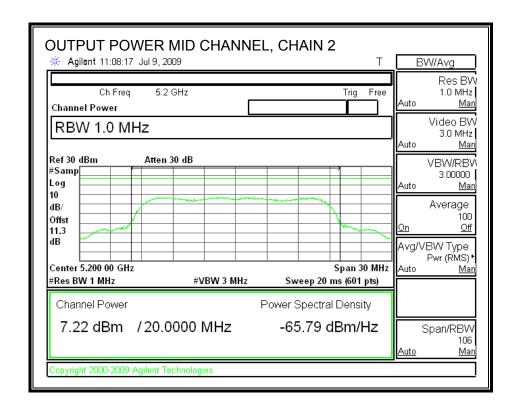

Individual Chain Results

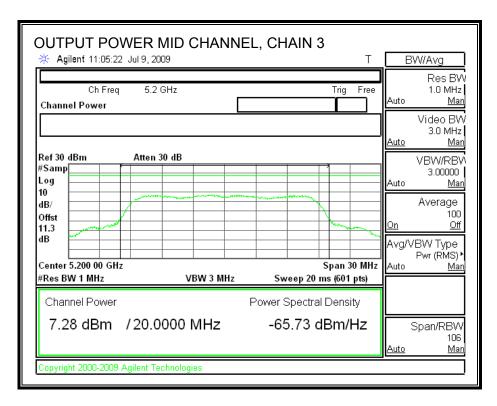

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	7.17	7.03	7.07	7.23	13.15	16.72	-3.57
Mid	5200	7.16	7.17	7.22	7.28	13.23	16.73	-3.50
High	5240	7.16	7.14	7.18	7.28	13.21	16.65	-3.44

OUTPUT POWER, LOW CHANNEL

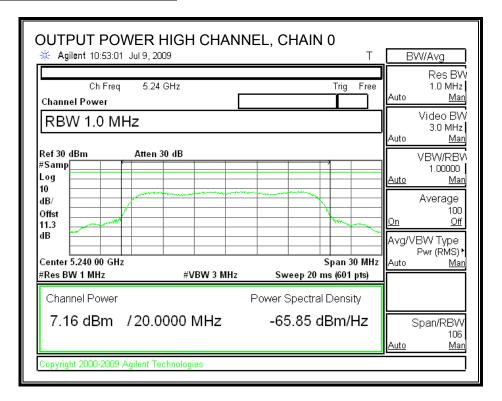


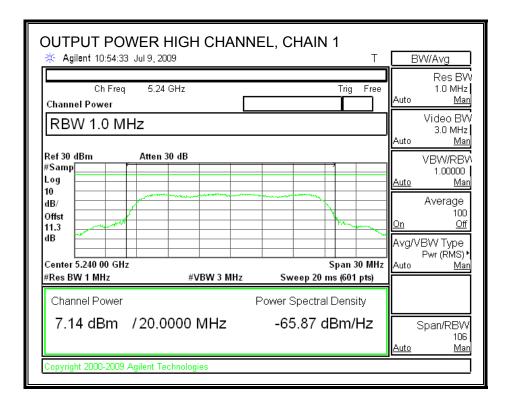


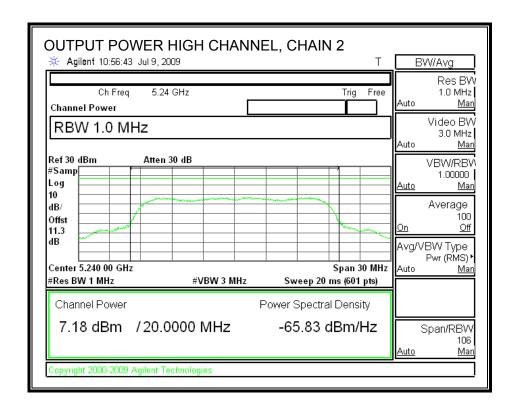


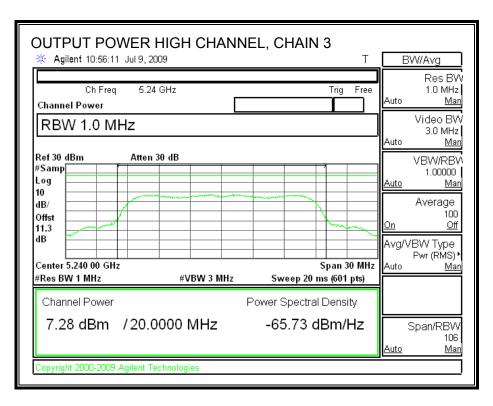


OUTPUT POWER, MID CHANNEL









OUTPUT POWER, HIGH CHANNEL

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Frequency	Chain 0	Chain 1	Chain 2	Chain 3
	Power	Power	Power	Power
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
5180	7.14	7.26	7.10	7.23
5200	7.15	7.21	7.24	7.23
5240	7.35	7.32	7.39	7.28

7.2.4. PEAK POWER SPECTRAL DENSITY

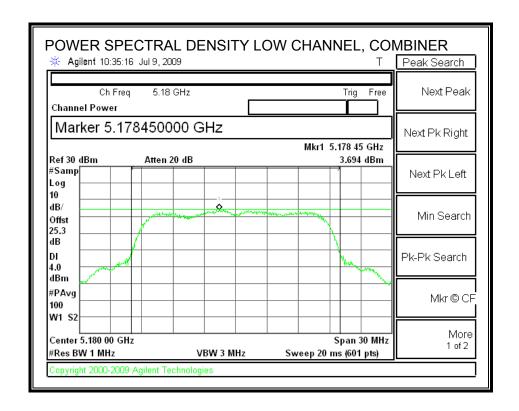
LIMITS

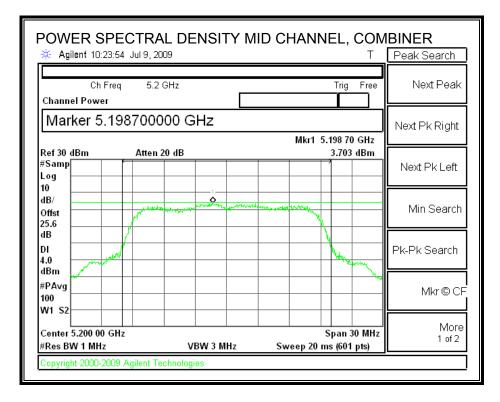
FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi; therefore the limit is 4 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.69	4	-0.31
Middle	5200	3.70	4	-0.30
High	5240	3.67	4	-0.33

POWER SPECTRAL DENSITY

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

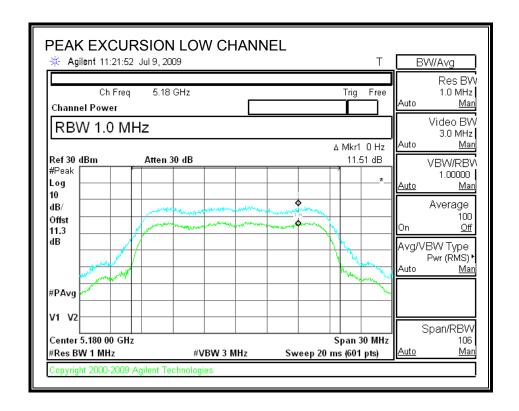
7.2.5. PEAK EXCURSION

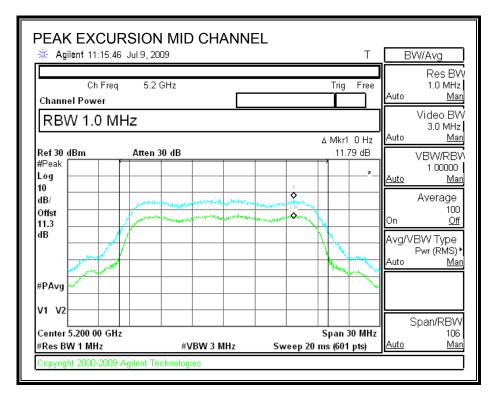
LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	11.51	13	-1.49
Middle	5200	11.79	13	-1.21
High	5240	9.82	13	-3.18

PEAK EXCURSION

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

7.2.6. CONDUCTED SPURIOUS EMISSIONS

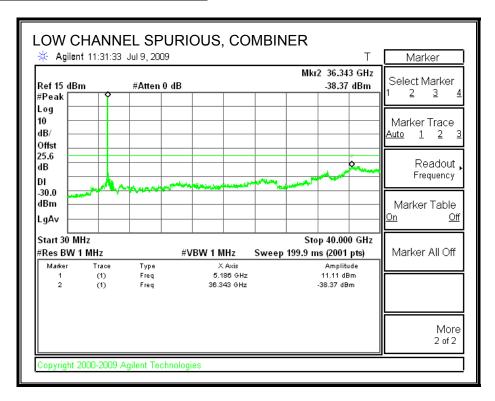
LIMITS

FCC §15.407 (b) (3)

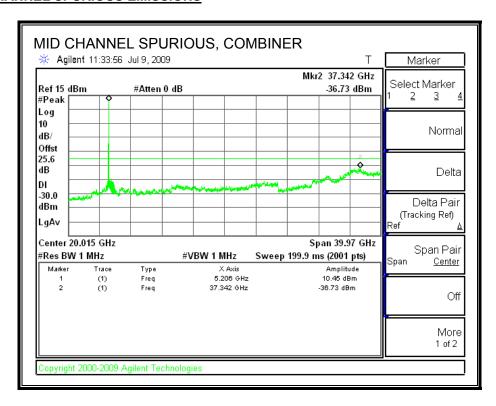
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

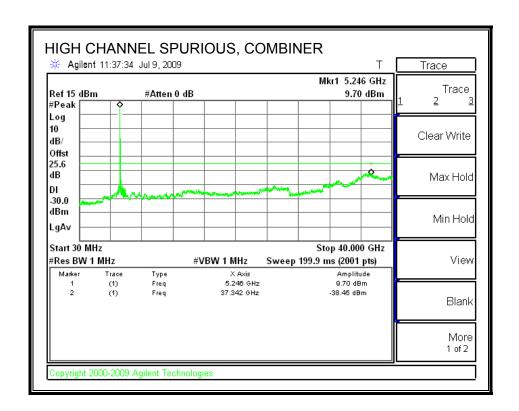
TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


LOW CHANNEL SPURIOUS EMISSIONS

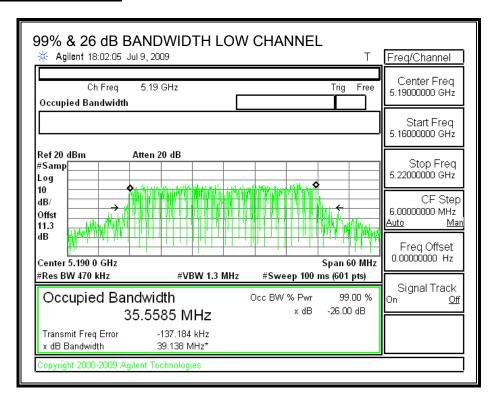
MID CHANNEL SPURIOUS EMISSIONS

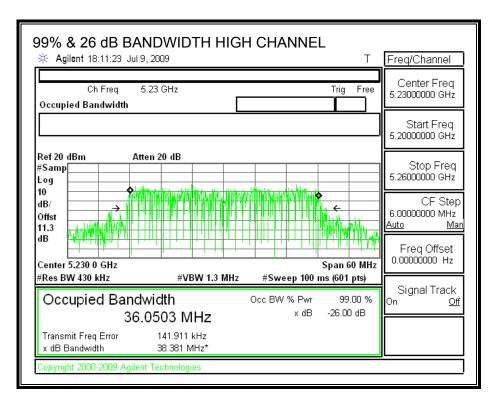
HIGH CHANNEL SPURIOUS EMISSIONS

7.3. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

7.3.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5190	35.5585	39.138
High	5230	36.0503	38.381

99% & 26 dB BANDWIDTH

7.3.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

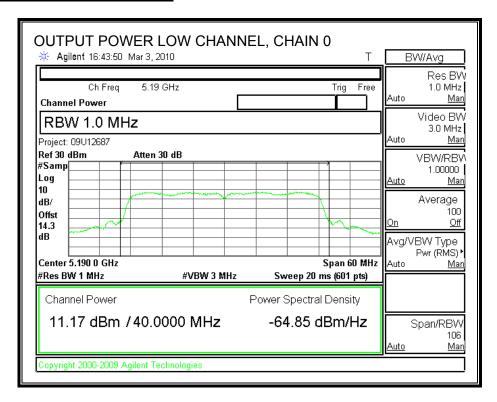
For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

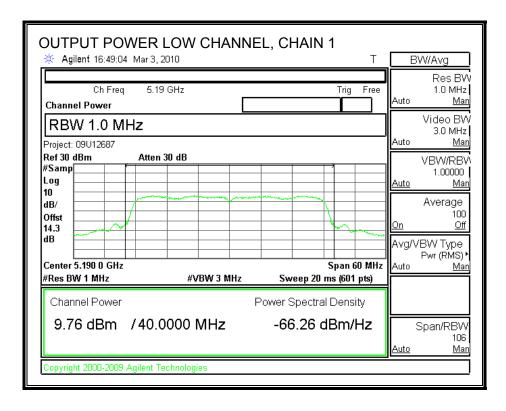
TEST PROCEDURE

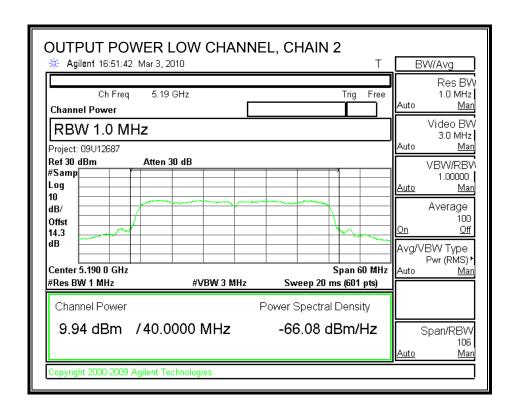
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

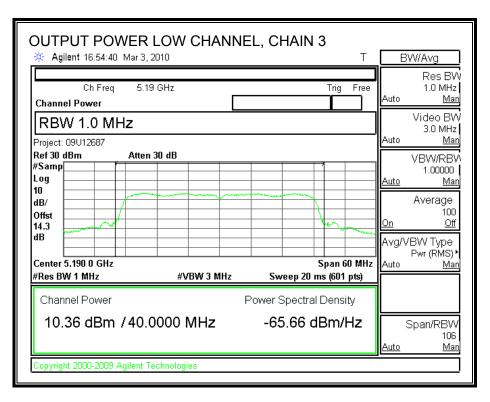
The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

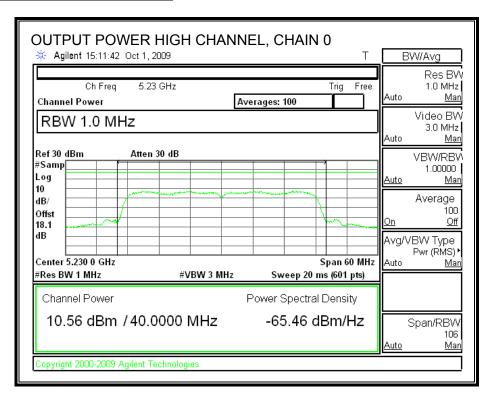

Limit

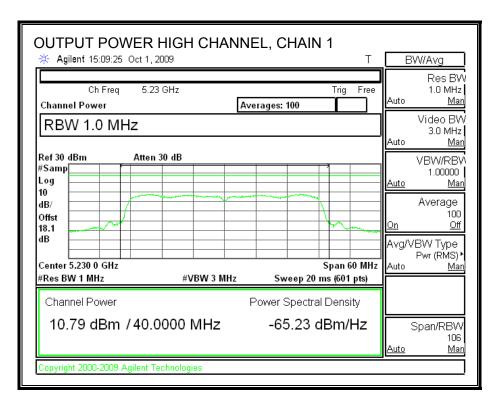

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5190	17	39.138	19.93	3	17.00
High	5230	17	38.381	19.84	3	17.00

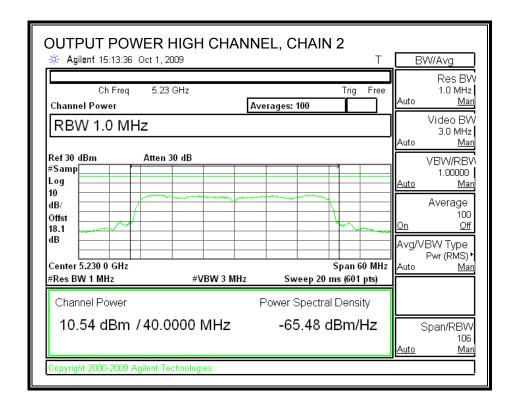

Individual Chain Results

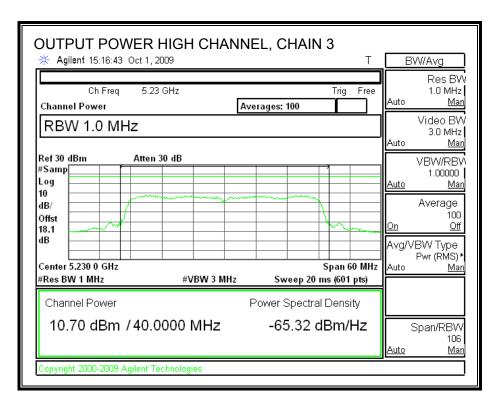

Channe	el Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	11.17	9.76	9.94	10.36	16.36	17.00	-0.64
High	5230	10.56	10.79	10.54	10.70	16.67	17.00	-0.33

OUTPUT POWER, LOW CHANNEL









OUTPUT POWER, HIGH CHANNEL

7.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Frequency	Chain 0 Chain 1		Chain 2	Chain 3
	Power	Power	Power	Power
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
5190	11	9.70	9.80	10.30
5230	10.47	10.70	10.52	10.66

7.3.4. PEAK POWER SPECTRAL DENSITY

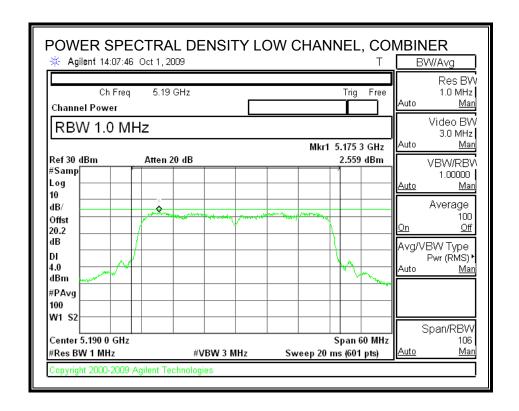
LIMITS

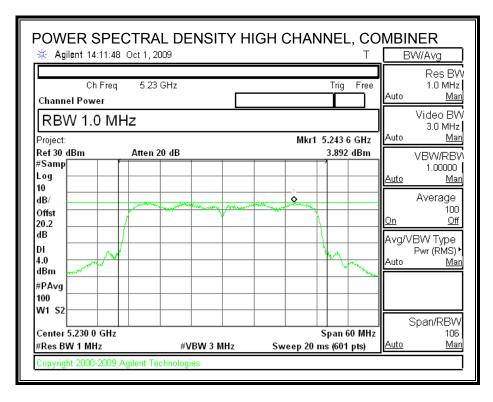
FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi; therefore the limit is 4 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5190	2.559	4	-1.44
High	5230	3.892	4	-0.11

POWER SPECTRAL DENSITY

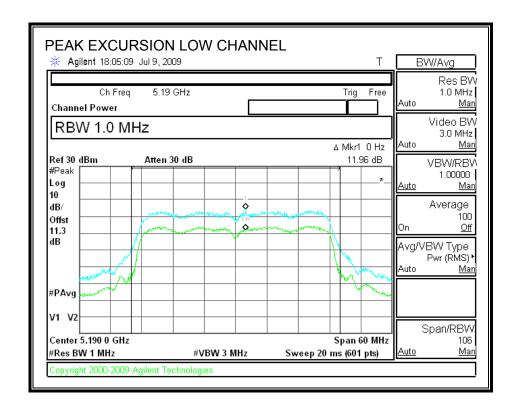
7.3.5. PEAK EXCURSION

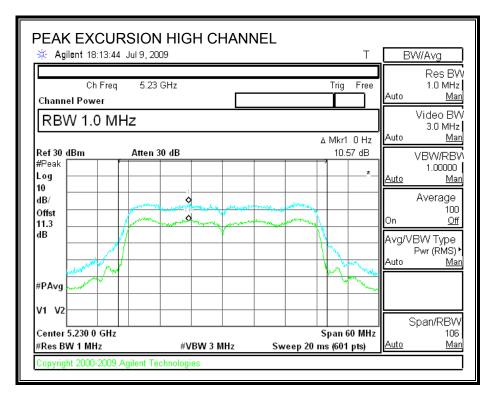
LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	11.96	13	-1.04
High	5230	10.57	13	-2.43

PEAK EXCURSION

7.3.6. CONDUCTED SPURIOUS EMISSIONS

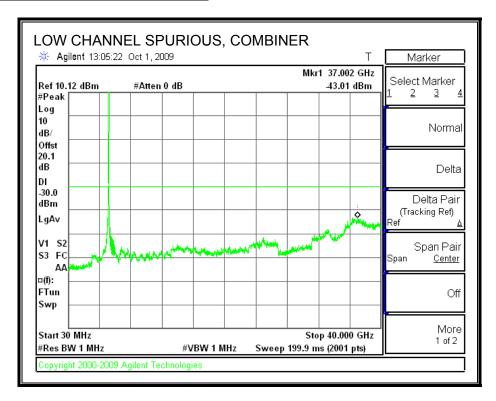
LIMITS

FCC §15.407 (b) (3)

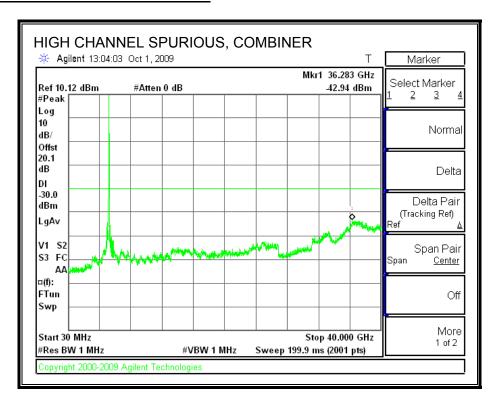
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

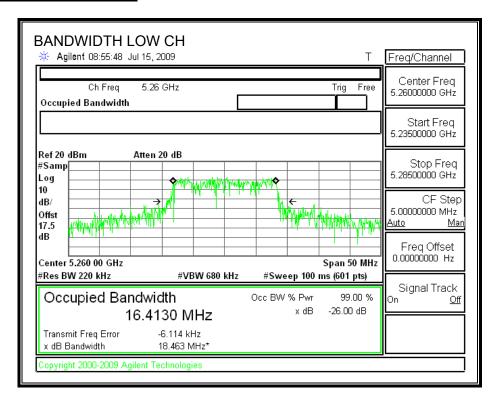
LOW CHANNEL SPURIOUS EMISSIONS

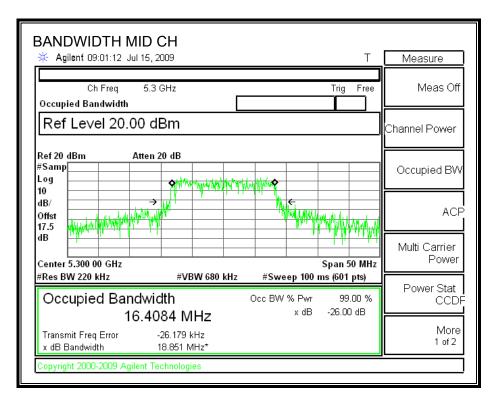
HIGH CHANNEL SPURIOUS EMISSIONS

7.4. 5.3 GHz BAND CHANNEL TESTS FOR 802.11a MODE

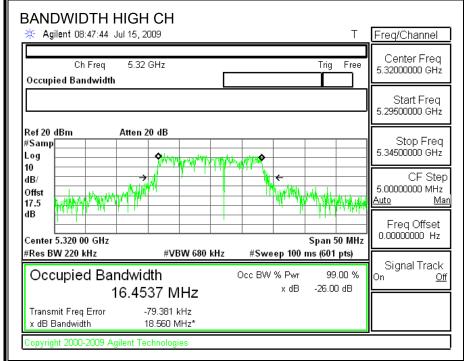
7.4.1. 26 dB and 99% BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5260	18.4630	16.4130
Middle	5300	18.8510	16.4084
High	5320	18.5600	16.4537

26 dB and 99% BANDWIDTH

DATE: MARCH 08, 2010

7.4.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

	,	Effective Legacy Gain (dBi)	
3	3.01	6.01	

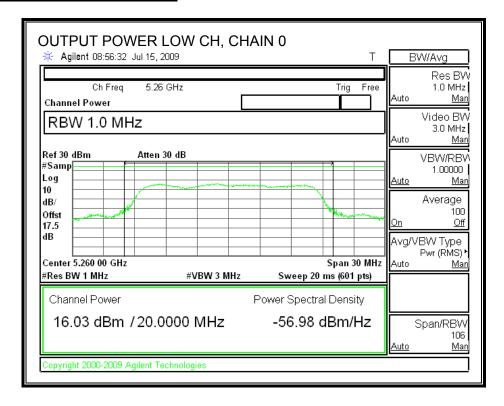
For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

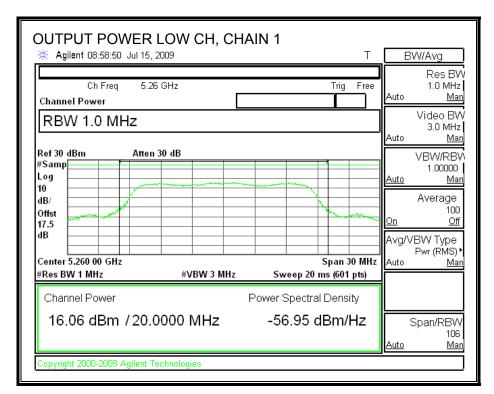
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

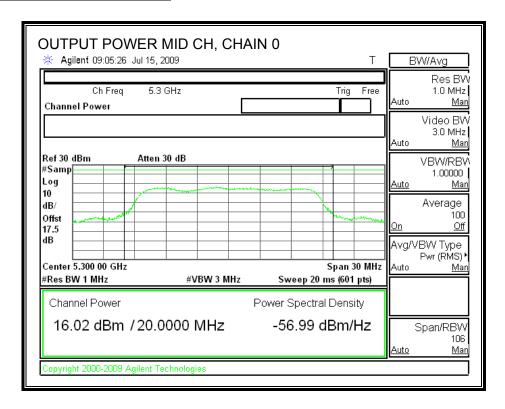
The transmitter output operates continuously therefore Method # 1 is used.

