

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

DC544D_2 PCIe DAUGHTER CARD FOR 2.4 / 5 GHz AP/ROUTER APPLICATIONS DFS

MODEL NUMBER: 65-VN780-P2

FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

REPORT NUMBER: 09U12687-7

ISSUE DATE: OCTOBER 21, 2009

Prepared for QUALCOMM, INC. 3165 KIFER ROAD SANTA CLARA, CA 95051, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

Revision History

DATE: OCTOBER 21, 2009

Rev.	Issue Date	Revisions	Revised By
	10/21/09	Initial Issue	F. Ibrahim

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	6
2.	TES	T METHODOLOGY	7
3.	FAC	ILITIES AND ACCREDITATION	7
4.	CAL	IBRATION AND UNCERTAINTY	7
4	1 .1.	MEASURING INSTRUMENT CALIBRATION	7
4	1.2.	SAMPLE CALCULATION	7
4	1.3.	MEASUREMENT UNCERTAINTY	7
5.	EQL	JIPMENT UNDER TEST	8
Ę	5.1.	DESCRIPTION OF EUT	8
Ę	5.2.	MAXIMUM OUTPUT POWER	8
į	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
į	5.4.	SOFTWARE AND FIRMWARE	9
Ę	5.5.	WORST-CASE CONFIGURATION AND MODE	9
Ę	5.6.	DESCRIPTION OF TEST SETUP	10
6.	TES	T AND MEASUREMENT EQUIPMENT	12
7.		ENNA PORT TEST RESULTS	
_	7.1.	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE	
,	7.1.		
	7.1.2		
	7.1.3 7.1.4		
	7.1.	5. PEAK EXCURSION	24
	7.1.6	6. CONDUCTED SPURIOUS EMISSIONS	27
7	7.2.		
	7.2.7 7.2.2	1. 99% & 26 dB BANDWIDTH 2. OUTPUT POWER	
	7.2.3		
	7.2.4		
	7.2.5		
	7.2.6		
7	⁷ .3. 7.3.	5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 1. 99% & 26 dB BANDWIDTH	
	7.3.2		
	7.3.3	3. AVERAGE POWER	57
	7.3.4		
	7.3.5 7.3.6		60 62
-	7.4.	5.3 GHz BAND CHANNEL TESTS FOR 802.11a MODE	
,		Page 3 of 293	

	7.4.1.	26 dB and 99% BANDWIDTH	
	7.4.2.	OUTPUT POWER	
	7.4.3. 7.4.4.	AVERAGE POWERPEAK POWER SPECTRAL DENSITY	
	7.4.4. 7.4.5.	PEAK EXCURSION	
	7.4.5. 7.4.6.	CONDUCTED SPURIOUS EMISSIONS	
	7.5. 5.3	GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE	82
	7.5. 3.3 7.5.1.	99% & 26 dB BANDWIDTH	
	7.5.2.	OUTPUT POWER	
	7.5.3.	AVERAGE POWER	
	7.5.4.	PEAK POWER SPECTRAL DENSITY	93
	7.5.5.	PEAK EXCURSION	
	7.5.6.	CONDUCTED SPURIOUS EMISSIONS	99
	7.6. 5.3	GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE	
	7.6.1.	99% & 26 dB BANDWIDTH	
	7.6.2.	OUTPUT POWER	
	7.6.3.	AVERAGE POWER	
	7.6.4. 7.6.5.	PEAK POWER SPECTRAL DENSITYPEAK EXCURSION	
	7.6.6.	CONDUCTED SPURIOUS EMISSIONS	
	7.7. 5.6 7.7.1.	GHz BAND CHANNEL TESTS FOR 802.11a MODE	
	7.7.1. 7.7.2.	OUTPUT POWER	
	7.7.3.	AVERAGE POWER	
	7.7.4.	PEAK POWER SPECTRAL DENSITY	
	7.7.5.	PEAK EXCURSION	129
	7.7.6.	CONDUCTED SPURIOUS EMISSIONS	
	7.7.7.	CONDUCTED SPURIOUS (-20 dBc)	136
	5.6 GHz B	AND CHANNEL TESTS FOR 802.11n HT20 MODE	137
	7.7.8.	99% & 26 dB BANDWIDTH	
	7.7.9.	OUTPUT POWER	
	7.7.10.	AVERAGE POWER	
	7.7.11. 7.7.12.	PEAK POWER SPECTRAL DENSITY	
	7.7.12. 7.7.13.	PEAK EXCURSIONCONDUCTED SPURIOUS EMISSIONS	
	7.7.13. 7.7.14.	CONDUCTED SPURIOUS (-20 dBc)	
		GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE	
	7.8.1.	99% & 26 dB BANDWIDTH	
	7.8.2.	OUTPUT POWER	
	7.8.3.	AVERAGE POWER	169
	7.8.4.	PEAK POWER SPECTRAL DENSITY	170
	7.8.5.	PEAK EXCURSION	
	7.8.6.	CONDUCTED SPURIOUS EMISSIONS	
	7.8.7.	CONDUCTED SPURIOUS (-20 dBc)	
	7.9. RE	CEIVER CONDUCTED SPURIOUS EMISSIONS	180
3.	BVDIVI	ED TEST RESULTS	19.1
	o.i. LIN	IITS AND PROCEDURE	

8	8.2. TR	ANSMITTER ABOVE 1 GHz	185
	8.2.1.	802.11a MODE IN 5.2 GHz BAND	185
	8.2.2.	802.11n HT20 MODE IN 5.2 GHz BAND	188
	8.2.3.	802.11n HT40 MODE IN 5.2 GHz BAND	192
	8.2.4.	802.11a MODE IN 5.3 GHz BAND	196
	8.2.5.	802.11n HT20 MODE IN 5.3 GHz BAND	198
	8.2.6.	802.11n HT40 MODE IN 5.3 GHz BAND	202
	8.2.7.	802.11a MODE IN THE 5.6 GHz BAND	204
	8.2.8.	802.11n HT20 MODE IN THE 5.6 GHz BAND	208
	8.2.9.	802.11n HT40 MODE IN THE 5.6 GHz BAND	212
8	2.3. WC	DRST-CASE BELOW 1 GHz	216
9.	AC POV	VER LINE CONDUCTED EMISSIONS	218
10.	DYNA	AMIC FREQUENCY SELECTION	222
1	0.1. OV	'ERVIEW	222
	10.1.1.	LIMITS	
	10.1.2.	TEST AND MEASUREMENT SYSTEM	226
	10.1.3.	SETUP OF EUT	229
	10.1.4.	DESCRIPTION OF EUT	230
1	0.2. RE	SULTS FOR 20 MHz BANDWIDTH	231
	10.2.1.	TEST CHANNEL	231
	10.2.2.	PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC	231
	10.2.3.	CHANNEL AVAILABILITY CHECK TIME	
	10.2.4.	OVERLAPPING CHANNEL TESTS	
	10.2.5.	MOVE AND CLOSING TIME	
	10.2.6.	DETECTION BANDWIDTH	
	10.2.7.	IN-SERVICE MONITORING	251
1	0.3. RE	SULTS FOR 40 MHz BANDWIDTH	
	10.3.1.	TEST CHANNEL	
	10.3.2.	PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC	
	10.3.3.	CHANNEL AVAILABILITY CHECK TIME	
	10.3.4.	OVERLAPPING CHANNEL TESTS	
	10.3.5.	MOVE AND CLOSING TIME	-
	10.3.6.	NON-OCCUPANCY PERIOD	
	10.3.7.	DETECTION BANDWIDTH	
	10.3.8.	IN-SERVICE MONITORING	279
11.	MAXI	MUM PERMISSIBLE EXPOSURE	286
12.	SETU	IP PHOTOS	290

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: QUALCOMM INC.

3165 KIFER RD

SANTA CLARA, CA 95051

U.S.A.

EUT DESCRIPTION: DC544D 2 PCIe DAUGHTER CARD FOR 2.4 / 5 GHz

AP/ROUTER APPLICATIONS DFS

MODEL: 65-VN780-P2

SERIAL NUMBER: 7916 for Antenna Port, 7929 for Radiated Emission,

and 02324 for DFS

DATE TESTED: JUNE 24 – OCTOBER 15, 2009

APPLICABLE STANDARDS

STANDARD
TEST RESULTS

CFR 47 Part 15 Subpart E
Pass

INDUSTRY CANADA RSS-210 Issue 7 Annex 9
Pass

INDUSTRY CANADA RSS-GEN Issue 2
Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By: Tested By:

FRANK IBRAHIM
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

VIEN TRAN EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2 REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, RSS-GEN Issue 2, and RSS-210 Issue 7.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. **DESCRIPTION OF EUT**

The EUT is an 802.11a/b/g/n WLAN transceiver module in a PCI form factor, for 2.4 / 5 GHz AP/Router Applications that include DFS bands. It is equipped with four identical transmitter / receiver chains.

The radio module is manufactured by Qualcomm, Inc.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5.2 GHz BAND		•	
5180 - 5240	802.11a	12.18	16.52
5180 - 5240	802.11n HT20	13.23	21.04
5190 - 5230	802.11n HT40	16.67	46.45
5.3 GHz BAND			
5260 - 5320	802.11a	19.15	82.22
5260 - 5320	802.11n HT20	20.65	116.14
5270 - 5310	802.11n HT40	23.24	210.86
5.6 GHz BAND			
5500 - 5700	802.11a	19.88	97.27
5500 - 5700	802.11n HT20	20.24	105.68
5510 - 5670	802.11n HT40	23.80	239.88

5.3. **DESCRIPTION OF AVAILABLE ANTENNAS**

The radio utilizes a dual band omni monopole (4 identical) antenna, each with a maximum gain of 3 dBi in the 5 GHz bands.

For the 802.11a legacy mode only two chains are transmitting, therefore the effective legacy antenna gain is:

	,	Effective Legacy Gain (dBi)	
3	3.01	6.01	

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2 REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Qualcomm, rev. 0.0.500.5.

The test utility software used during emissions testing was PTT Gui, rev. 5.1.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module installed in a test jig board connected to a host Laptop PC.

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11a Mode (20 MHz BW operation): 6 Mbps, OFDM.

802.11n MIMO HT20 Mode: MCS31, 260 Mbps, 4 Spatial Streams.

802.11n MIMO HT40 Mode: MCS31, 540 Mbps, 4 Spatial Streams.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power, that was determined to be 11n HT40, high channel.

For bandwidth measurement preliminary testing showed that there is no significant difference among different chains, so the measurements were performed using Chain 0.

For conducted spurious measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore final measurements were performed using combiner for all channels and modes.

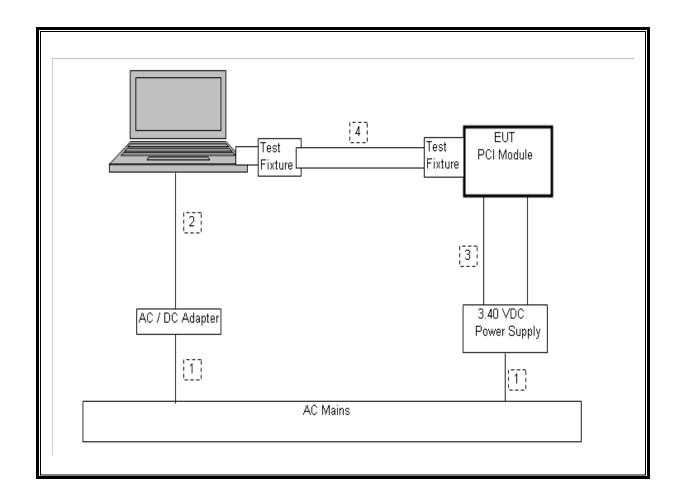
For PPSD measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore final measurements were performed using combiner for all channels and modes.

For Radiated Band Edge measurements preliminary testing showed that the worst case was vertical polarization, so final measurements were performed with vertical polarization.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number		Serial Number	FCC ID			
Laptop	IBM	T43 ThinkPad	L3-XDLXW06/02	DoC		
AC Adapter	IBM	08K8204	11S08K8204Z1Z9	DoC		
DC Power Supply	Tektronic	PS2521G	N/A	N/A		
DC Power Supply	HP	336108	KR24104150	N/A		
Extender PCI	ALLION	V1 EC-PEM V1.0	A073	N/A		


I/O CABLES

	I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connecto Type	Cable Type	Cable Length	Remarks	
1	AC	2	US115	Un-shielded	1.5 m	For laptop	
2	DC	1	DC	Un-shielded	1.5 m	For laptop	
3	DC	1	Cable	Un-shielded	1.0 m	For EUT	
4	Ribbon	1	Ribbon	Un-shielded	.4 m	Test Fixture	

TEST SETUP

The EUT is connected to a host laptop computer via a test fixture during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/09	01/05/10	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/09	01/14/10	
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	04/22/10	
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	09/29/08	11/28/09	
Antenna, Horn, 40 GHz	ARA	MWH-2640B	C00981	05/21/09	05/21/10	
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	10/11/08	10/11/09	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/09	03/31/10	
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	08/05/08	08/05/09	
Peak Power Meter	Boonton	4541	C01186	01/19/09	01/19/10	
Peak Power Sensor	Boonton	4541	C01189	01/15/09	01/15/10	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/29/08	10/29/09	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	02/06/08	08/06/09	

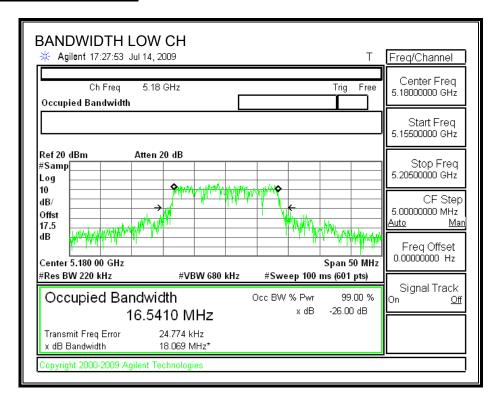
7. ANTENNA PORT TEST RESULTS

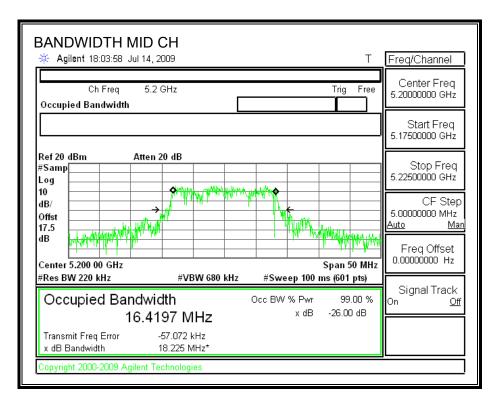
7.1. 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE

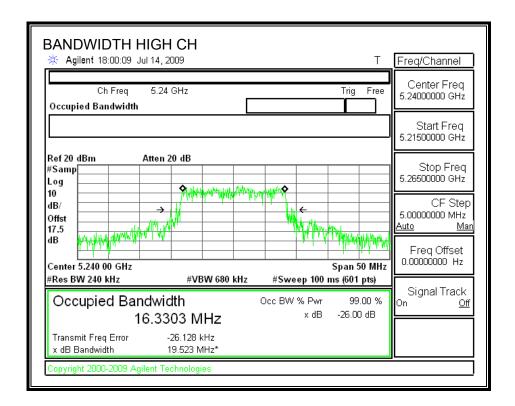
7.1.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth	
	(MHz)	(MHz)	(MHz)	
Low	5180	18.0690	16.5410	
Middle	5200	18.2250	16.4197	
High	5240	19.5230	16.3303	

26 dB and 99% BANDWIDTH

7.1.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

	,	Effective Legacy Gain (dBi)	
3	3.01	6.01	

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

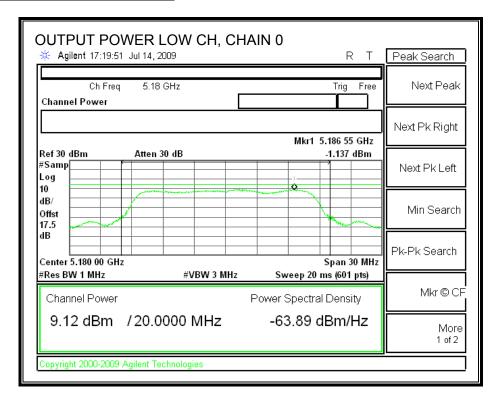
TEST PROCEDURE

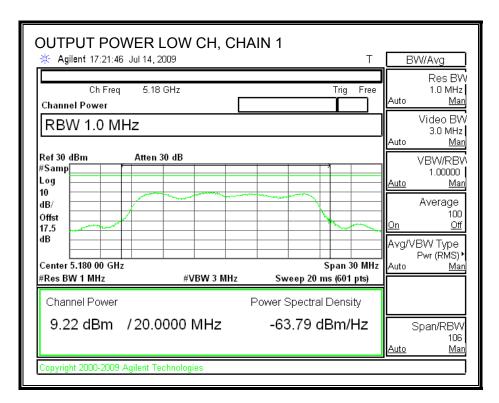
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

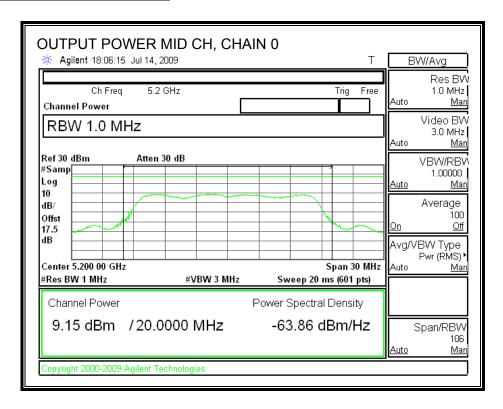
RESULTS

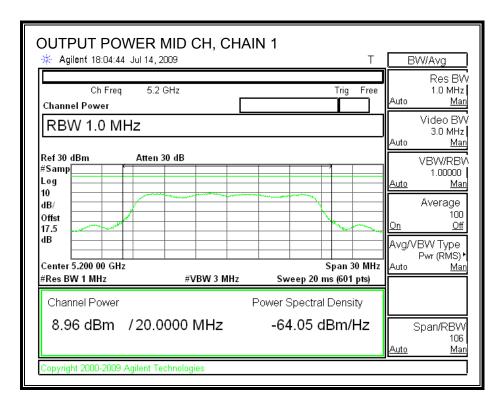
Limit

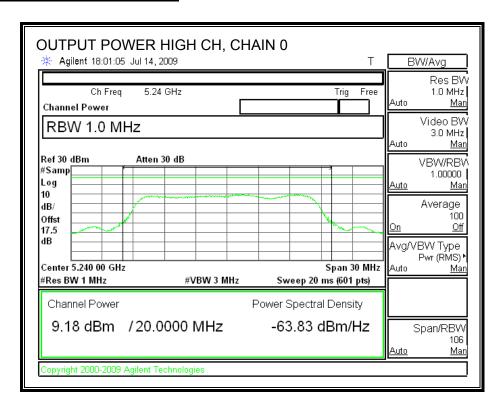

Channel	Freq	Fixed	В	4 + 10 Log B Effective		Limit
		Limit		Limit	AntennaGain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	18.069	16.57	6.01	16.56
Mid	5200	17	18.225	16.61	6.01	16.60
High	5240	17	19.523	16.91	6.01	16.90

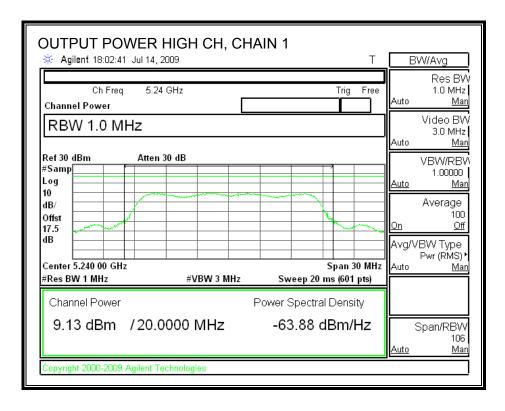

Individual Chain Results

Channel	Freq	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.12	9.22	12.18	16.56	-4.38
Mid	5200	9.15	8.96	12.07	16.60	-4.53
High	5240	9.18	9.13	12.17	16.90	-4.73


DATE: OCTOBER 21, 2009


OUTPUT POWER, LOW CHANNEL




OUTPUT POWER, MID CHANNEL

OUTPUT POWER, HIGH CHANNEL

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 1	Chain 2	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	9.12	9.08	12.11
Middle	5200	9.21	9.05	12.14
High	5240	9.16	8.99	12.09

7.1.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

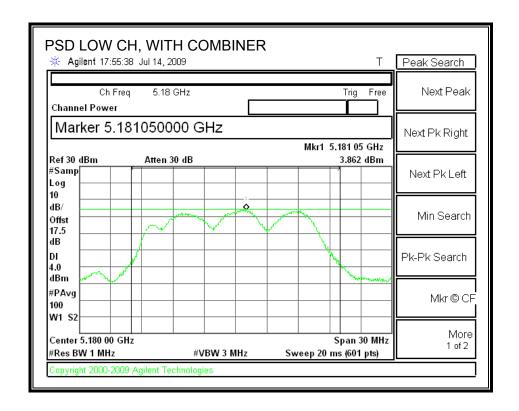
Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

	• ,	Effective Legacy Gain (dBi)
3	3.01	6.01

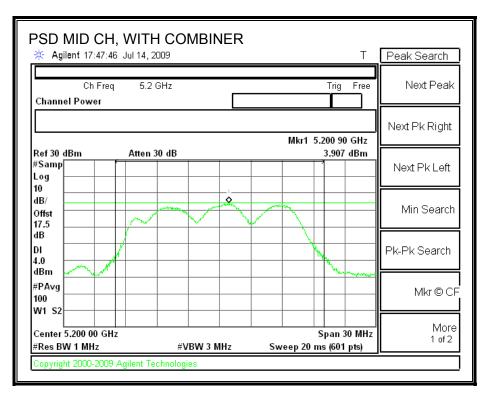
For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

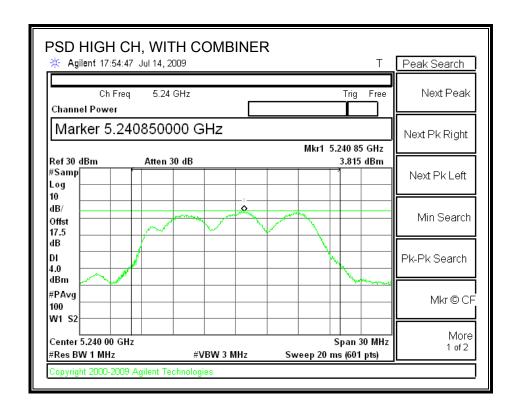
The maximum effective antenna gain is 6.01 dBi, therefore the limit is 3.99 dBm.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS


Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.86	3.99	-0.13
Middle	5200	3.91	3.99	-0.08
High	5240	3.82	3.99	-0.18


DATE: OCTOBER 21, 2009

POWER SPECTRAL DENSITY WITH COMBINER

DATE: OCTOBER 21, 2009

7.1.5. PEAK EXCURSION

LIMITS

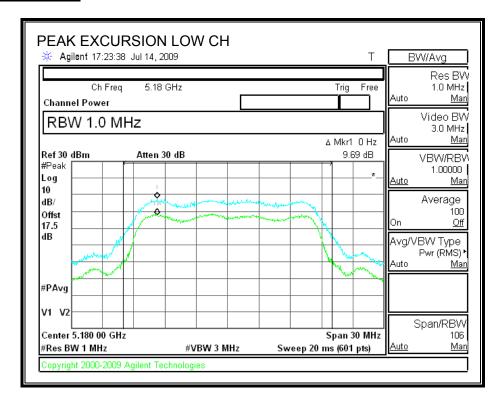
FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

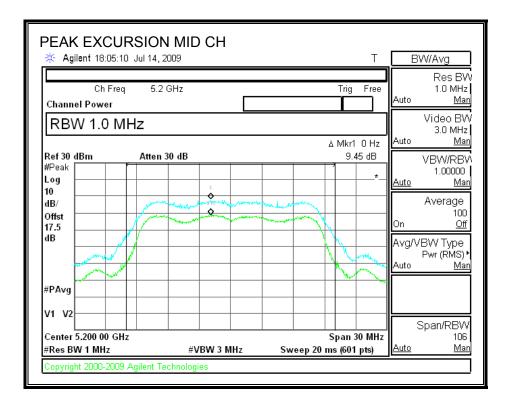
DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

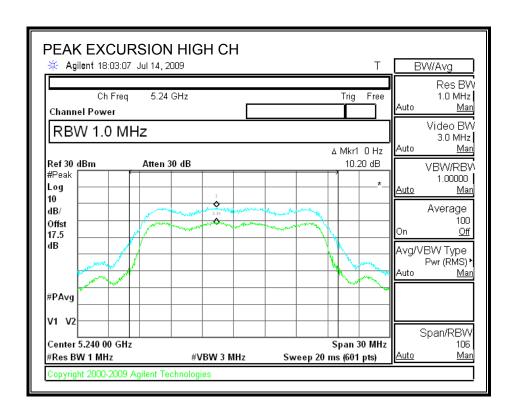
TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.69	13	-3.31
Middle	5200	9.45	13	-3.55
High	5240	10.20	13	-2.80