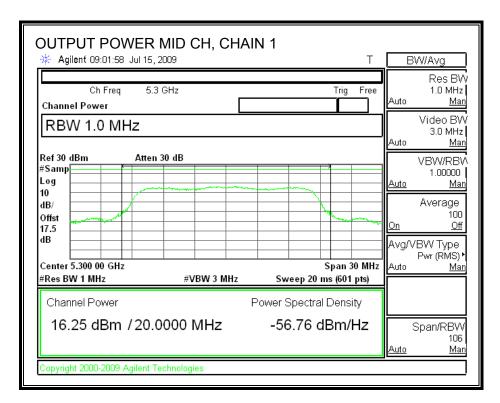
RESULTS

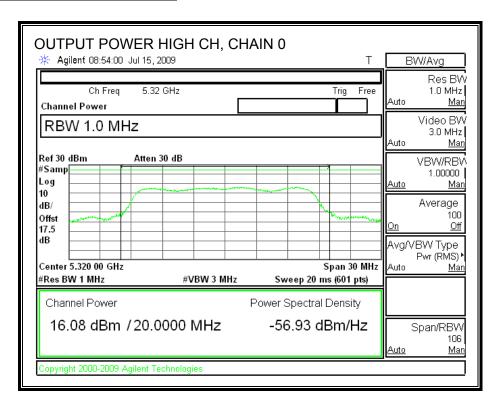

Limit

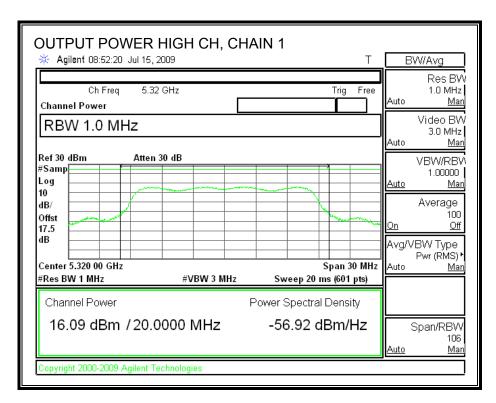

Channel	Frequency	Fixed	В	11 + 10 Log B	Effective	Limit
		Limit		Limit	Ant Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5260	24	18.4630	23.66	6.01	23.65
Mid	5300	24	18.8510	23.75	6.01	23.74
High	5320	24	18.5600	23.69	6.01	23.68

Individual Chain Results


Channel	Frequency	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	16.03	16.06	19.06	23.65	-4.60
Mid	5300	16.02	16.25	19.15	23.74	-4.60
High	5320	16.08	16.09	19.10	23.68	-4.58


OUTPUT POWER, LOW CHANNEL




OUTPUT POWER, MID CHANNEL

OUTPUT POWER, HIGH CHANNEL

7.4.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5260	15.94	16.16	19.06
Middle	5300	16.14	16.32	19.24
High	5320	16.05	16.25	19.16

7.4.4. PEAK POWER SPECTRAL DENSITY

LIMITS

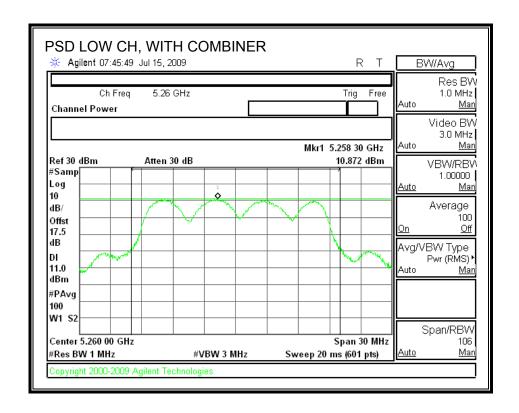
FCC §15.407 (a) (1)

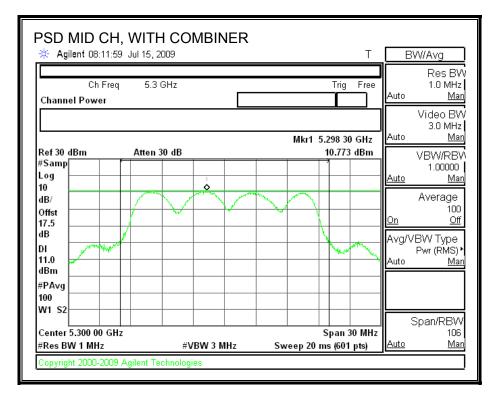
IC RSS-210 A9.2 (1)

Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain	
(dBi)	(dB)	(dBi)	
3	3.01	6.01	

For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


The maximum effective antenna gain is 6.01 dBi, therefore the limit is 10.99 dBm.


TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5260	10.87	10.99	-0.12
Middle	5300	10.77	10.99	-0.22
High	5320	10.52	10.99	-0.47

POWER SPECTRAL DENSITY WITH COMBINER

W1 S2

Center 5.320 00 GHz

#Res BW 1 MHz

#VBW 3 MHz

DATE: MARCH 08, 2010

More

1 of 2

Span 30 MHz

Sweep 20 ms (601 pts)

IC: 2723A-DC544D2

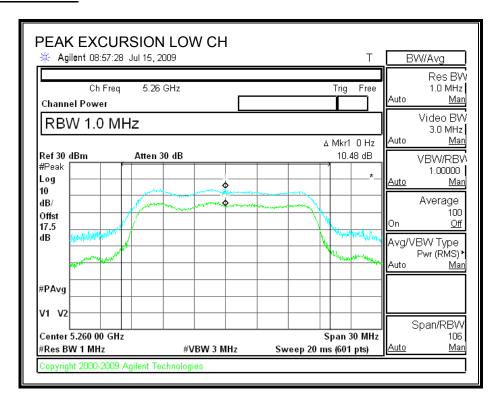
7.4.5. PEAK EXCURSION

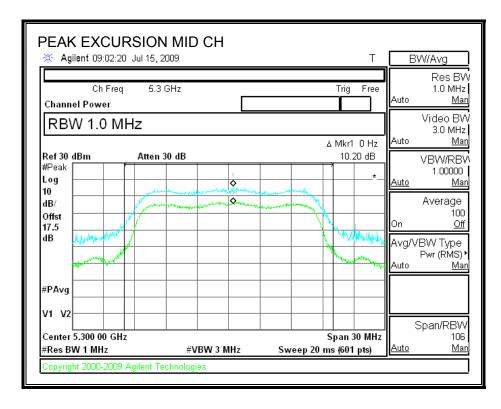
LIMITS

FCC §15.407 (a) (6)

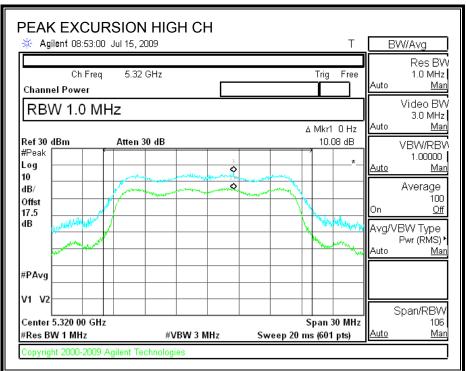
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5260	10.48	13	-2.52
Middle	5300	10.20	13	-2.80
High	5320	10.08	13	-2.92

PEAK EXCURSION

DATE: MARCH 08, 2010

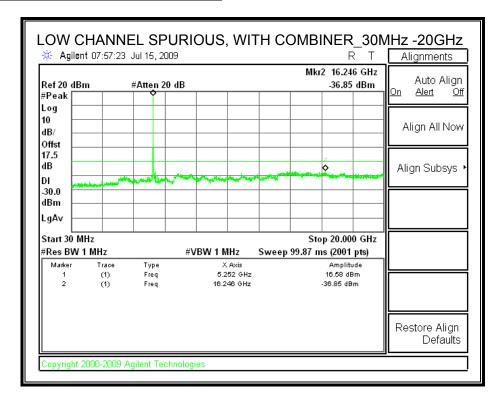
7.4.6. CONDUCTED SPURIOUS EMISSIONS

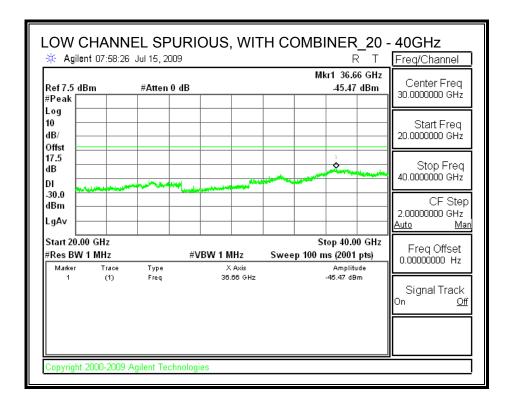
LIMITS

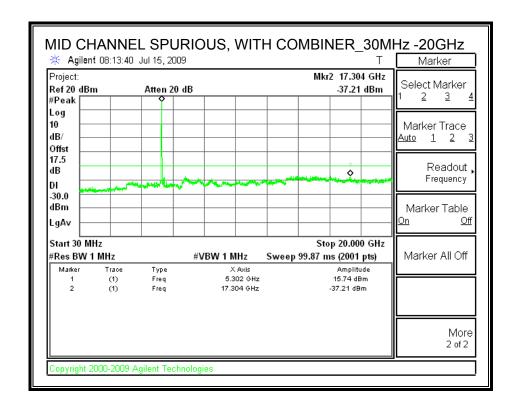
FCC §15.407 (b) (1)

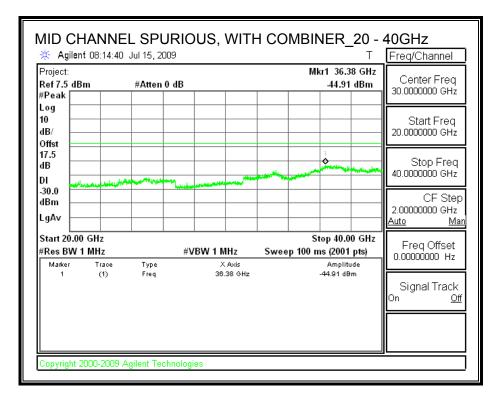
IC RSS-210 A9.3 (1)

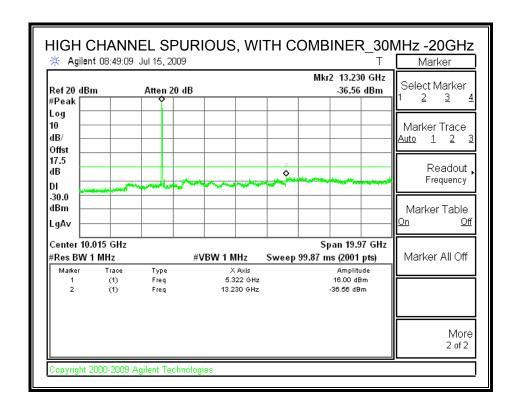
For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

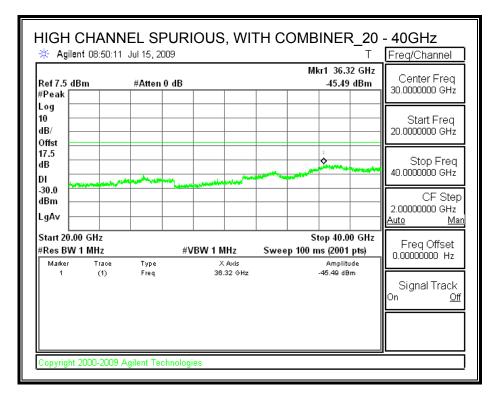

TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

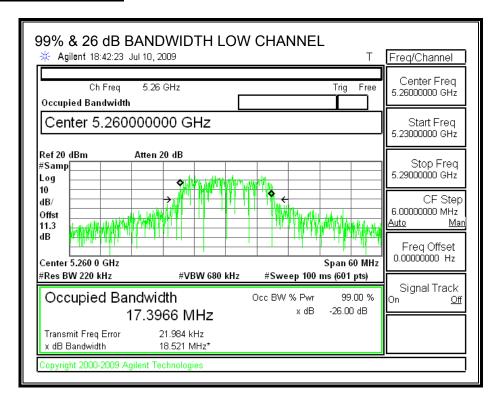

SPURIOUS EMISSIONS WITH COMBINER

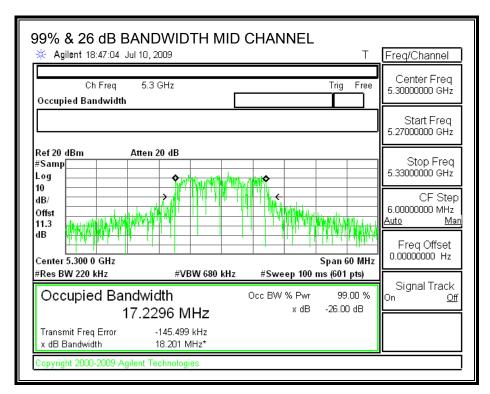


7.5. 5.3 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

7.5.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5260	17.3966	18.521	
Middle	5300	17.2296	18.201	
High	5320	17.3380	18.517	

99% & 26 dB BANDWIDTH

DATE: MARCH 08, 2010 IC: 2723A-DC544D2

7.5.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

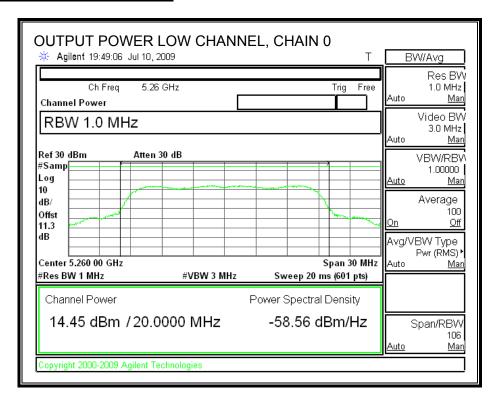
For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

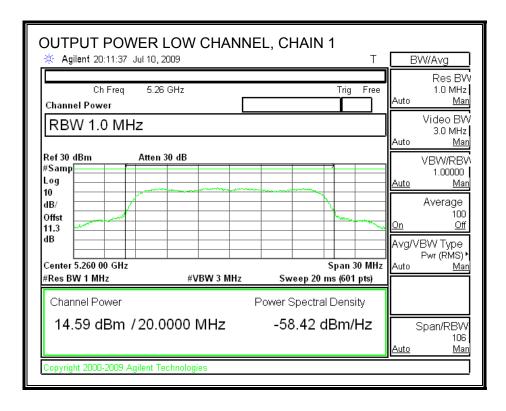
TEST PROCEDURE

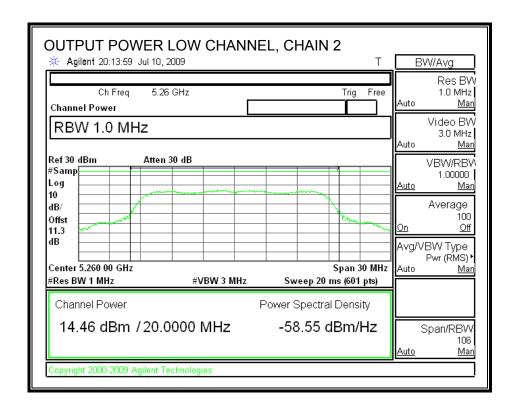
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

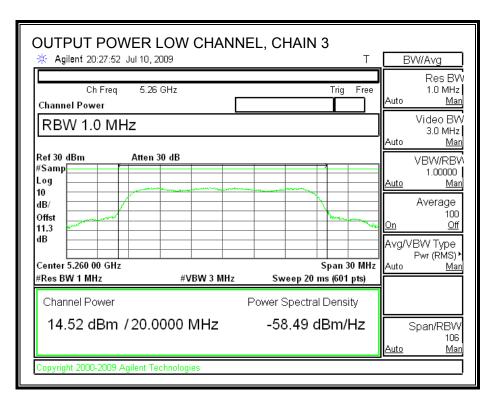
The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

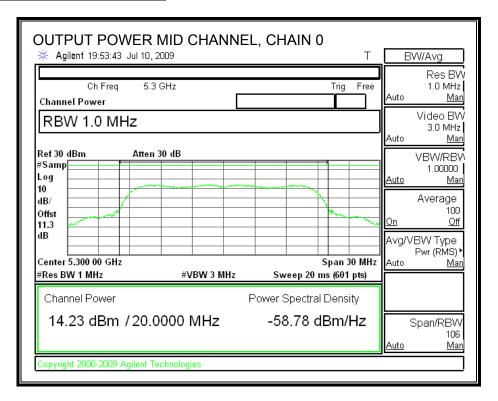

Limit

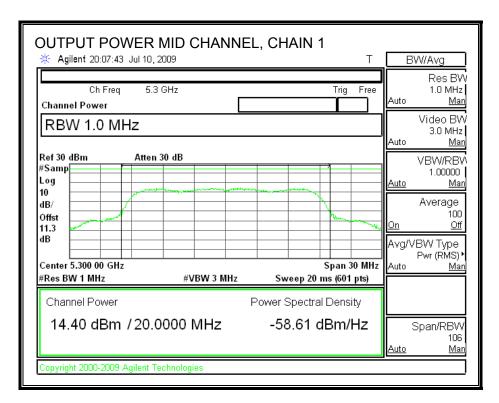

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5260	24	18.520	23.68	3	23.68
Mid	5300	24	18.201	23.60	3	23.60
High	5320	24	18.517	23.68	3	23.68

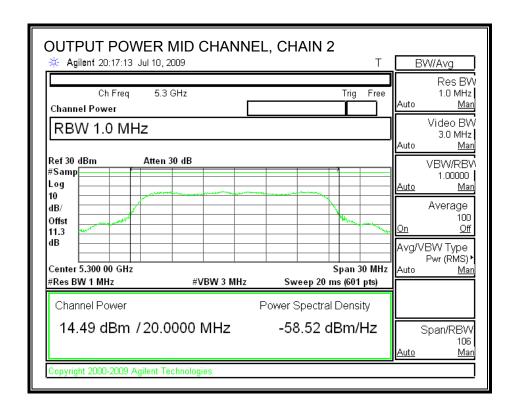

Individual Chain Results

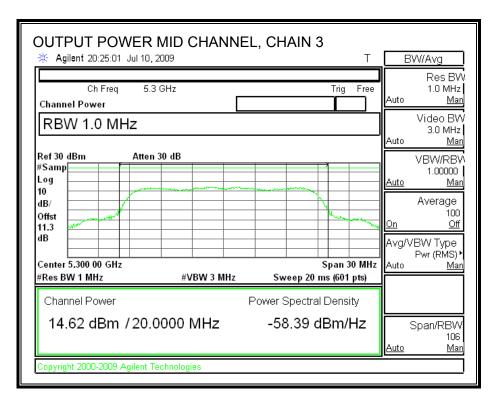

Channe	el Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	14.45	14.59	14.46	14.52	20.53	23.68	-3.15
Mid	5300	14.23	14.40	14.49	14.62	20.46	23.60	-3.14
High	5320	14.67	14.59	14.69	14.57	20.65	23.68	-3.02

OUTPUT POWER, LOW CHANNEL

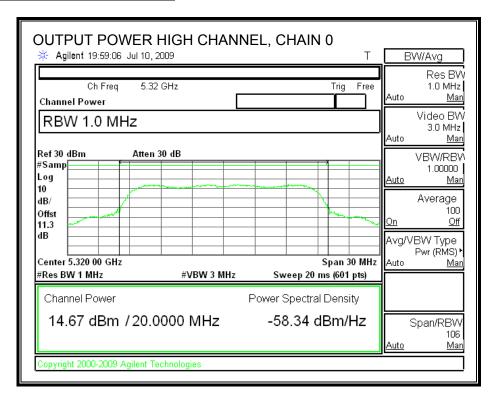


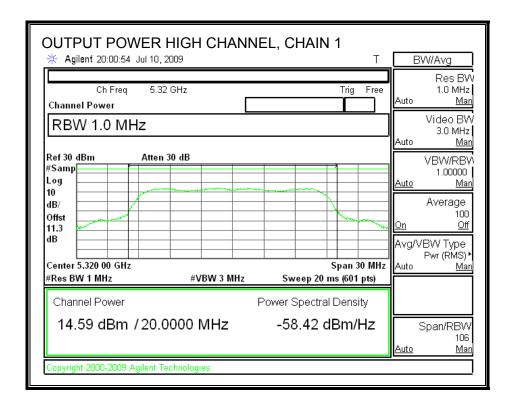


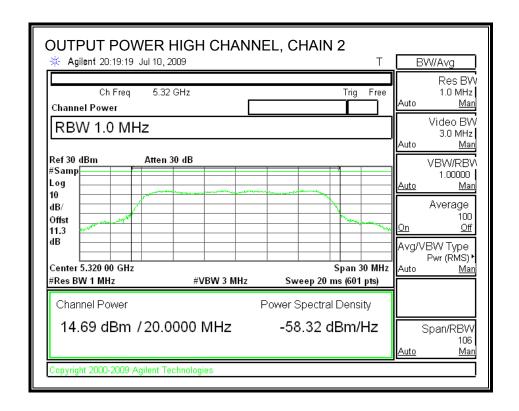


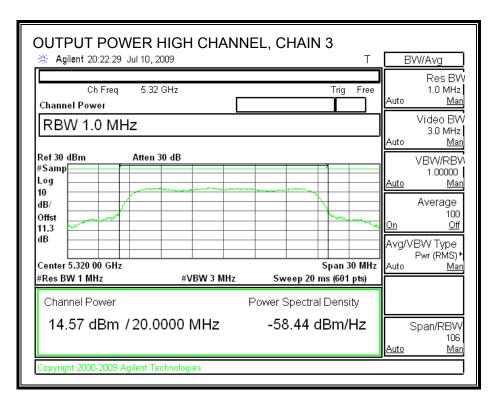


OUTPUT POWER, MID CHANNEL









OUTPUT POWER, HIGH CHANNEL

7.5.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Frequency	Chain 0	Chain 1	Chain 2	Chain 3
	Power	Power	Power	Power
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
5260	14.64	14.56	14.45	14.74
5300	14.44	14.53	14.51	14.64
5320	14.50	14.54	14.65	14.66

7.5.4. PEAK POWER SPECTRAL DENSITY

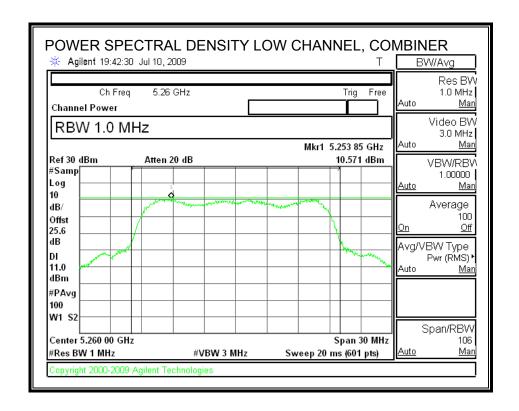
LIMITS

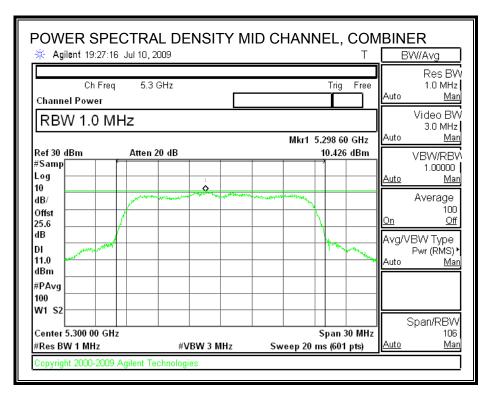
FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25-5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi; therefore the limit is 11 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5260	10.57	11	-0.43
Middle	5300	10.43	11	-0.57
High	5320	10.78	11	-0.22

POWER SPECTRAL DENSITY

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

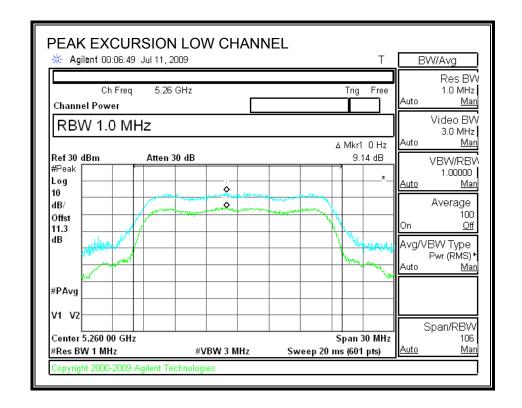
7.5.5. PEAK EXCURSION

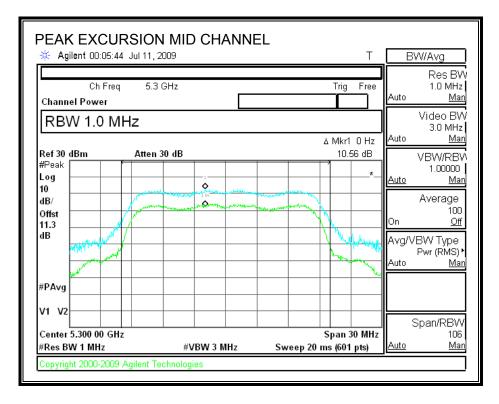
LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5260	9.14	13	-3.86
Middle	5300	10.56	13	-2.44
High	5320	8.87	13	-4.13

PEAK EXCURSION

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

7.5.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

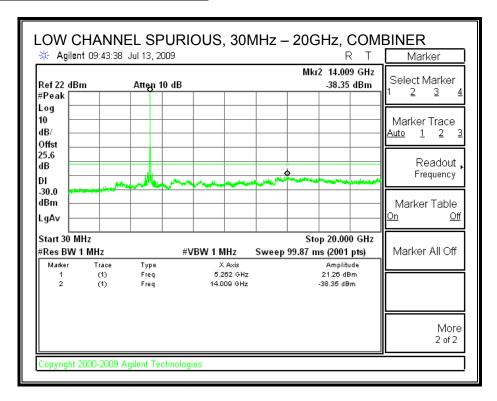
FCC §15.407 (b) (3)

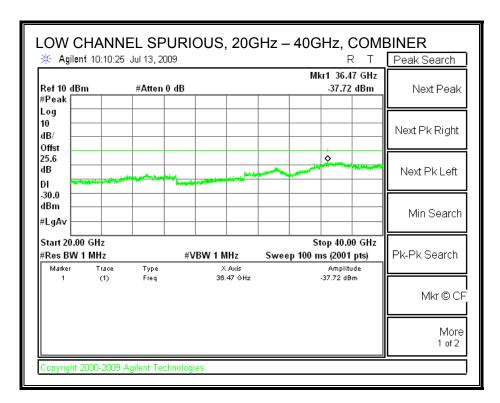
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

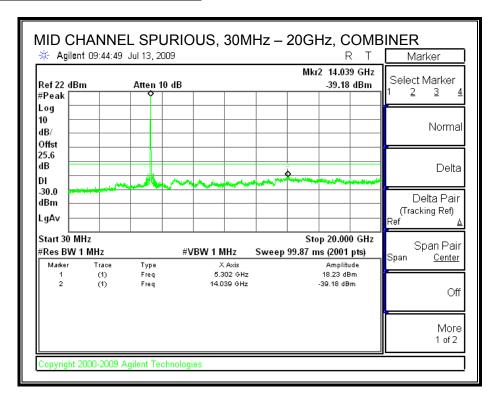
Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

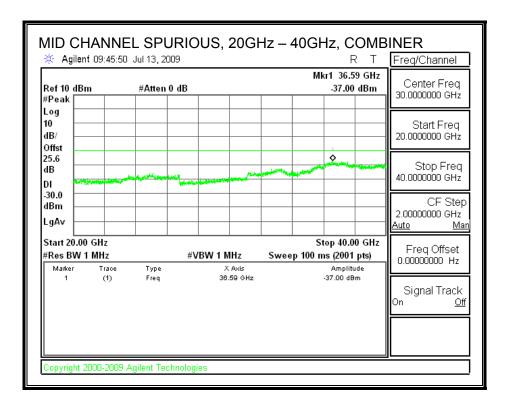
TEST PROCEDURE

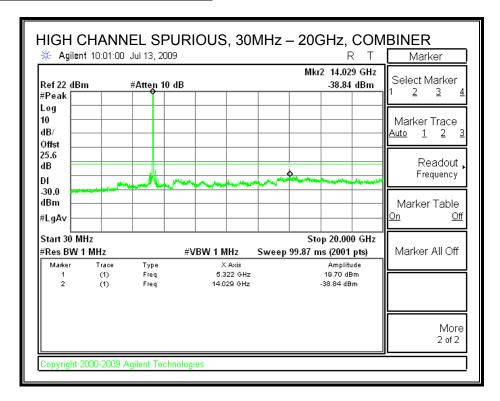

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

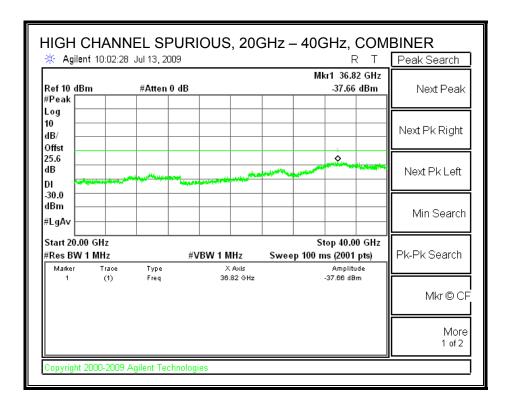

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


LOW CHANNEL SPURIOUS EMISSIONS



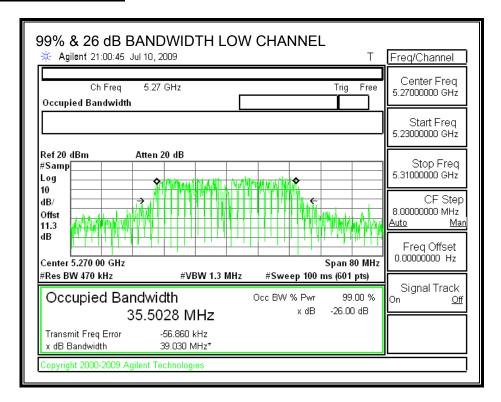

MID CHANNEL SPURIOUS EMISSIONS

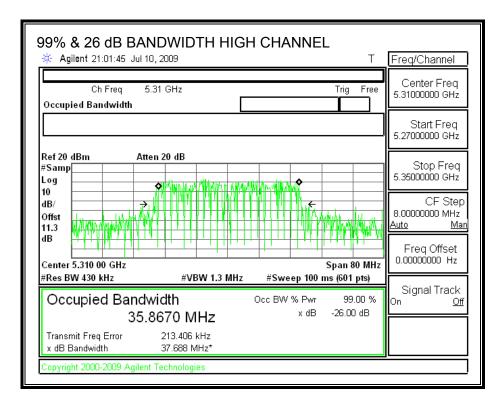
HIGH CHANNEL SPURIOUS EMISSIONS

7.6. 5.3 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

7.6.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5270	35.503	39.030
High	5310	35.867	37.688

99% & 26 dB BANDWIDTH

7.6.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

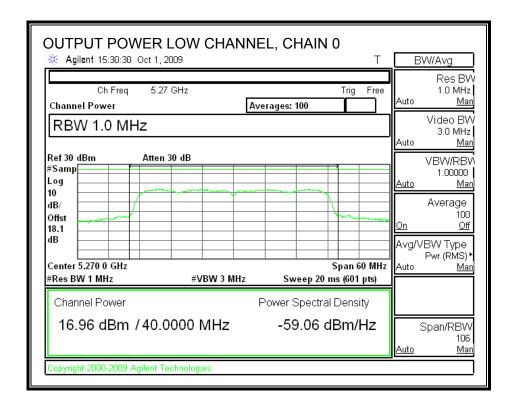
For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

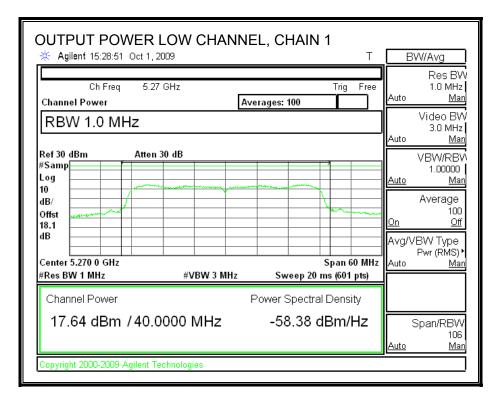
TEST PROCEDURE

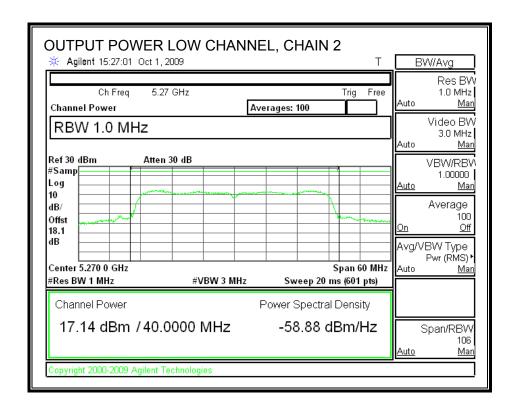
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

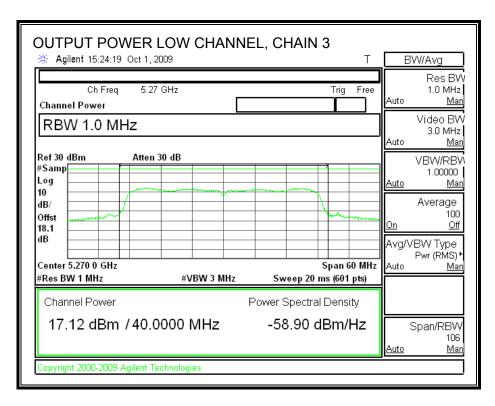
The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

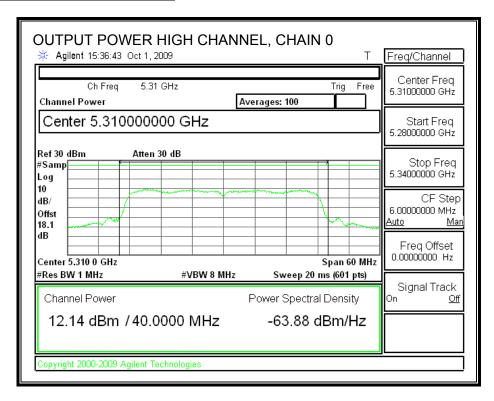

Limit

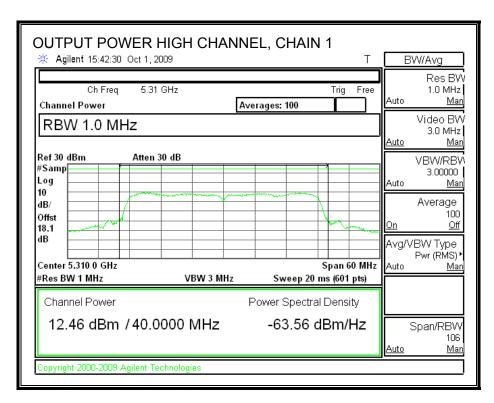

Channel	Freq	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5270	24	39.03	26.91	3	24.00
High	5310	24	37.688	26.76	3	24.00

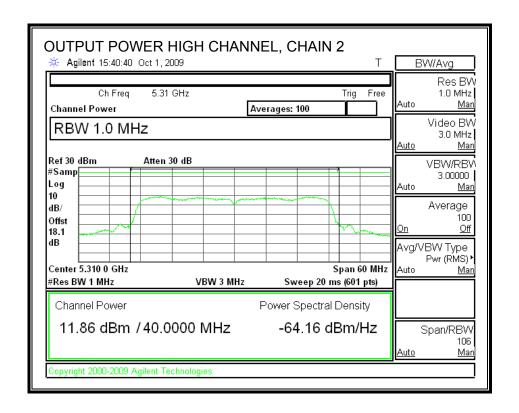

Individual Chain Results

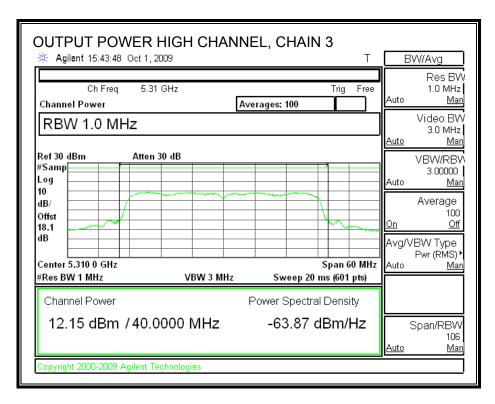

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	16.96	17.64	17.14	17.12	23.24	24.00	-0.76
High	5310	12.14	12.46	11.86	12.15	18.18	24.00	-5.82

OUTPUT POWER, LOW CHANNEL









OUTPUT POWER, HIGH CHANNEL

7.6.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5270	16.88	17.59	17.09	17.12
High	5310	12.10	12.38	11.78	12.09

7.6.4. PEAK POWER SPECTRAL DENSITY

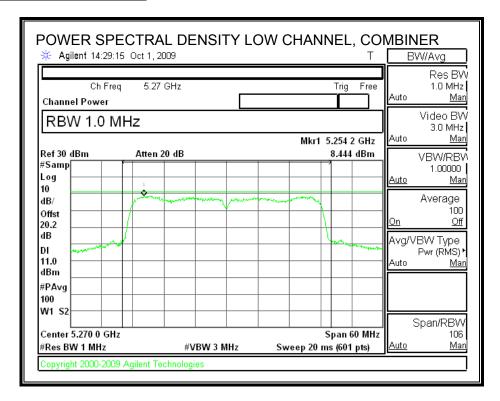
LIMITS

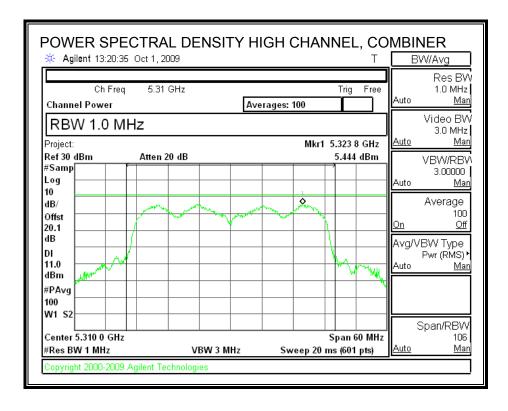
FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi, therefore the limit is 11 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5270	8.444	11	-2.56
High	5310	5.444	11	-5.56

POWER SPECTRAL DENSITY

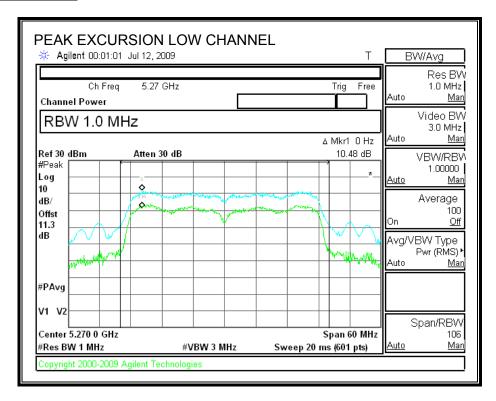
7.6.5. PEAK EXCURSION

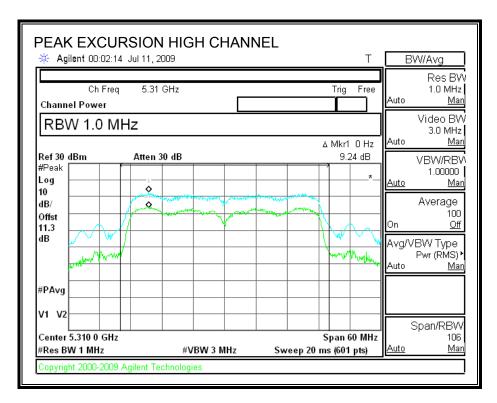
LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5270	10.48	13	-2.52
High	5310	9.24	13	-3.76

PEAK EXCURSION

7.6.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

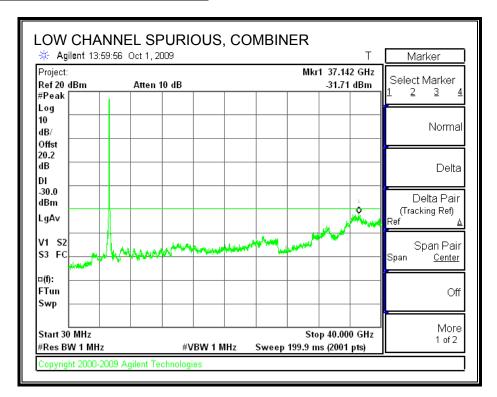
FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

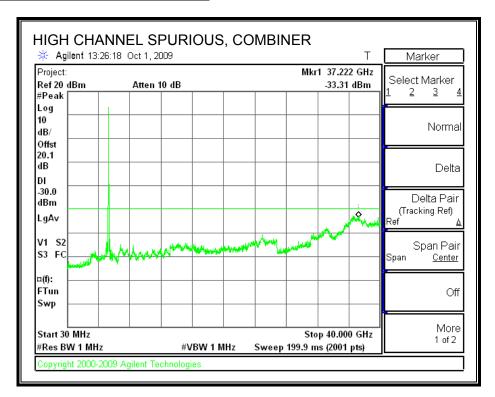
For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

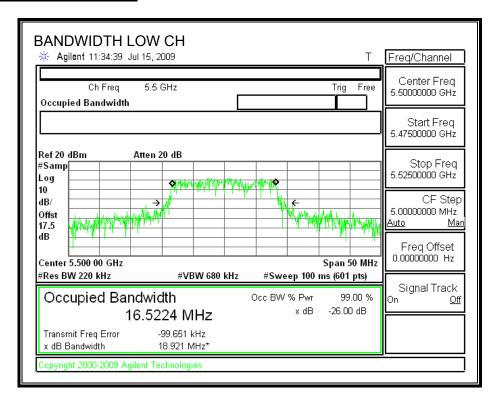
LOW CHANNEL SPURIOUS EMISSIONS

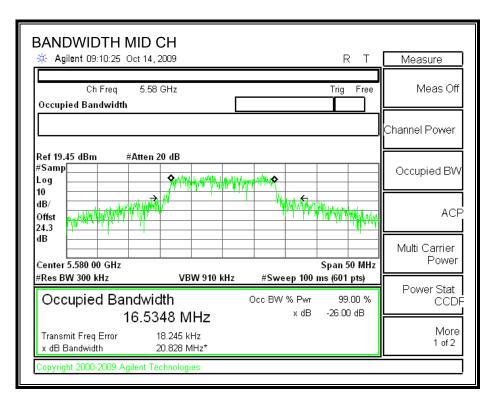
HIGH CHANNEL SPURIOUS EMISSIONS

7.7. 5.6 GHz BAND CHANNEL TESTS FOR 802.11a MODE

7.7.1. 26 dB and 99% BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5500	18.9210	16.5224
Mid	5580	20.8280	16.5348
High	5700	19.0480	16.4891

26 dB and 99% BANDWIDTH

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

7.7.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

Antenna Gain (dBi)	• ,	Effective Legacy Gain (dBi)	
3	3.01	6.01	

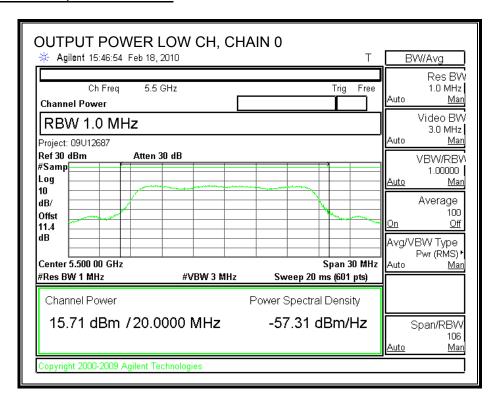
For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

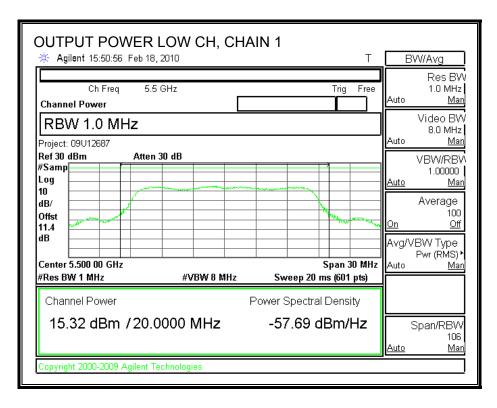
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

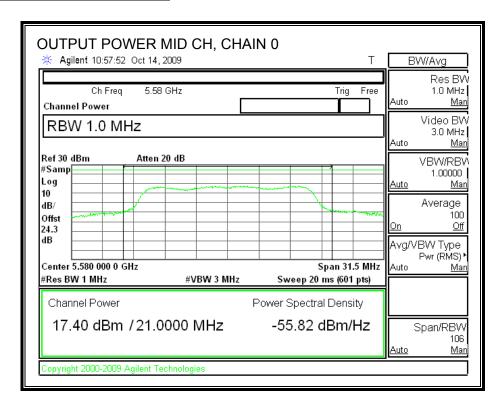
The transmitter output operates continuously therefore Method # 1 is used.

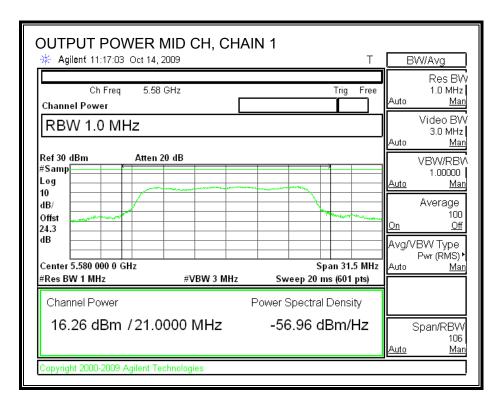
RESULTS

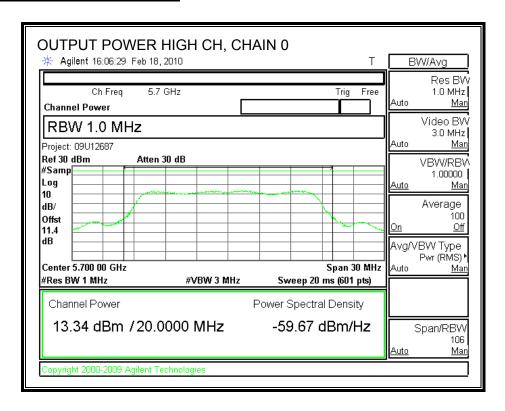

Limit

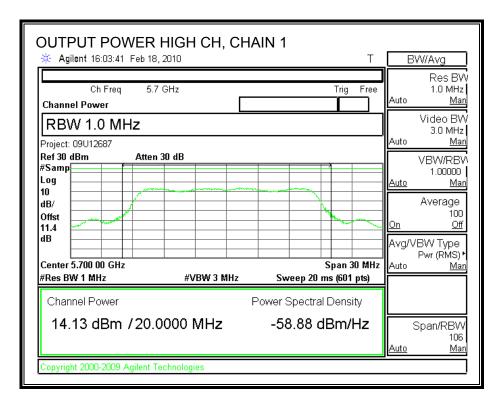

Channel	Frequency	Fixed	В	11 + 10 Log B	Effective	Limit
		Limit		Limit	Ant Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5500	24	18.9210	23.77	6.01	23.76
Mid	5580	24	20.8280	24.19	6.01	23.99
High	5700	24	19.0480	23.80	6.01	23.79

Individual Chain Results


Channel	Frequency	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	15.71	15.32	18.53	23.76	-5.23
Mid	5580	17.40	16.26	19.88	23.99	-4.11
High	5700	13.34	14.13	16.76	23.79	-7.03


OUTPUT POWER, LOW CHANNEL




OUTPUT POWER, MID CHANNEL

OUTPUT POWER, HIGH CHANNEL

7.7.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5500	15.50	15.20	18.36
Mid	5580	16.09	15.85	18.98
High	5700	12.60	13.70	16.20

7.7.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

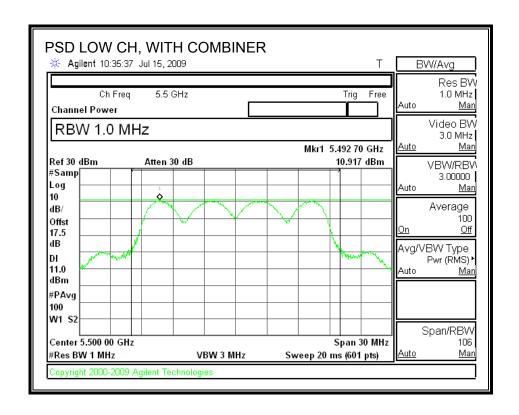
Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

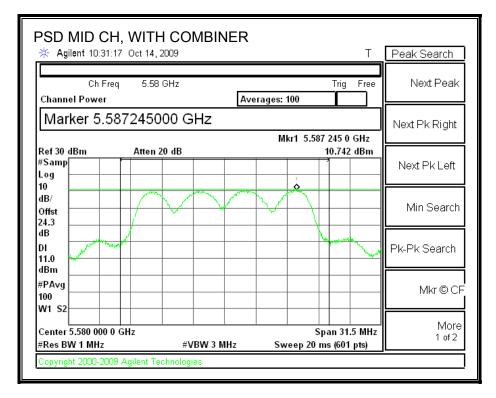
Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain	
(dBi)	(dB)	(dBi)	
3	3.01	6.01	

For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum effective antenna gain is 6.01 dBi, therefore the limit is 10.99 dBm.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	10.92	10.99	-0.07
Mid	5580	10.74	10.99	-0.25
High	5700	8.00	10.99	-2.99

This report shall not be reproduced except in full, without the written approval of CCS.

POWER SPECTRAL DENSITY WITH COMBINER

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

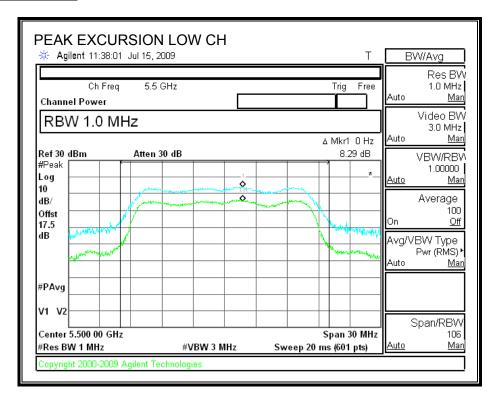
7.7.5. PEAK EXCURSION

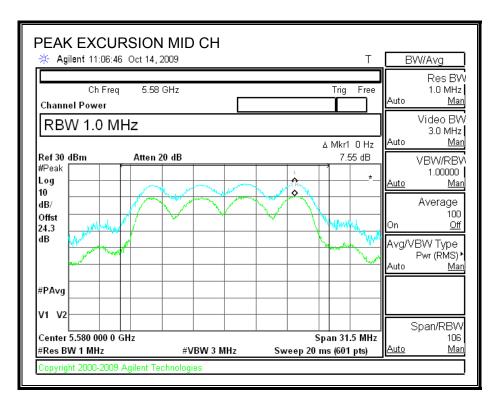
LIMITS

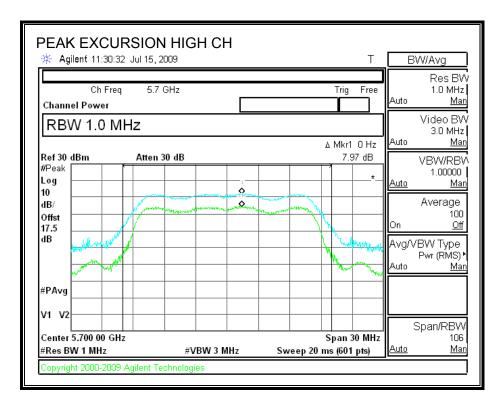
FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	8.29	13	-4.71
Mid	5580	7.55	13	-5.45
High	5700	7.97	13	-5.03

PEAK EXCURSION

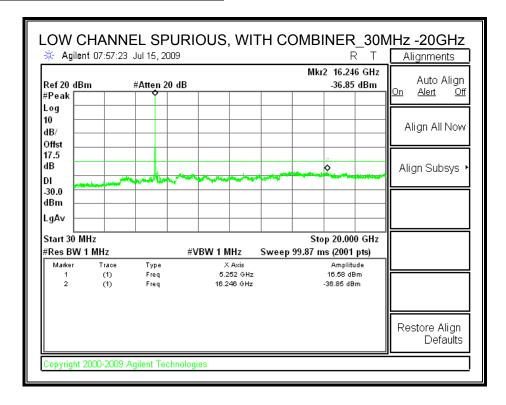
7.7.6. CONDUCTED SPURIOUS EMISSIONS

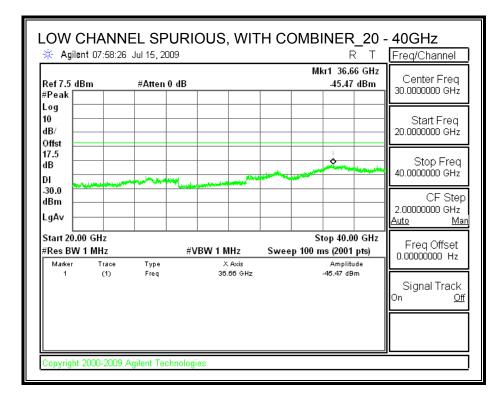
LIMITS

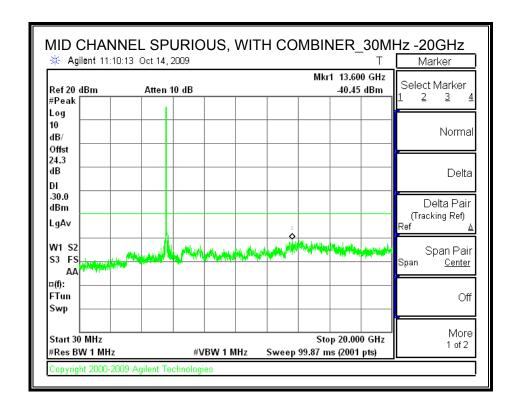
FCC §15.407 (b) (1)

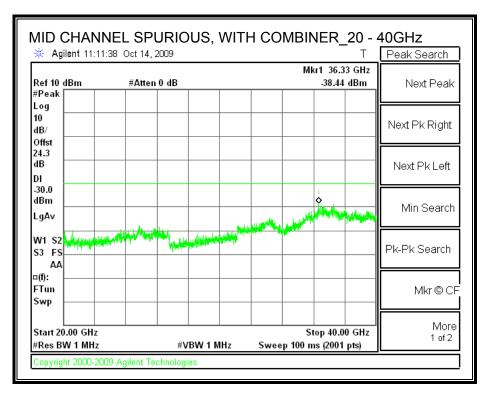
IC RSS-210 A9.3 (1)