PEAK EXCURSION

DATE: OCTOBER 21, 2009

7.1.6. CONDUCTED SPURIOUS EMISSIONS

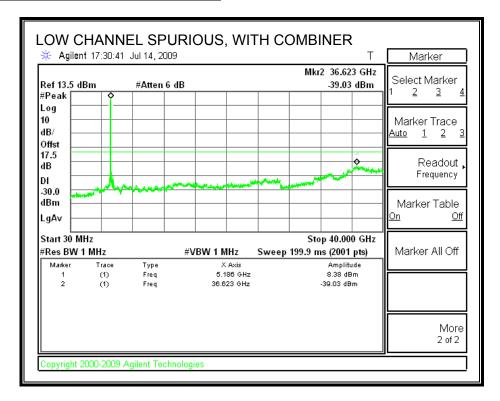
LIMITS

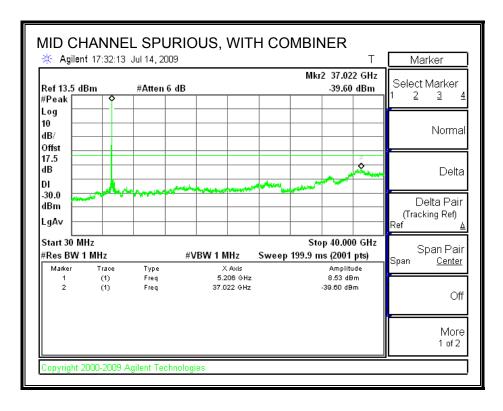
FCC §15.407 (b) (1)

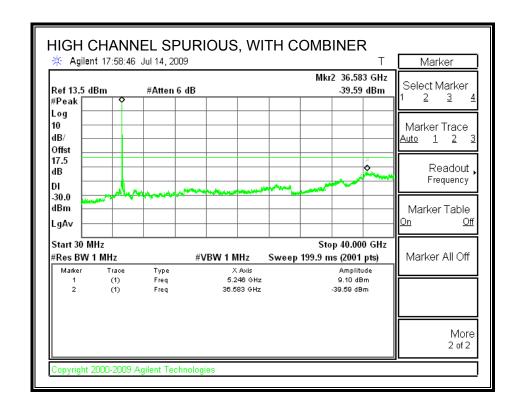
IC RSS-210 A9.3 (1)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2


TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

SPURIOUS EMISSIONS WITH COMBINER

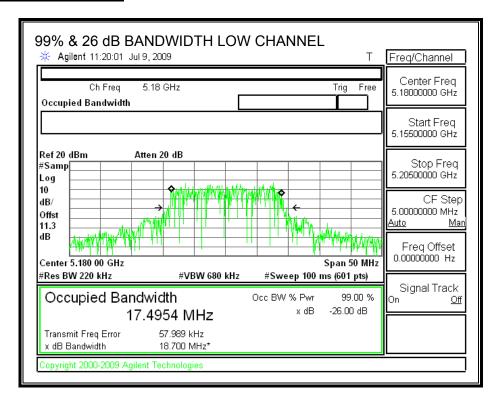
REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

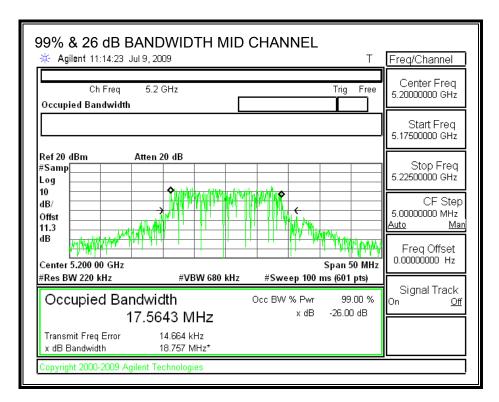
7.2. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

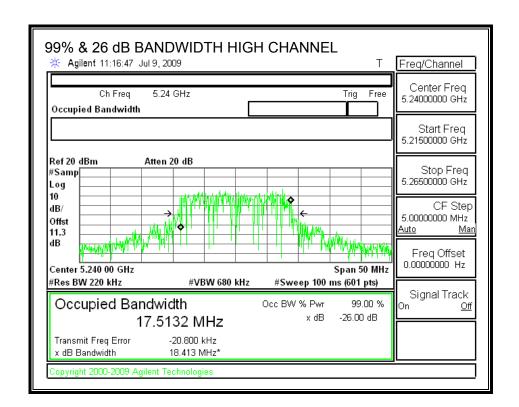
7.2.1. 99% & 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5180	17.4954	18.700	
Middle	5200	17.5643	18.757	
High	5240	17.5132	18.413	

99% & 26 dB BANDWIDTH

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

7.2.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

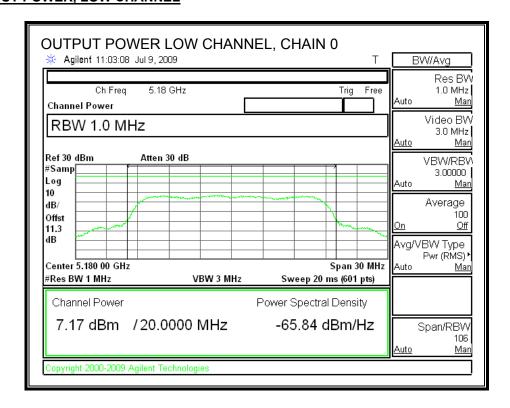
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

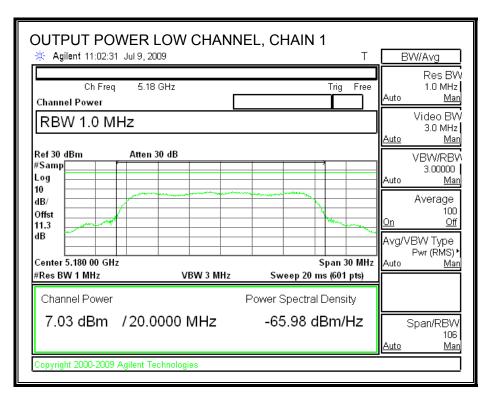
The transmitter output operates continuously therefore Method # 1 is used.

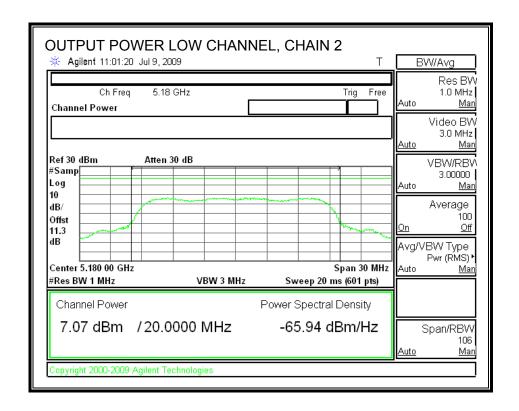
RESULTS

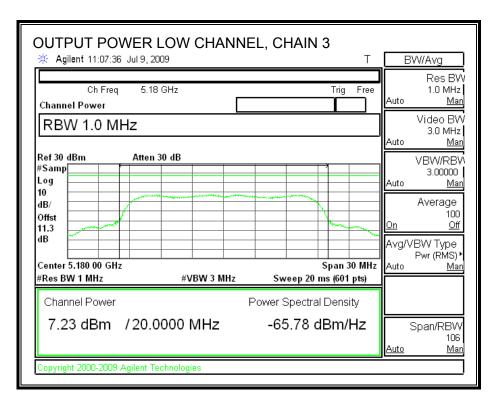
Limit

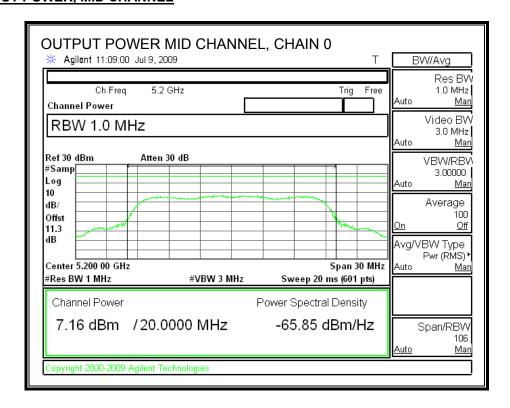

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	18.700	16.72	3	16.72
Mid	5200	17	18.757	16.73	3	16.73
High	5240	17	18.413	16.65	3	16.65

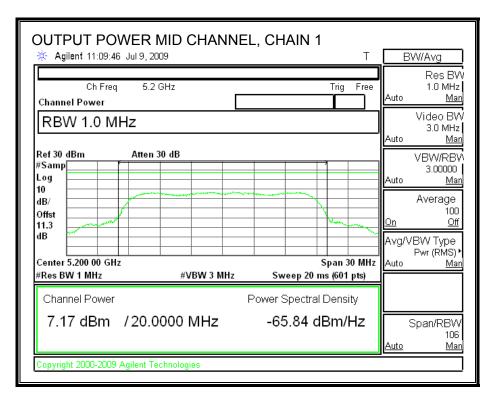
Individual Chain Results

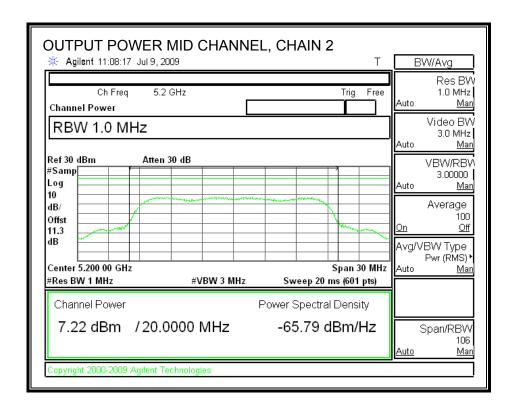

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	7.17	7.03	7.07	7.23	13.15	16.72	-3.57
Mid	5200	7.16	7.17	7.22	7.28	13.23	16.73	-3.50
High	5240	7.16	7.14	7.18	7.28	13.21	16.65	-3.44

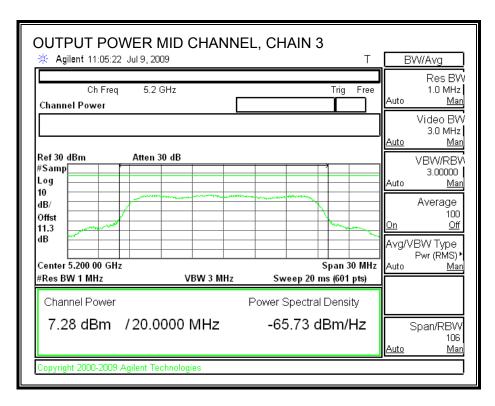

DATE: OCTOBER 21, 2009

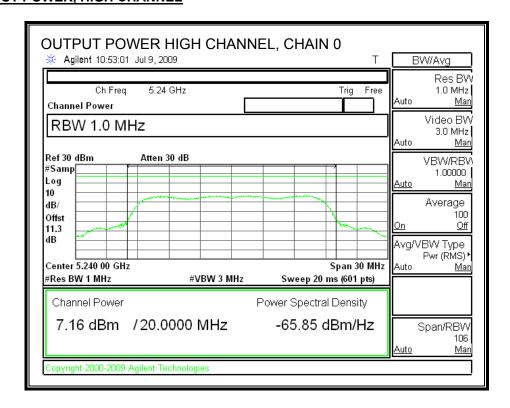

OUTPUT POWER, LOW CHANNEL

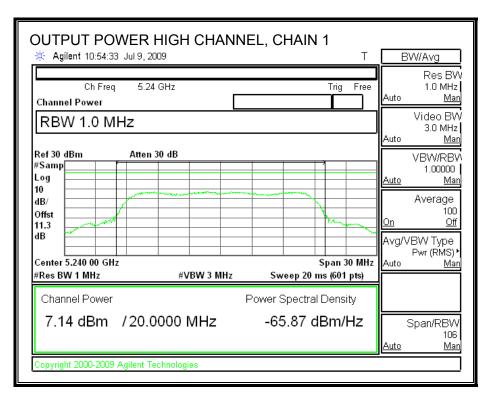

DATE: OCTOBER 21, 2009

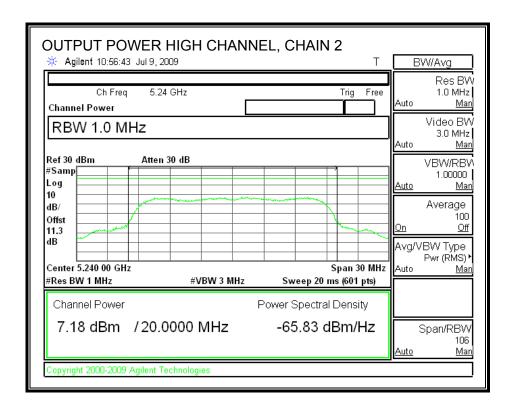


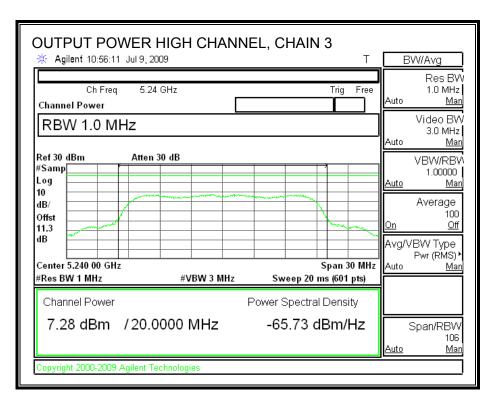



OUTPUT POWER, MID CHANNEL


DATE: OCTOBER 21, 2009






OUTPUT POWER, HIGH CHANNEL

DATE: OCTOBER 21, 2009

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Frequency	Chain 0 Chain 1		Chain 2	Chain 3
	Power	Power	Power	Power
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
5180	7.14	7.26	7.10	7.23
5200	7.15	7.21	7.24	7.23
5240	7.35	7.32	7.39	7.28

7.2.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

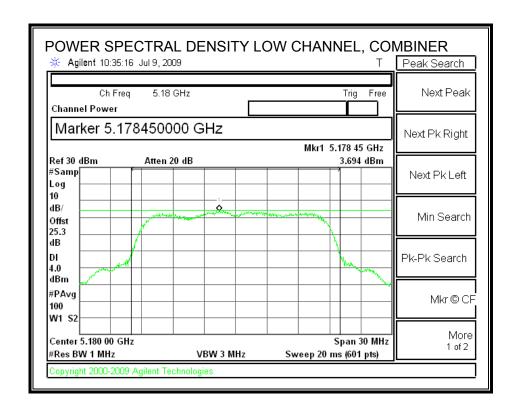
IC RSS-210 A9.2 (2)

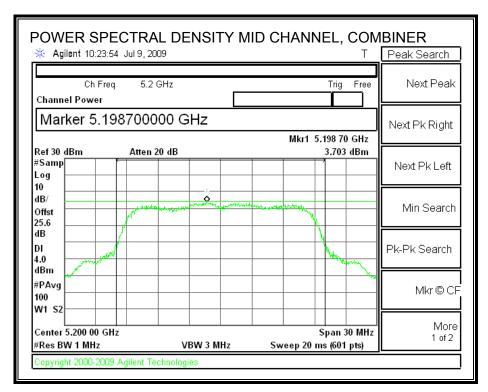
For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

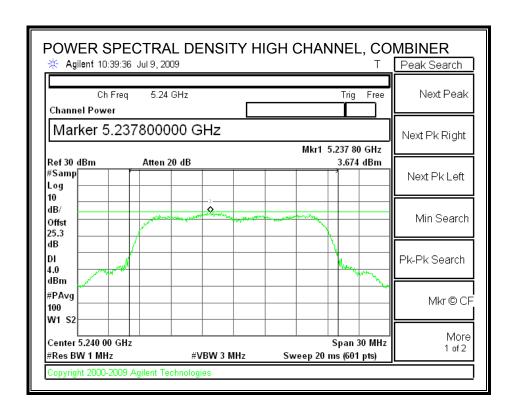
The maximum antenna gain is less than 6 dBi; therefore the limit is 4 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS


Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.69	4	-0.31
Middle	5200	3.70	4	-0.30
High	5240	3.67	4	-0.33

DATE: OCTOBER 21, 2009

POWER SPECTRAL DENSITY

7.2.5. PEAK EXCURSION

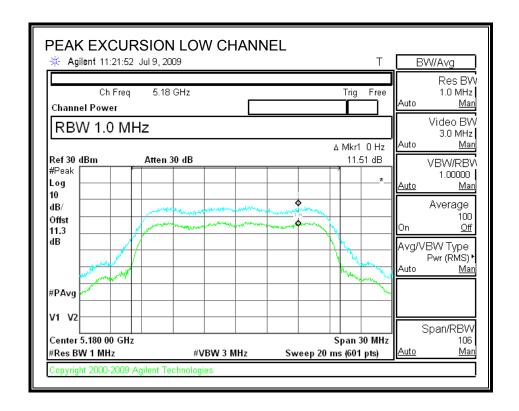
LIMITS

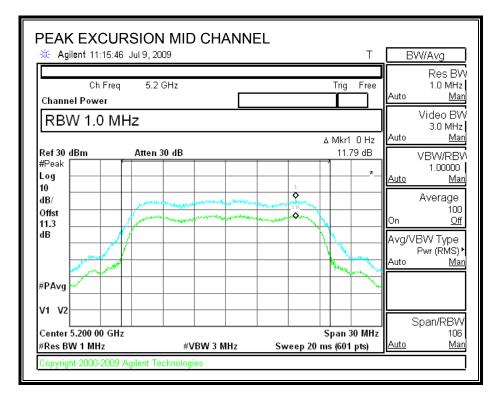
FCC §15.407 (a) (6)

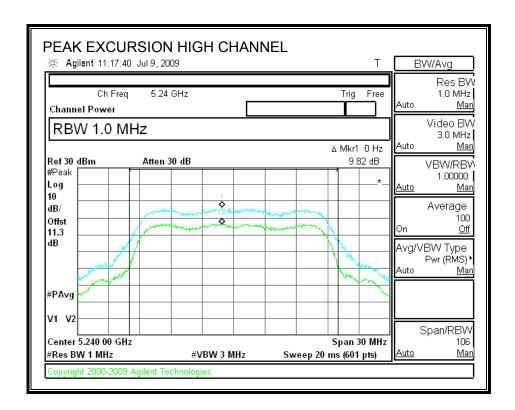
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency Peak Excursion		Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	11.51	13	-1.49
Middle	5200	11.79	13	-1.21
High	5240	9.82	13	-3.18

PEAK EXCURSION

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

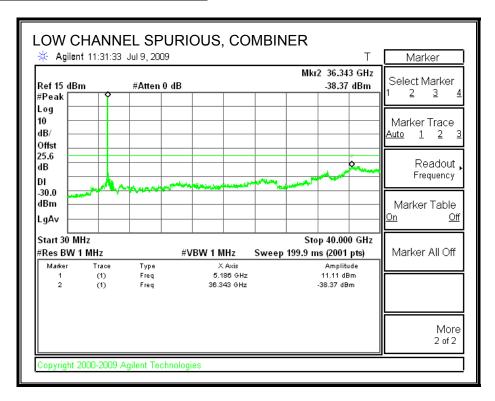
FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

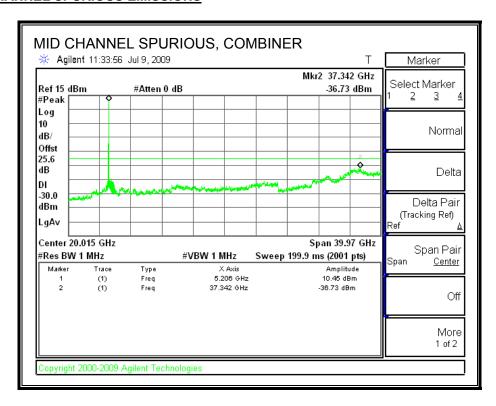
For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

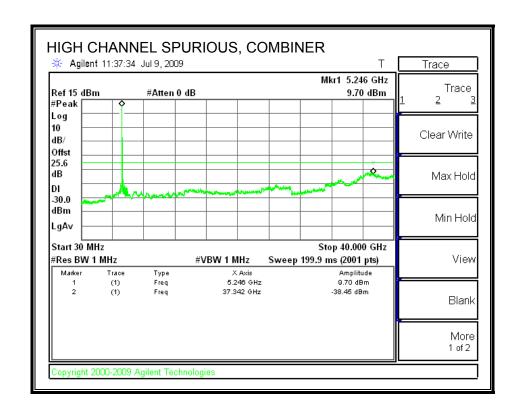
TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


LOW CHANNEL SPURIOUS EMISSIONS

MID CHANNEL SPURIOUS EMISSIONS

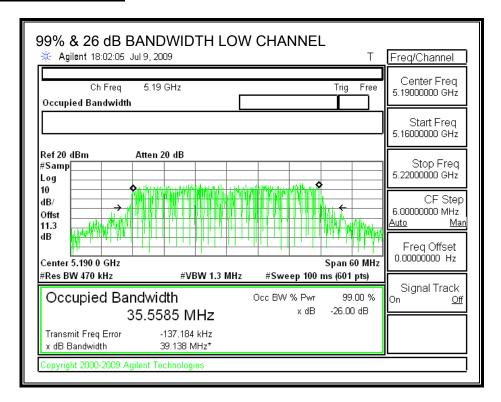
HIGH CHANNEL SPURIOUS EMISSIONS

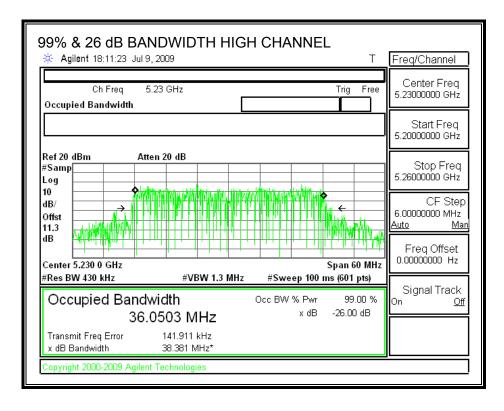
DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2 REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.3. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

7.3.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5190	35.5585	39.138
High	5230	36.0503	38.381

99% & 26 dB BANDWIDTH

7.3.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

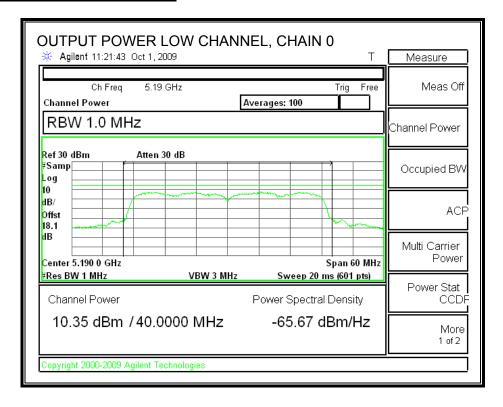
TEST PROCEDURE

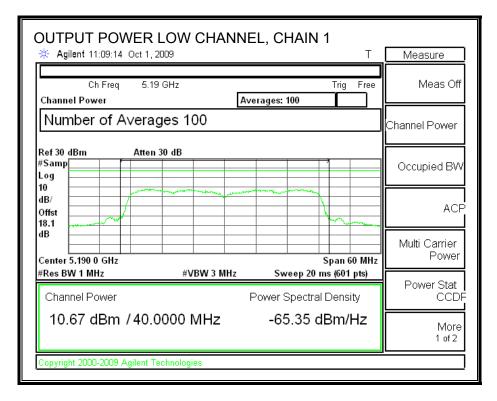
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

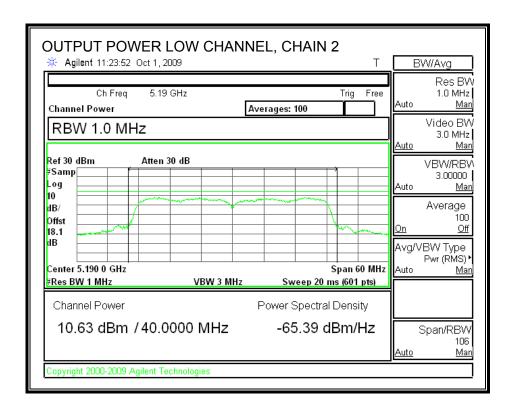
The transmitter output operates continuously therefore Method # 1 is used.