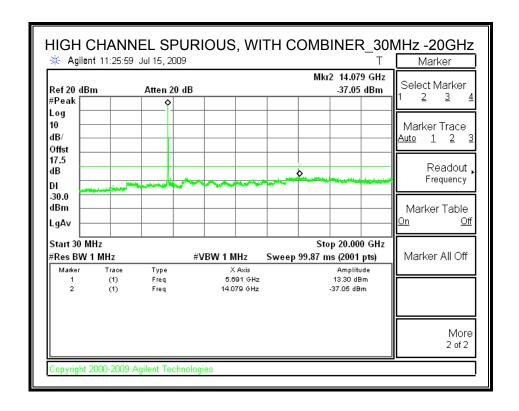
For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

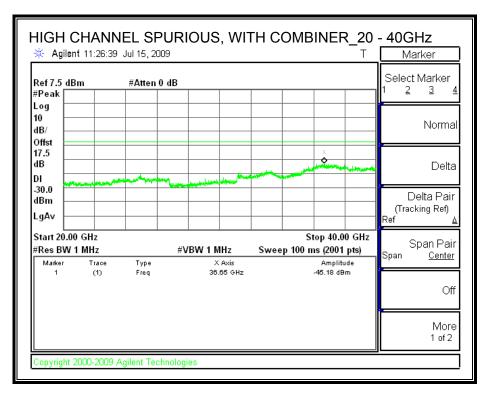

TEST PROCEDURE

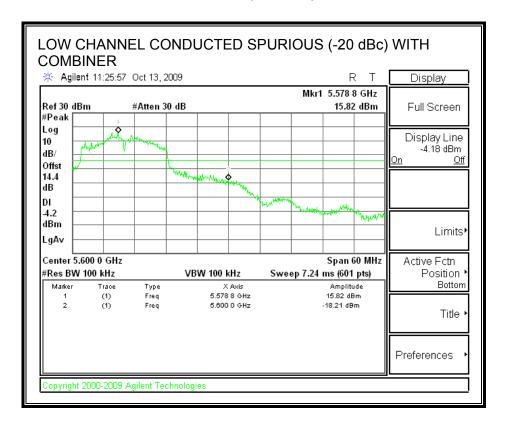

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

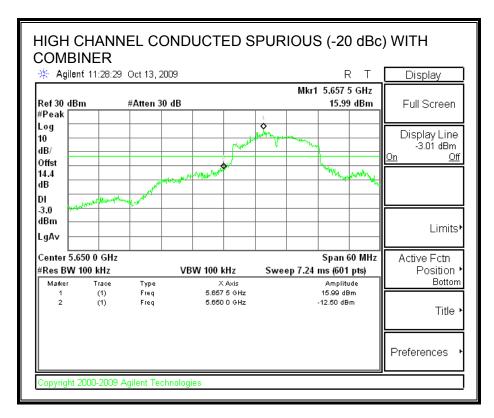

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


SPURIOUS EMISSIONS WITH COMBINER







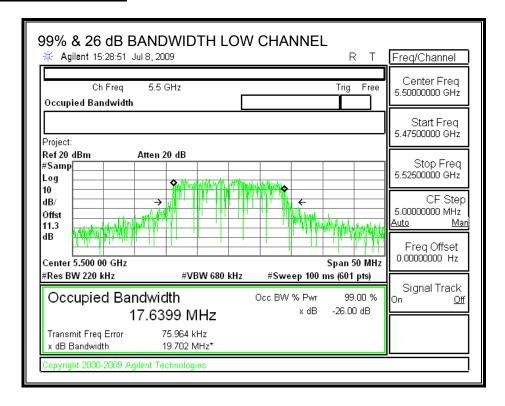
7.7.7. CONDUCTED SPURIOUS (-20 dBc)

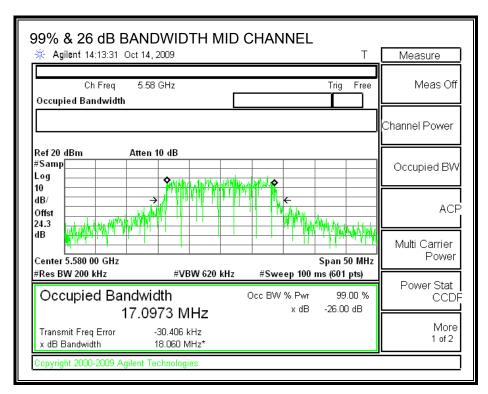
Page 136 of 295

7.8. 5.6 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

7.8.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5500	17.6399	19.702
Mid	5580	17.0973	18.06
High	5700	17.5162	18.450

99% & 26 dB BANDWIDTH

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

7.8.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

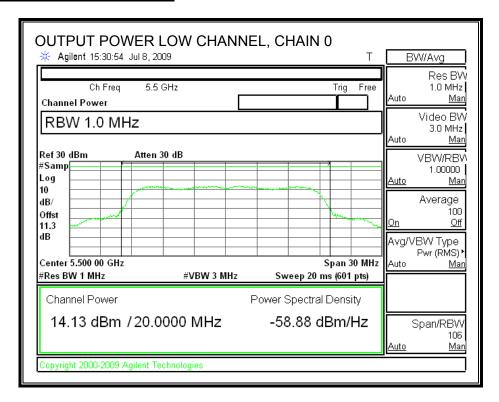
For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

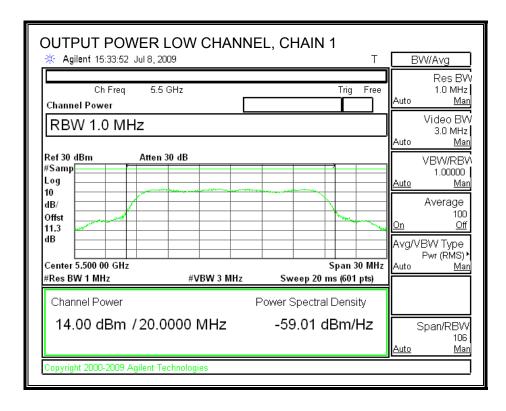
TEST PROCEDURE

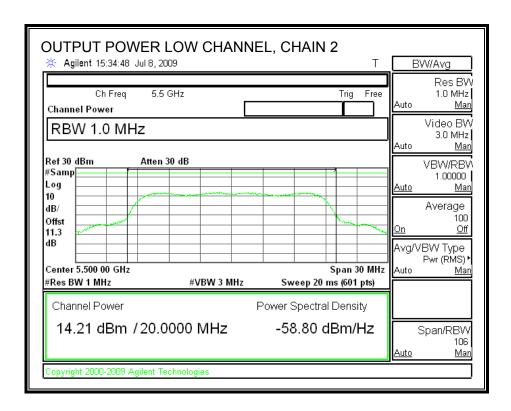
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

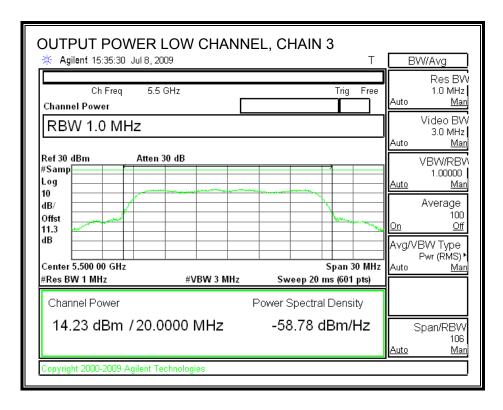
The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

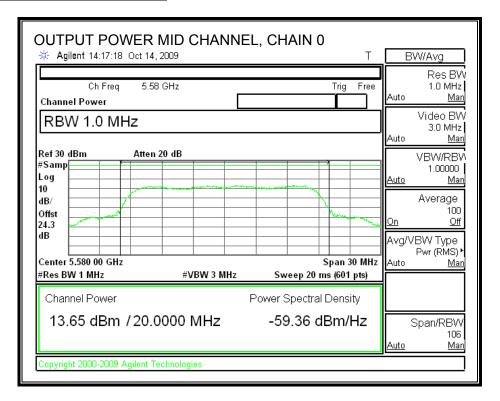

Limit

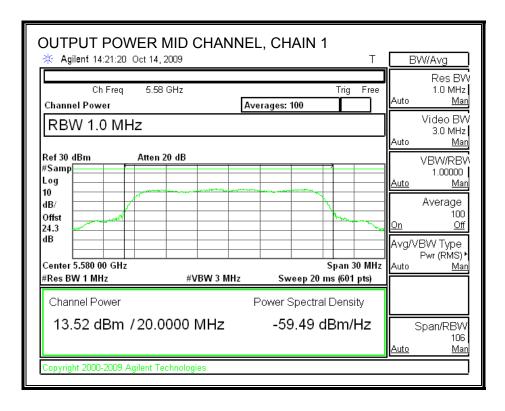

Channel	Freq	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5500	24	19.702	23.95	3	23.95
Mid	5580	24	18.06	23.57	3	23.57
High	5700	24	18.450	23.66	3	23.66

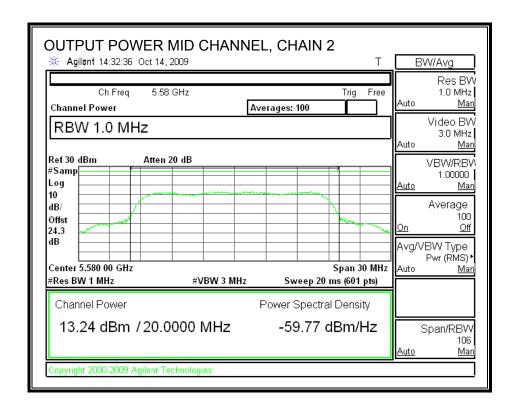

Individual Chain Results

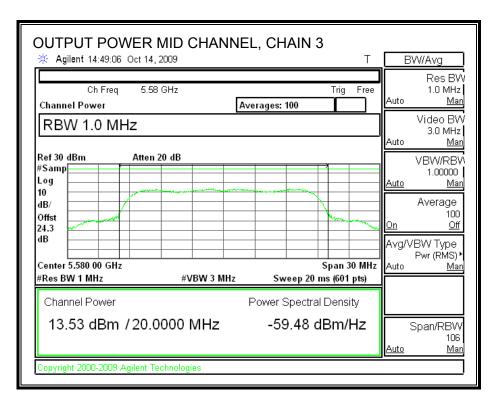

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	14.13	14.00	14.21	14.23	20.16	23.95	-3.78
Mid	5580	13.65	13.52	13.24	13.53	19.51	23.57	-4.06
High	5700	13.42	14.04	14.37	13.50	19.87	23.66	-3.79

OUTPUT POWER, LOW CHANNEL

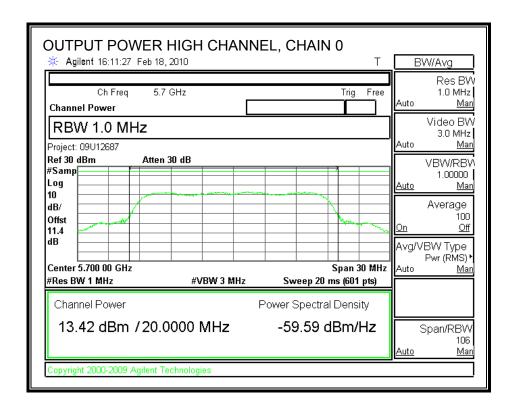


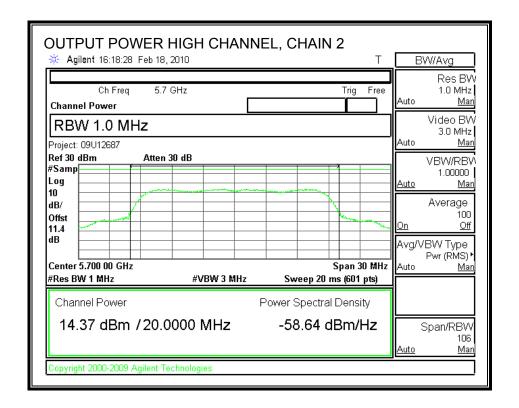


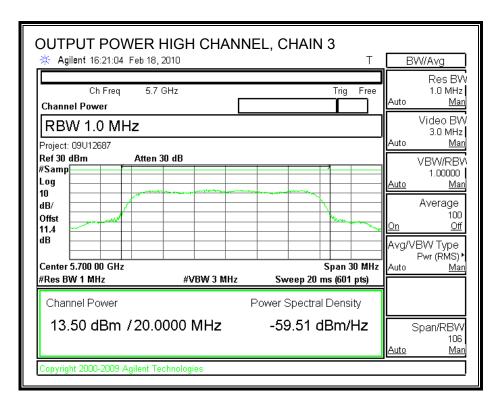




OUTPUT POWER, MID CHANNEL







OUTPUT POWER, HIGH CHANNEL

7.8.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5500	14.15	14.11	14.20	14.21
Mid	5580	12.90	13.10	12.75	13.15
High	5700	12.7	13.80	14.10	13.00

7.8.4. PEAK POWER SPECTRAL DENSITY

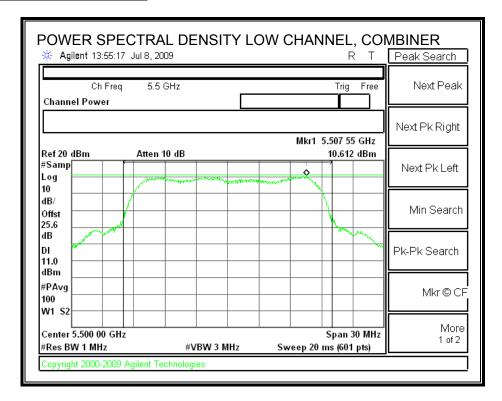
LIMITS

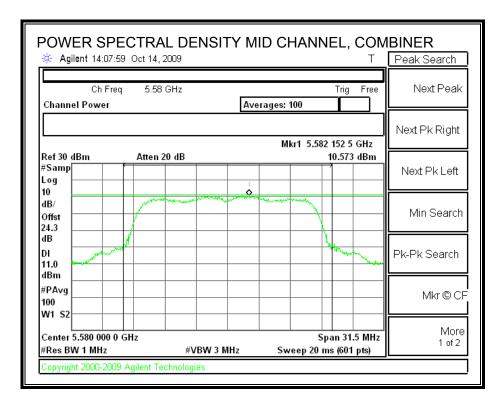
FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 11 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	10.61	11	-0.39
Mid	5580	10.57	11	-0.43
High	5700	10.66	11	-0.34

POWER SPECTRAL DENSITY

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

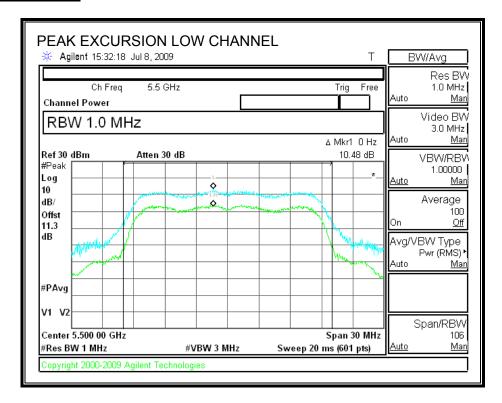
7.8.5. PEAK EXCURSION

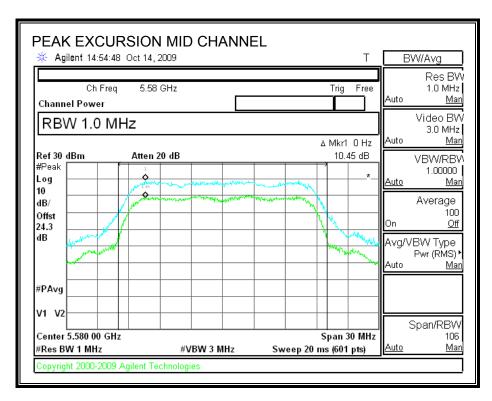
LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	10.48	13	-2.52
Mid	5580	10.45	13	-2.55
High	5700	9.40	13	-3.60

PEAK EXCURSION

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

7.8.6. CONDUCTED SPURIOUS EMISSIONS

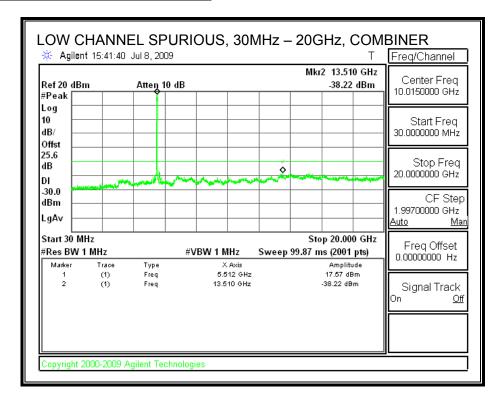
LIMITS

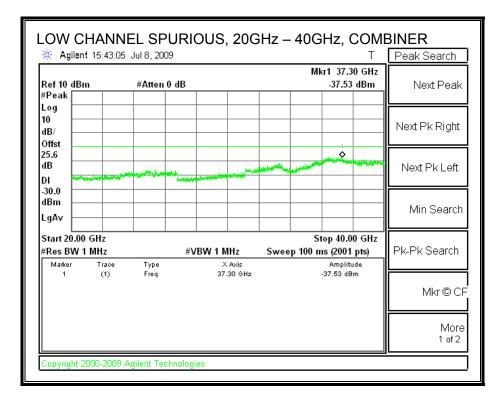
FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

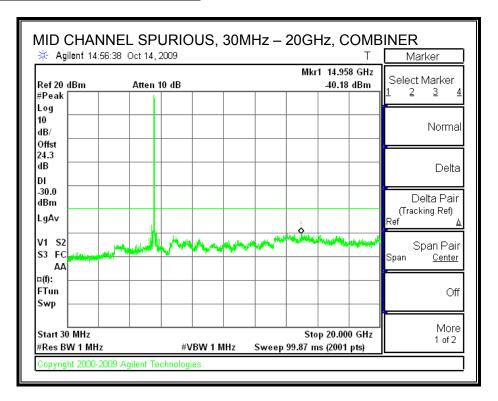
For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

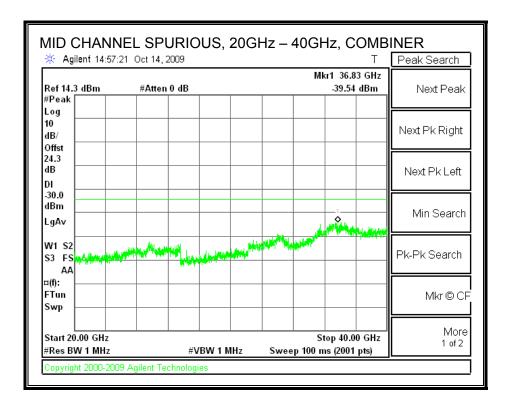
TEST PROCEDURE

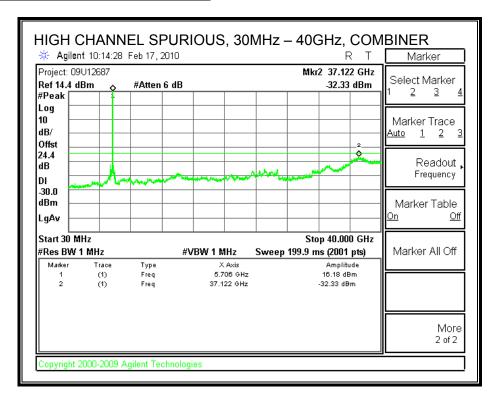

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

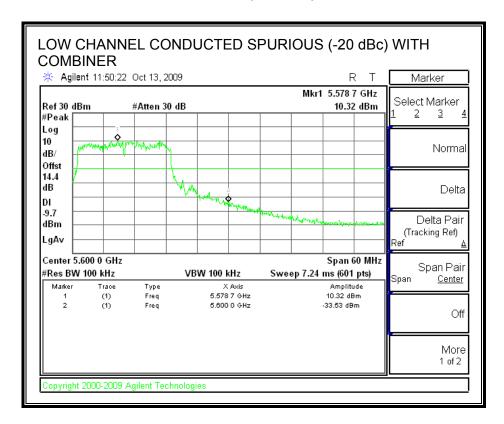
Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

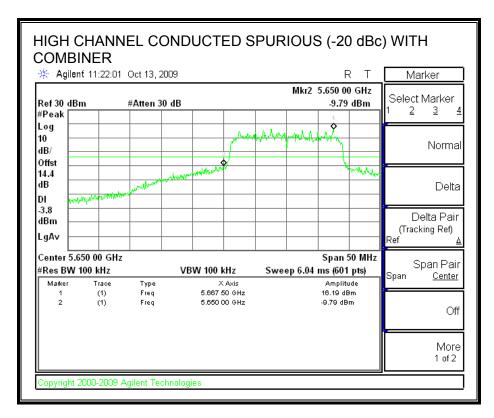

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


LOW CHANNEL SPURIOUS EMISSIONS



MID CHANNEL SPURIOUS EMISSIONS





HIGH CHANNEL SPURIOUS EMISSIONS

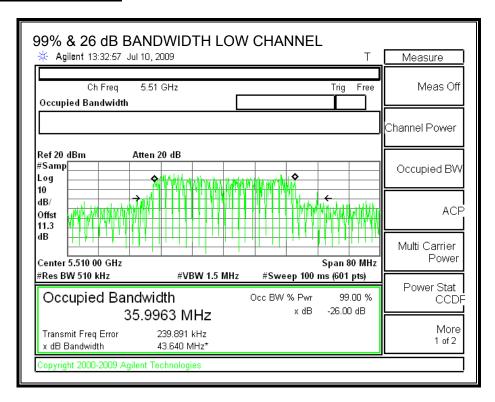
7.8.7. CONDUCTED SPURIOUS (-20 dBc)

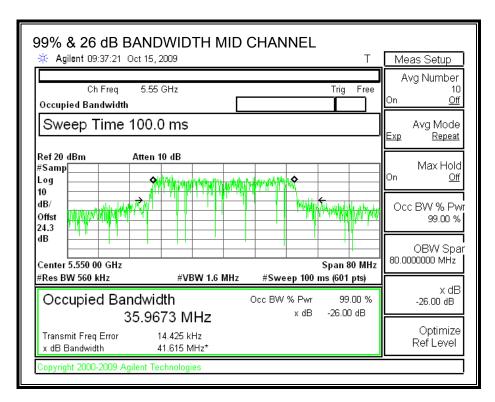
Page 158 of 295

7.9. 5.6 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

7.9.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5510	35.9963	43.640	
Middle	5550	35.9673	41.615	
High	5670	35.8572	44.129	

99% & 26 dB BANDWIDTH

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

7.9.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

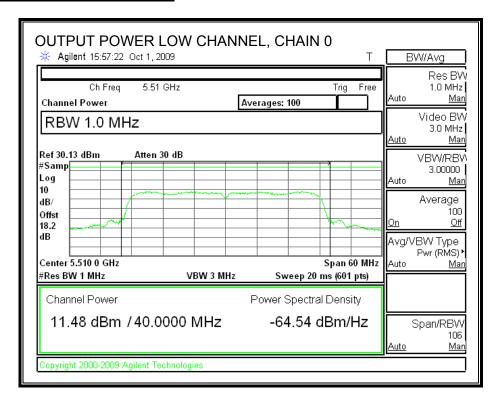
For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

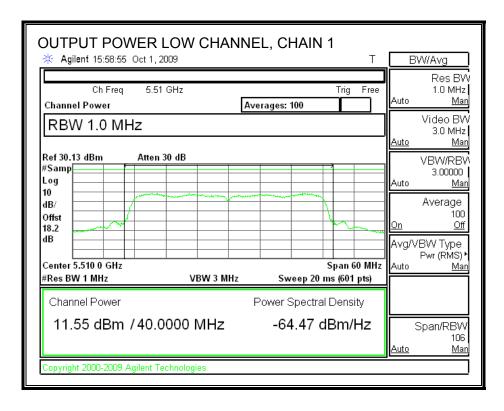
TEST PROCEDURE

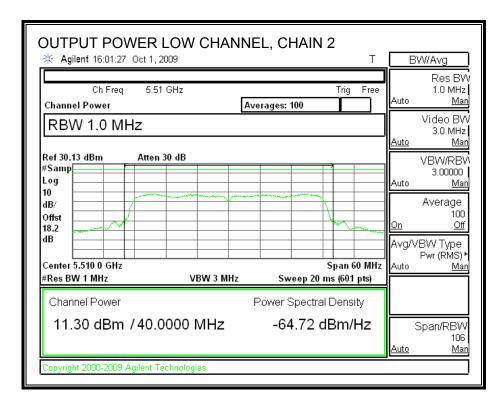
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

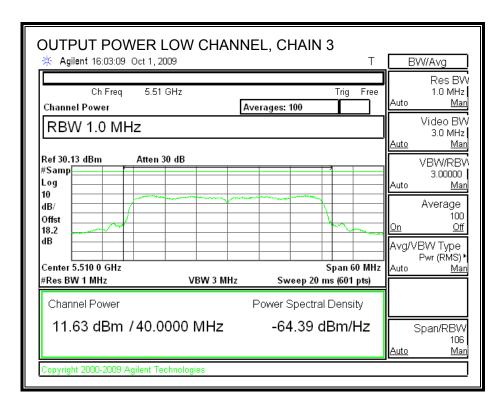
The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

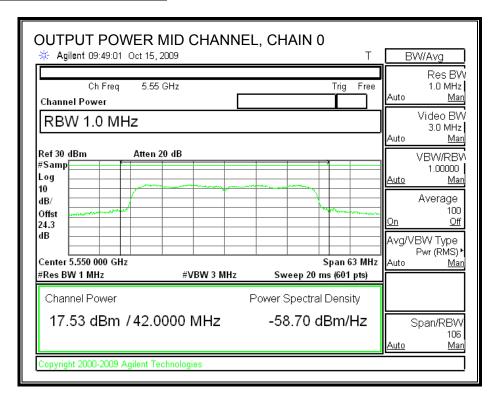

Limit

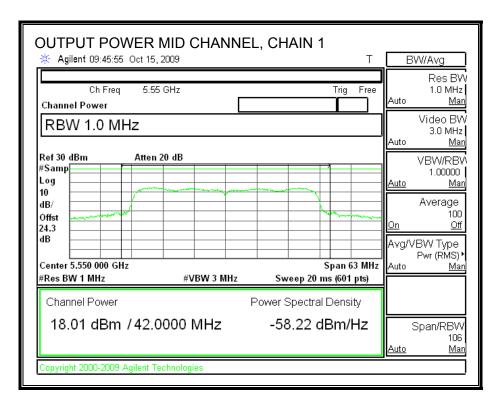

Channel	Freq	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5510	24	43.640	27.40	3	24.00
Mid	5550	24	41.615	27.19	3	24.00
High	5670	24	44.129	27.45	3	24.00