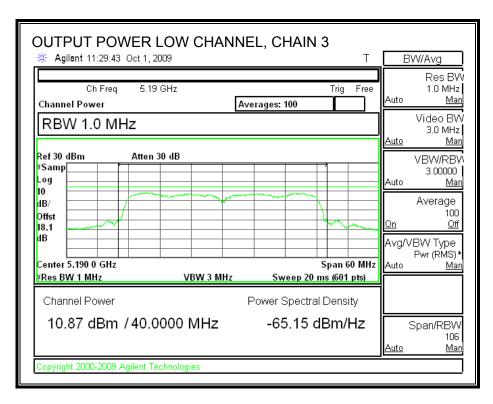
RESULTS

Limit

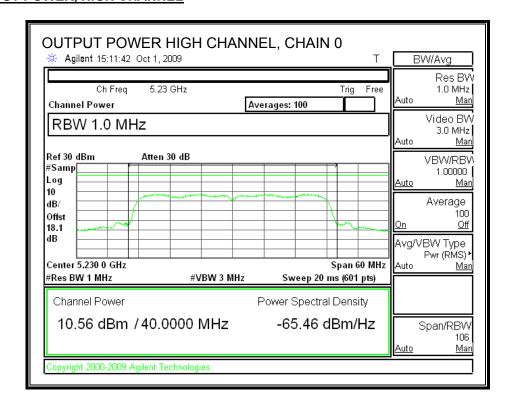

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5190	17	39.138	19.93	3	17.00
High	5230	17	38.381	19.84	3	17.00

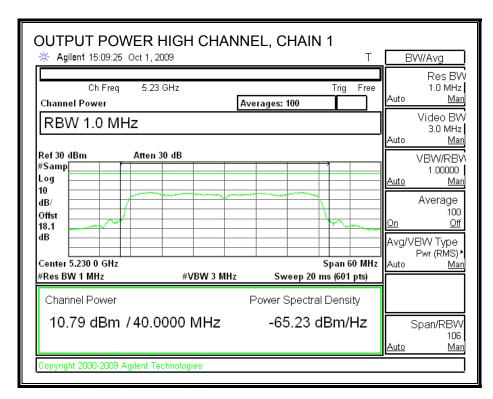

Individual Chain Results

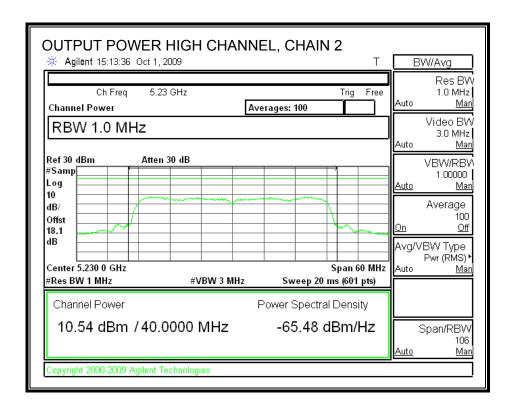

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	10.35	10.67	10.63	10.87	16.65	17.00	-0.35
High	5230	10.56	10.79	10.54	10.70	16.67	17.00	-0.33

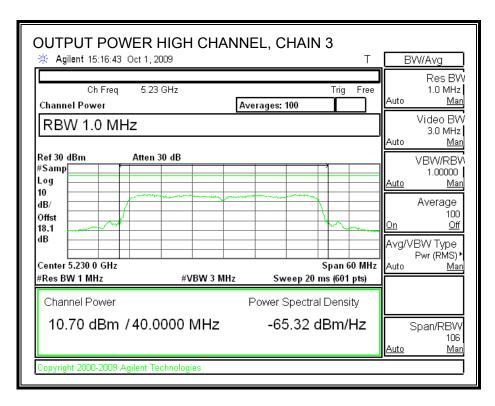

DATE: OCTOBER 21, 2009

OUTPUT POWER, LOW CHANNEL








OUTPUT POWER, HIGH CHANNEL

DATE: OCTOBER 21, 2009

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Frequency	Chain 0	Chain 1	Chain 2	Chain 3
	Power	Power	Power	Power
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
5190	10.57	10.98	10.59	10.82
5230	10.47	10.70	10.52	10.66

7.3.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

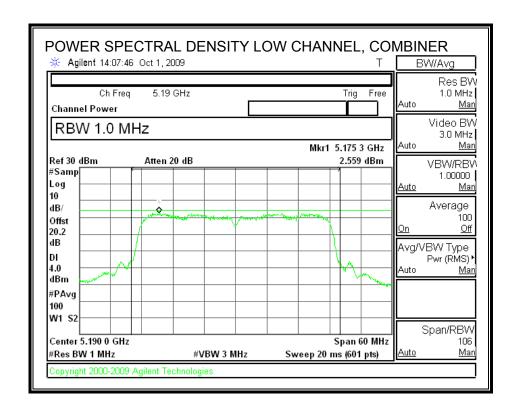
IC RSS-210 A9.2 (2)

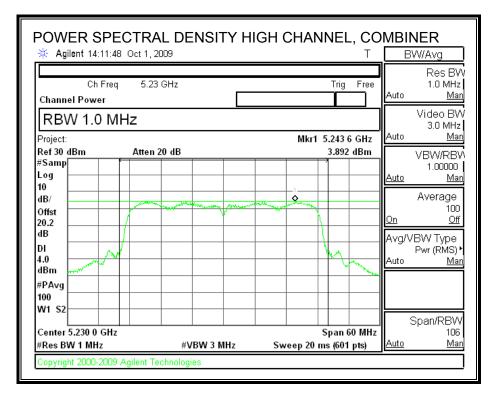
For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

The maximum antenna gain is less than 6 dBi; therefore the limit is 4 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	uency PSD with Combiner		Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5190	2.559	4	-1.44
High	5230	3.892	4	-0.11

POWER SPECTRAL DENSITY

This report shall not be reproduced except in full, without the written approval of CCS.

7.3.5. PEAK EXCURSION

LIMITS

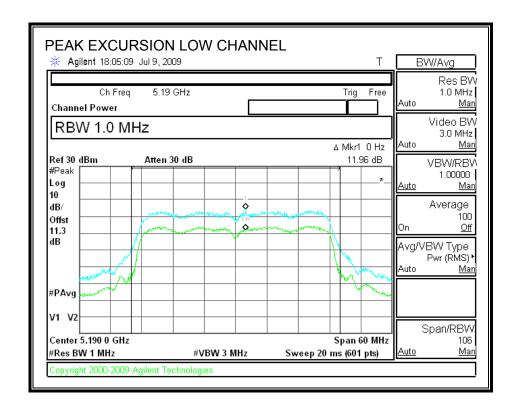
FCC §15.407 (a) (6)

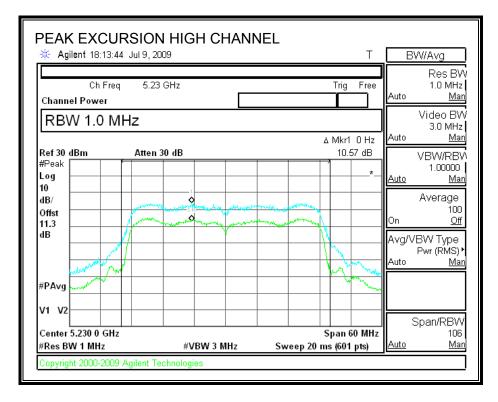
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	requency Peak Excursion		Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	11.96	13	-1.04
High	5230	10.57	13	-2.43

PEAK EXCURSION

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

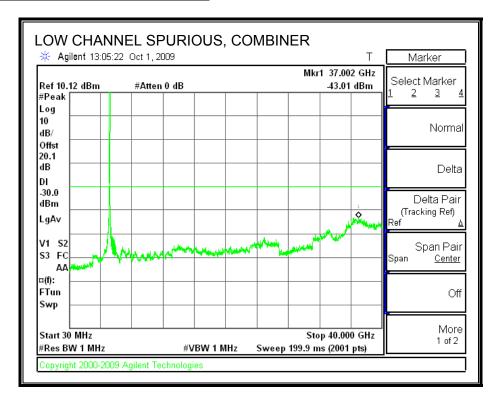
FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

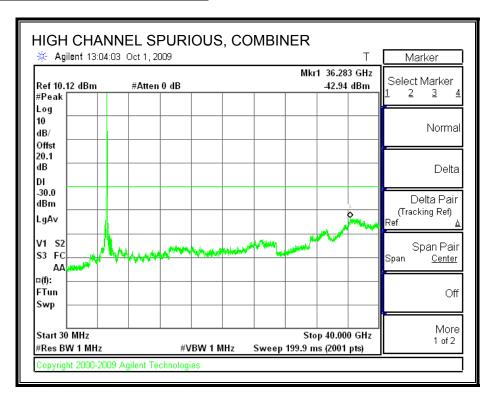
For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

LOW CHANNEL SPURIOUS EMISSIONS

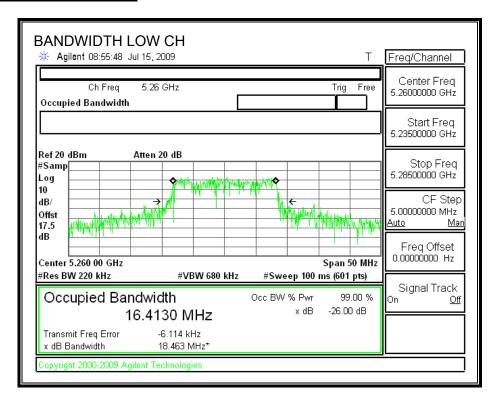
HIGH CHANNEL SPURIOUS EMISSIONS

TEL: (510) 771-1000 FAX: (510) 661-0888 REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

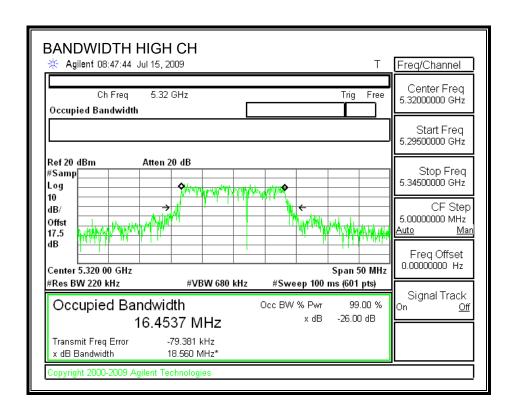
7.4. 5.3 GHz BAND CHANNEL TESTS FOR 802.11a MODE

7.4.1. 26 dB and 99% BANDWIDTH

LIMITS


None; for reporting purposes only.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5260	18.4630	16.4130
Middle	5300	18.8510	16.4084
High	5320	18.5600	16.4537

26 dB and 99% BANDWIDTH

7.4.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

	• • • • • • • • • • • • • • • • • • • •	Effective Legacy Gain (dBi)	
3	3.01	6.01	

For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

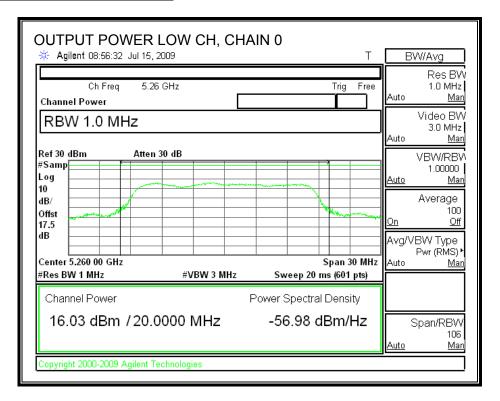
The transmitter output operates continuously therefore Method # 1 is used.

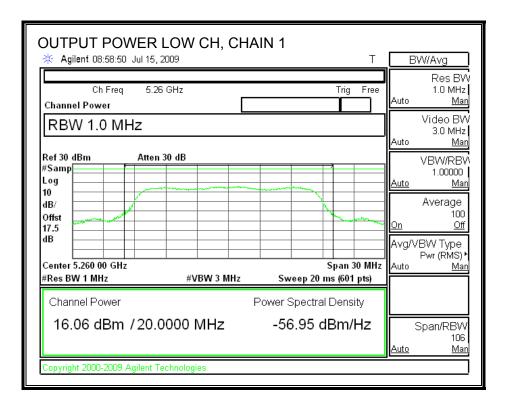
RESULTS

Limit

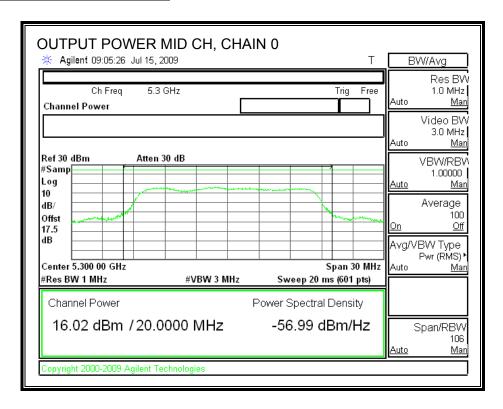
Channel	Frequency	Fixed	В	11 + 10 Log B	Effective	Limit
		Limit		Limit	Ant Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5260	24	18.4630	23.66	6.01	23.65
Mid	5300	24	18.8510	23.75	6.01	23.74
High	5320	24	18.5600	23.69	6.01	23.68

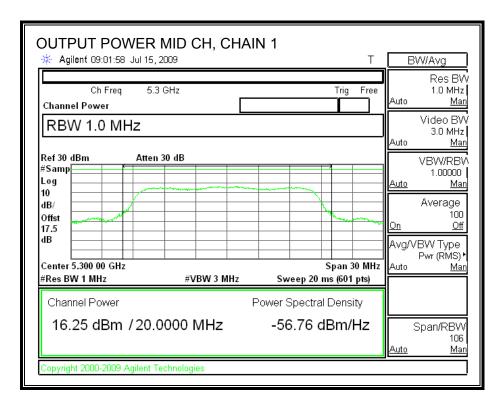
Individual Chain Results

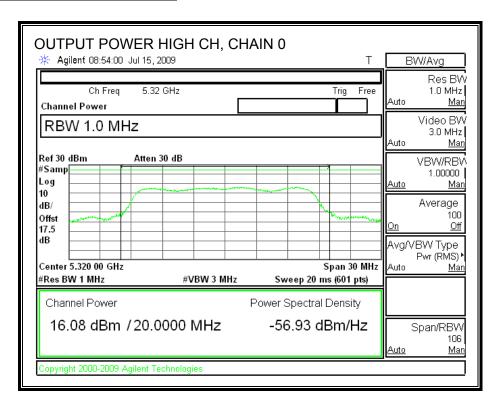

Channel	Frequency	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	16.03	16.06	19.06	23.65	-4.60
Mid	5300	16.02	16.25	19.15	23.74	-4.60
High	5320	16.08	16.09	19.10	23.68	-4.58

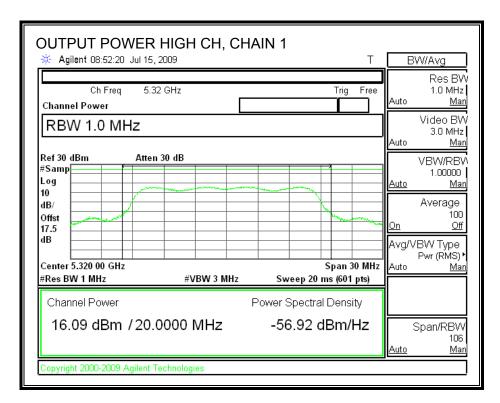

DATE: OCTOBER 21, 2009

DATE: OCTOBER 21, 2009


IC: 2723A-DC544D2


OUTPUT POWER, LOW CHANNEL




OUTPUT POWER, MID CHANNEL

OUTPUT POWER, HIGH CHANNEL

7.4.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5260	15.94	16.16	19.06
Middle	5300	16.14	16.32	19.24
High	5320	16.05	16.25	19.16

7.4.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

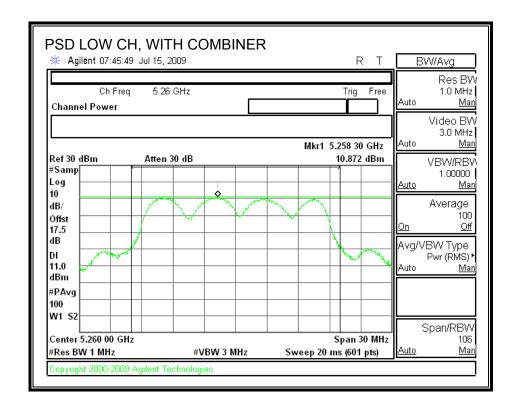
Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

	10 Log (# Tx Chains) (dB)	Effective Legacy Gain (dBi)	
3	3.01	6.01	

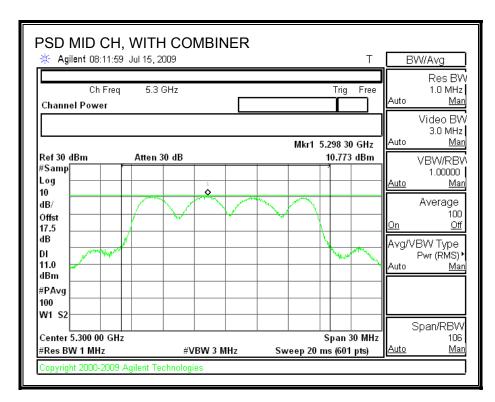
For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

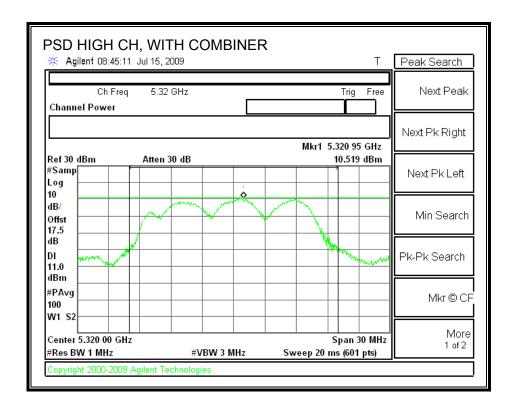
The maximum effective antenna gain is 6.01 dBi, therefore the limit is 10.99 dBm.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS


Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5260	10.87	10.99	-0.12
Middle	5300	10.77	10.99	-0.22
High	5320	10.52	10.99	-0.47


DATE: OCTOBER 21, 2009

POWER SPECTRAL DENSITY WITH COMBINER

DATE: OCTOBER 21, 2009

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

7.4.5. PEAK EXCURSION

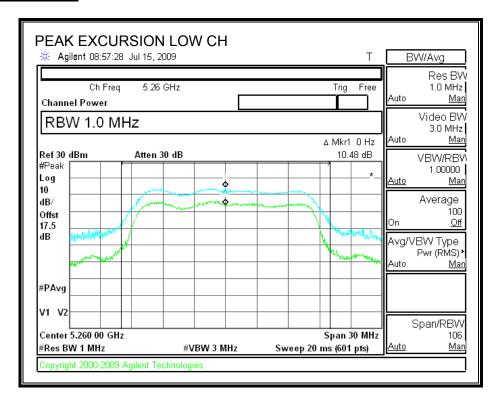
LIMITS

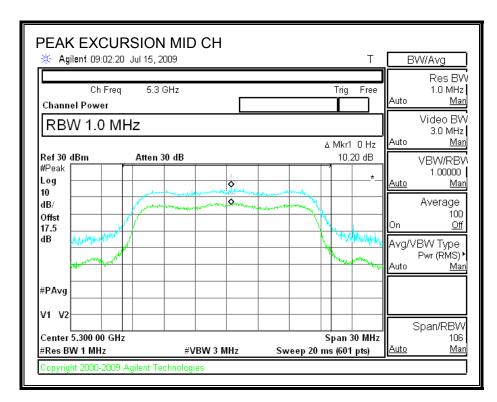
FCC §15.407 (a) (6)

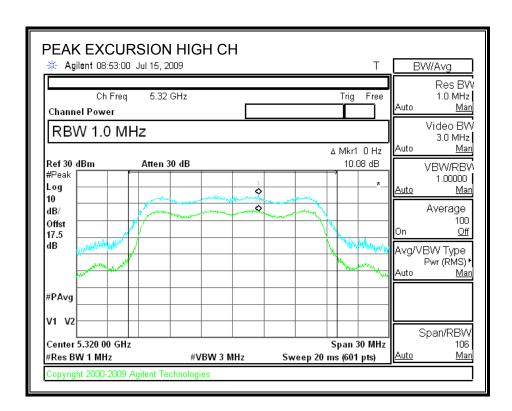
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5260	10.48	13	-2.52
Middle	5300	10.20	13	-2.80
High	5320	10.08	13	-2.92

PEAK EXCURSION

7.4.6. CONDUCTED SPURIOUS EMISSIONS

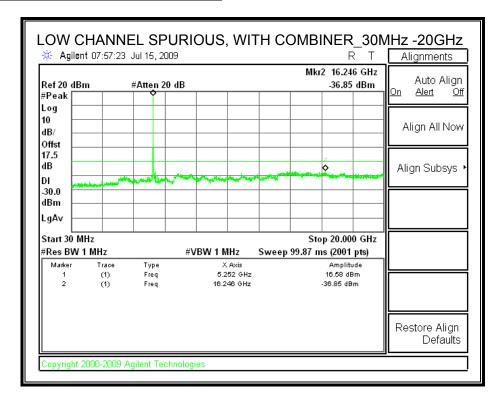
LIMITS

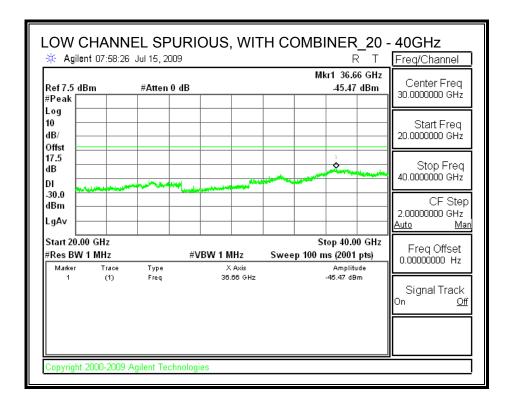
FCC §15.407 (b) (1)

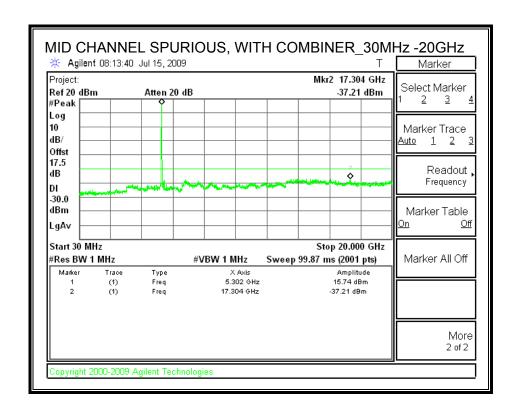
IC RSS-210 A9.3 (1)

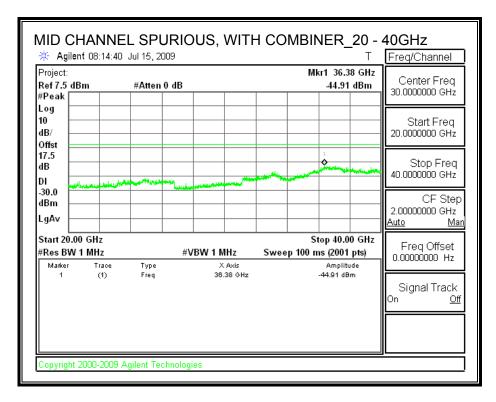
For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

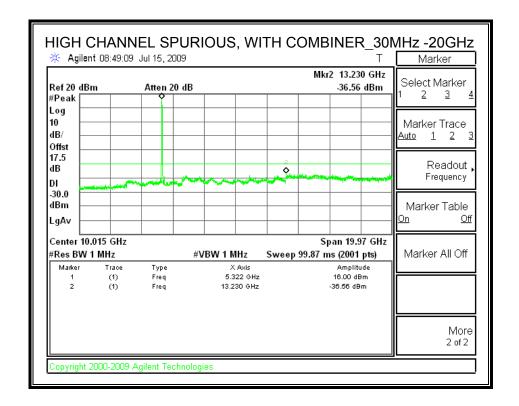
DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

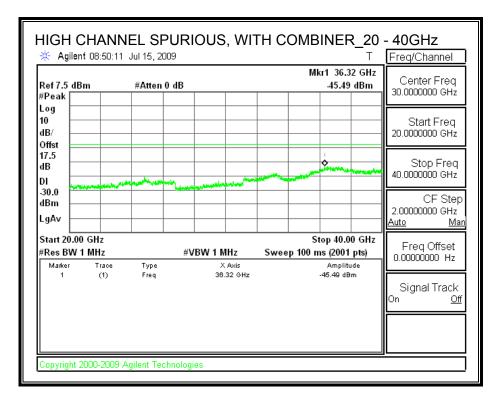

TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


SPURIOUS EMISSIONS WITH COMBINER

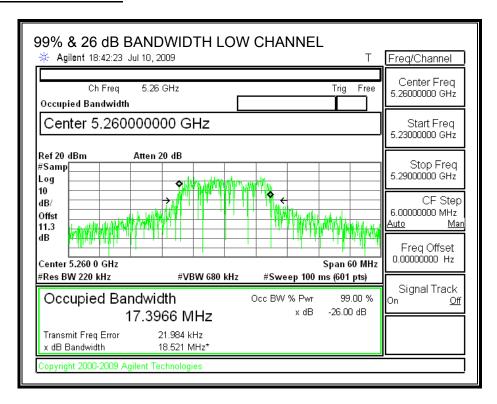


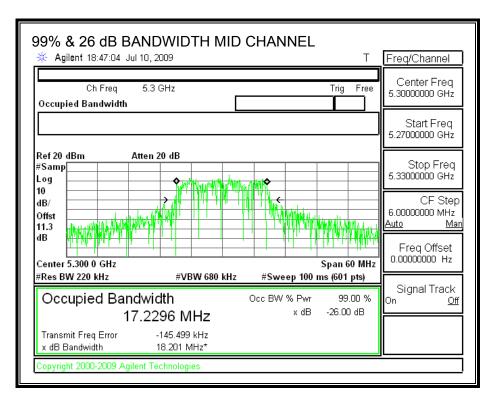
REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

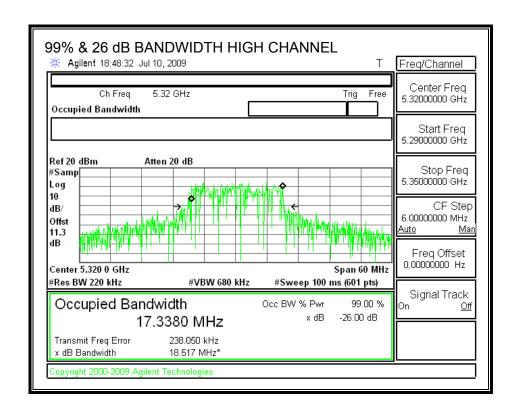
7.5. 5.3 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

7.5.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5260	17.3966	18.521	
Middle	5300	17.2296	18.201	
High	5320	17.3380	18.517	

99% & 26 dB BANDWIDTH

7.5.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

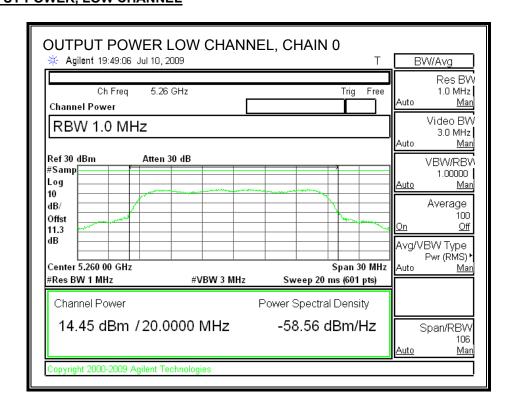
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

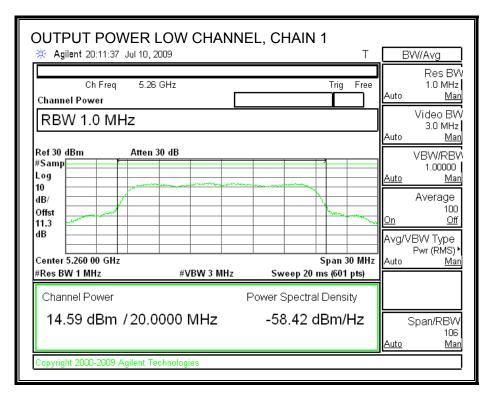
The transmitter output operates continuously therefore Method # 1 is used.

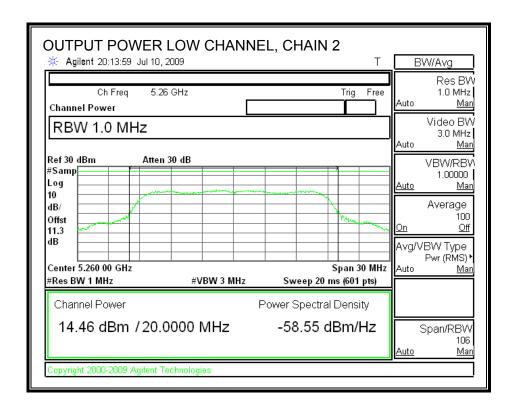
RESULTS

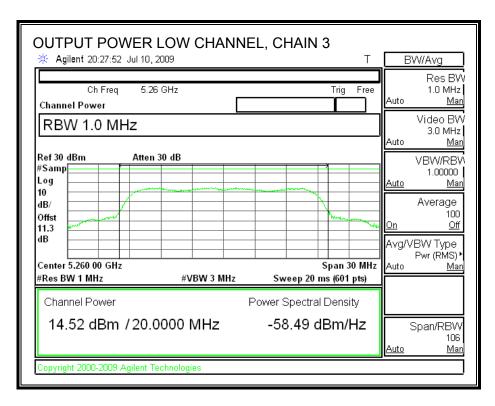
Limit

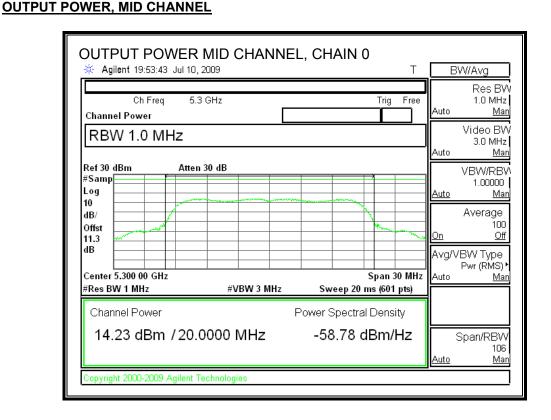

Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5260	24	18.520	23.68	3	23.68
Mid	5300	24	18.201	23.60	3	23.60
High	5320	24	18.517	23.68	3	23.68

Individual Chain Results

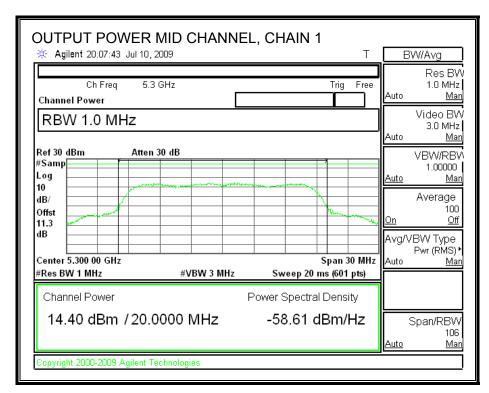

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	14.45	14.59	14.46	14.52	20.53	23.68	-3.15
Mid	5300	14.23	14.40	14.49	14.62	20.46	23.60	-3.14
High	5320	14.67	14.59	14.69	14.57	20.65	23.68	-3.02

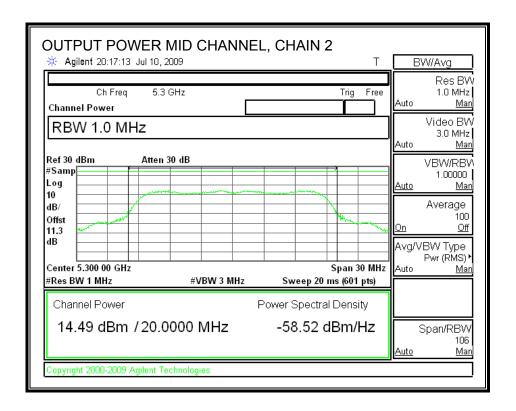

DATE: OCTOBER 21, 2009

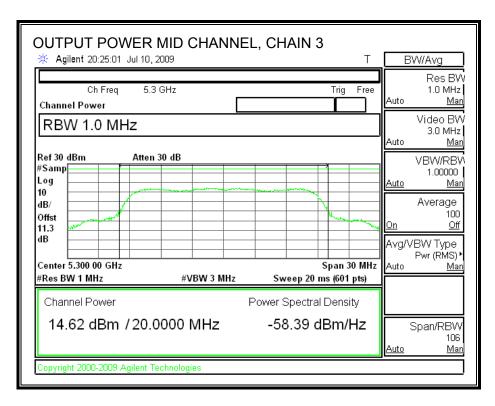

OUTPUT POWER, LOW CHANNEL

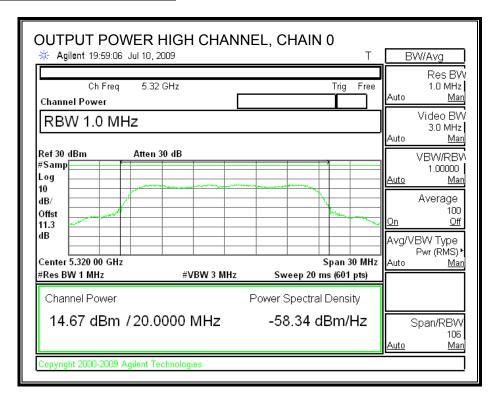


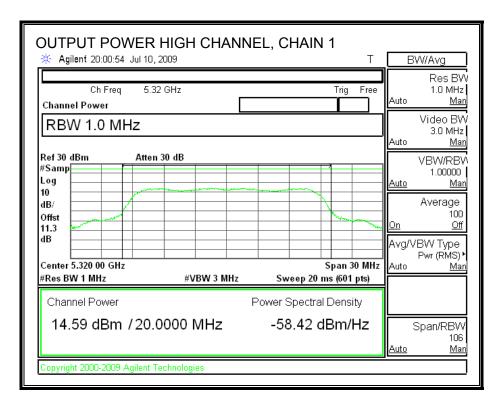
DATE: OCTOBER 21, 2009

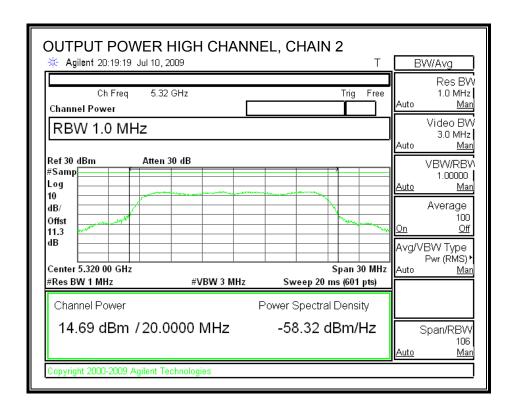


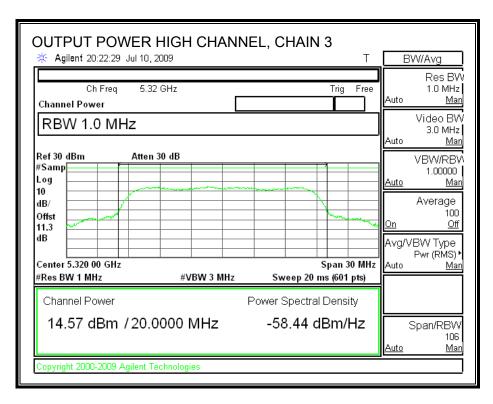





DATE: OCTOBER 21, 2009







OUTPUT POWER, HIGH CHANNEL

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.5.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Frequency	Chain 0	Chain 1	Chain 2	Chain 3
	Power	Power	Power	Power
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
5260	14.64	14.56	14.45	14.74
5300	14.44	14.53	14.51	14.64
5320	14.50	14.54	14.65	14.66

7.5.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

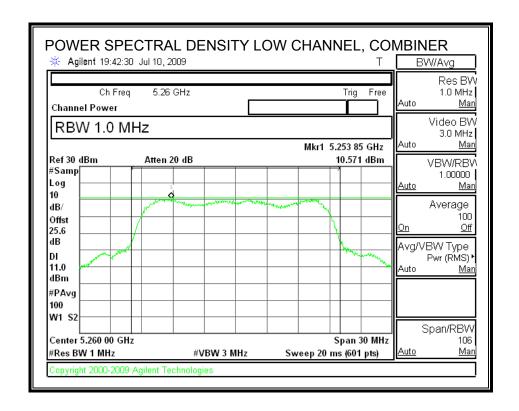
For the 5.25-5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than 6 dBi; therefore the limit is 11 dBm.

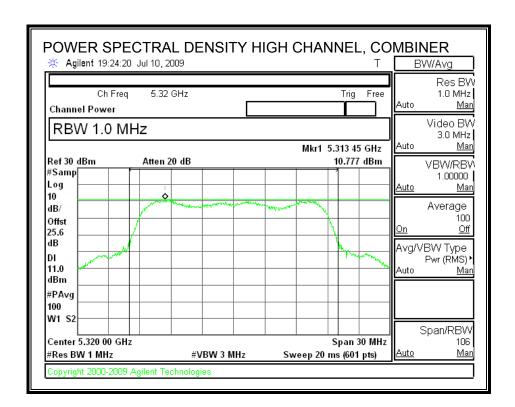
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS


Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5260	10.57	11	-0.43
Middle	5300	10.43	11	-0.57
High	5320	10.78	11	-0.22


FAX: (510) 661-0888

DATE: OCTOBER 21, 2009

POWER SPECTRAL DENSITY

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

7.5.5. PEAK EXCURSION

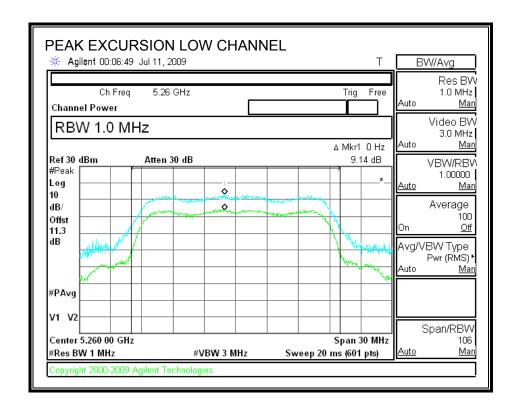
LIMITS

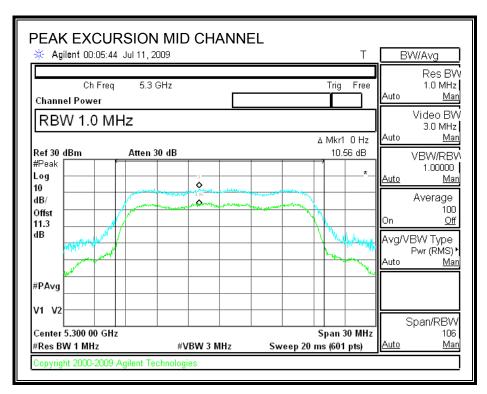
FCC §15.407 (a) (6)

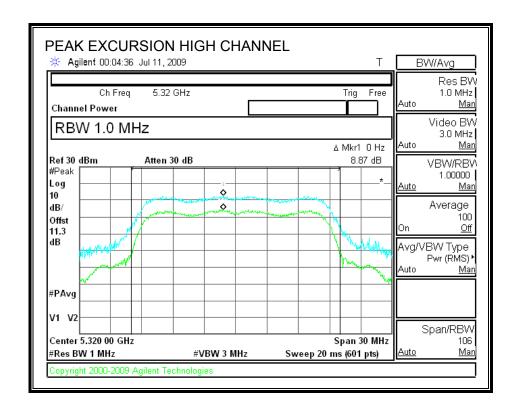
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5260	9.14	13	-3.86
Middle	5300	10.56	13	-2.44
High	5320	8.87	13	-4.13

PEAK EXCURSION

7.5.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

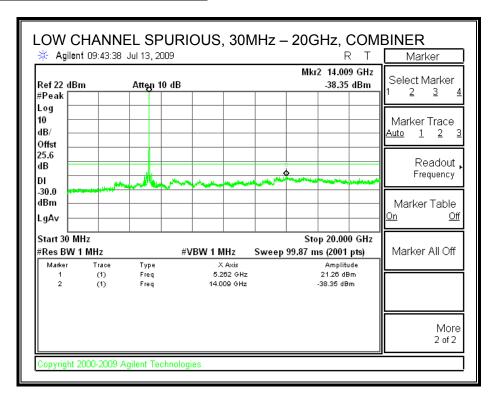
For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

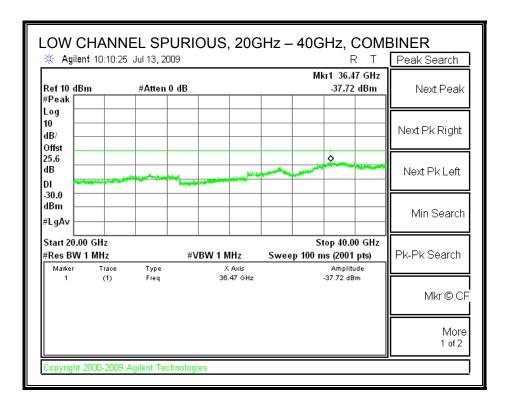
DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

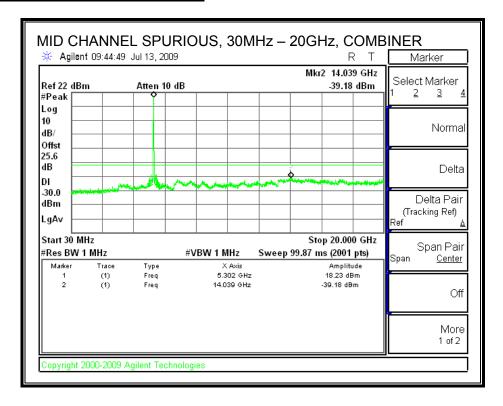
Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

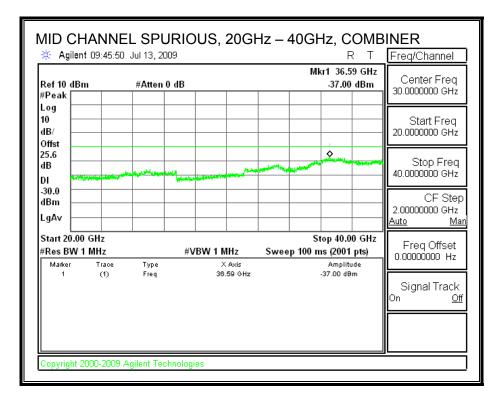
TEST PROCEDURE

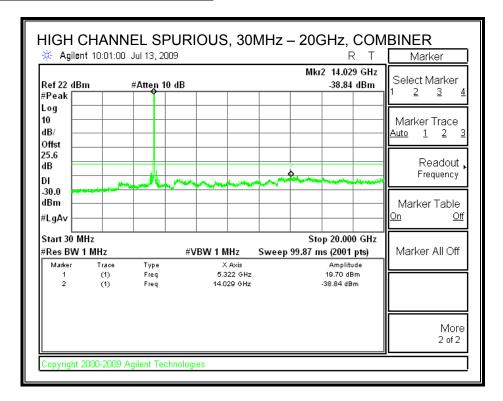

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

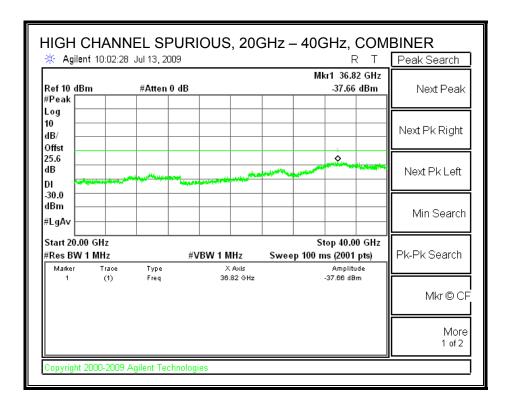

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


LOW CHANNEL SPURIOUS EMISSIONS




MID CHANNEL SPURIOUS EMISSIONS

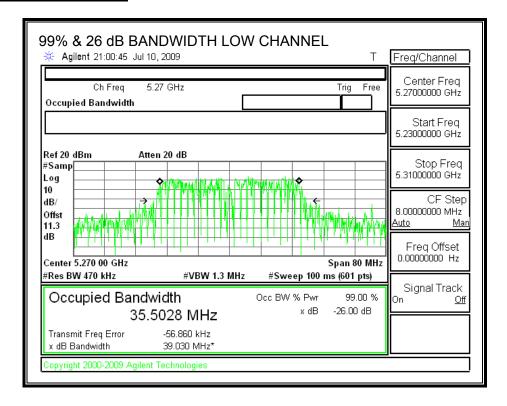
HIGH CHANNEL SPURIOUS EMISSIONS

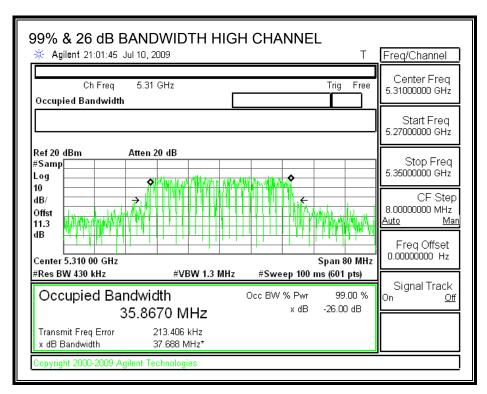
REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.6. 5.3 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

7.6.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5270	35.503	39.030
High	5310	35.867	37.688

99% & 26 dB BANDWIDTH

7.6.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

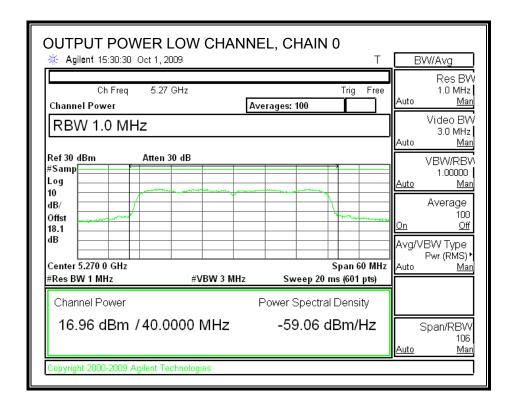
TEST PROCEDURE

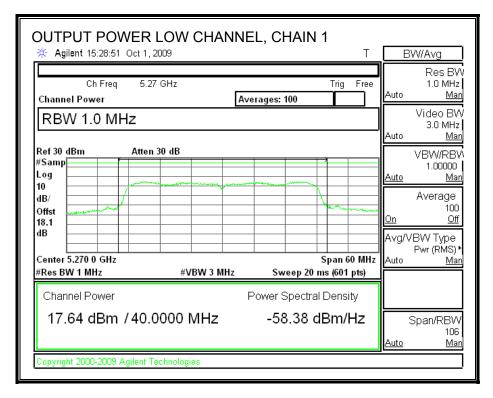
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

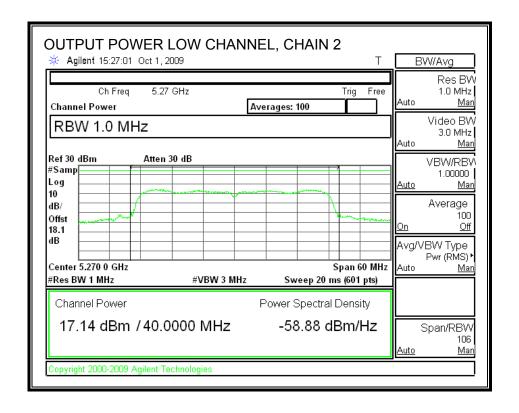
The transmitter output operates continuously therefore Method # 1 is used.