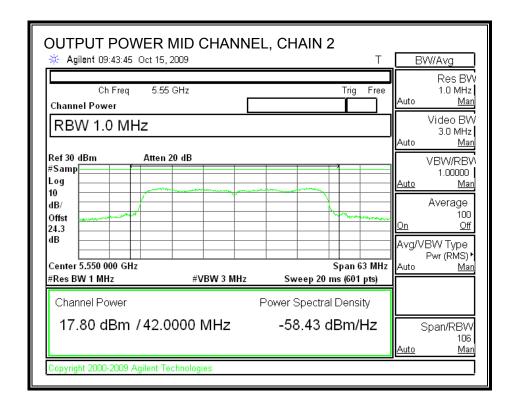

Individual Chain Results

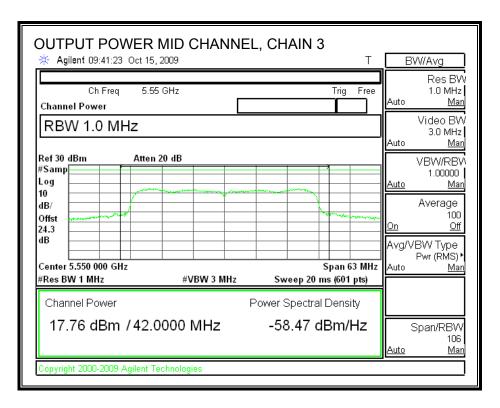

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	11.48	11.55	11.30	11.63	17.51	24.00	-6.49
Mid	5550	17.53	18.01	17.80	17.76	23.80	24.00	-0.20
High	5670	13.68	15.11	15.30	13.79	20.55	24.00	-3.45

OUTPUT POWER, LOW CHANNEL

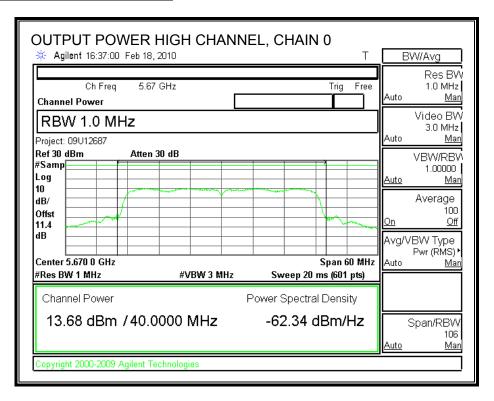


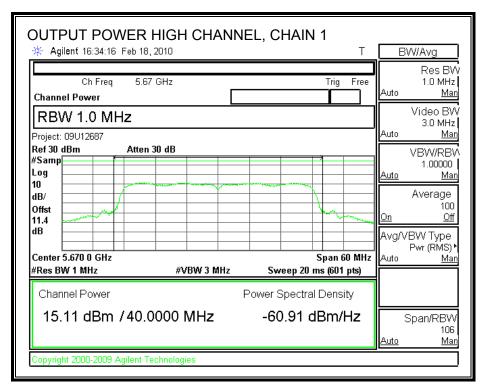


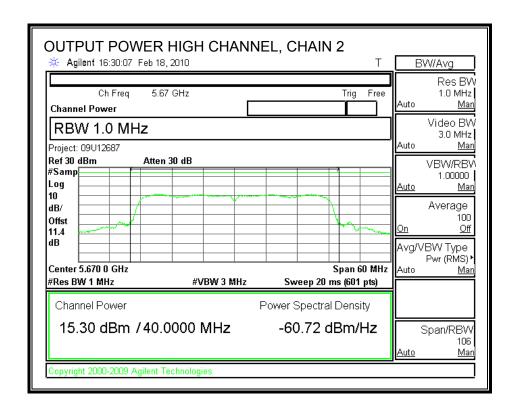


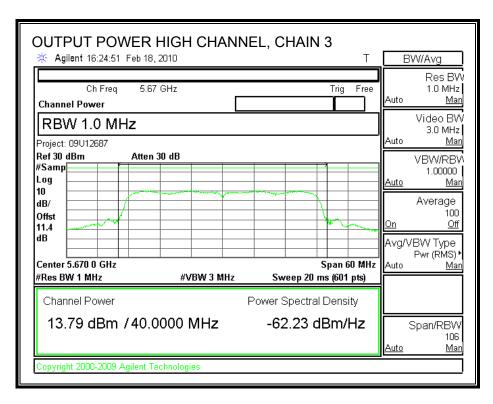


OUTPUT POWER, MID CHANNEL









OUTPUT POWER, HIGH CHANNEL

7.9.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5510	11.44	11.53	11.30	11.51
Middle	5550	17.39	17.83	17.61	17.59
High	5670	13.20	14.70	14.80	13.30

7.9.4. PEAK POWER SPECTRAL DENSITY

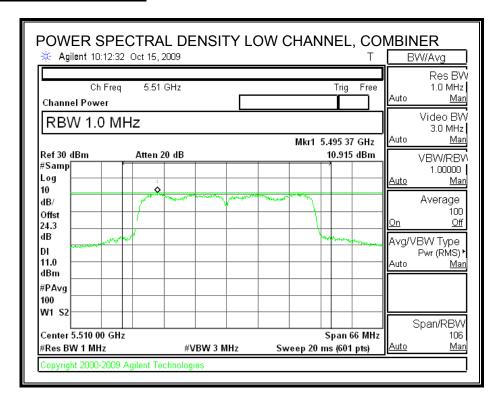
LIMITS

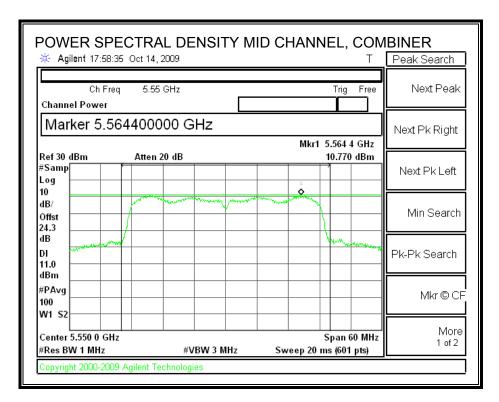
FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 11 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5510	10.915	11	-0.09
Middle	5550	10.770	11	-0.23
High	5670	6.028	11	-4.97

POWER SPECTRAL DENSITY

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

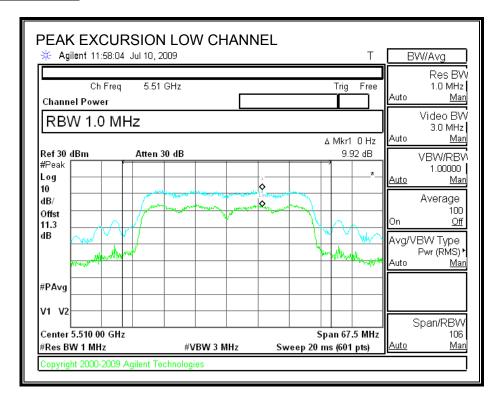
7.9.5. PEAK EXCURSION

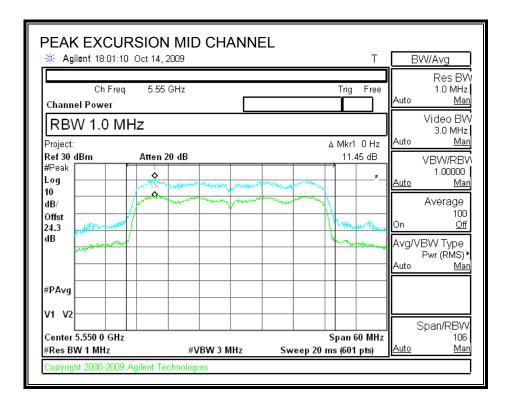
LIMITS

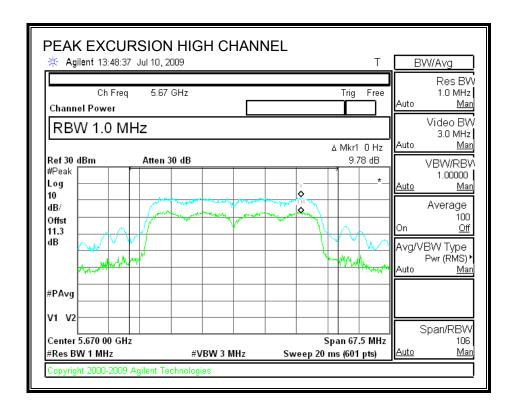
FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5510	9.92	13	-3.08
Middle	5550	11.45	13	-1.55
High	5670	9.78	13	-3.22

PEAK EXCURSION

7.9.6. CONDUCTED SPURIOUS EMISSIONS

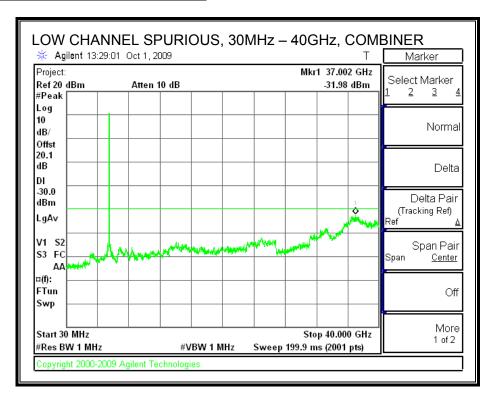
LIMITS

FCC §15.407 (b) (3)

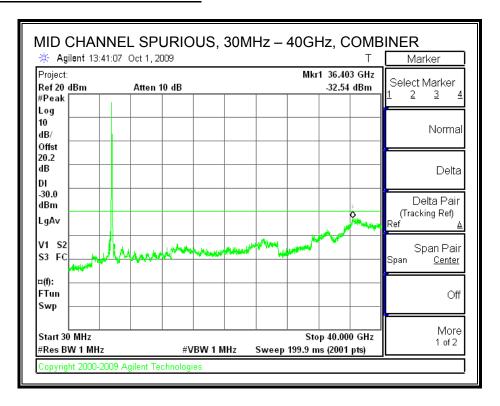
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

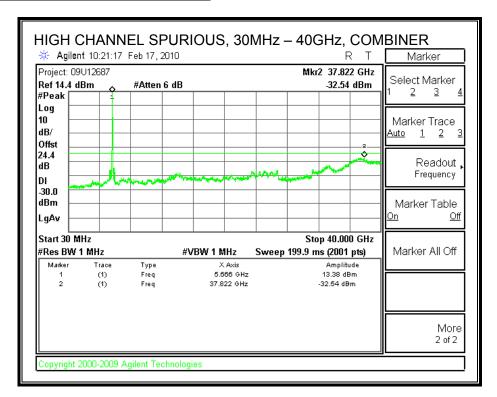
TEST PROCEDURE

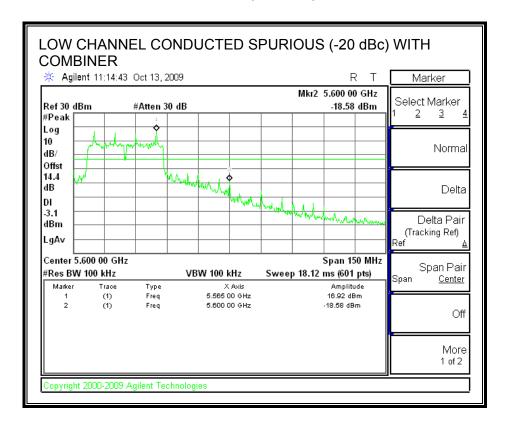

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


LOW CHANNEL SPURIOUS EMISSIONS


MID CHANNEL SPURIOUS EMISSIONS



HIGH CHANNEL SPURIOUS EMISSIONS

7.9.7. CONDUCTED SPURIOUS (-20 dBc)

Page 179 of 295

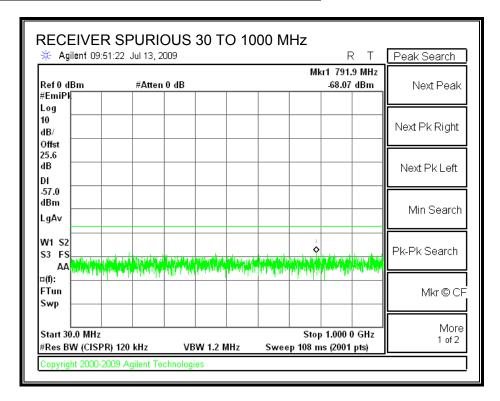
7.10. RECEIVER CONDUCTED SPURIOUS EMISSIONS

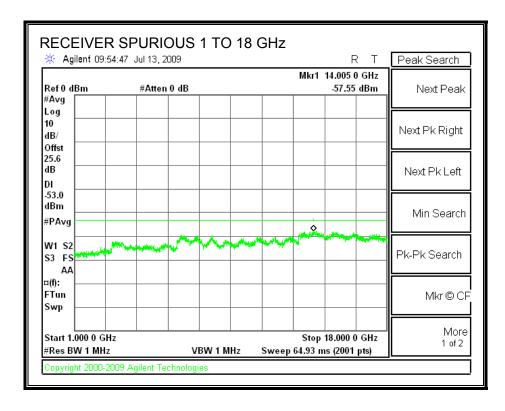
LIMITS

IC RSS-GEN 7.2.3.1

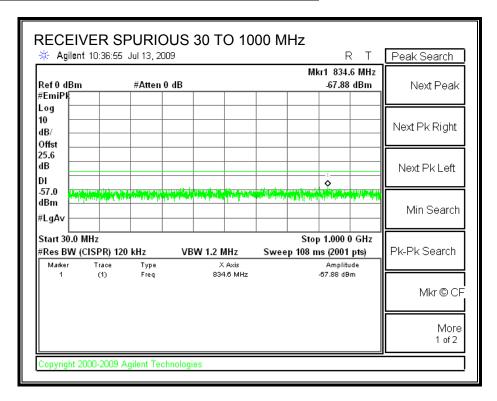
Antenna Conducted Measurement: Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

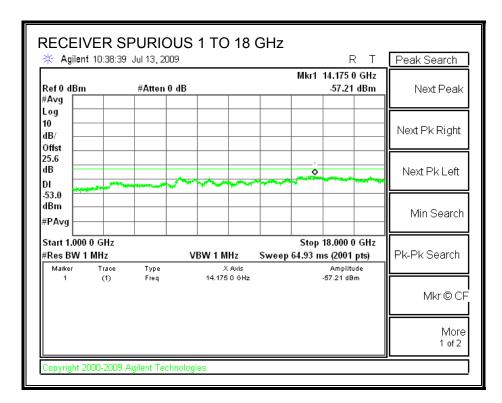
TEST PROCEDURE

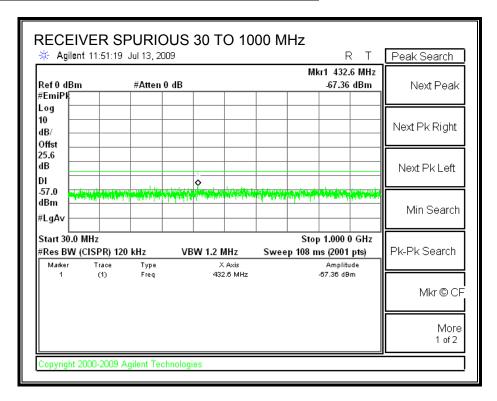

IC RSS-GEN 4.10, Conducted Method

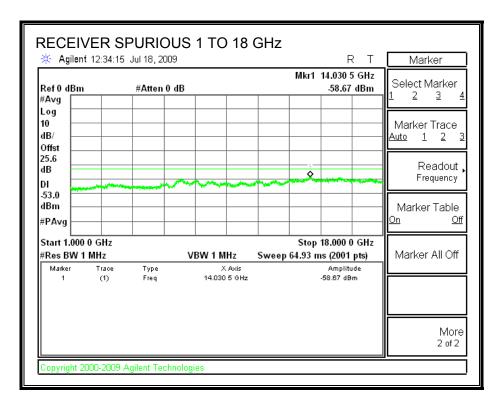

The receiver antenna port is connected to a spectrum analyzer.

The spectrum from 30 MHz to 18 GHz is investigated with the receiver set to the middle channel of each 5 GHz band.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RECEIVER SPURIOUS EMISSIONS IN THE 5.2 GHz BAND




RECEIVER SPURIOUS EMISSIONS IN THE 5.3 GHz BAND

RECEIVER SPURIOUS EMISSIONS IN THE 5.5 GHz BAND

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

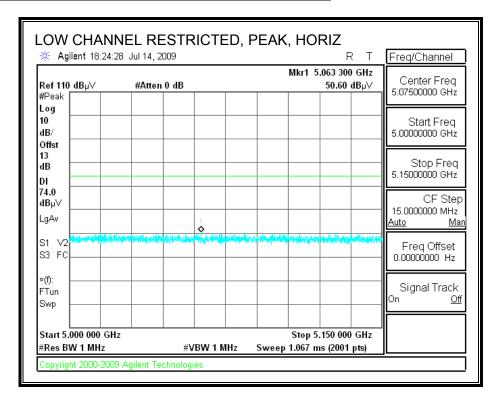
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

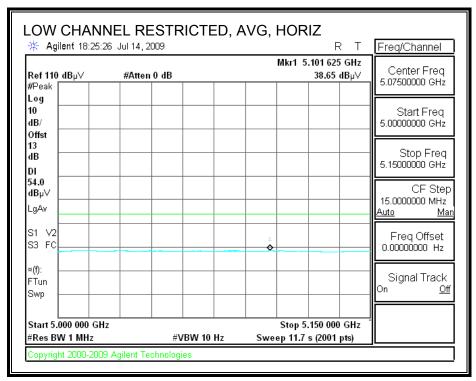
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

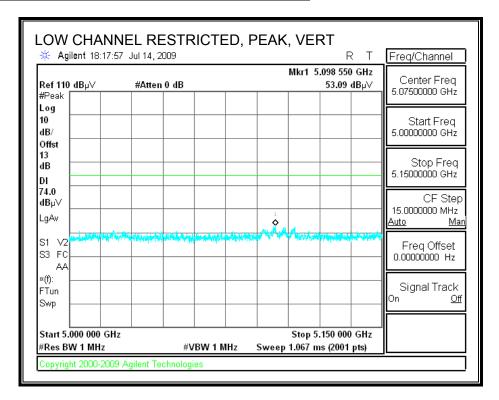
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

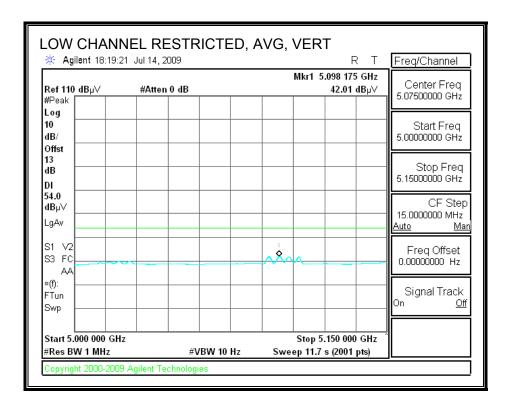
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.


The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER ABOVE 1 GHz


8.2.1. 802.11a MODE IN 5.2 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Test Engr: Thanh Nguyen
Date: 07/14/09
Project #: 09U12652
Company: QualComm
EUT Description: 5000 Series PCI Card
EUT M/N: 65-VN780-P2
Test Target: FCC 15.247/15.407
Mode Oper:

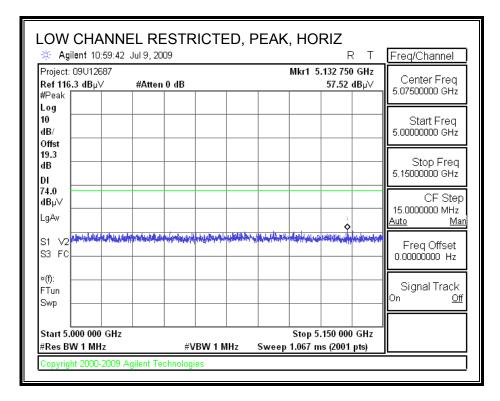
 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

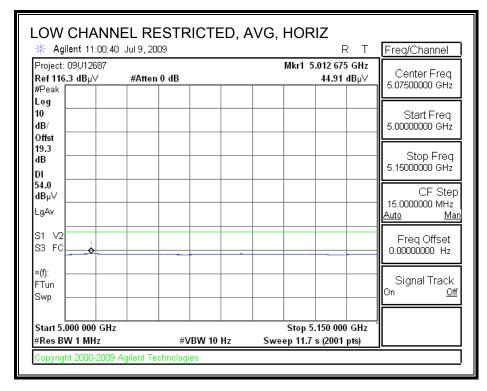
 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

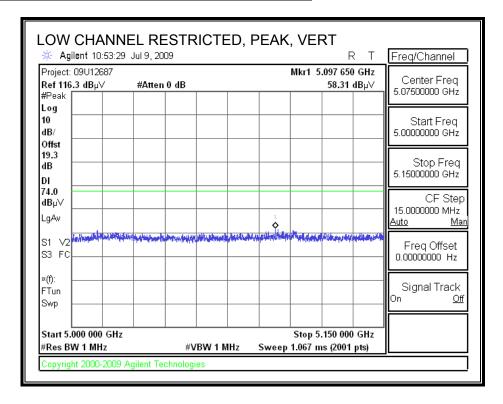
 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

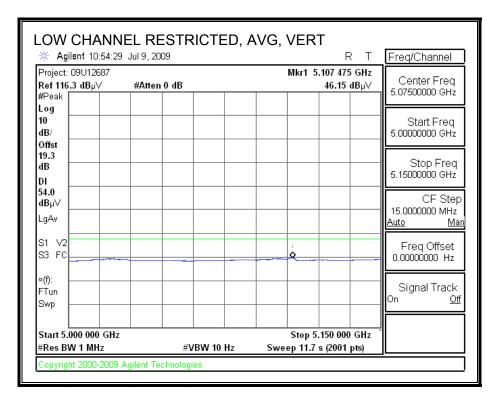
 CL
 Cable Loss
 HPF
 High Pass Filter

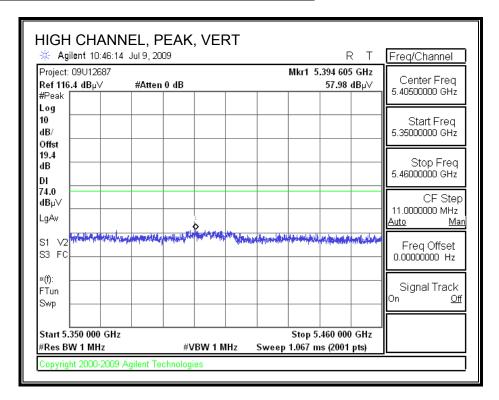

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det.	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
Low Ch	5180MHz														
15.540	3.0	36.0	38.9	11.3	-34.8	0.0	10.0	61.4	74.0	-12.6	V	P	145.0	233.3	
15.540	3.0	23.7	38.9	11.3	-34.8	0.0	10.0	49.1	54.0	-4.9	V	A	145.0	233.3	
Mid Ch :	5200MHz														
15.600	3.0	37.2	38.7	11.4	-34.8	0.0	10.0	62.5	74.0	-11.5	V	P	199.8	319.8	
15.600	3.0	24.3	38.7	11.4	-34.8	0.0	10.0	49.6	54.0	-4.4	v	A	199.8	319.8	
High Ch	5240MH	Z													
15.720	3.0	36.9	38.4	11.4	-34.7	0.0	10.0	62.0	74.0	-12.0	v	P	200.0	75.6	
15.720	3.0	24.2	38.4	11.4	-34.7	0.0	10.0	49.3	54.0	-4.7	V	A	200.0	75.6	
10.480	3.0	36.1	37.5	9.0	-36.7	0.0	10.0	55.8	74.0	-18.2	H	P	121.7	358.7	
10.480	3.0	23.8	37.5	9.0	-36.7	0.0	10.0	43.5	54.0	-10.5	H	A	121.7	358.7	
													Ĭ		
				1											

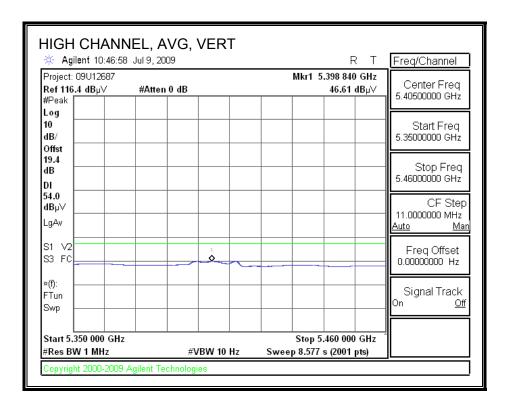

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

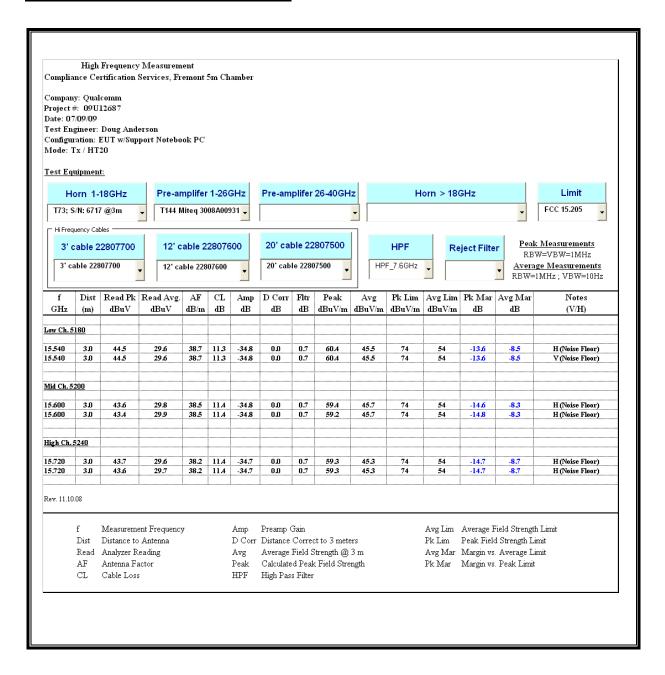

8.2.2. 802.11n HT20 MODE IN 5.2 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