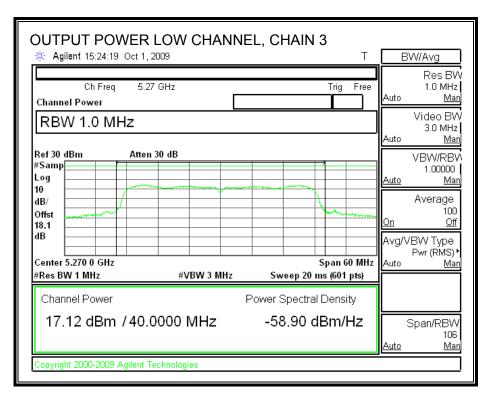
RESULTS

Limit

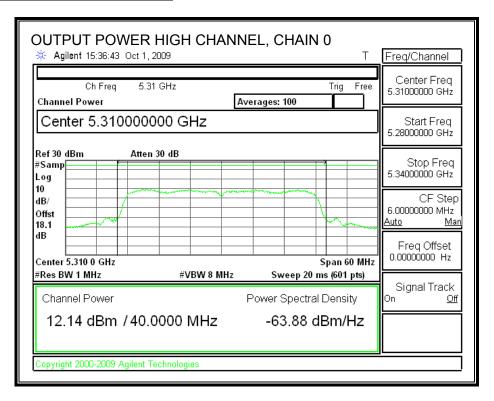

Channel	Freq	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5270	24	39.03	26.91	3	24.00
High	5310	24	37.688	26.76	3	24.00

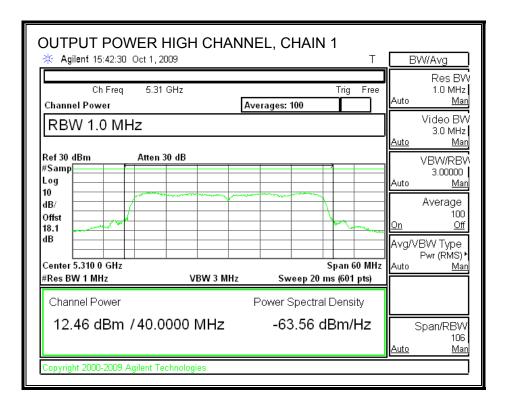

Individual Chain Results

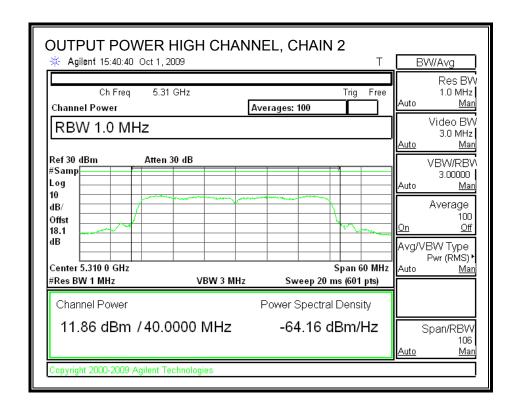

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	16.96	17.64	17.14	17.12	23.24	24.00	-0.76
High	5310	12.14	12.46	11.86	12.15	18.18	24.00	-5.82

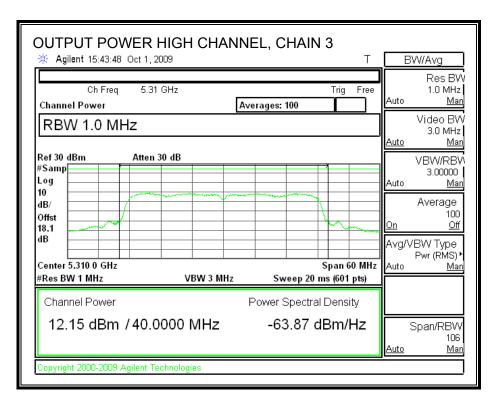

DATE: OCTOBER 21, 2009

OUTPUT POWER, LOW CHANNEL









OUTPUT POWER, HIGH CHANNEL

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.6.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5270	16.88	17.59	17.09	17.12
High	5310	12.10	12.38	11.78	12.09

7.6.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

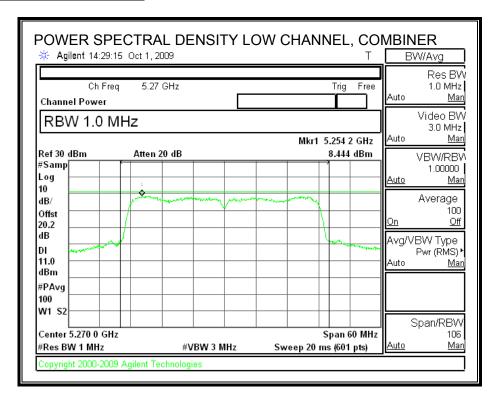
IC RSS-210 A9.2 (2)

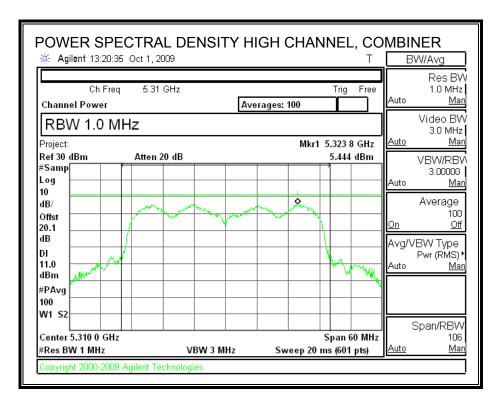
For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

The maximum antenna gain is less than 6 dBi, therefore the limit is 11 dBm.


TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5270	8.444	11	-2.56
High	5310	5.444	11	-5.56

POWER SPECTRAL DENSITY

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

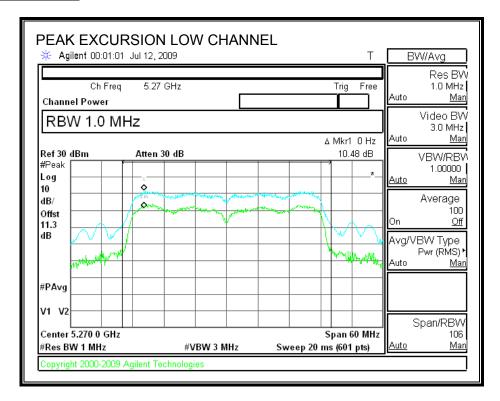
7.6.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5270	10.48	13	-2.52
High	5310	9.24	13	-3.76

PEAK EXCURSION

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of CCS. REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

7.6.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

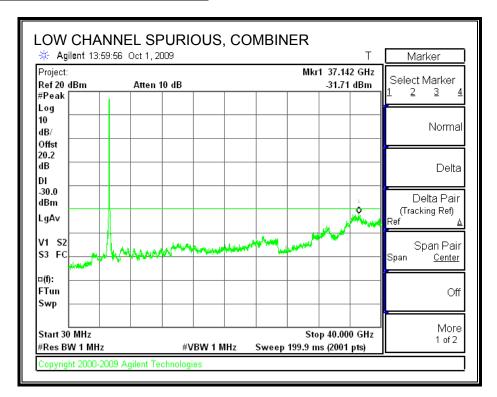
For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: OCTOBER 21, 2009

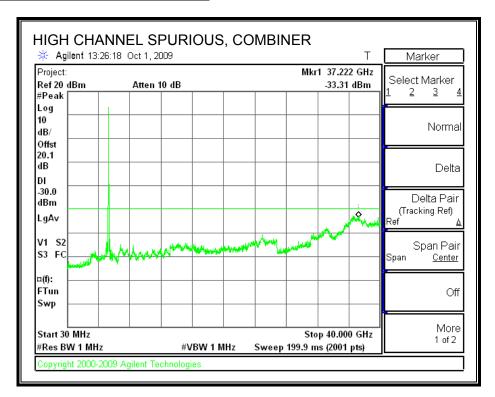
IC: 2723A-DC544D2

Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

LOW CHANNEL SPURIOUS EMISSIONS

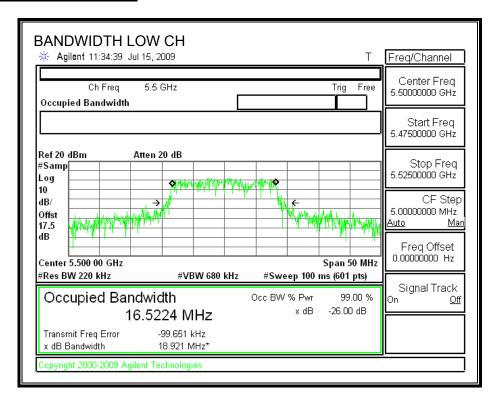
HIGH CHANNEL SPURIOUS EMISSIONS

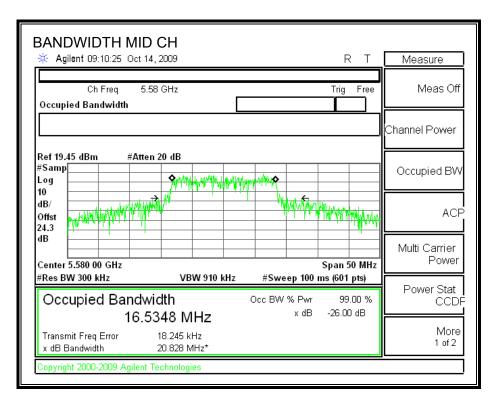
REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.7. 5.6 GHz BAND CHANNEL TESTS FOR 802.11a MODE

7.7.1. 26 dB and 99% BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5500	18.9210	16.5224
Mid	5580	20.8280	16.5348
High	5700	19.0480	16.4891

26 dB and 99% BANDWIDTH

7.7.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

	,	Effective Legacy Gain (dBi)
3	3.01	6.01

For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

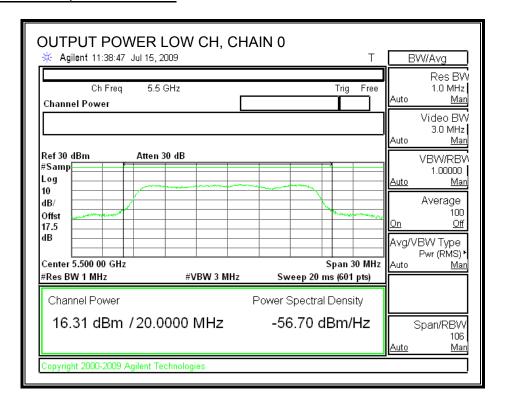
TEST PROCEDURE

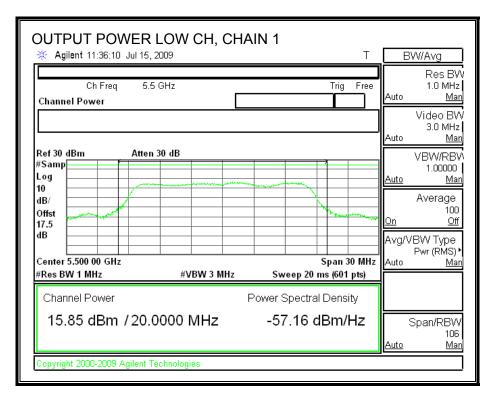
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

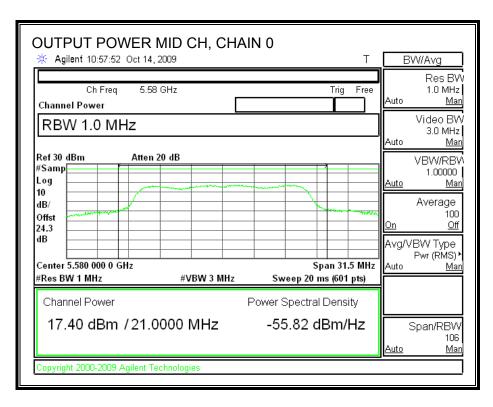
RESULTS

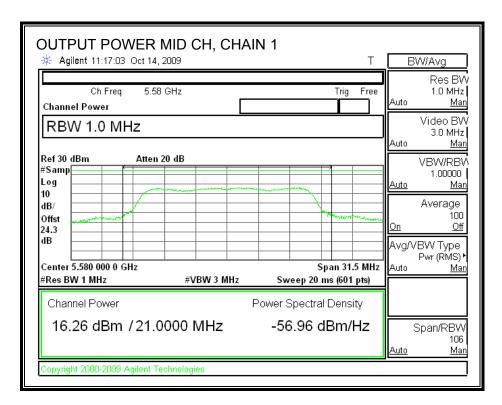
Limit

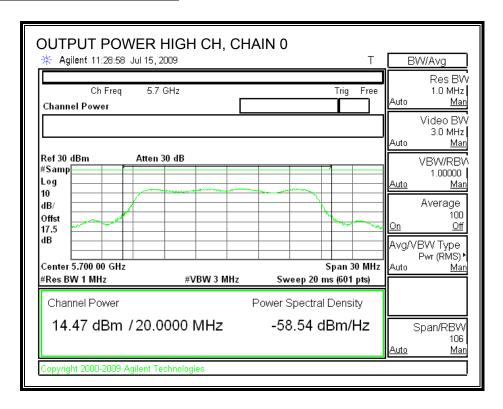

Channel	Frequency	Fixed	В	11 + 10 Log B	Effective	Limit
		Limit		Limit	Ant Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5500	24	18.9210	23.77	6.01	23.76
Mid	5580	24	20.8280	24.19	6.01	23.99
High	5700	24	19.0480	23.80	6.01	23.79

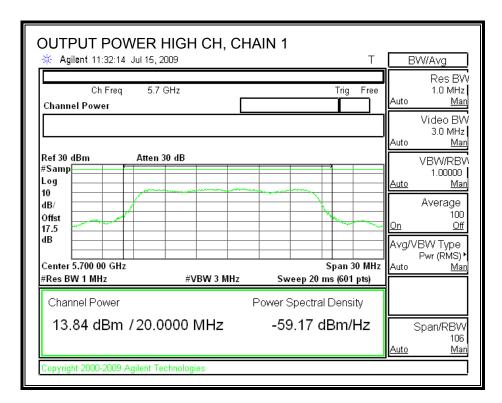

Individual Chain Results

Channel	Frequency	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	16.31	15.85	19.10	23.76	-4.66
Mid	5580	17.40	16.26	19.88	23.99	-4.11
High	5700	14.47	13.84	17.18	23.79	-6.61


DATE: OCTOBER 21, 2009


OUTPUT POWER, LOW CHANNEL




DATE: OCTOBER 21, 2009

OUTPUT POWER, HIGH CHANNEL

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.7.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5500	15.83	16.25	19.06
Mid	5580	16.09	15.85	18.98
High	5700	14.49	13.85	17.19

7.7.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

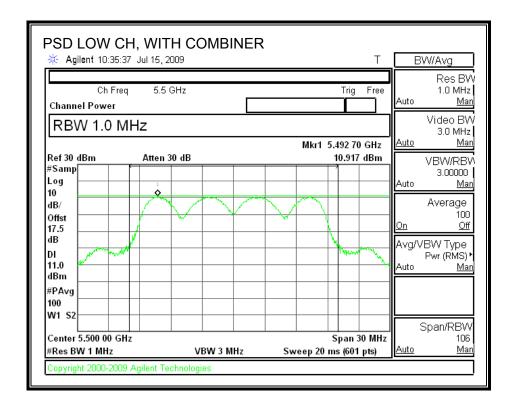
Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

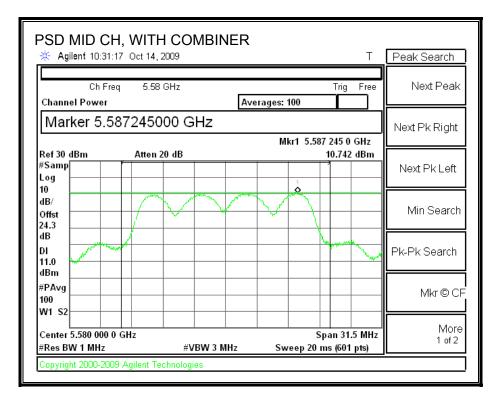
	10 Log (# Tx Chains) (dB)	Effective Legacy Gain (dBi)	
3	3.01	6.01	

For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

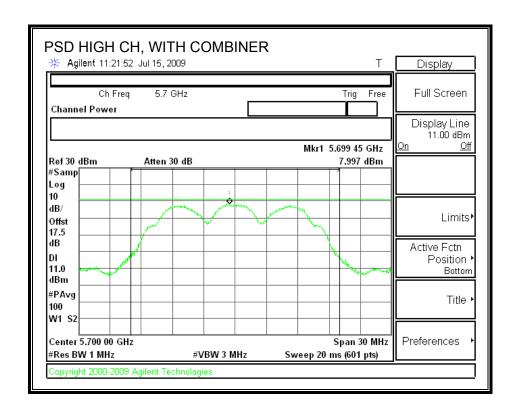
The maximum effective antenna gain is 6.01 dBi, therefore the limit is 10.99 dBm.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	10.92	10.99	-0.07
Mid	5580	10.74	10.99	-0.25
High	5700	8.00	10.99	-2.99


DATE: OCTOBER 21, 2009

POWER SPECTRAL DENSITY WITH COMBINER

DATE: OCTOBER 21, 2009

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

7.7.5. PEAK EXCURSION

LIMITS

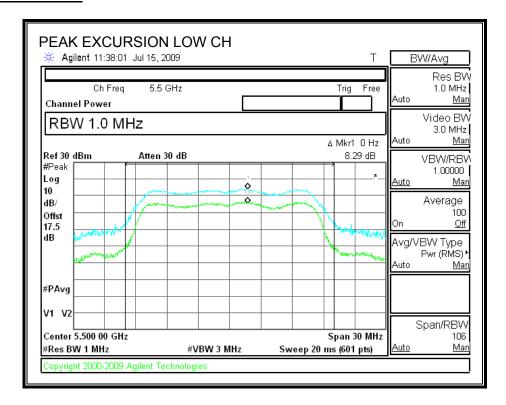
FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

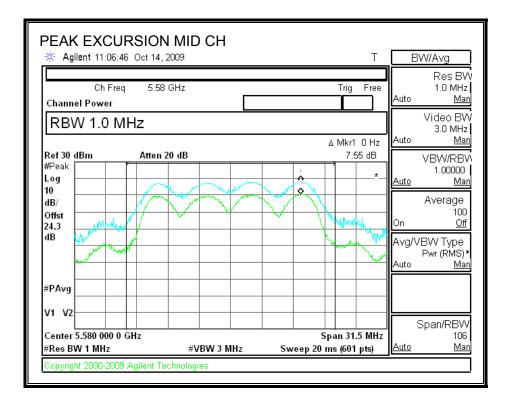
DATE: OCTOBER 21, 2009

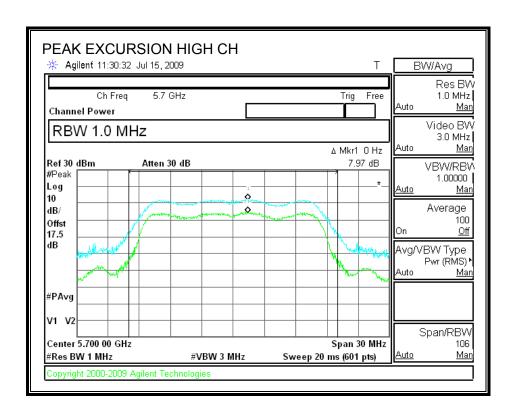
IC: 2723A-DC544D2

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	8.29	13	-4.71
Mid	5580	7.55	13	-5.45
High	5700	7.97	13	-5.03

PEAK EXCURSION

DATE: OCTOBER 21, 2009

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

7.7.6. CONDUCTED SPURIOUS EMISSIONS

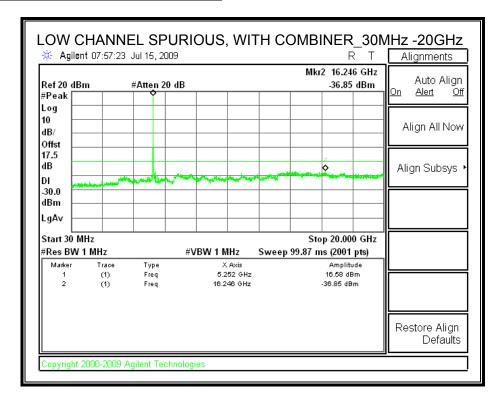
LIMITS

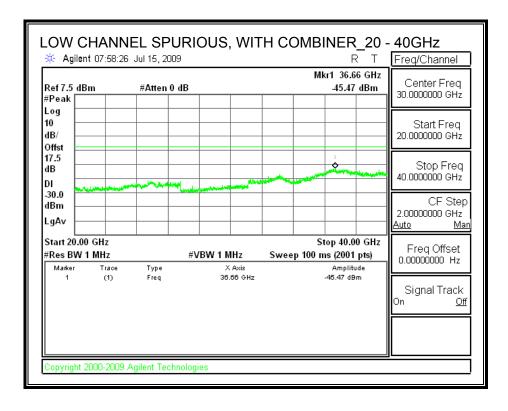
FCC §15.407 (b) (1)

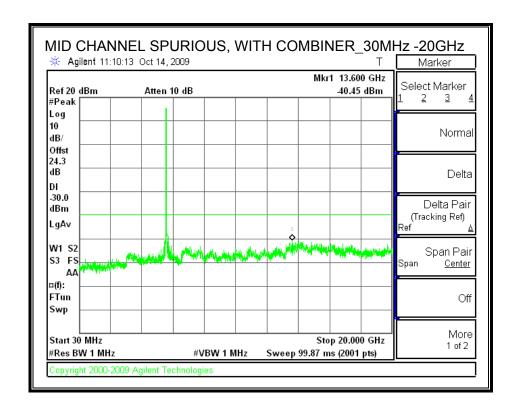
IC RSS-210 A9.3 (1)

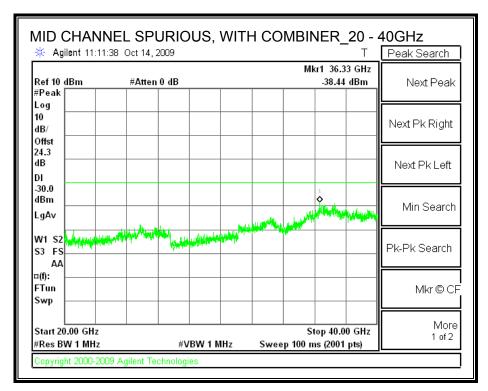
For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

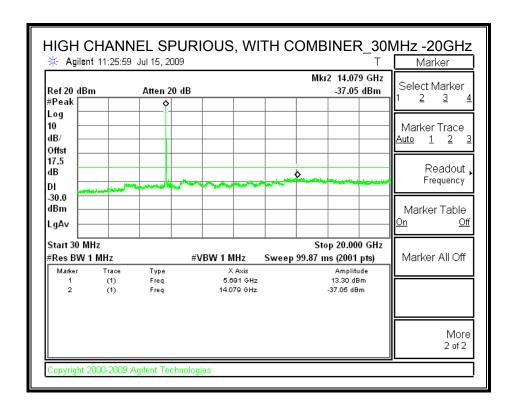
DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

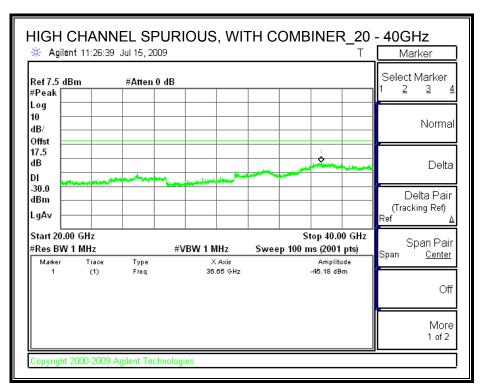

TEST PROCEDURE

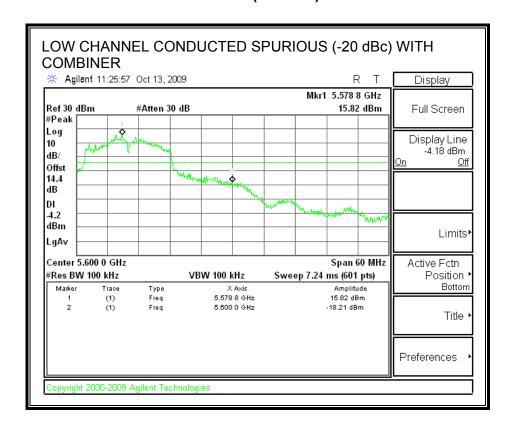

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

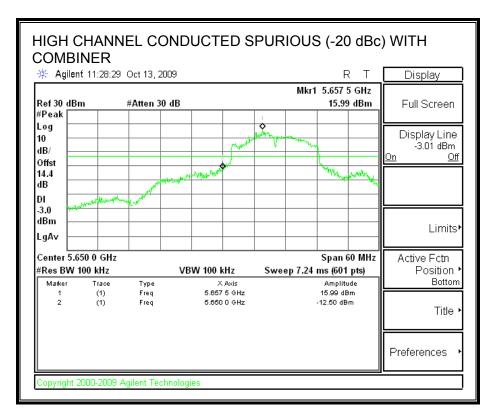

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


SPURIOUS EMISSIONS WITH COMBINER







7.7.7. CONDUCTED SPURIOUS (-20 dBc)

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

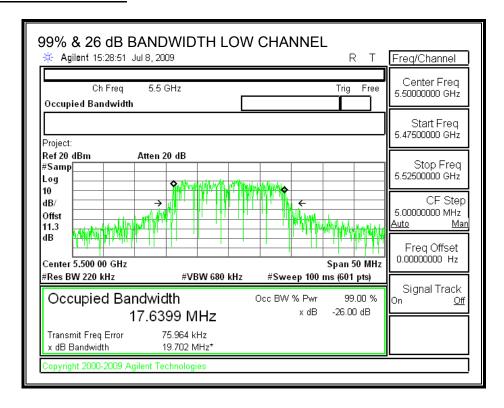
Page 136 of 293

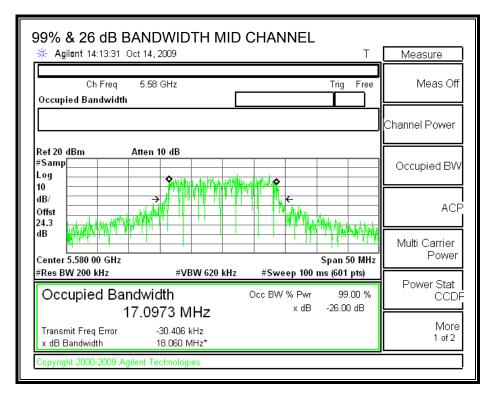
REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

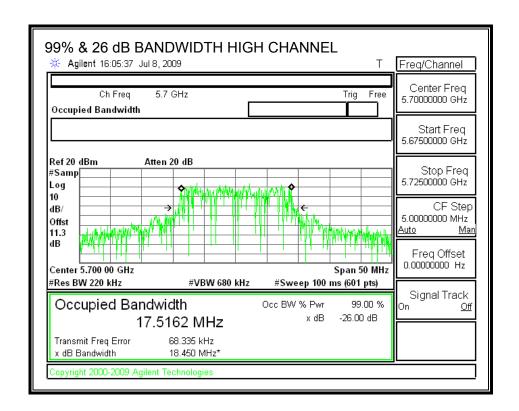
5.6 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

7.7.8. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5500	17.6399	19.702
Mid	5580	17.0973	18.06
High	5700	17.5162	18.450

99% & 26 dB BANDWIDTH

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

7.7.9. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

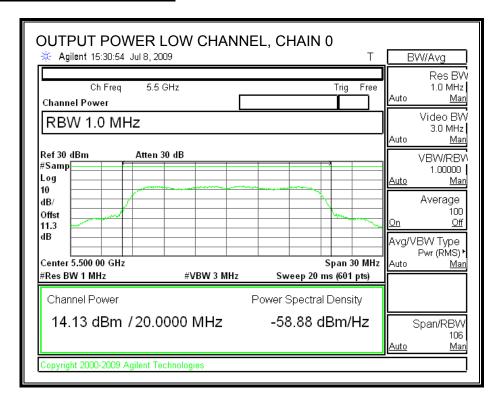
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

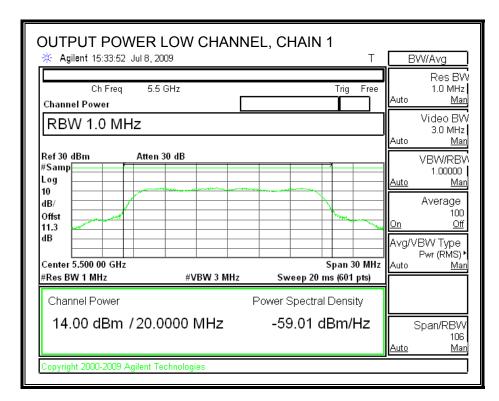
The transmitter output operates continuously therefore Method # 1 is used.

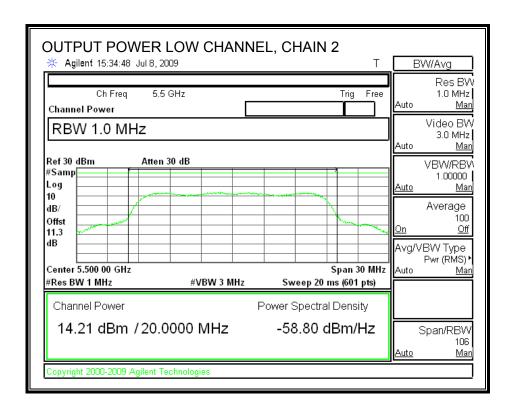
RESULTS

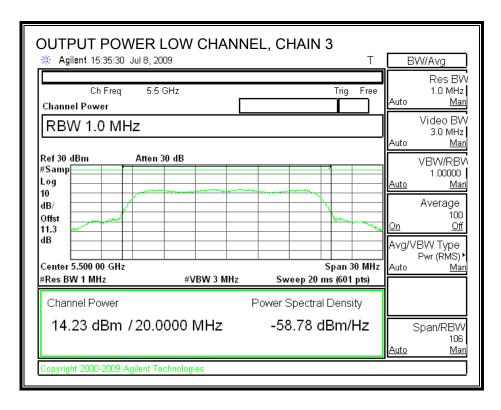
Limit

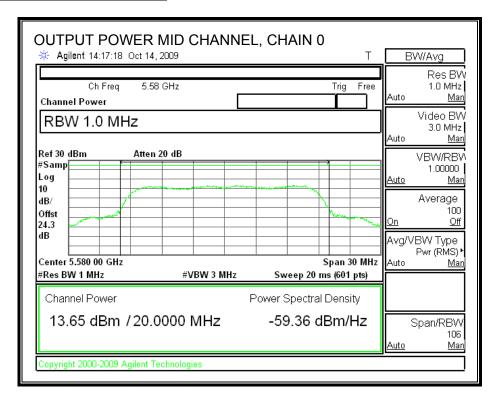

Channel	Freq	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5500	24	19.702	23.95	3	23.95
Mid	5580	24	18.06	23.57	3	23.57
High	5700	24	18.450	23.66	3	23.66

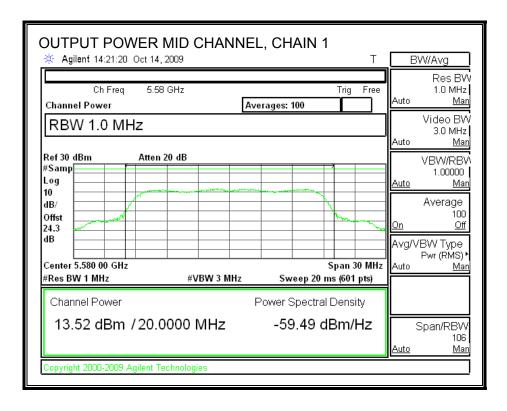
Individual Chain Results

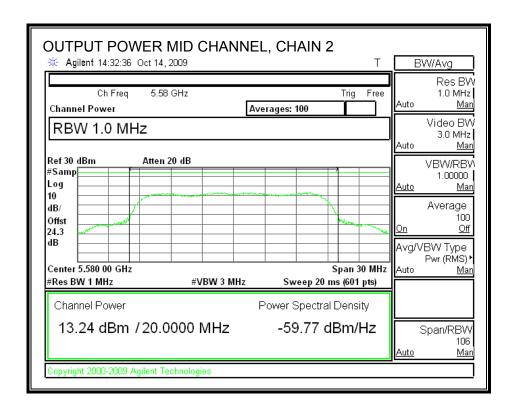

marriada enam reconte								
Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	14.13	14.00	14.21	14.23	20.16	23.95	-3.78
Mid	5580	13.65	13.52	13.24	13.53	19.51	23.57	-4.06
High	5700	14.22	14.24	14.30	14.13	20.24	23.66	-3.42

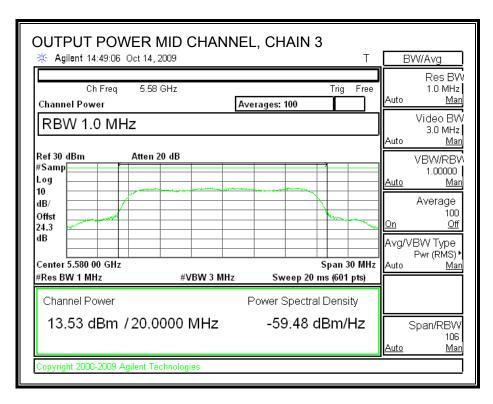

DATE: OCTOBER 21, 2009


OUTPUT POWER, LOW CHANNEL

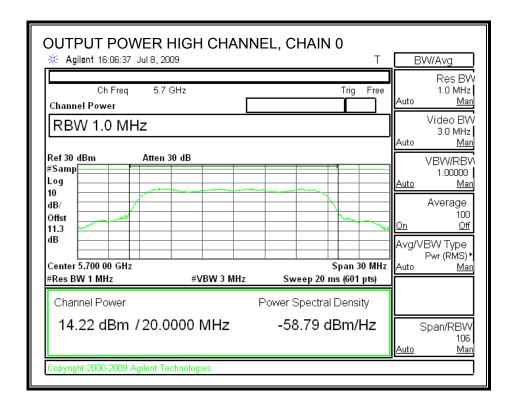

DATE: OCTOBER 21, 2009

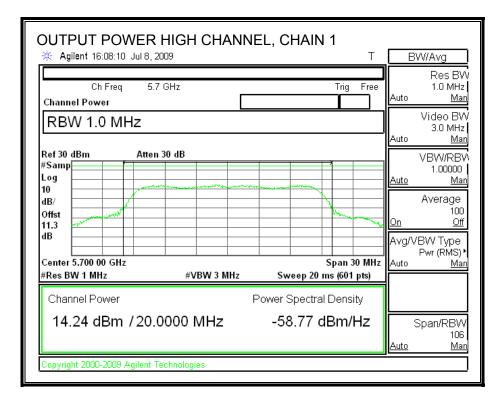


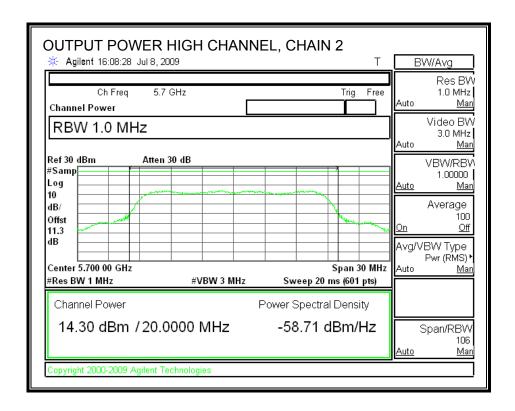


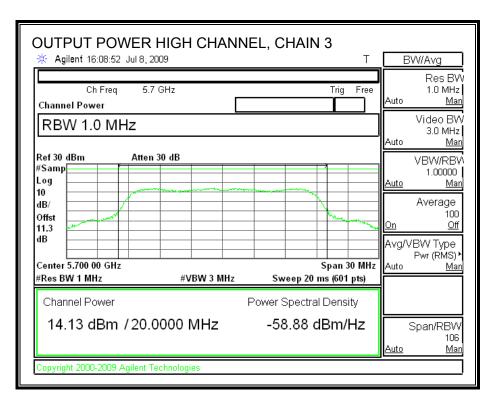


OUTPUT POWER, MID CHANNEL








OUTPUT POWER, HIGH CHANNEL

DATE: OCTOBER 21, 2009

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.7.10. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5500	14.15	14.11	14.20	14.21
Mid	5580	12.90	13.10	12.75	13.15
High	5700	14.13	14.21	14.18	14.25

7.7.11. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

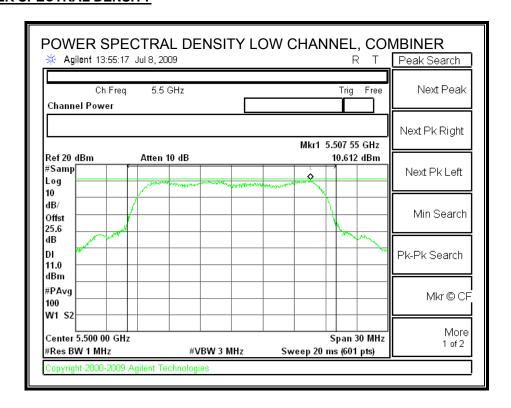
IC RSS-210 A9.2 (2)

For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

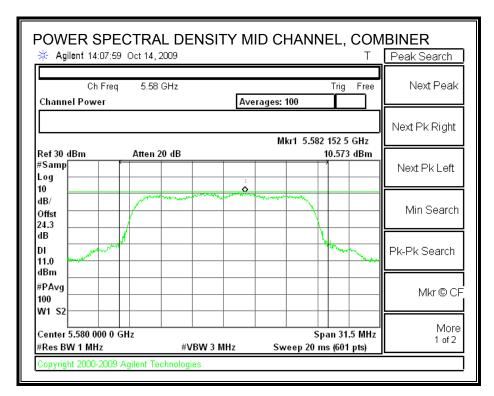
DATE: OCTOBER 21, 2009

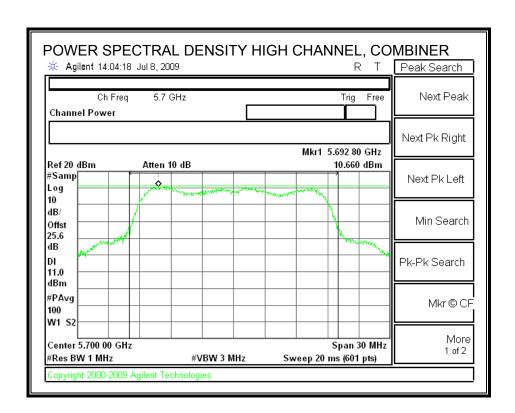
IC: 2723A-DC544D2

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 11 dBm.


TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	10.61	11	-0.39
Mid	5580	10.57	11	-0.43
High	5700	10.66	11	-0.34

POWER SPECTRAL DENSITY

DATE: OCTOBER 21, 2009

7.7.12. PEAK EXCURSION

LIMITS

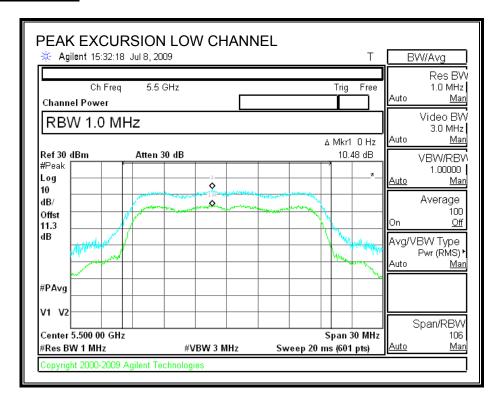
FCC §15.407 (a) (6)

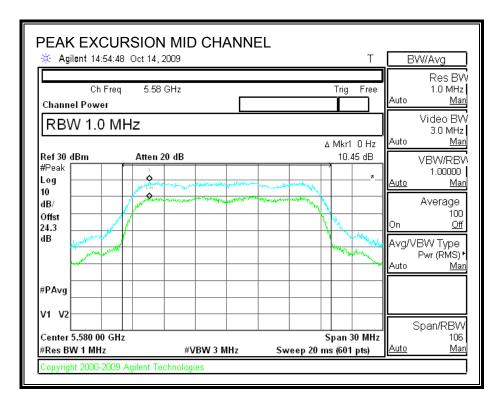
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

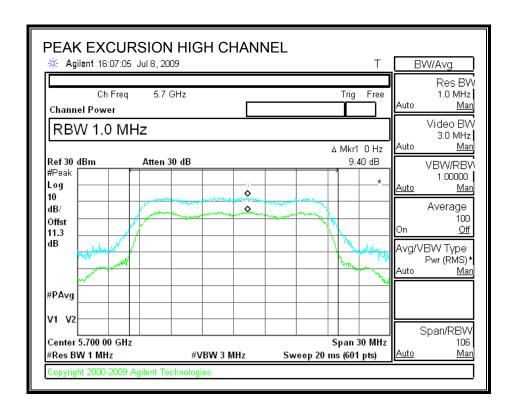
DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	10.48	13	-2.52
Mid	5580	10.45	13	-2.55
High	5700	9.40	13	-3.60

PEAK EXCURSION

7.7.13. CONDUCTED SPURIOUS EMISSIONS

LIMITS

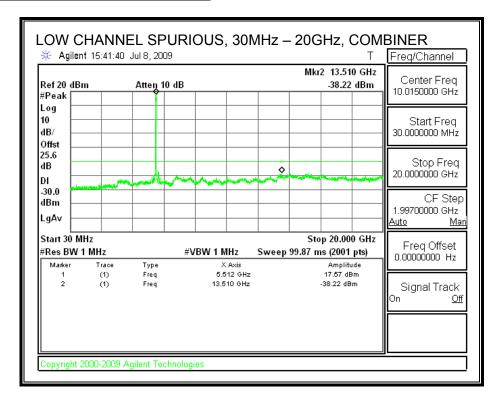
FCC §15.407 (b) (3)

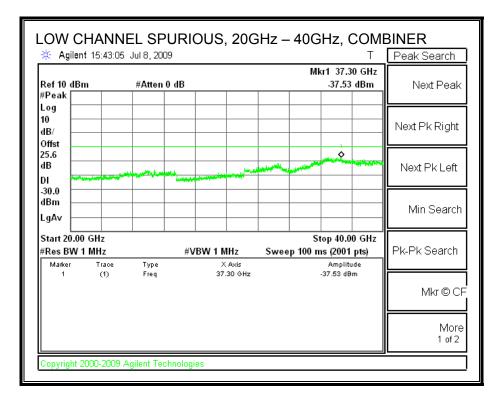
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

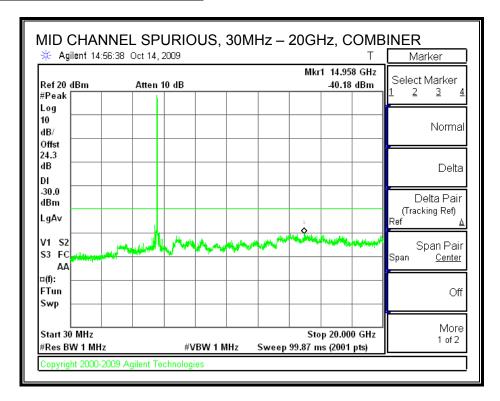
DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

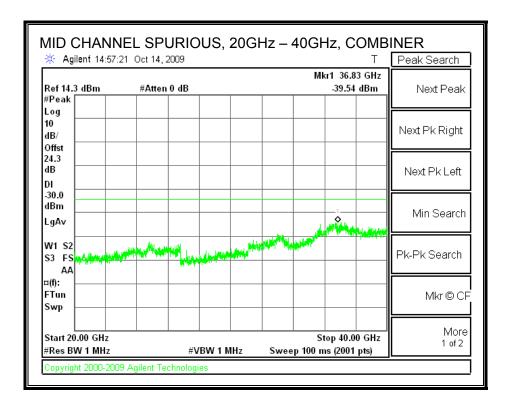
TEST PROCEDURE

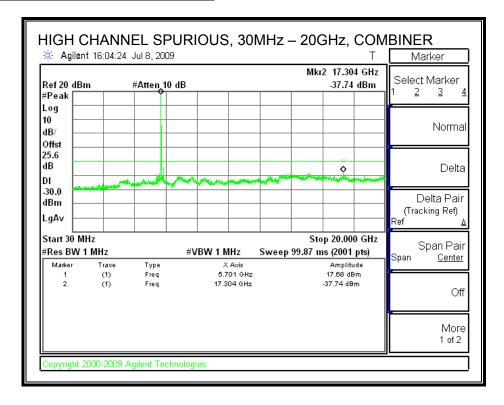

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

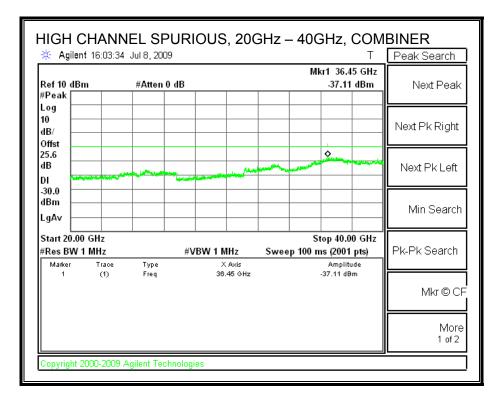

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

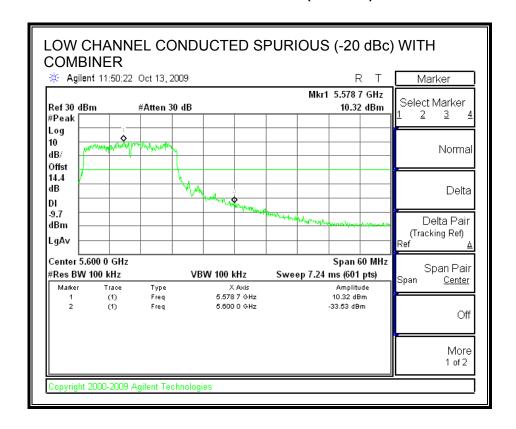
Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

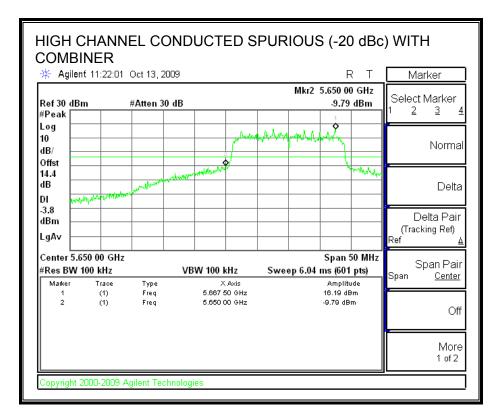

LOW CHANNEL SPURIOUS EMISSIONS




MID CHANNEL SPURIOUS EMISSIONS



HIGH CHANNEL SPURIOUS EMISSIONS



7.7.14. CONDUCTED SPURIOUS (-20 dBc)

DATE: OCTOBER 21, 2009

Page 158 of 293

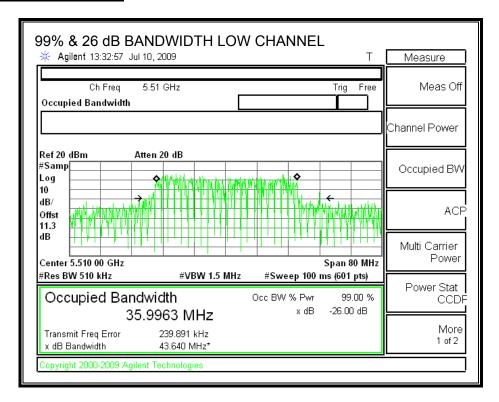
7.8. 5.6 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

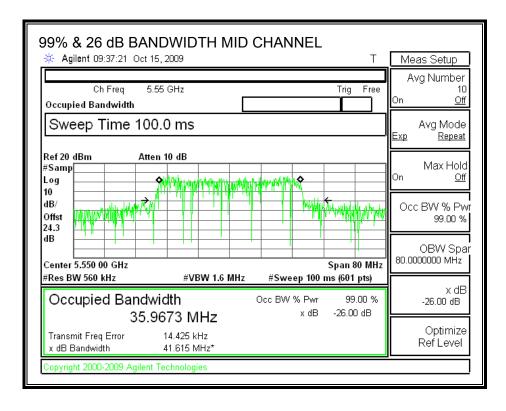
DATE: OCTOBER 21, 2009

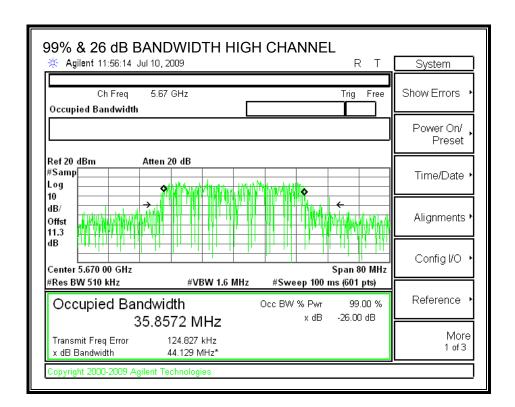
IC: 2723A-DC544D2

7.8.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5510	35.9963	43.640	
Middle	5550	35.9673	41.615	
High	5670	35.8572	44.129	

99% & 26 dB BANDWIDTH

7.8.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

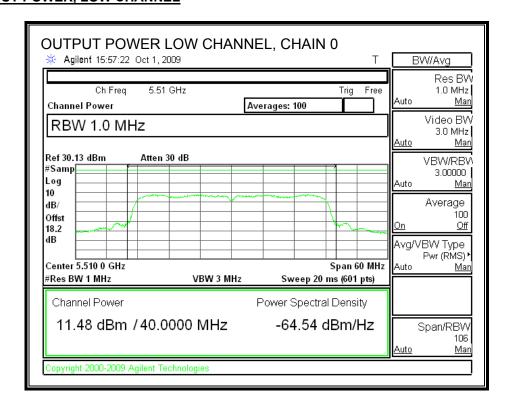
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

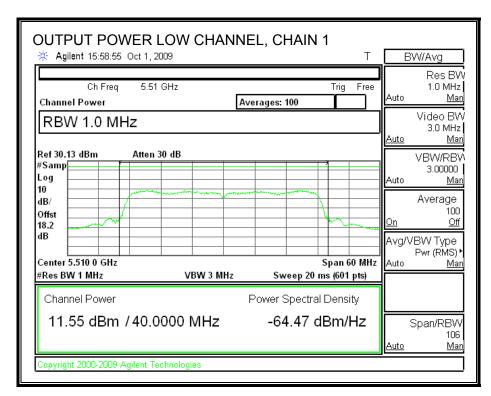
The transmitter output operates continuously therefore Method # 1 is used.