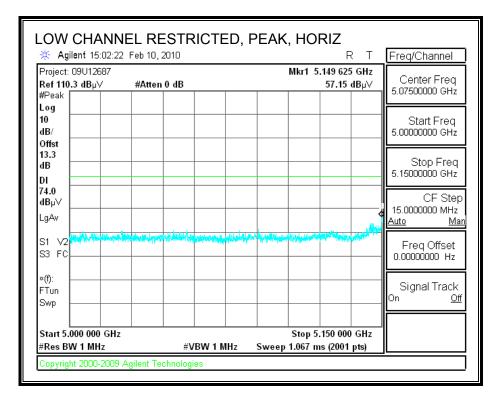


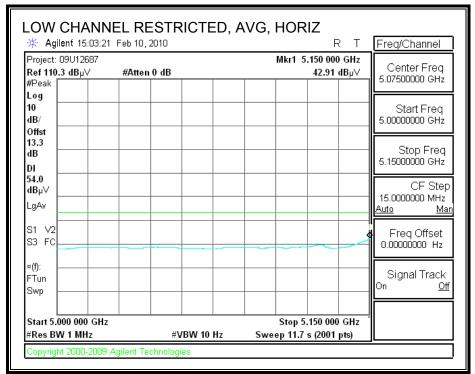


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

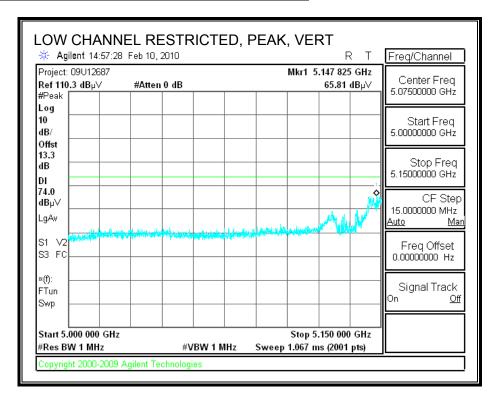


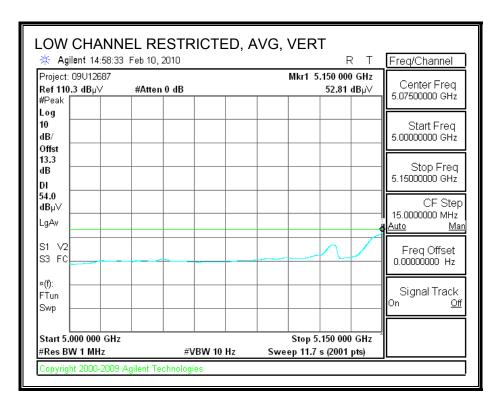
HARMONICS AND SPURIOUS EMISSIONS

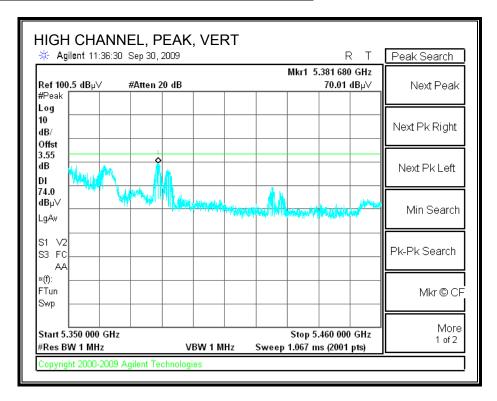


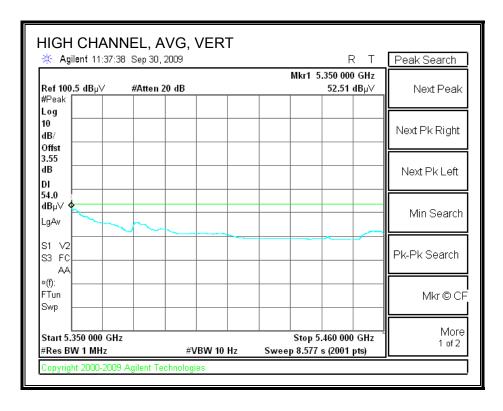

DATE: MARCH 08, 2010

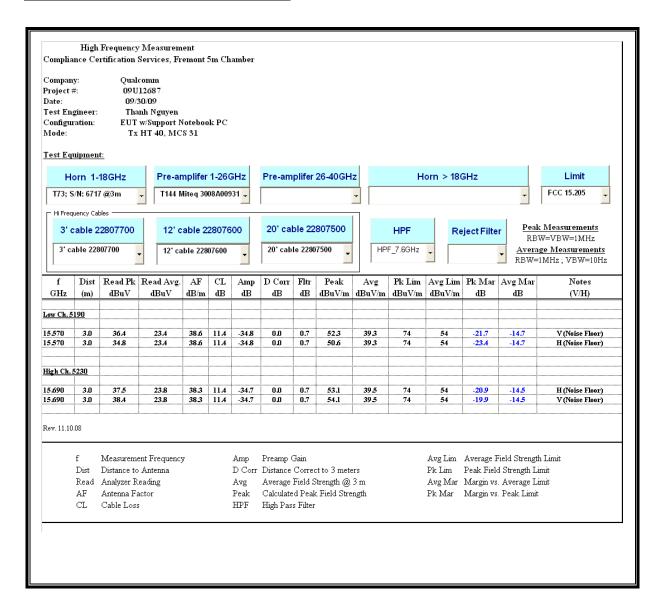
IC: 2723A-DC544D2


8.2.3. 802.11n HT40 MODE IN 5.2 GHz BAND

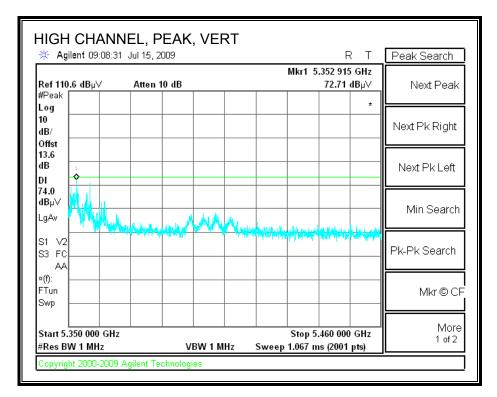

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

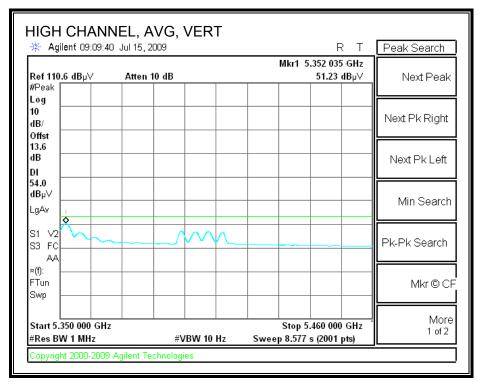



RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-This report shall not be reproduced except in full, without the written approval of CCS.


HARMONICS AND SPURIOUS EMISSIONS



DATE: MARCH 08, 2010

IC: 2723A-DC544D2

8.2.4. 802.11a MODE IN 5.3 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Thanh Nguyen
Date: 07/15/09
Project #: 09U12687
Company: QualComm
EUT Description: PCI card
EUT M/N: 65-VN780-P2
Test Target: FCC15.247/15.407
Mode Oper: Tx a mode

 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

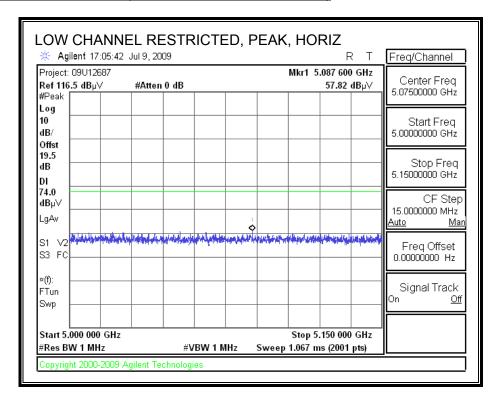
 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

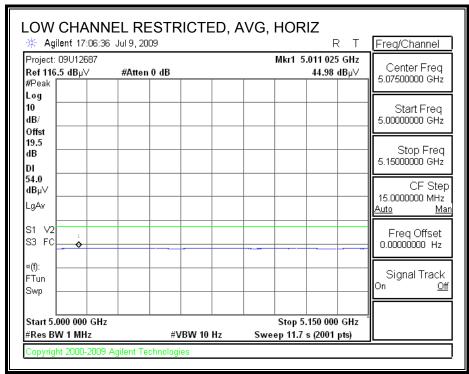
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

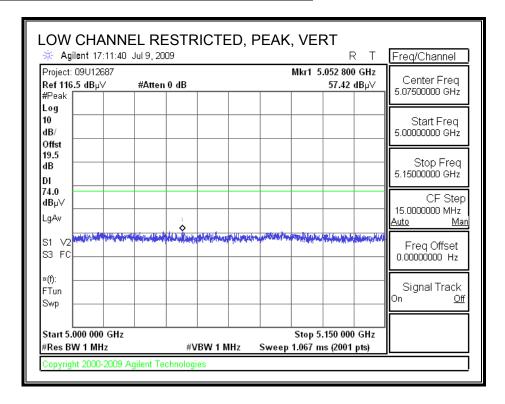
 CL
 Cable Loss
 HPF
 High Pass Filter

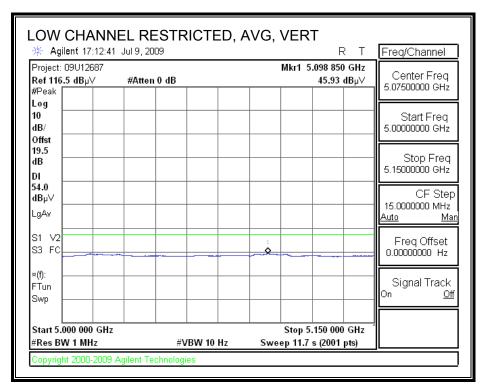
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
Low ch 5	260MHz														
15.780	3.0	40.1	38.0	11.5	-34.6	0.0	0.7	55.6	74.0	-18.4	V	P	135.5	322.5	
15.780	3.0	27.9	38.0	11.5	-34.6	0.0	0.7	43.4	54.0	-10.6	V	A	135.5	322.5	
15.780	3.0	37.0	38.0	11.5	-34.6	0.0	0.7	52.6	74.0	-21.4	H	P	129.2	298.4	
15.780	3.0	25.0	38.0	11.5	-34.6	0.0	0.7	40.6	54.0	-13.4	H	A	129.2	298.4	
Mid ch 5	300MHz														
10.600	3.0	37.6	37.7	9.0	-36.6	0.0	0.8	48.5	74.0	-25.5	V	P	100.0	200.0	
10.600	3.0	26.5	37.7	9.0	-36.6	0.0	0.8	37.4	54.0	-16.6	V	A	100.0	200.0	
15.900	3.0	39.7	37.7	11.5	-34.6	0.0	0.7	55.1	74.0	-18.9	V	P	101.8	225.7	
15.900	3.0	27.3	37.7	11.5	-34.6	0.0	0.7	42.6	54.0	-11.4	V	A	101.8	225.7	
10.600	3.0	37.8	37.7	9.0	-36.6	0.0	0.8	48.8	74.0	-25.2	H	P	149.4	297.9	
10.600	3.0	25.5	37.7	9.0	-36.6	0.0	0.8	36.5	54.0	-17.5	Н	A	149.4	297.9	
15.900	3.0	38.8	37.7	11.5	-34.6	0.0	0.7	54.2	74.0	-19.8	H	P	149.4	297.9	
15.900	3.0	26.0	37.7	11.5	-34.6	0.0	0.7	41.3	54.0	-12.7	H	A	149.4	297.9	
High ch	5320MHz														
10.640	3.0	46.5	37.7	9.1	-36.6	0.0	0.8	57.4	74.0	-16.6	V	P	134.2	291.0	
10.640	3.0	35.0	37.7	9.1	-36.6	0.0	0.8	46.0	54.0	-8.0	V	A	134.2	291.0	
15.960	3.0	44.5	37.5	11.5	-34.5	0.0	0.7	59.8	74.0	-14.2	V	P	131.1	318.8	
15.960	3.0	31.8	37.5	11.5	-34.5	0.0	0.7	47.0	54.0	-7.0	V	A	131.1	318.8	
10.640	3.0	37.8	37.7	9.1	-36.6	0.0	0.8	48.8	74.0	-25.2	H	P	147.1	295.3	
10.640	3.0	28.4	37.7	9.1	-36.6	0.0	0.8	39.4	54.0	-14.6	H	A	147.1	295.3	
15.960	3.0	40.3	37.5	11.5	-34.5	0.0	0.7	55.6	74.0	-18.4	H	P	145.9	266.9	
15.960	3.0	27.6	37.5	11.5	-34.5	0.0	0.7	42.9	54.0	-11.1	H	A	145.9	266.9	
•••••															
•••••	ì												•		

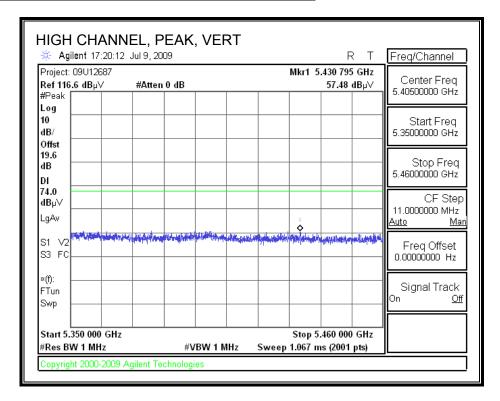

Rev. 4.1.2.7

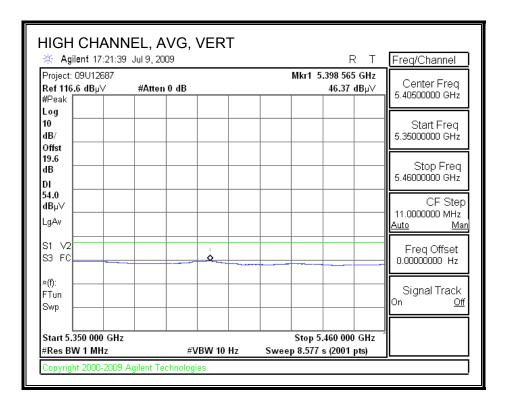

Note: No other emissions were detected above the system noise floor.

This report shall not be reproduced except in full, without the written approval of CCS.

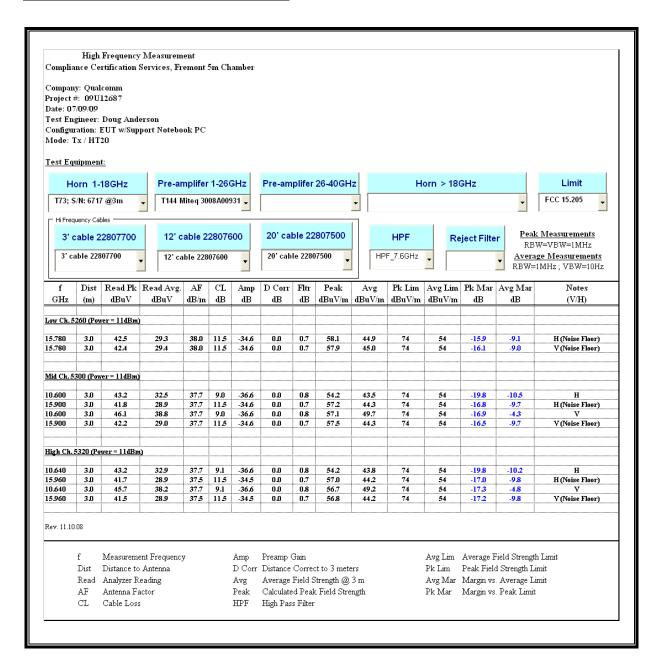

8.2.5. 802.11n HT20 MODE IN 5.3 GHz BAND

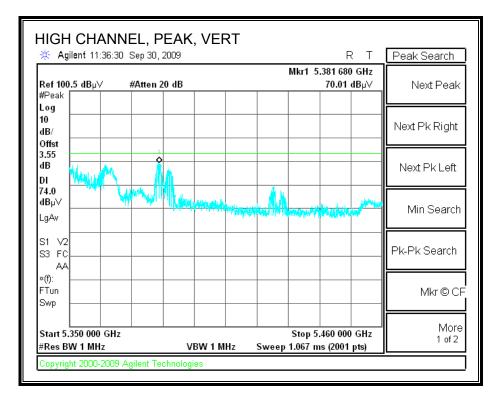

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

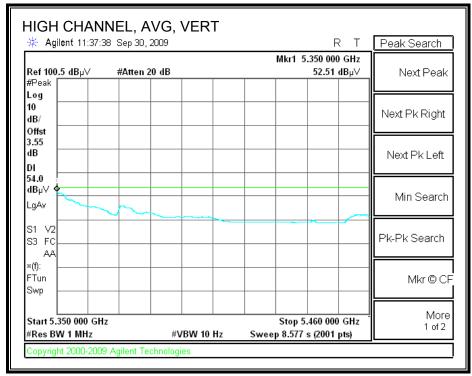


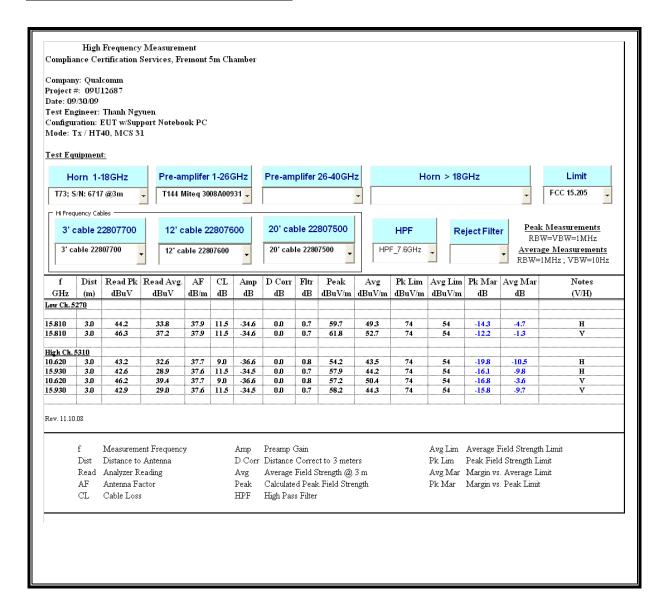


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



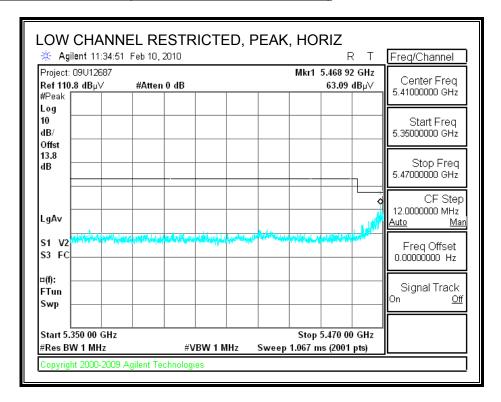


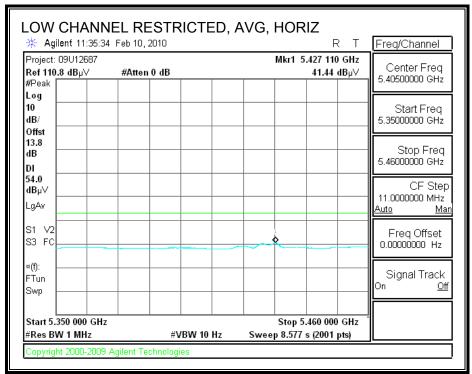

HARMONICS AND SPURIOUS EMISSIONS


DATE: MARCH 08, 2010 IC: 2723A-DC544D2

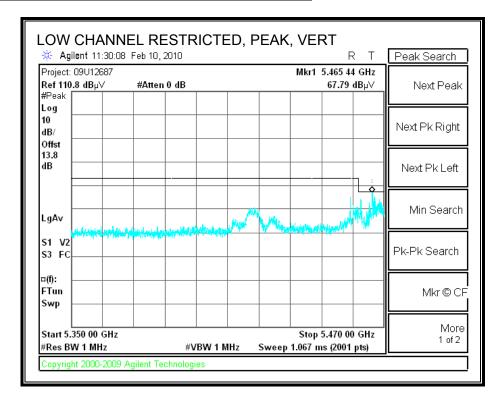
8.2.6. 802.11n HT40 MODE IN 5.3 GHz BAND

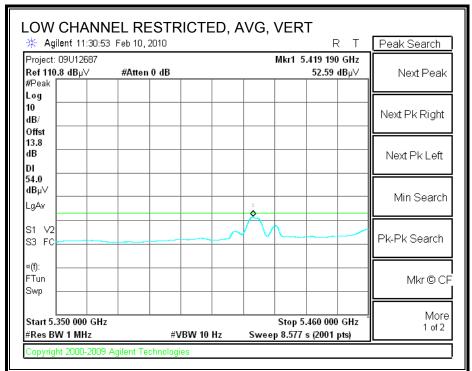
HARMONICS AND SPURIOUS EMISSIONS

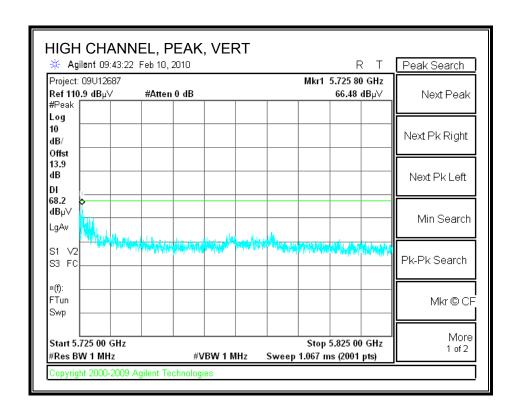


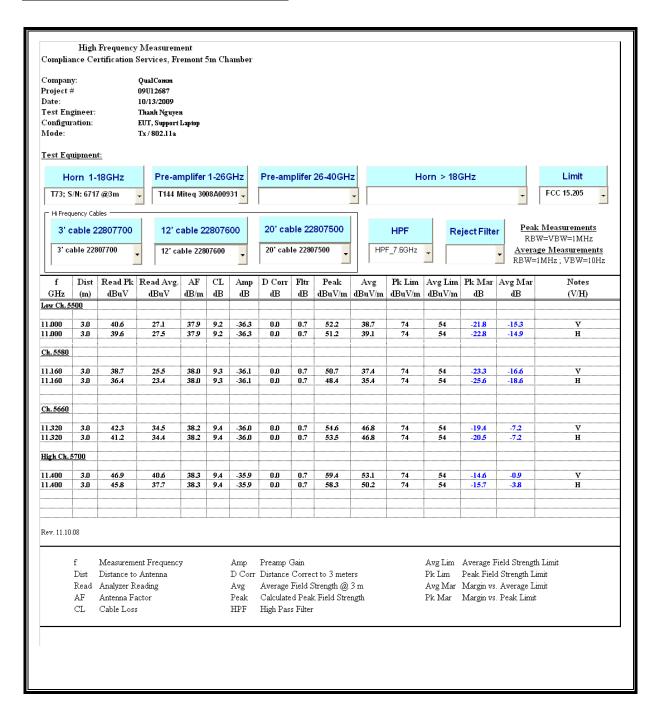

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

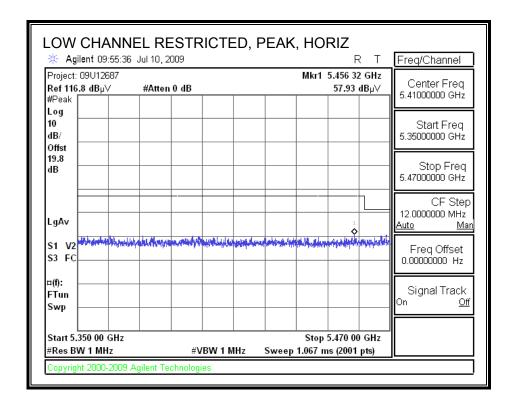

8.2.7. 802.11a MODE IN THE 5.6 GHz BAND

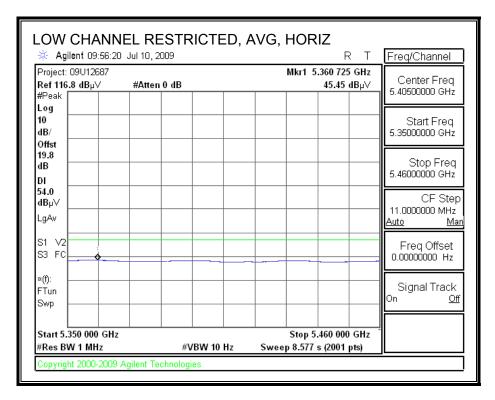

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



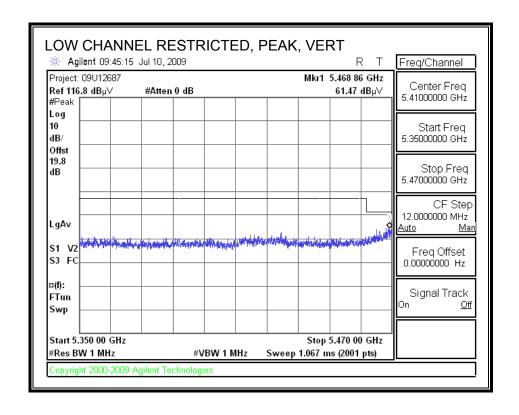

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

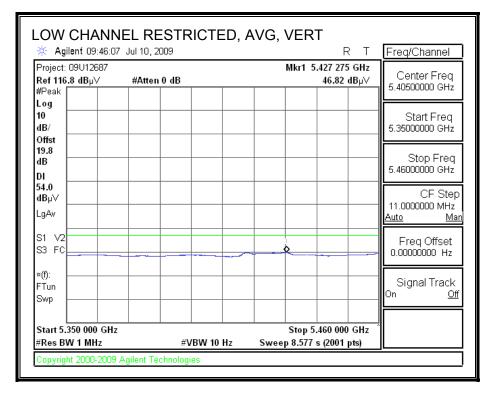
HARMONICS AND SPURIOUS EMISSIONS

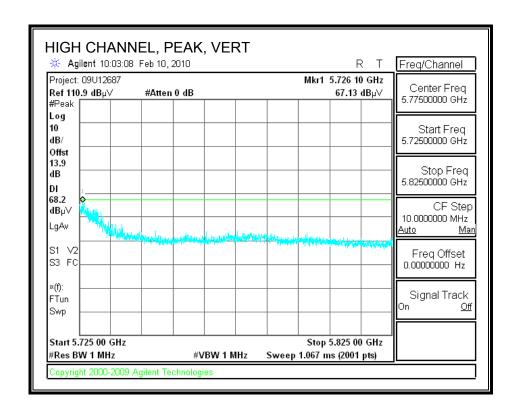


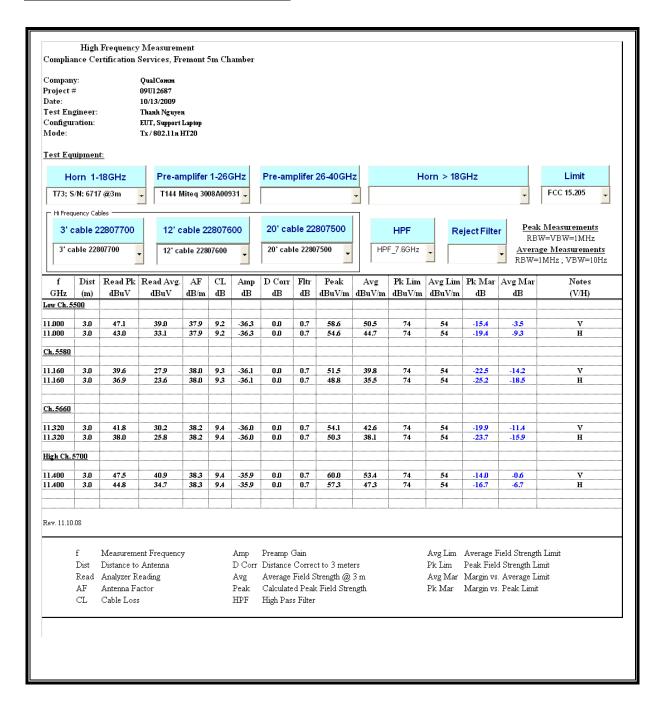

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

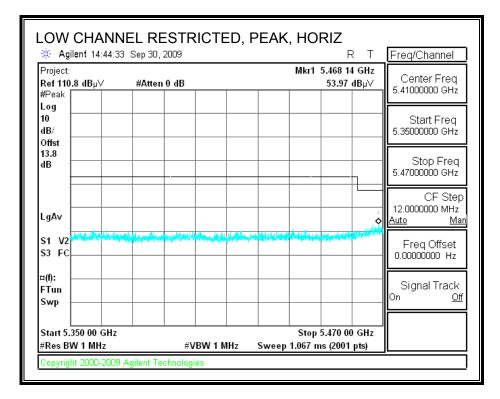

8.2.8. 802.11n HT20 MODE IN THE 5.6 GHz BAND

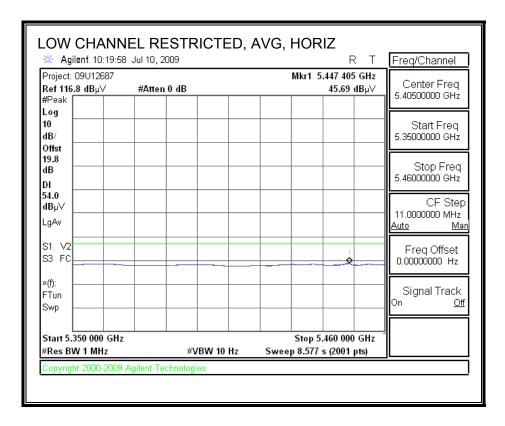

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



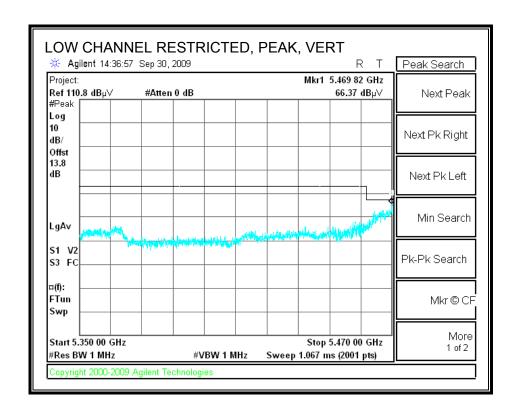

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

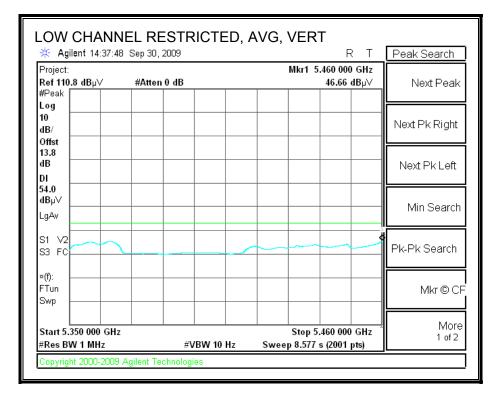
HARMONICS AND SPURIOUS EMISSIONS

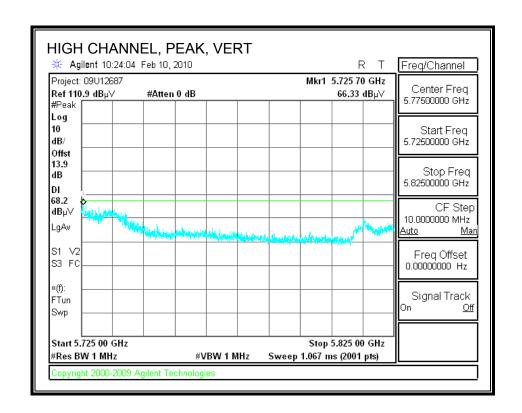


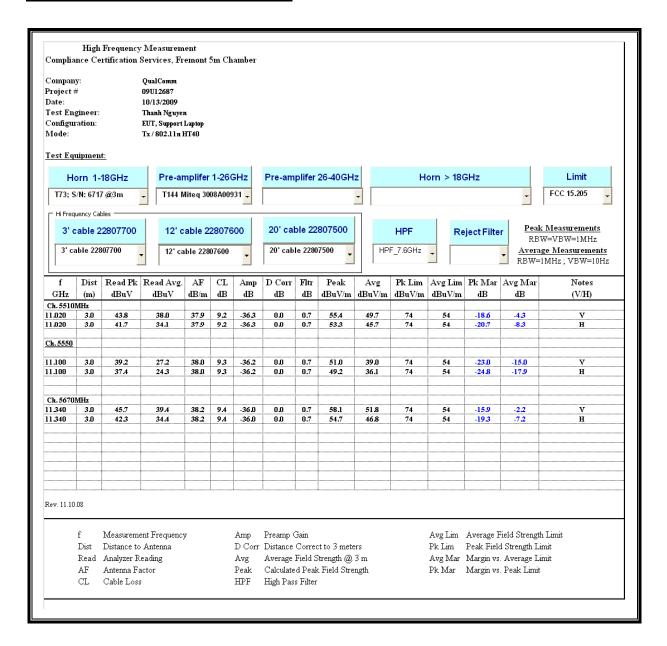

DATE: MARCH 08, 2010

IC: 2723A-DC544D2

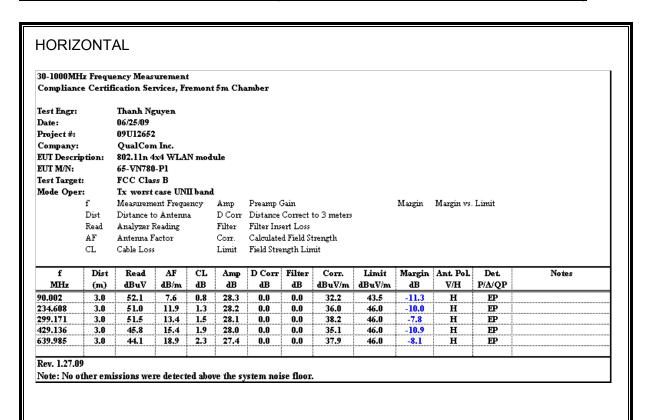

8.2.9. 802.11n HT40 MODE IN THE 5.6 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS



DATE: MARCH 08, 2010

IC: 2723A-DC544D2

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTICAL

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Thanh Nguyen Date: 06/25/09 Project #: 09U12652 Company: QualCom Inc.

EUT Description: 802.11n 4x4 WLAN module

EUT M/N: 65-VN780-P1 Test Target: FCC Class B

Mode Oper:

r: Tx worst case UNII band

f Measurement Frequency Amp Preamp Gain Dist ance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit

f	Dist	Read	AF	CL	Amp	D Corr	Filter	Corr.	Limit	Margin	Ant Pol	Det	Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
61.441	3.0	53.4	7.9	0.7	28.4	0.0	0.0	33.7	40.0	-6.3	V	EP	
142.925	3.0	45.9	13.1	1.1	28.3	0.0	0.0	31.8	43.5	-11.7	V	EP	
498.379	3.0	39.0	16.7	2.0	27.8	0.0	0.0	29.9	46.0	-16.1	V	EP	
599.303	3.0	41.0	18.4	2.2	27.5	0.0	0.0	34.1	46.0	-11.9	V	EP	
799.952	3.0	43.7	21.0	2.6	27.4	0.0	0.0	39.9	46.0	-6.1	V	EP	
		Ĭ											

Margin Margin vs. Limit

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted 1	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.		Reading		Closs	Limit	EN_B	Marg	in	Remark		
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2		
0.22	49.94		36.55	0.00	62.74	52.74	-12.80	-16.19	L1		
0.33	39.76		28.62	0.00	59.35	49.35	-19.59	-20.73	L1		
21.15	41.63		37.25	0.00	60.00	50.00	-18.37	-12.75	L1		
0.22	49.89		36.03	0.00	62.82	52.82	-12.93	-16.79	L2		
0.33	39.80		27.12	0.00	59.35	49.35	-19.55	-22.23	L2		
21.71	38.81		32.20	0.00	60.00	50.00	-21.19	-17.80	L2		
6 Worst l	 Data 										

LINE 1 RESULTS

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888 Data#: 32 File#: 09U12652 LC.EMI Date: 06-26-2009 Time: 14:57:07 Level (dBuV) CISPR CLASS-B 35 -10 0.150.2 10 20 Frequency (MHz) (Line Conduction) Trace: 30 Ref Trace: Condition: CISPR CLASS-B Test Operator: : Thanh Nguyen : 09V12652 : Qualcomm Project #: Company: BUT Description:: 802.11n 4x4 WLAN Module : 5000 Series PCIe, 2.4 and 5GHz AP router : Tx 5 GHz Band Mode: Target: : FCC Class B Voltage: : 115VAC, 60Hz : L1: Peak (Blue) , Average (Green)

DATE: MARCH 08, 2010

LINE 2 RESULTS

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888 File#: 09U12652 LC.EMI Date: 06-26-2009 Time: 14:46:54 Data#: 25 Lord (dBuV) CISPR CLASS-B AVERAGE 35 ·10 0.150.2 Frequency (MHz) (Line Conduction) Trace: 23 Ref Trace: Condition: CISPR CLASS-B Test Operator: : Thanh Nguyen Project #: : 09U12652 Company: : Qualcomm EUT Description:: 802.11n 4x4 WLAN Module : 5000 Series PCIe, 2.4 and 5GHz AP router Mode: : Tx 5 GHz Band : FCC Class B Target: : 115VAC, 60Hz Voltage: : L2: Peak (Blue) , Average (Green)

DATE: MARCH 08, 2010

10. DYNAMIC FREQUENCY SELECTION

10.1. OVERVIEW

10.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 2: Applicability of DFS requirements during normal operation

: abio =: / tpp://dabinty or =:	.						
Requirement	Operationa	Operational Mode					
	Master	Client	Client				
		(without DFS)	(with DFS)				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Closing Transmission Time	Yes	Yes	Yes				
Channel Move Time	Yes	Yes	Yes				

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the *Burst*.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 - Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum		
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials		
				Successful			
				Detection			
1	1	1428	18	60%	30		
2	1-5	150-230	23-29	60%	30		
3	6-10	200-500	16-18	60%	30		
4	11-20	200-500	12-16	60%	30		
Aggregate (Radar Types 1-4) 80% 120							

Table 6 - Long Pulse Radar Test Signal

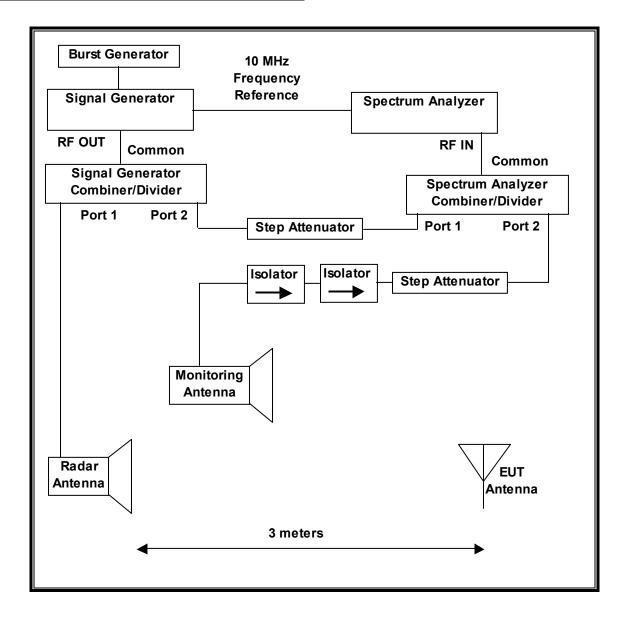

. 45.5 6 =0	9 . 4.00 .	uuu oot	O.ga.				
Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30

Table 7 - Frequency Hopping Radar Test Signal

1 4510 1	. 0 9 4 0 0	,pp.	guuu		ga.		
Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
						Detection	
6	1	333	300	9	.333	70%	30

10.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads are utilized such that there is one pad at each RF port on each EUT.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from -64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

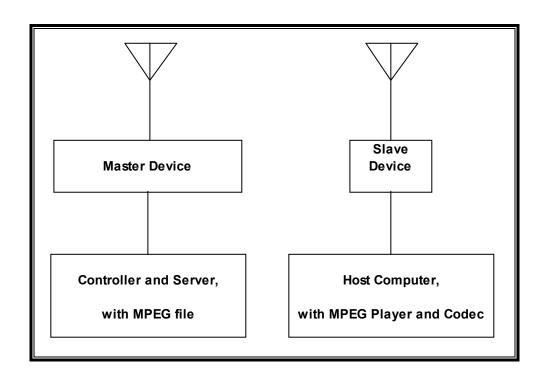
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

Establish a link between the Master and Slave, adjusting the distance between the units as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. For Master Device testing confirm that the displayed traffic does not include Slave Device traffic. For Slave Device testing confirm that the displayed traffic does not include Master Device traffic.

If a different setting of the Step Attenuators are required to meet the above conditions, perform a new System Calibration for the new Step Attenuator settings.


TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST									
Description	Manufacturer	Model	Asset Number	Cal Due					
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4446A	C00996	04/20/10					
Vector signal generator, 20GHz	Agilent / HP	E8267C	C01066	11/16/10					
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	05/04/10					

10.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

	PERIPHERAL SUPPORT EQUIPMENT LIST											
Description	Manufacturer	Model	Serial Number	FCC ID								
AC Adapter (EUT)	PI Electronics	P030WF120A	0910000153	DoC								
Notebook PC (Host)	HP	Compaq 6710b	CNUL032TY1	DoC								
AC Adapter (Host PC)	HP	PA-1900-18HN	9406310104	DoC								
USB to RS-232 Adapter	Keyspan	USA-19HS	02300	DoC								
Notebook PC (Client)	IBM	Type 2668-46U	L3-XDLW 06/02	DoC								
AC Adapter (Client PC)	IBM	02K6749	11S02K6749ZJ1	DoC								
			MN328Z9DE									
Dual Band Wireless USB	Linksys/Cisco	WUSB600N	001C10EB00CB	Q87-								
Network Adapter (Slave				WUSB600N								
Device)												

10.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding channels that have emissions falling within 5600 to 5650 MHz.

The EUT is a Master Device.

The highest power level within these bands is 26.24 dBm EIRP in the 5250-5350 MHz band and 26.80 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of 3 dBi; in the 802.11a legacy mode it has an effective transmit antenna gain of 6.01 dBi.

Four identical antennas are utilized to meet the diversity and MIMO operational requirement, except in the 802.11a mode where two identical antennas are active for the transmitter and four identical antennas are active for the receiver.

The EUT uses four transmitter/receiver chains, each connected to an antenna to perform radiated tests.

The rated output power of the EUT is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required radiated threshold is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

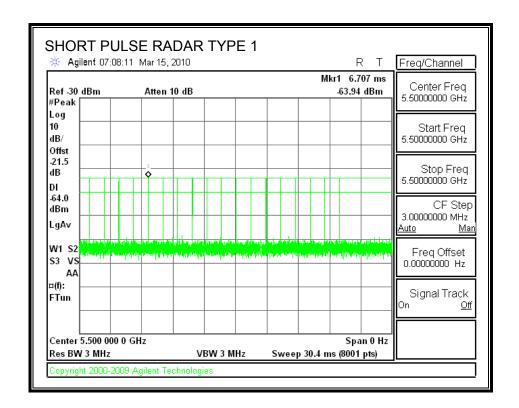
TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

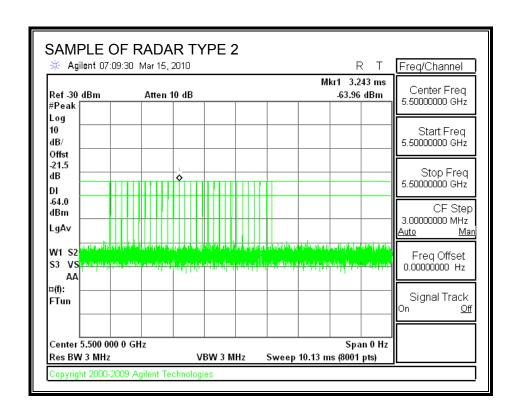
The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths are implemented: 20 MHz and 40 MHz.

The software installed in the EUT is version 5.0.302.1.

MANUFACTURER'S STATEMENT REGARDING UNIFORM CHANNEL SPREADING

This statement is in a separate document.


10.2. RESULTS FOR 20 MHz BANDWIDTH


10.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz. Measurements were performed using conducted test methods.

10.2.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORMS

DATE: MARCH 08, 2010

DATE: MARCH 08, 2010

DATE: MARCH 08, 2010

dBm

LgAv W1 S2

S3 VS

¤(f):

FTun

Center 5.500 000 0 GHz

opyright 2000-2009 Agilent Technologi

Res BW 3 MHz

VBW 3 MHz

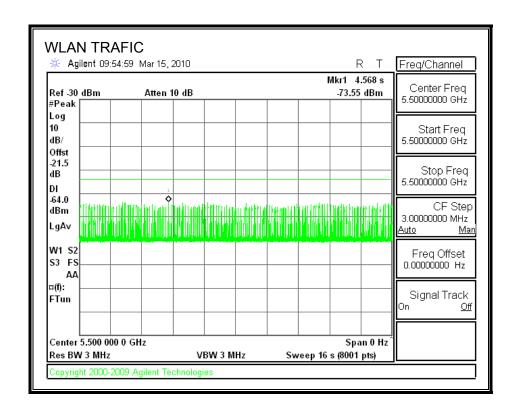
DATE: MARCH 08, 2010

CF Step

3.00000000 MHz

Freq Offset

Signal Track


Span 0 Hz

Sweep 5 ms (8001 pts)

<u>Off</u>

0.000000000 Hz

PLOT OF WLAN TRAFFIC FROM MASTER

10.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

REPORT NO: 09U12687-7A DATE: MARCH 08, 2010 IC: 2723A-DC544D2 FCC ID: J9C-DC544D2

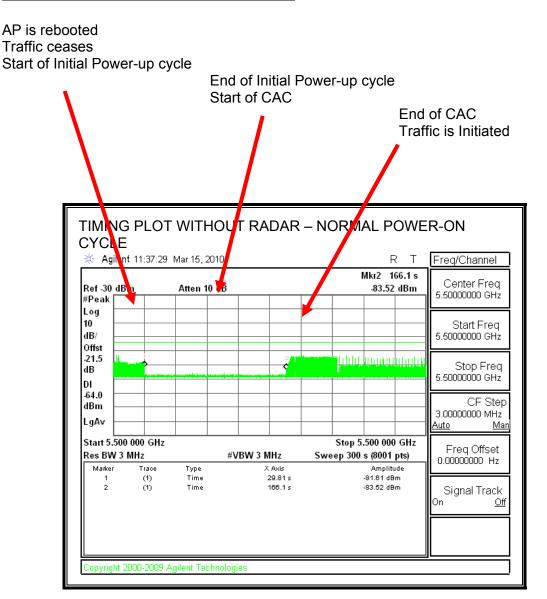
QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
29.81	166.1	136.3	76.3

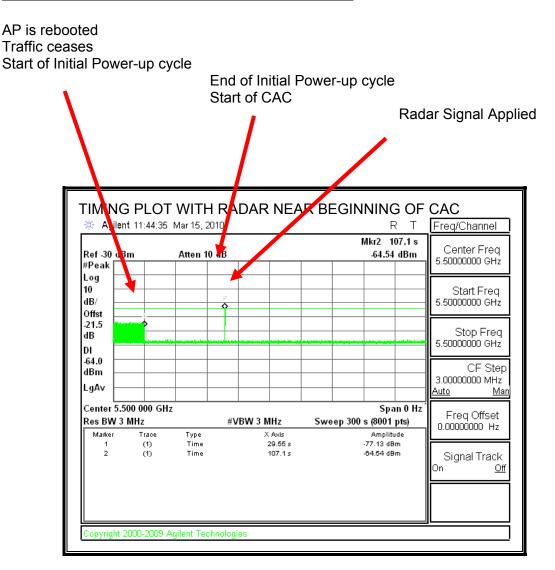
Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
29.55	107.1	77.6	1.3


Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
29.81	165.0	135.2	58.9

QUALITATIVE RESULTS


Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

TIMING PLOT WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLOT WITH RADAR NEAR END OF CAC Agrent 11:54:36 Mar 15, 2010 Freq/Channel Mkr2 165 s Center Freq Ref -30 dl m Atten 10 d -64.59 dBm 5.50000000 GHz #Peak Log 10 Start Freq dB/ 5.500000000 GHz Offst -21.5 dB Stop Freq 5.50000000 GHz DΙ 64.0 CF Step dBm 3.000000000 MHz LgAv <u>Auto</u> Center 5.500 000 GHz Span 0 Hz Freq Offset 0.00000000 Hz Res BW 3 MHz #VBW 3 MHz Sweep 300 s (8001 pts) Amplitude -77.82 dBm Marker X Axis 29.81 s (1) Time (1) Signal Track <u>Off</u> opyright 2000-2009 Agilent Technologies

No EUT transmissions were observed after the radar signal.

10.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

These tests are not applicable.

10.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

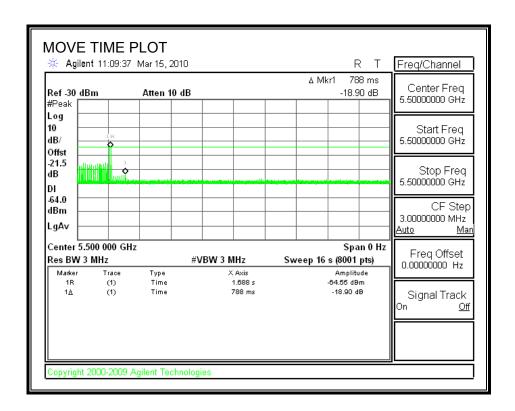
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

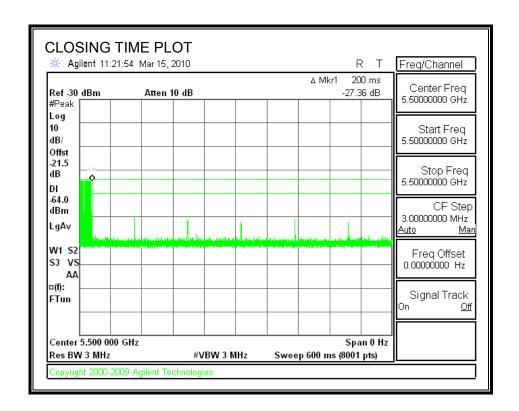
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

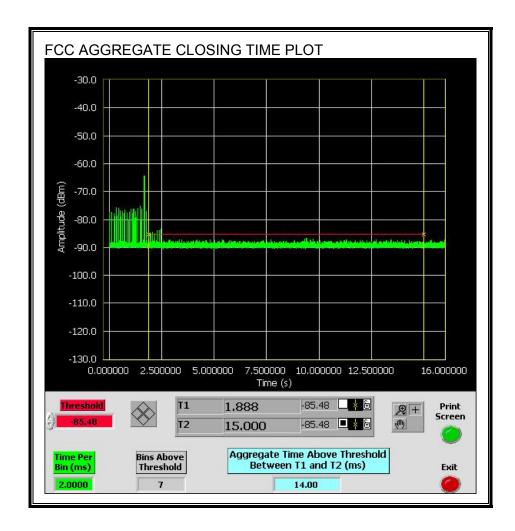

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

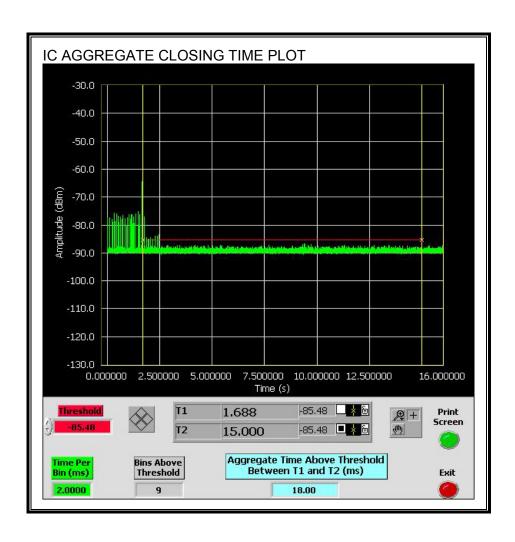

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.788	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	14.0	60
IC	18.0	260

MOVE TIME

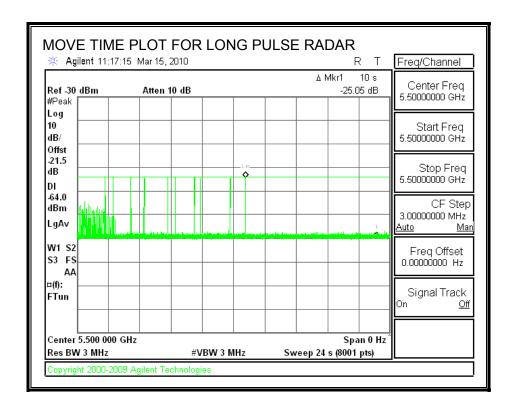


CHANNEL CLOSING TIME

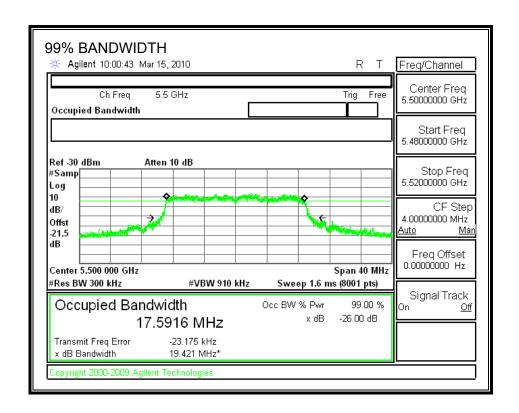


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.



Only intermittent transmissions are observed during the IC aggregate monitoring period.


LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

10.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5492	5508	16	17.592	91.0	80

DETECTION BANDWIDTH PROBABILITY

ETECTION BA	NDWIDTH PROBAB	ILITY RESULTS		
	ndwidth Test Results /aveform: 1 us Pulse V	Width. 1428 us PRI, 1	8 Pulses per	Burst
Frequency (MHz)		Number Detected		Mark
5492	10	10	100	FL
5493	10	10	100	
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	9	90	
5501	10	9	90	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	FH

10.2.7. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	ary			
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	96.67	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		99.17	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	34	100.00	70	Pass

TYPE 1 DETECTION PROBABILITY

s Puise vyiath, 14	I28 us PRI, 18 Pulses per Burst
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	2.7	187.00	29	Yes
2002	4.6	212.00	25	Yes
2003	1.1	220.00	28	Yes
2004	3.4	185.00	27	Yes
2005	2.6	192.00	26	Yes
2006	4.9	195.00	26	Yes
2007	2.2	159.00	23	Yes
2008	1.2	169.00	27	Yes
2009	2.8	180.00	28	Yes
2010	2.3	163.00	26	Yes
2011	5	169.00	29	Yes
2012	1	190.00	25	Yes
2013	3.4	155.00	27	Yes
2014	1	178.00	25	Yes
2015	4.3	189.00	29	Yes
2016	5	166.00	24	Yes
2017	3.1	209.00	28	Yes
2018	3.2	198.00	28	Yes
2019	4.2	181.00	27	Yes
2020	1.1	151.00	26	Yes
2021	4.2	229.00	25	Yes
2022	1.4	224.00	24	Yes
2023	2.1	196.00	26	Yes
2024	1.4	226.00	25	Yes
2025	3.1	170.00	23	Yes
2026	4.6	193.00	26	Yes
2027	5	150.00	25	Yes
2028	4.5	182.00	27	Yes
2029	4.5	171.00	27	Yes

TYPE 3 DETECTION PROBABILITY

3002 5.5 340.00 16 3003 9.1 500.00 17 3004 5.7 487.00 16 3005 5.9 350.00 18 3006 6.9 351.00 18 3007 5.3 500.00 18 3008 6.3 319.00 17 3009 5.8 278.00 18 3010 6.5 286.00 17 3011 5 363.00 17 3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18	ful Detection es/No)		Pulses Per Burst	PRI (us)	Pulse Width (us)	Waveform
3003 9.1 500.00 17 3004 5.7 487.00 16 3005 5.9 350.00 18 3006 6.9 351.00 18 3007 5.3 500.00 18 3008 6.3 319.00 17 3009 5.8 278.00 18 3010 6.5 286.00 17 3011 5 363.00 17 3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18	Yes	Yes	17	287.00	8.5	3001
3004 5.7 487.00 16 3005 5.9 350.00 18 3006 6.9 351.00 18 3007 5.3 500.00 18 3008 6.3 319.00 17 3009 5.8 278.00 18 3010 6.5 286.00 17 3011 5 363.00 17 3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	16	340.00	5.5	3002
3005 5.9 350.00 18 3006 6.9 351.00 18 3007 5.3 500.00 18 3008 6.3 319.00 17 3009 5.8 278.00 18 3010 6.5 286.00 17 3011 5 363.00 17 3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3024 9.7 326.00 18	Yes	Yes	17	500.00	9.1	3003
3006 6.9 351.00 18 3007 5.3 500.00 18 3008 6.3 319.00 17 3009 5.8 278.00 18 3010 6.5 286.00 17 3011 5 363.00 17 3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	16	487.00	5.7	3004
3007 5.3 500.00 18 3008 6.3 319.00 17 3009 5.8 278.00 18 3010 6.5 286.00 17 3011 5 363.00 17 3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	18	350.00	5.9	3005
3008 6.3 319.00 17 3009 5.8 278.00 18 3010 6.5 286.00 17 3011 5 363.00 17 3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	18	351.00	6.9	3006
3009 5.8 278.00 18 3010 6.5 286.00 17 3011 5 363.00 17 3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	18	500.00	5.3	3007
3010 6.5 286.00 17 3011 5 363.00 17 3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	17	319.00	6.3	3008
3011 5 363.00 17 3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	18	278.00	5.8	3009
3012 7.6 333.00 16 3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	17	286.00	6.5	3010
3013 5.5 330.00 16 3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	17	363.00	5	3011
3014 5.8 451.00 18 3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	16	333.00	7.6	3012
3015 7.7 472.00 16 3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	16	330.00	5.5	3013
3016 8.7 412.00 16 3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	No	No	18	451.00	5.8	3014
3017 7.6 259.00 16 3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	16	472.00	7.7	3015
3018 5 393.00 17 3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	16	412.00	8.7	3016
3019 5.6 477.00 17 3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	16	259.00	7.6	3017
3020 9 314.00 16 3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	17	393.00	5	3018
3021 8.4 484.00 16 3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	17	477.00	5.6	3019
3022 8.3 360.00 18 3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	16	314.00	9	3020
3023 5 469.00 18 3024 9.7 326.00 18	Yes	Yes	16	484.00	8.4	3021
3024 9.7 326.00 18	Yes	Yes	18	360.00	8.3	3022
	Yes	Yes	18	469.00	5	3023
3025 6.6 275.00 18	Yes	Yes	18	326.00	9.7	3024
	Yes	Yes	18	275.00	6.6	3025
	Yes	Yes		320.00		3026
3027 9 302.00 17	Yes	Yes	17	302.00	9	3027
3028 8.3 349.00 16	Yes	Yes	16	349.00	8.3	3028
3029 9.7 375 16	Yes	Yes	16	375	9.7	3029

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	10.6	475.00	14	Yes
4002	15.9	378.00	15	Yes
4003	18.7	364.00	14	Yes
4004	15.3	488.00	13	Yes
4005	19	361.00	15	Yes
4006	17.5	348.00	12	Yes
4007	14	251.00	14	Yes
4008	10.6	378.00	15	Yes
4009	16.9	498.00	16	Yes
4010	19.6	410.00	15	Yes
4011	17.6	314.00	15	Yes
4012	10.9	350.00	12	Yes
4013	17.3	490.00	13	Yes
4014	16.1	321.00	14	Yes
4015	10.7	298.00	16	Yes
4016	19.4	352.00	16	Yes
4017	16.7	293.00	16	Yes
4018	10.7	409.00	15	Yes
4019	19.9	424.00	16	Yes
4020	11.2	401.00	14	Yes
4021	18.2	486.00	14	Yes
4022	12.6	465.00	12	Yes
4023	16	294.00	15	Yes
4024	10.1	473.00	12	Yes
4025	15.6	343.00	15	Yes
4026	16.6	442.00	14	Yes
4027	17.2	322.00	16	Yes
4028	13.4	277.00	13	Yes
4029	18.1	453.00	16	Yes

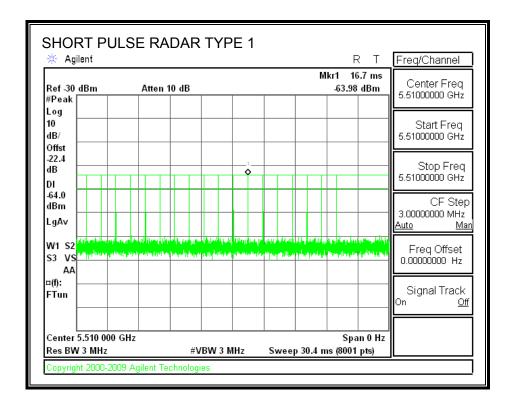
TYPE 5 DETECTION PROBABILITY

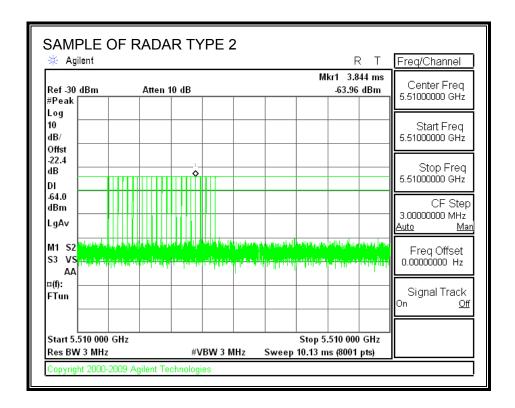
Trial	Long Pulse Radar Type 5 Successful Detection
IIIai	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

	t for FCC Hopping Rada				
1 us Pulse Width, 333 us PRI, 9 Pulses per Burst, 1 Burst per Hop					
NTIA Aug	FIA August 2005 Hopping Sequence				
Trial	Starting Index	Signal Generator	Hops within	Successful	
IIIai	Within Sequence	Frequency	Detection BW	Detection	
	·	(MHz)		(Yes/No)	
1	68	5492	3	Yes	
2	543	5493	4	Yes	
3	1018	5494	4	Yes	
4	1493	5495	4	Yes	
5	1968	5496	5	Yes	
6	2443	5497	6	Yes	
7	2918	5498	7	Yes	
8	3393	5499	2	Yes	
9	3868	5500	4	Yes	
10	4343	5501	4	Yes	
11	4818	5502	5	Yes	
12	5293	5503	6	Yes	
13	5768	5504	3	Yes	
14	6243	5505	6	Yes	
15	6718	5506	3	Yes	
16	7193	5507	4	Yes	
17	7668	5508	4	Yes	
18	8143	5492	3	Yes	
19	8618	5493	4	Yes	
20	9093	5494	4	Yes	
21	9568	5495	4	Yes	
22	10043	5496	5	Yes	
23	10518	5497	1	Yes	
24	10993	5498	3	Yes	
25	11468	5499	5	Yes	
26	11943	5500	9	Yes	
27	12418	5501	3	Yes	
28	12893	5502	5	Yes	
29	13368	5503	5	Yes	
30	13843	5504	2	Yes	
31	14318	5505	5	Yes	
32	14793	5506	2	Yes	
33	15268	5507	3	Yes	
34	15743	5508	3	Yes	


10.3. RESULTS FOR 40 MHz BANDWIDTH


10.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5510 MHz. Measurements were performed using conducted test methods.

10.3.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC

PLOTS OF RADAR WAVEFORMS

Center 5.510 000 GHz

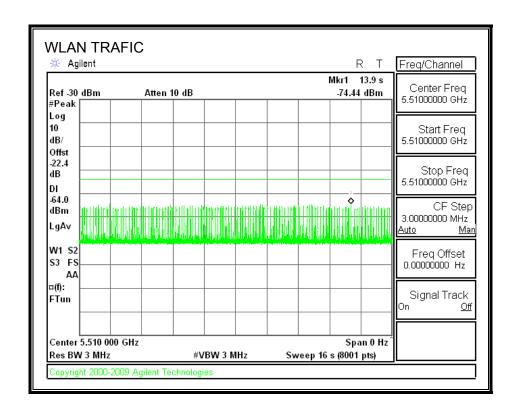
opyright 2000-2009 Agilent Technologi

Res BW 3 MHz

#VBW 3 MHz

Span 0 Hz

Sweep 15.47 ms (8001 pts)


DATE: MARCH 08, 2010

DATE: MARCH 08, 2010

DATE: MARCH 08, 2010

DATE: MARCH 08, 2010

PLOT OF WLAN TRAFFIC FROM MASTER

10.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

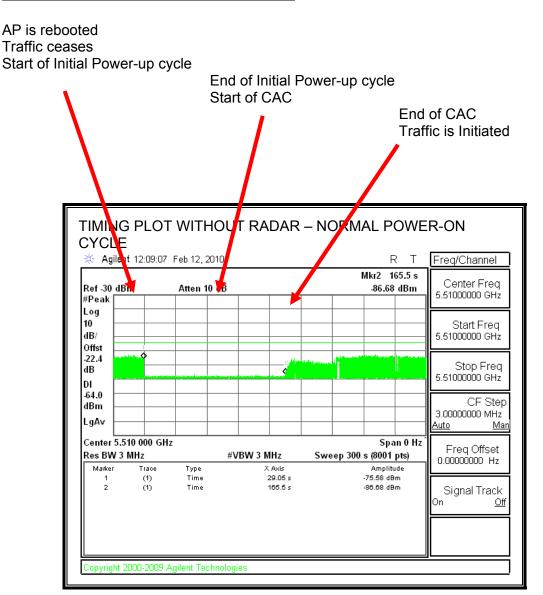
QUANTITATIVE RESULTS

No Radar Triggered

_				
	Timing of	Timing of	Total Power-up	Initial Power-up
	Reboot	Start of Traffic	Cycle Time	Cycle Time
	(sec)	(sec)	(sec)	(sec)
	29.05	165.5	136.4	76.4

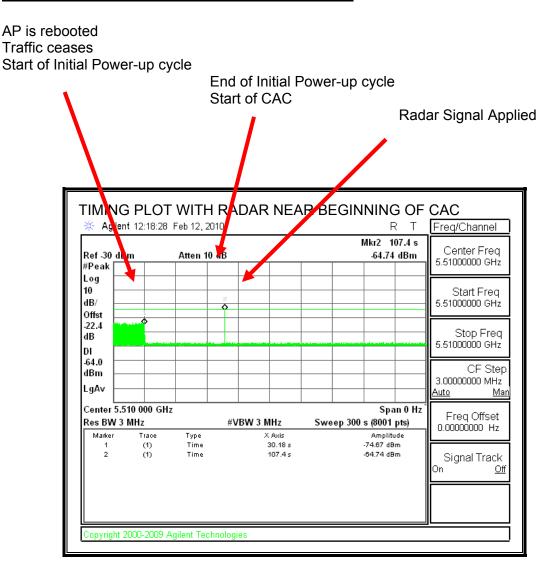
Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.175	107.4	77.2	8.0


Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
29.2	164.4	135.2	58.8

QUALITATIVE RESULTS


Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING PLOT WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLOT WITH RADAR NEAR END OF CAC Alient 12:27:02 Feb 12, 2010 Freq/Channel Mkr2 164.4 s Center Freq Ref -30 🔀 m Atten 10 -64.64 dBm 5.51000000 GHz #Peak Log 10 Start Freq dB/ 5.51000000 GHz Offst -22.4 dB Stop Freq 5.51000000 GHz DΙ 64.0 CF Step dBm 3.000000000 MHz LgAv <u>Auto</u> Center 5.510 000 GHz Span 0 Hz Freq Offset 0.00000000 Hz Res BW 3 MHz #VBW 3 MHz Sweep 300 s (8001 pts) X Axis 29.2 s Amplitude -74.91 dBm Marker (1) Time (1) 164.4 s -64.64 dBm Signal Track <u>Off</u> opyright 2000-2009 Agilent Technologies

No EUT transmissions were observed after the radar signal.

10.3.4. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

These tests are not applicable.

10.3.5. MOVE AND CLOSING TIME

REPORTING NOTES

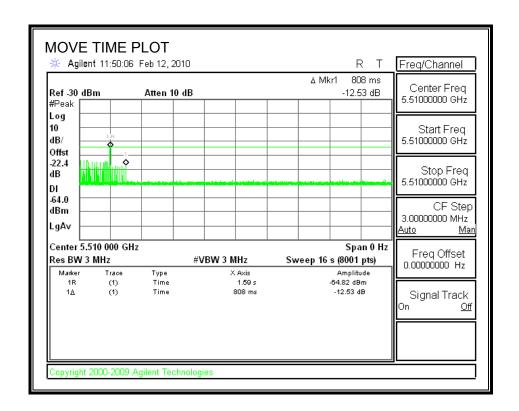
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

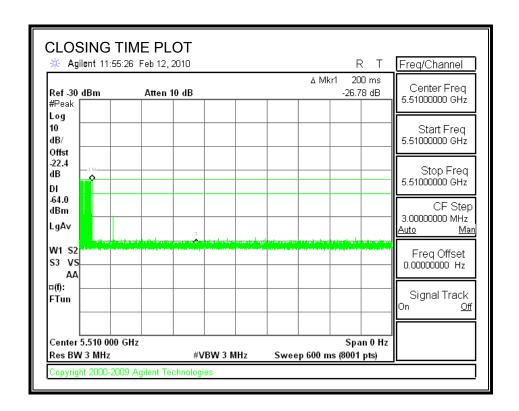
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

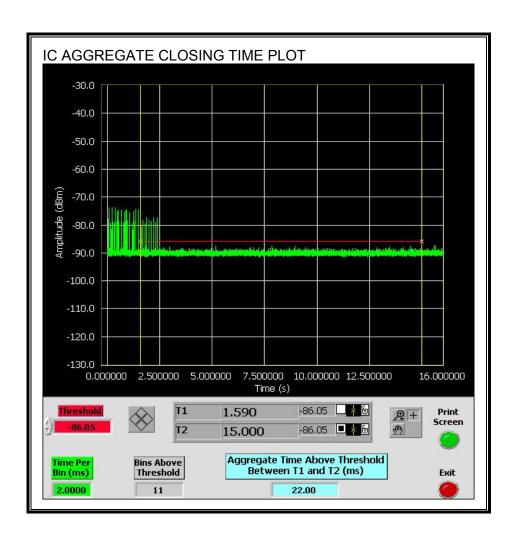
RESULTS


Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.81	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	14.0	60
IC	22.0	260

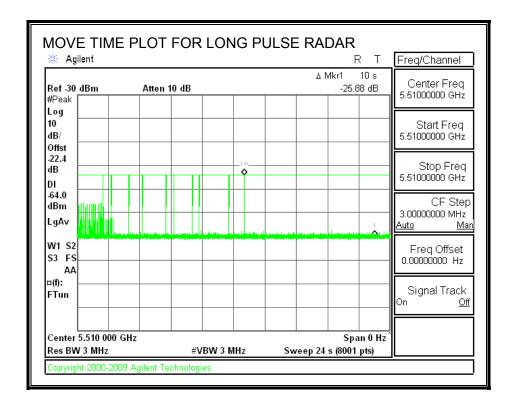
MOVE TIME

CHANNEL CLOSING TIME



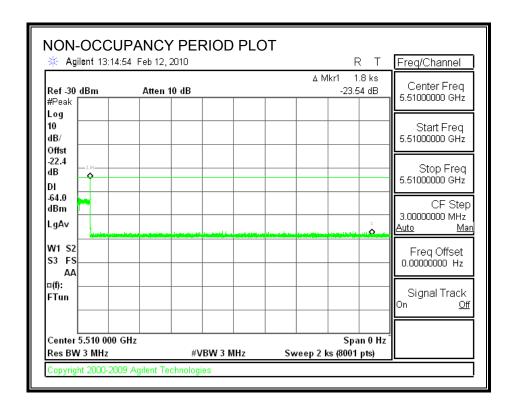
AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.

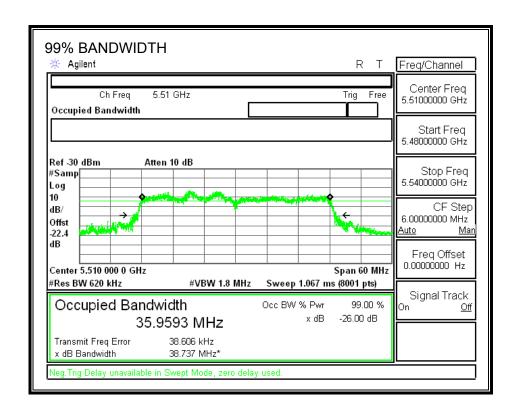


Only intermittent transmissions are observed during the IC aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME


The traffic ceases prior to 10 seconds after the end of the radar waveform.

10.3.6. NON-OCCUPANCY PERIOD


RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

10.3.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5493	5527	34	35.959	94.6	80

DETECTION BANDWIDTH PROBABILITY

	width Test Results			
	veform: 1 us Pulse V			
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5493	10	10	100	FL
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	
5509	10	10	100	
5510	10	10	100	
5511	10	9	90	
5512	10	10	100	
5513	10	10	100	
5514	10	10	100	
5515	10	10	100	
5516	10	10	100	
5517	10	10	100	
5518	10	10	100	
5519	10	9	90	
5520	10	10	100	
5521	10	10	100	
5522	10	10	100	
5523	10	10	100	
5524	10	10	100	
5525	10	10	100	
5526	10	10	100	

10.3.8. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	ary			
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	35	100.00	70	Pass

TYPE 1 DETECTION PROBABILITY

us Pulse Width, 1428 us PRI, 18 Pulses per Burst				
Trial	Successful Detection			
	(Yes/No)			
1	Yes			
2	Yes			
3	Yes			
4	Yes			
5	Yes			
6	Yes			
7	Yes			
8	Yes			
9	Yes			
10	Yes			
11	Yes			
12	Yes			
13	Yes			
14	Yes			
15	Yes			
16	Yes			
17	Yes			
18	Yes			
19	Yes			
20	Yes			
21	Yes			
22	Yes			
23	Yes			
24	Yes			
25	Yes			
26	Yes			
27	Yes			
28	Yes			
29	Yes			
30	Yes			

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	3.1	158.00	23	Yes
2002	2.4	205.00	28	Yes
2003	4.8	192.00	29	Yes
2004	1.3	199.00	24	Yes
2005	2.1	189.00	29	Yes
2006	4.6	199.00	23	Yes
2007	3.6	173.00	23	Yes
2008	3.5	171.00	25	Yes
2009	3	171.00	23	Yes
2010	3.8	193.00	29	Yes
2011	1.5	198.00	25	Yes
2012	4	216.00	29	Yes
2013	4.8	194.00	27	Yes
2014	3.3	157.00	24	Yes
2015	4.5	154.00	25	Yes
2016	1.8	168.00	29	Yes
2017	1.8	200.00	25	Yes
2018	4.3	193.00	23	Yes
2019	3.7	206.00	26	Yes
2020	4.1	230.00	24	Yes
2021	1.6	191.00	28	Yes
2022	4.2	213.00	24	Yes
2023	4.9	184.00	26	Yes
2024	2.2	196.00	29	Yes
2025	1.5	224.00	23	Yes
2026	4.7	184.00	29	Yes
2027	2	197.00	25	Yes
2028	3.4	152.00	23	Yes
2029	1.8	156.00	28	Yes
2030	2.9	180.00	29	Yes

TYPE 3 DETECTION PROBABILITY

3001 3002	(us)	(us)	Pulses Per Burst	Successful Detection (Yes/No)
3002	8.4	398.00	16	Yes
	10	419.00	18	Yes
3003	9.6	495.00	16	Yes
3004	5.8	428.00	18	Yes
3005	5.9	329.00	17	Yes
3006	7.3	383.00	17	Yes
3007	9.2	493.00	16	Yes
3008	5.2	408.00	18	Yes
3009	8	462.00	18	Yes
3010	8.9	301.00	16	Yes
3011	7.6	419.00	17	Yes
3012	7.2	303.00	17	Yes
3013	10	386.00	18	Yes
3014	9.3	388.00	18	Yes
3015	6.4	404.00	16	Yes
3016	7.2	483.00	18	Yes
3017	7.7	330.00	17	Yes
3018	8	268.00	16	Yes
3019	8.1	455.00	18	Yes
3020	6.2	433.00	17	Yes
3021	7.2	275.00	17	Yes
3022	5	271.00	17	Yes
3023	6.2	438.00	16	Yes
3024	8.4	422.00	17	Yes
3025	9.2	331.00	16	Yes
3026	6.5	376.00	17	Yes
3027	9.5	426.00	16	Yes
3028	6.1	419.00	16	Yes
3029	7.1	493	17	Yes

TYPE 4 DETECTION PROBABILITY

4001 15.4 4002 10.2 4003 16.5 4004 12.2 4005 10.7 4006 16.3 4007 12.9 4008 17 4009 10.2 4010 10.1 4011 13 4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2 4022 10.1	382.00 264.00 264.00 303.00 440.00 366.00 275.00 317.00 395.00 280.00 331.00 451.00	15 12 14 15 13 15 15 15 12 13 16 16 16	Yes
4003 16.5 4004 12.2 4005 10.7 4006 16.3 4007 12.9 4008 17 4009 10.2 4010 10.1 4011 13 4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	264.00 303.00 440.00 366.00 275.00 317.00 301.00 395.00 280.00 331.00	14 15 13 15 15 15 12 13 16 16	Yes
4004 12.2 4005 10.7 4006 16.3 4007 12.9 4008 17 4009 10.2 4010 10.1 4011 13 4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	303.00 440.00 366.00 275.00 317.00 301.00 395.00 280.00 331.00	15 13 15 15 12 12 13 16	Yes Yes Yes Yes Yes Yes Yes Yes
4005 10.7 4006 16.3 4007 12.9 4008 17 4009 10.2 4010 10.1 4011 13 4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	440.00 366.00 275.00 317.00 301.00 395.00 280.00 331.00	13 15 15 12 13 16 16	Yes Yes Yes Yes Yes Yes Yes
4006 16.3 4007 12.9 4008 17 4009 10.2 4010 10.1 4011 13 4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	366.00 275.00 317.00 301.00 395.00 280.00 331.00	15 15 12 13 16 16	Yes Yes Yes Yes Yes
4007 12.9 4008 17 4009 10.2 4010 10.1 4011 13 4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	275.00 317.00 301.00 395.00 280.00 331.00	15 12 13 16 16	Yes Yes Yes Yes
4008 17 4009 10.2 4010 10.1 4011 13 4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	317.00 301.00 395.00 280.00 331.00	12 13 16 16	Yes Yes Yes
4009 10.2 4010 10.1 4011 13 4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	301.00 395.00 280.00 331.00	13 16 16	Yes Yes
4010 10.1 4011 13 4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	395.00 280.00 331.00	16 16	Yes
4011 13 4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	280.00 331.00	16	
4012 11.5 4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	331.00		Yes
4013 16.4 4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2		16	
4014 18 4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	451.00		Yes
4015 17.8 4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2		15	Yes
4016 17.1 4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	464.00	14	Yes
4017 12.2 4018 18 4019 16.5 4020 15.6 4021 10.2	401.00	12	Yes
4018 18 4019 16.5 4020 15.6 4021 10.2	369.00	15	Yes
4019 16.5 4020 15.6 4021 10.2	352.00	15	Yes
4020 15.6 4021 10.2	478.00	12	Yes
4021 10.2	303.00	14	Yes
	286.00	15	Yes
4022 10.1	260.00	15	Yes
	422.00	13	Yes
4023 15.1	395.00	14	Yes
4024 15.8	329.00	16	Yes
4025 11.8	461.00	12	Yes
4026 20	296.00	15	Yes
4027 19.7	435.00	16	Yes
4028 10.5	291.00	12	Yes
4029 19.1	365.00	13	Yes

TYPE 5 DETECTION PROBABILITY

Trial	Long Pulse Radar Type 5 Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

TIA A		9 Pulses per Burst,	r Buist per mop	'
Trial	ust 2005 Hopping Se Starting Index Within Sequence	Signal Generator Frequency	Hops within Detection BW	Successful Detection
	370	(MHz) 5493	4	(Yes/No)
2	845	5494	4	Yes
3	1320	5495	8	Yes
4	1795	5496	7	Yes Yes
5	2270		-	
6		5497	6	Yes
7	2745 3220	5498 5499	5	Yes Yes
8	3695	5499 5500	8	Yes
9	4170	5501	7	Yes
10	4645	5502	6	Yes
11	5120	5503	6	Yes
12	5595	5504	6	Yes
13	6070	5505	7	Yes
14	6545	5506	4	Yes
15	7020	5507	8	Yes
16	7495	5508	7	Yes
17	7970	5509	3	Yes
18	8445	5510	9	Yes
19	8920	5510	7	Yes
20	9395	5512	9	Yes
21	9870	5513	5	Yes
22	10345	5514	5	Yes
23	10820	5515	11	Yes
24	11295	5516	9	Yes
25	11770	5517	6	Yes
26	12245	5518	6	Yes
27	12720	5519	10	Yes
28	13195	5520	7	Yes
29	13670	5521	5	Yes
30	14145	5522	10	Yes
31	14620	5523	9	Yes
32	15095	5524	7	Yes
33	15570	5525	6	Yes
34	16045	5526	7	Yes

11. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	I/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f²)	6
30–300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f²)	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500–100,000			1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

(MPE distance equals 20 cm)

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
5.2 GHz	11a (2 Chains)	0.20	12.18	6.01	0.13	0.013
5.2 GHz	11n HT20 (4 Chains)	0.20	13.23	3.0	0.08	800.0
5.2 GHz	11n HT40 (4 Chains)	0.20	16.67	3.0	0.18	0.018
5.3 GHz	11a (2 Chains)	0.20	19.15	6.01	0.65	0.065
5.3 GHz	11n HT20 (4 Chains)	0.20	20.65	3.0	0.46	0.046
5.3 GHz	11n HT40 (4 Chains)	0.20	23.24	3.0	0.84	0.084
5.6 GHz	11a (2 Chains)	0.20	19.88	6.01	0.77	0.077
5.6 GHz	11n HT20 (4 Chains)	0.20	20.24	3.0	0.42	0.042
5.6 GHz	11n HT40 (4 Chains)	0.20	23.80	3.0	0.95	0.095