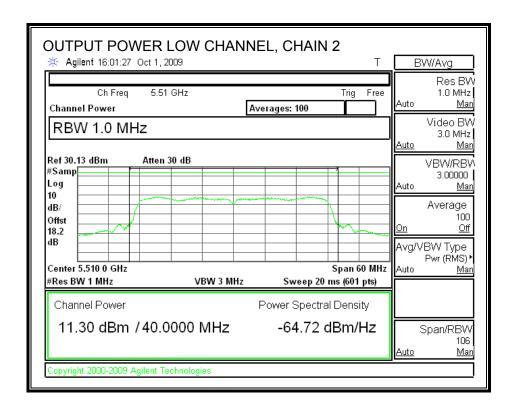
RESULTS

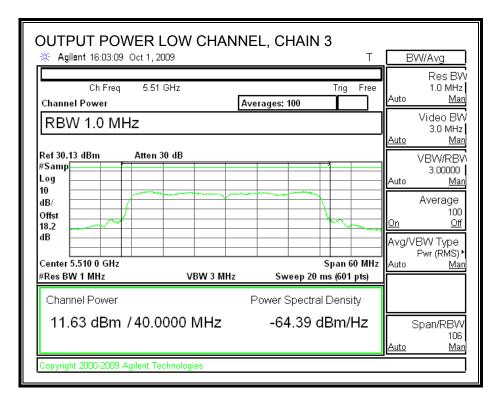
Limit


Channel	Freq	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5510	24	43.640	27.40	3	24.00
Mid	5550	24	41.615	27.19	3	24.00
High	5670	24	44.129	27.45	3	24.00

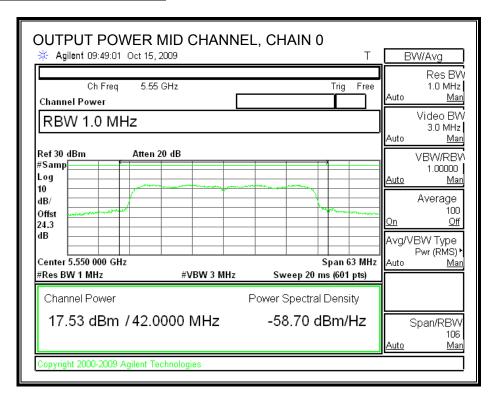
Individual Chain Results

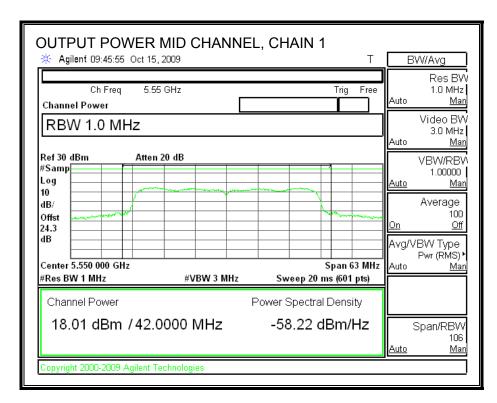

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	11.48	11.55	11.30	11.63	17.51	24.00	-6.49
Mid	5550	17.53	18.01	17.80	17.76	23.80	24.00	-0.20
High	5670	14.49	14.29	14.19	13.95	20.25	24.00	-3.75

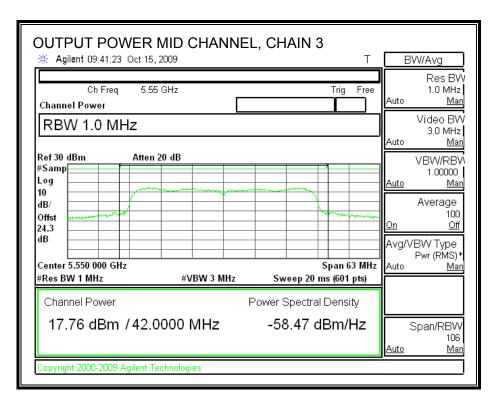

DATE: OCTOBER 21, 2009


OUTPUT POWER, LOW CHANNEL

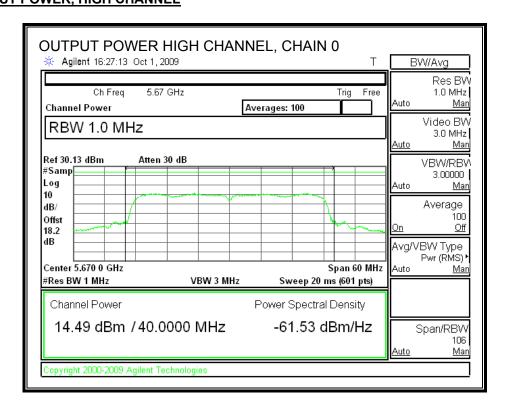
DATE: OCTOBER 21, 2009

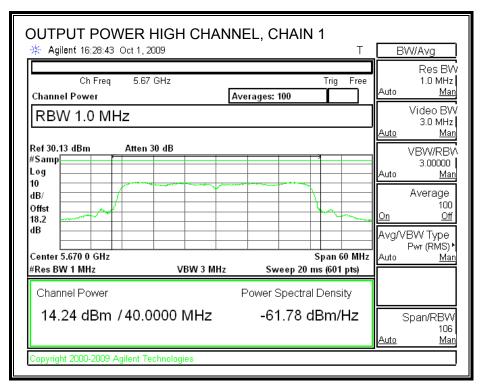


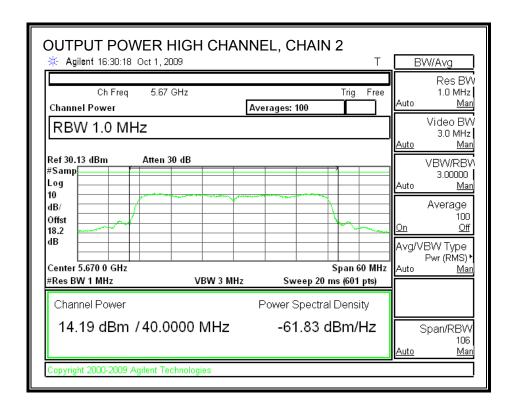


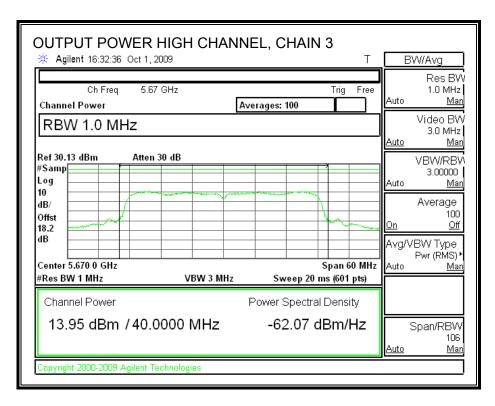

DATE: OCTOBER 21, 2009

OUTPUT POWER, MID CHANNEL








OUTPUT POWER, HIGH CHANNEL

DATE: OCTOBER 21, 2009

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

7.8.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5510	11.44	11.53	11.30	11.51
Middle	5550	17.39	17.83	17.61	17.59
High	5670	14.45	14.21	14.15	13.92

7.8.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

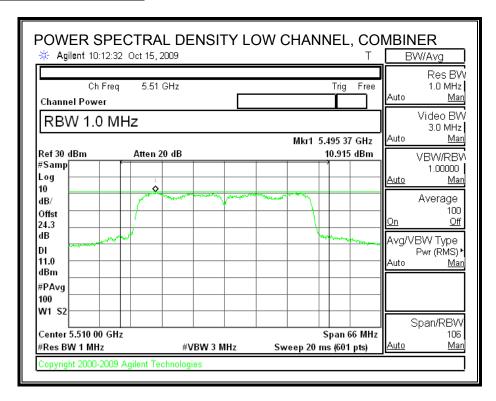
IC RSS-210 A9.2 (2)

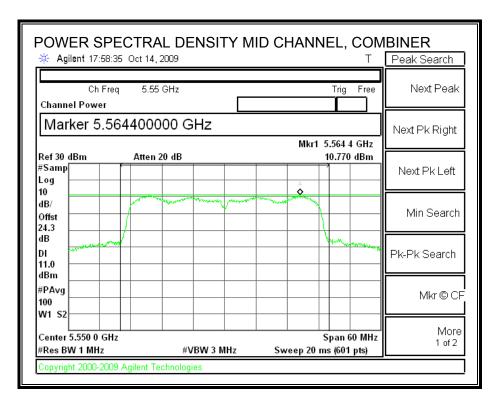
For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

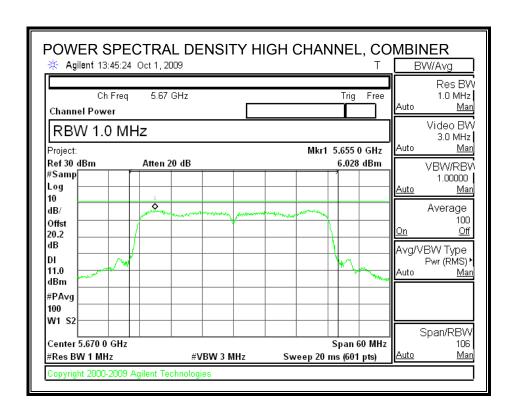
The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 11 dBm.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS


Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5510	10.915	11	-0.09
Middle	5550	10.770	11	-0.23
High	5670	6.028	11	-4.97

DATE: OCTOBER 21, 2009

POWER SPECTRAL DENSITY

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

7.8.5. PEAK EXCURSION

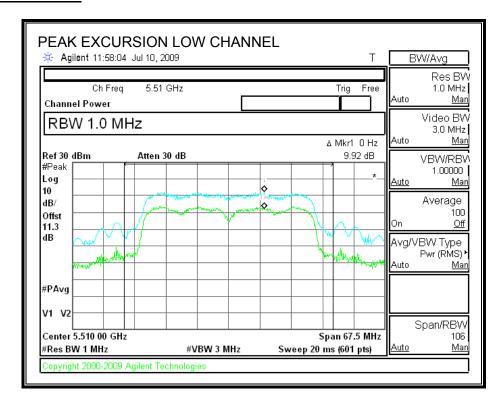
LIMITS

FCC §15.407 (a) (6)

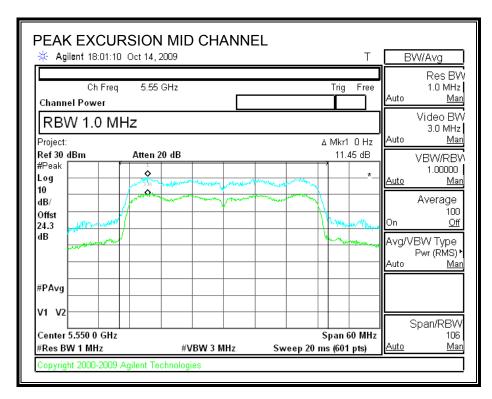
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

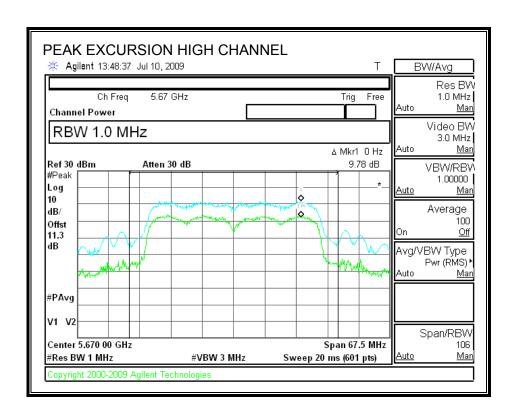
DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5510	9.92	13	-3.08
Middle	5550	11.45	13	-1.55
High	5670	9.78	13	-3.22

PEAK EXCURSION

DATE: OCTOBER 21, 2009

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

7.8.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

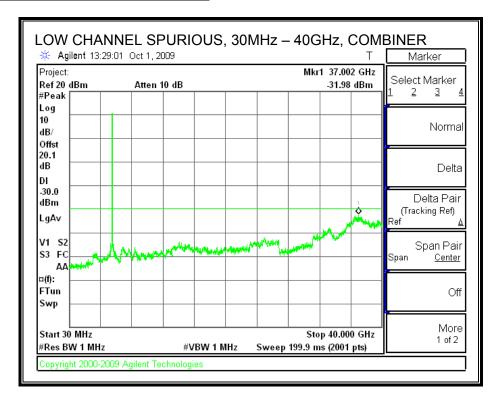
FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

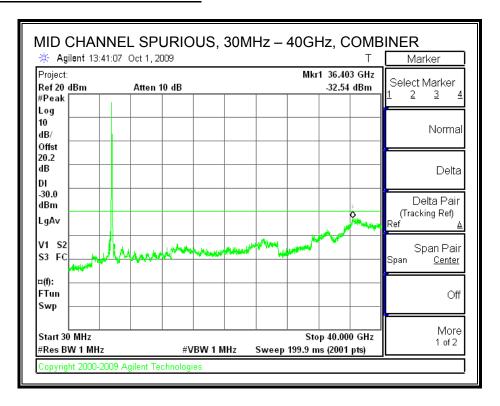
For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

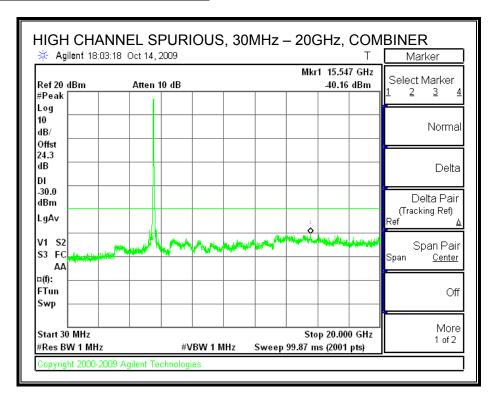
TEST PROCEDURE

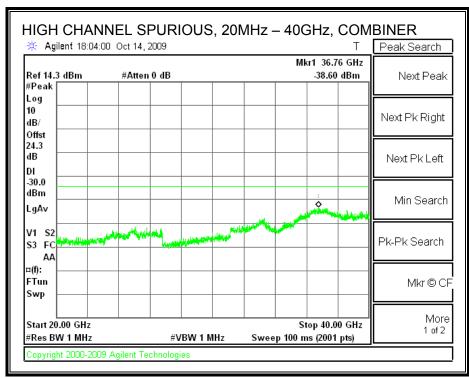

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

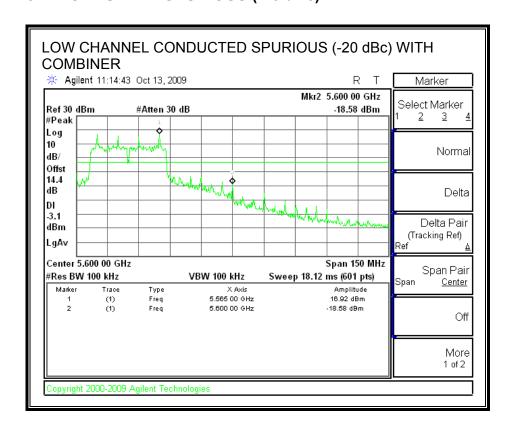

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

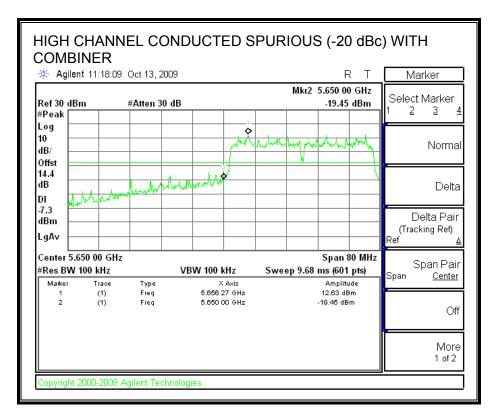

LOW CHANNEL SPURIOUS EMISSIONS



MID CHANNEL SPURIOUS EMISSIONS



HIGH CHANNEL SPURIOUS EMISSIONS



7.8.7. CONDUCTED SPURIOUS (-20 dBc)

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

Page 179 of 293

7.9. RECEIVER CONDUCTED SPURIOUS EMISSIONS

LIMITS

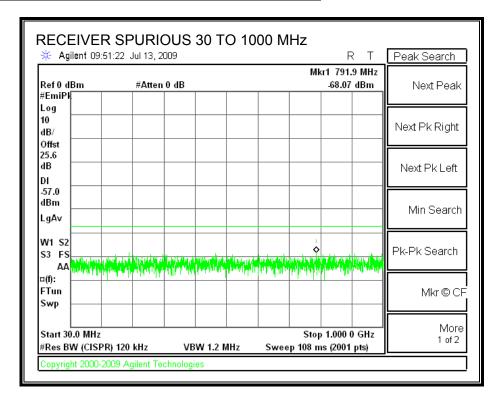
IC RSS-GEN 7.2.3.1

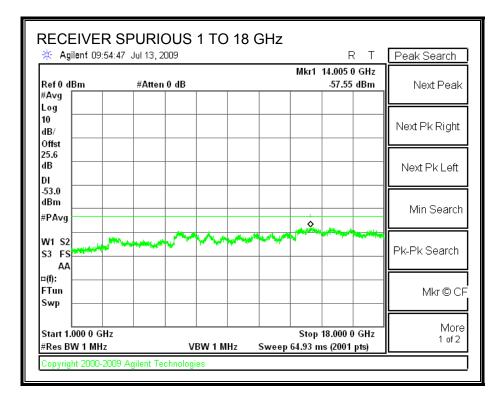
Antenna Conducted Measurement: Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

DATE: OCTOBER 21, 2009

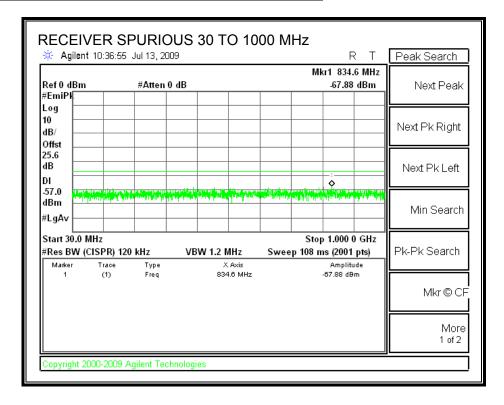
IC: 2723A-DC544D2

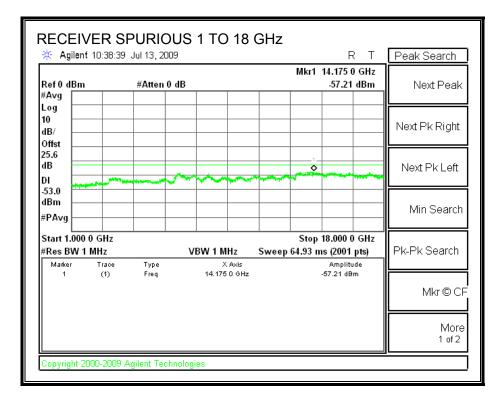
TEST PROCEDURE

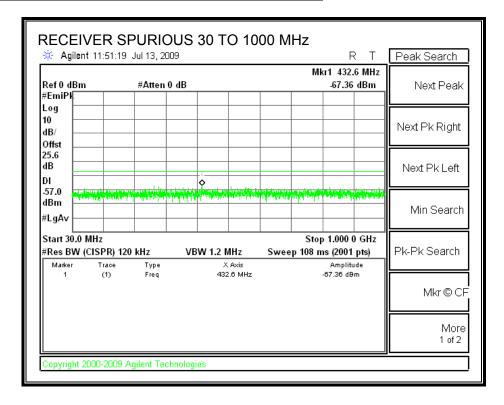

IC RSS-GEN 4.10, Conducted Method

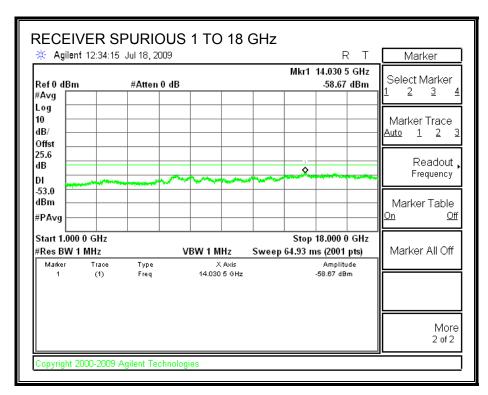

The receiver antenna port is connected to a spectrum analyzer.

The spectrum from 30 MHz to 18 GHz is investigated with the receiver set to the middle channel of each 5 GHz band.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RECEIVER SPURIOUS EMISSIONS IN THE 5.2 GHz BAND




RECEIVER SPURIOUS EMISSIONS IN THE 5.3 GHz BAND

RECEIVER SPURIOUS EMISSIONS IN THE 5.5 GHz BAND

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m				
30 - 88	100	40				
88 - 216	150	43.5				
216 - 960	200	46				
Above 960	500	54				

TEST PROCEDURE

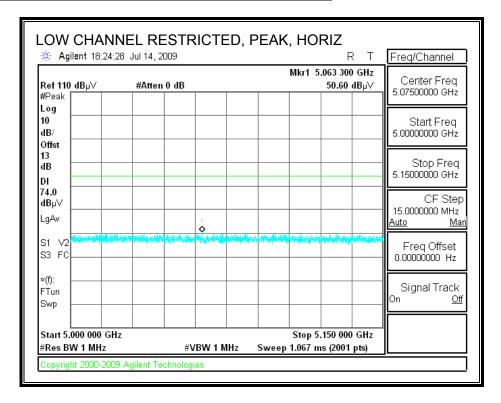
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

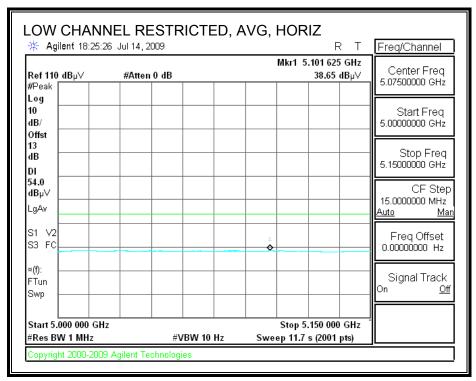
DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

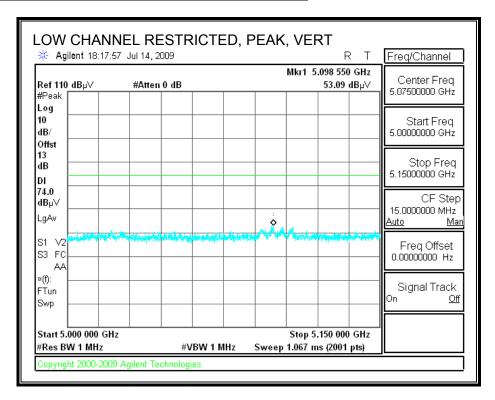

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

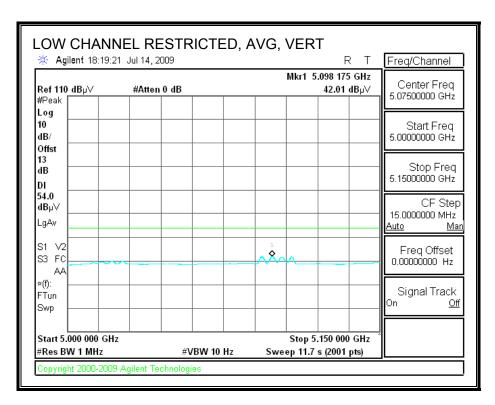

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

TRANSMITTER ABOVE 1 GHz 8.2.

8.2.1. 802.11a MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

TEL: (510) 771-1000

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement
Compliance Certification Services, Fremont 5m Chamber

Test Target: Mode Oper:

 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

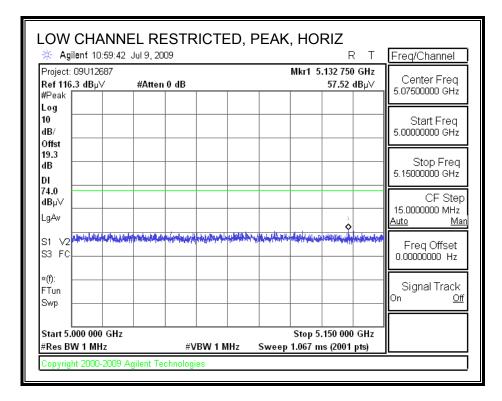
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

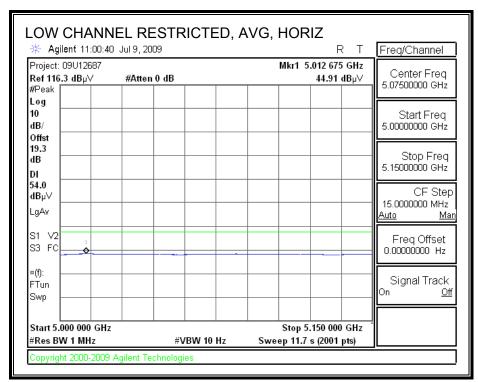
 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

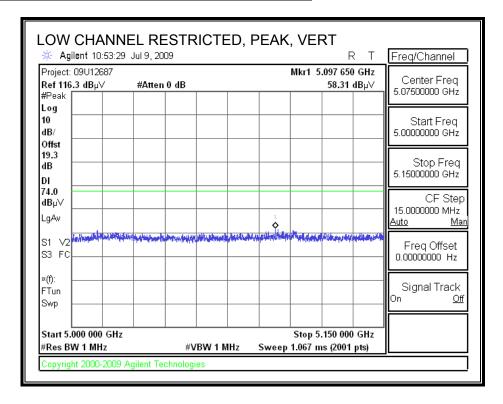
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dВ	đВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
Low Ch 5	180MHz	:						Ī.							
15.540	3.0	36.0	38.9	11.3	-34.8	0.0	10.0	61.4	74.0	-12.6	V	P	145.0	233.3	
15.540	3.0	23.7	38.9	11.3	-34.8	0.0	10.0	49.1	54.0	-4.9	V	A	145.0	233.3	
Mid Ch 5	200MHz														
15.600	3.0	37.2	38.7	11.4	-34.8	0.0	10.0	62.5	74.0	-11.5	V	P	199.8	319.8	
15.600	3.0	24.3	3 8. 7	11.4	-34.8	0.0	10.0	49.6	54.0	-4.4	V	A	199.8	319.8	
High Ch	5240MH	7													
15.720	3.0	36.9	38.4	11.4	-34.7	0.0	10.0	62.0	74.0	-12.0	V	P	200.0	75.6	
15.720	3.0	24.2	38.4	11.4	-34.7	0.0	10.0	49.3	54.0	-4.7	V	A	200.0	75.6	
10.480	3.0	36.1	37.5	9.0	-36.7	0.0	10.0	55.8	74.0	-18.2	H	P	121.7	358.7	
10.480	3.0	23.8	37.5	9.0	-36.7	0.0	10.0	43.5	54.0	-10.5	H	A	121.7	358.7	

Rev. 4.1.2.7

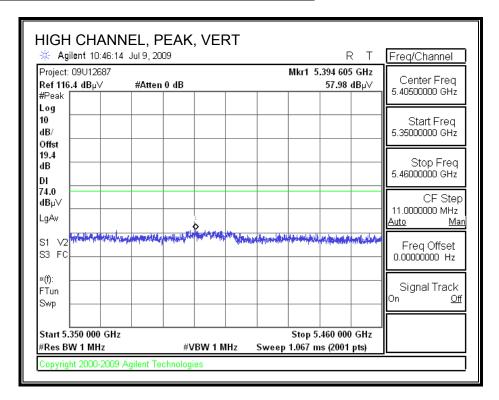

Note: No other emissions were detected above the system noise floor.

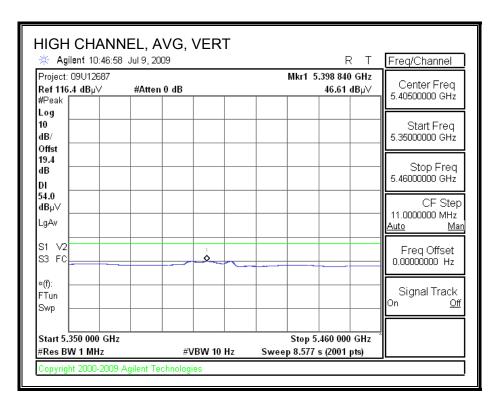

DATE: OCTOBER 21, 2009

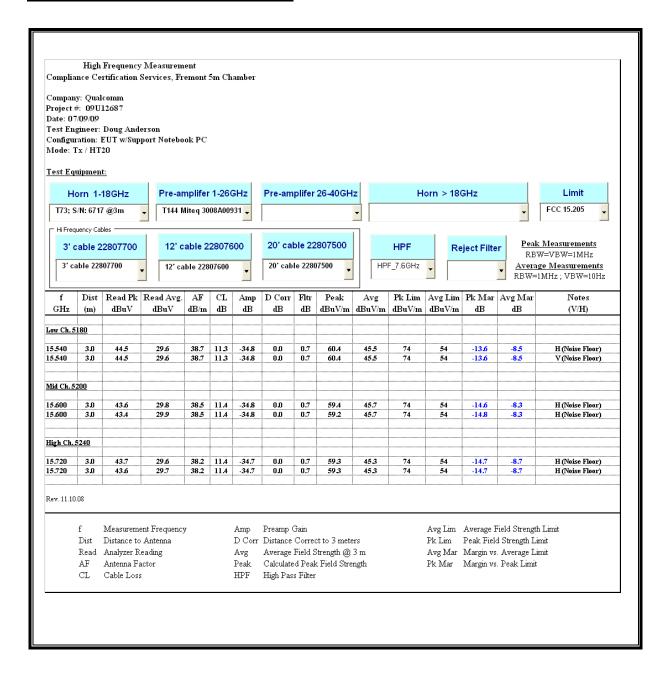
IC: 2723A-DC544D2


8.2.2. 802.11n HT20 MODE IN 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

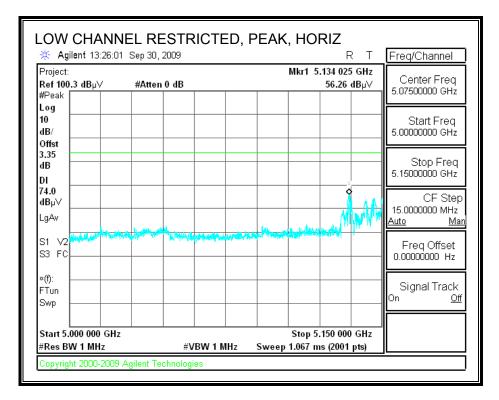


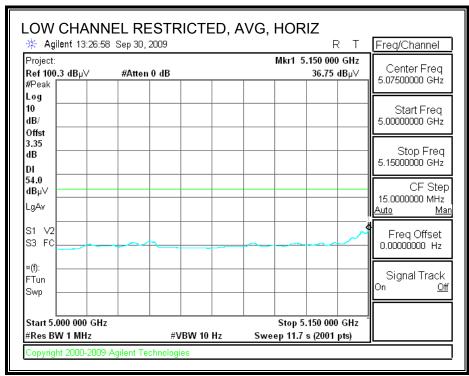

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

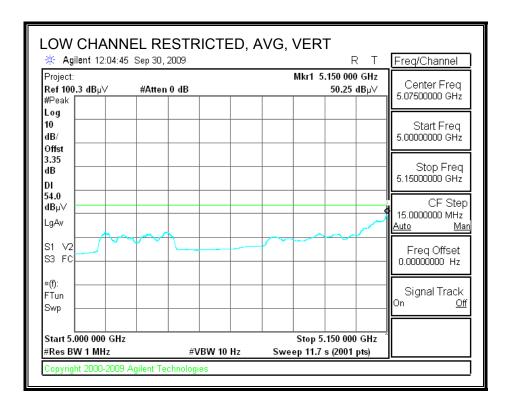
HARMONICS AND SPURIOUS EMISSIONS

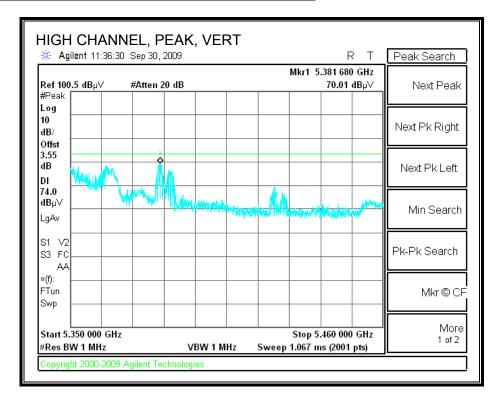


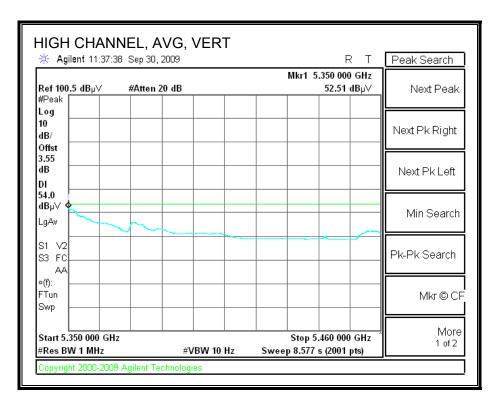

DATE: OCTOBER 21, 2009

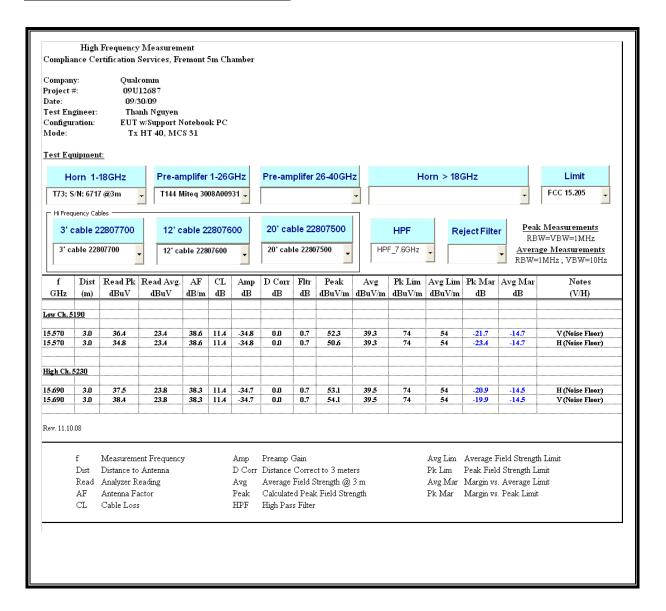
IC: 2723A-DC544D2

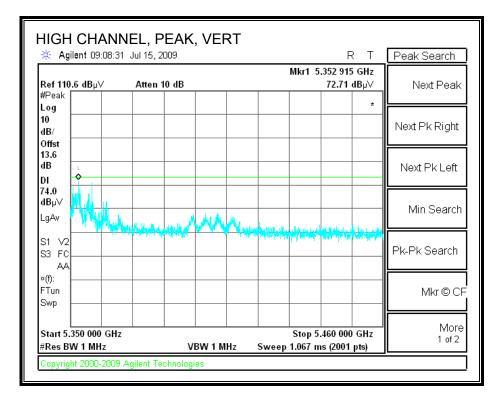
8.2.3. 802.11n HT40 MODE IN 5.2 GHz BAND

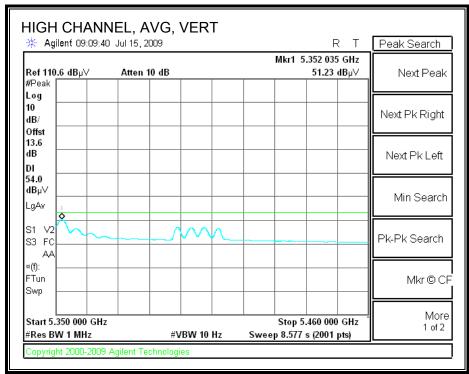

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)


DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2


HARMONICS AND SPURIOUS EMISSIONS

8.2.4. 802.11a MODE IN 5.3 GHz BAND

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Thanh Nguyen
Date: 07/15/09
Project #: 09U12687
Company: QualComm
EUT Description: PCI card
EUT M/N: 65-VN780-P2
Test Target: FCC15.247/15.407
Mode Oper: Tx a mode

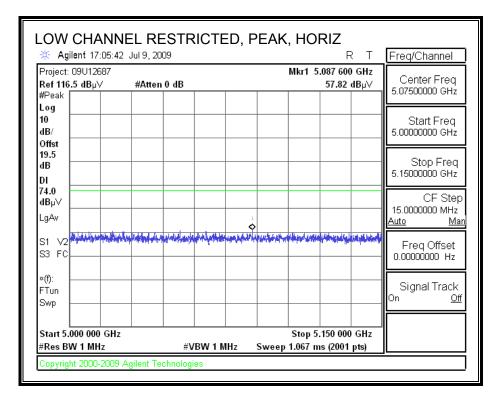
 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

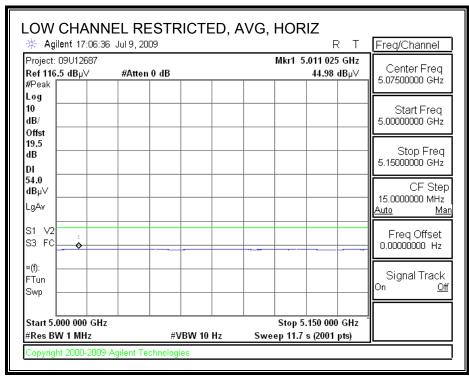
 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

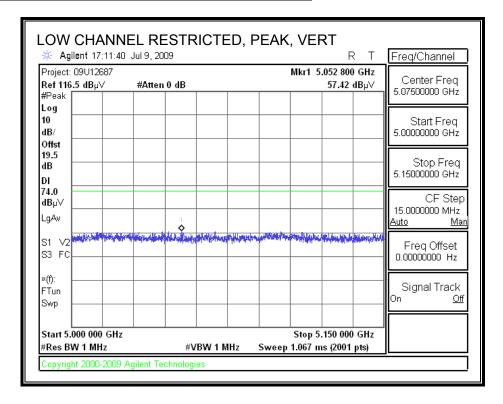
 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

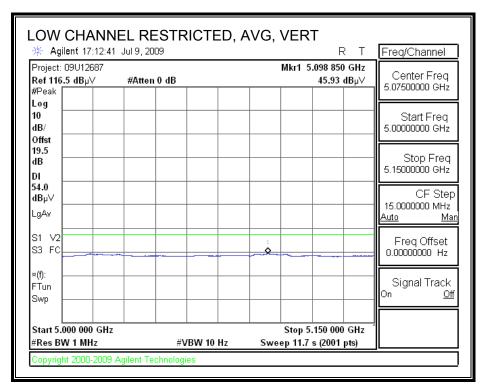
 CL
 Cable Loss
 HPF
 High Pass Filter
 Margin vs. Peak Limit

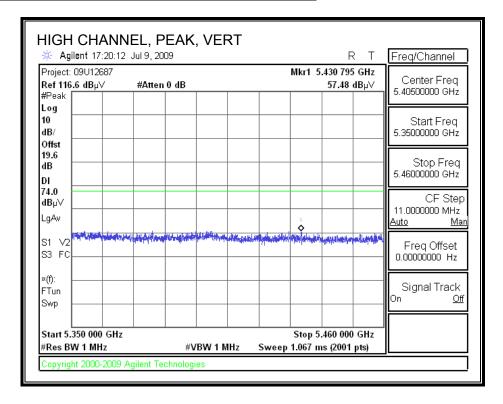

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det.	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
ow ch 52	60MHz														
15.780	3.0	40.1	38.0	11.5	-34.6	0.0	0.7	55.6	74.0	-18.4	V	P	135.5	322.5	
15.780	3.0	27.9	38.0	11.5	-34.6	0.0	0.7	43.4	54.0	-10.6	V	A	135.5	322.5	
15.780	3.0	37.0	38.0	11.5	-34.6	0.0	0.7	52.6	74.0	-21.4	H	P	129.2	298.4	
15.780	3.0	25.0	38.0	11.5	-34.6	0.0	0.7	40.6	54.0	-13.4	H	A	129.2	298.4	
Mid ch 53	00MHz														
10.600	3.0	37.6	37.7	9.0	-36.6	0.0	0.8	48.5	74.0	-25.5	V	P	100.0	200.0	
10.600	3.0	26.5	37.7	9.0	-36.6	0.0	0.8	37.4	54.0	-16.6	V	A	100.0	200.0	
15.900	3.0	39.7	37.7	11.5	-34.6	0.0	0.7	55.1	74.0	-18.9	v	P	101.8	225.7	
15.900	3.0	27.3	37.7	11.5	-34.6	0.0	0.7	42.6	54.0	-11.4	V	A	101.8	225.7	
10.600	3.0	37.8	37.7	9.0	-36.6	0.0	0.8	48.8	74.0	-25.2	H	P	149.4	297.9	
10.600	3.0	25.5	37.7	9.0	-36.6	0.0	0.8	36.5	54.0	-17.5	H	A	149.4	297.9	
15.900	3.0	38.8	37.7	11.5	-34.6	0.0	0.7	54.2	74.0	-19.8	H	P	149.4	297.9	
15.900	3.0	26.0	37.7	11.5	-34.6	0.0	0.7	41.3	54.0	-12.7	H	A	149.4	297.9	
High ch f	320MHz														
10.640	3.0	46.5	37.7	9.1	-36.6	0.0	0.8	57.4	74.0	-16.6	V	P	134.2	291.0	
10.640	3.0	35.0	37.7	9.1	-36.6	0.0	0.8	46.0	54.0	-8.0	V	A	134.2	291.0	
15.960	3.0	44.5	37.5	11.5	-34.5	0.0	0.7	59.8	74.0	-14.2	V	P	131.1	318.8	
15.960	3.0	31.8	37.5	11.5	-34.5	0.0	0.7	47.0	54.0	-7.0	V	A	131.1	318.8	
10.640	3.0	37.8	37.7	9.1	-36.6	0.0	0.8	48.8	74.0	-25.2	H	P	147.1	295.3	
10.640	3.0	28.4	37.7	9.1	-36.6	0.0	0.8	39.4	54.0	-14.6	H	A	147.1	295.3	
15.960	3.0	40.3	37.5	11.5	-34.5	0.0	0.7	55.6	74.0	-18.4	H	P	145.9	266.9	
15.960	3.0	27.6	37.5	11.5	-34.5	0.0	0.7	42.9	54.0	-11.1	H	A	145.9	266.9	
•••••															
•••••											•				

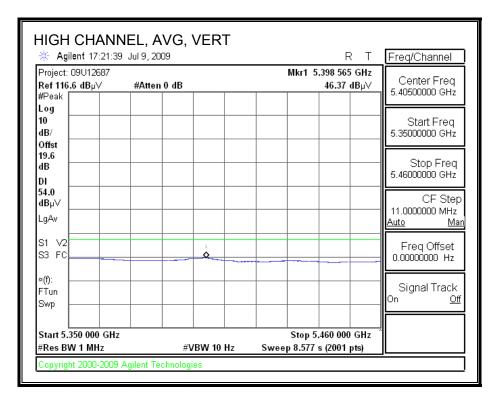

Rev. 4.1.2.7

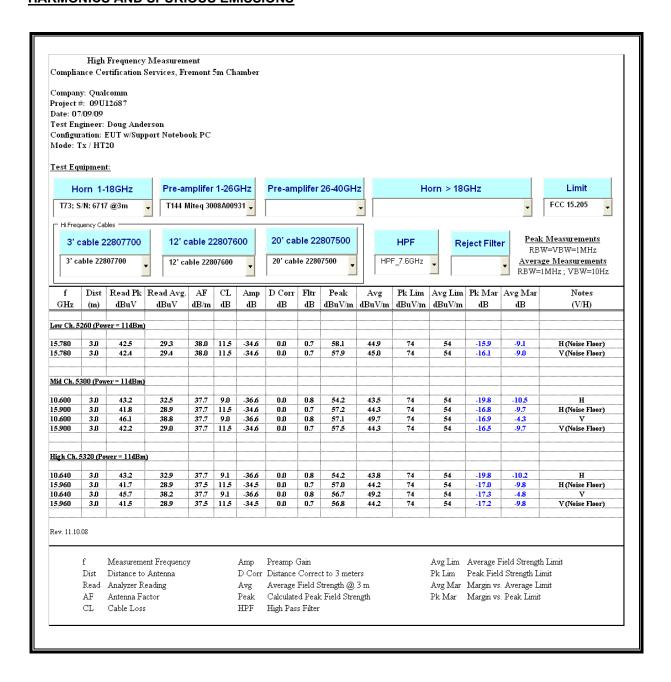
Note: No other emissions were detected above the system noise floor.


8.2.5. 802.11n HT20 MODE IN 5.3 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

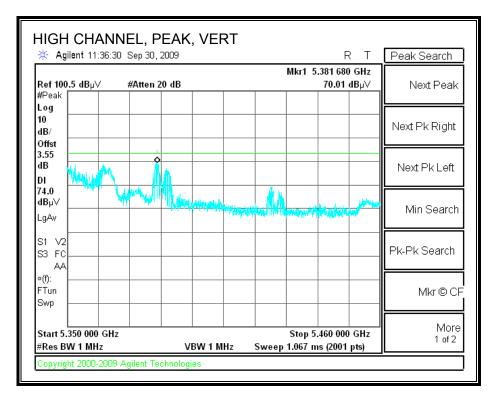



RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



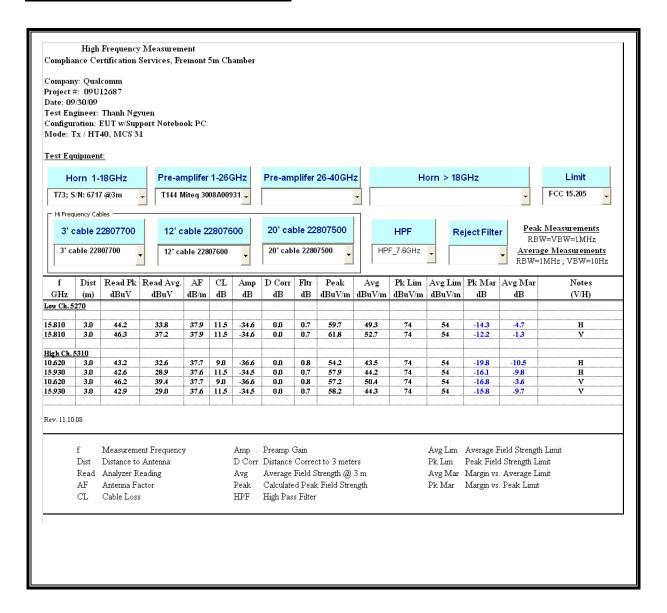
AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

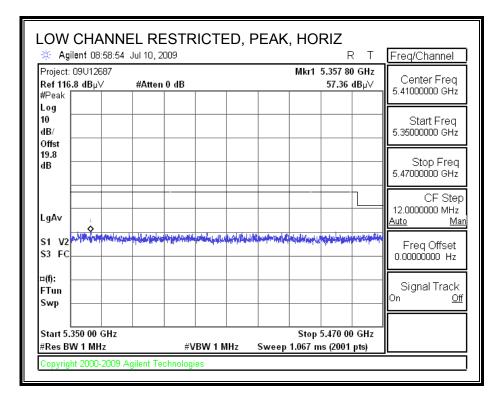


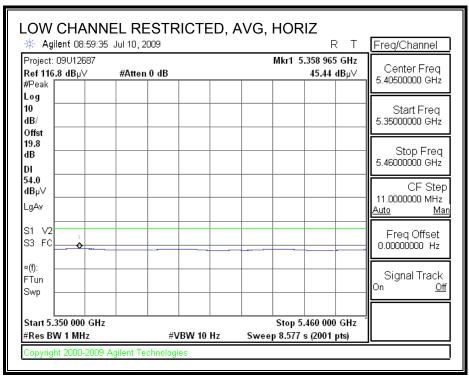
DATE: OCTOBER 21, 2009

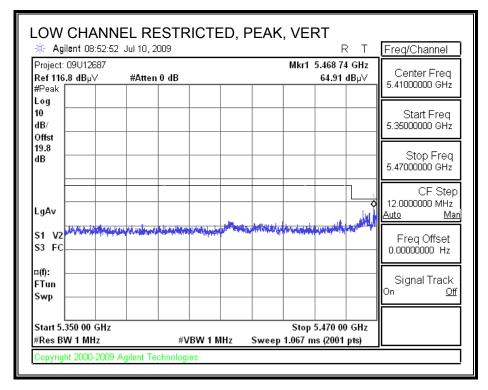
IC: 2723A-DC544D2


8.2.6. 802.11n HT40 MODE IN 5.3 GHz BAND

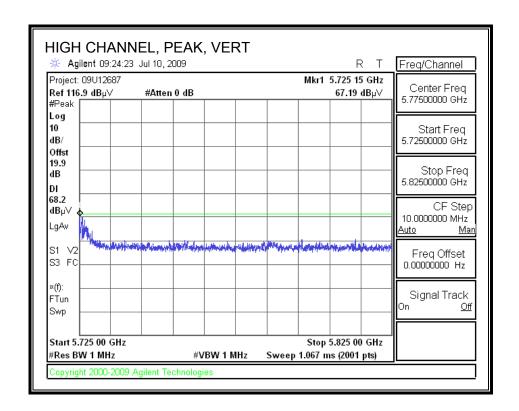
AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

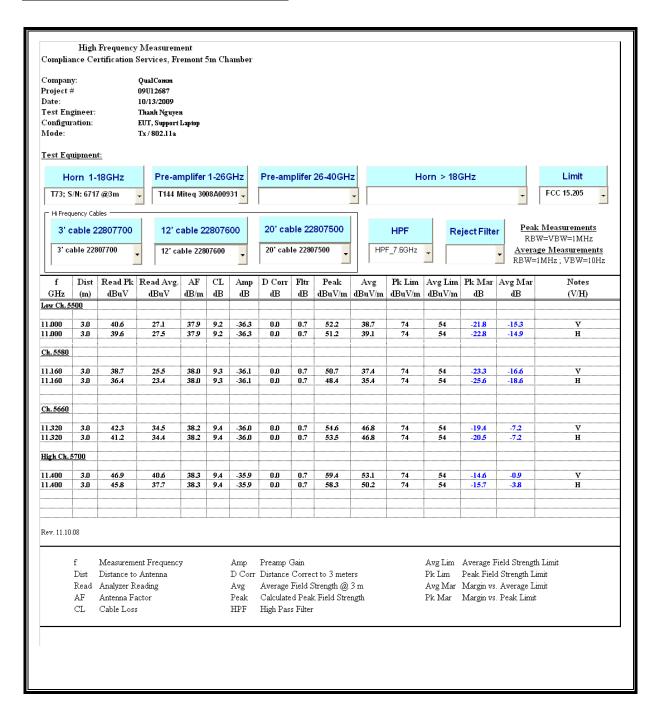



HARMONICS AND SPURIOUS EMISSIONS

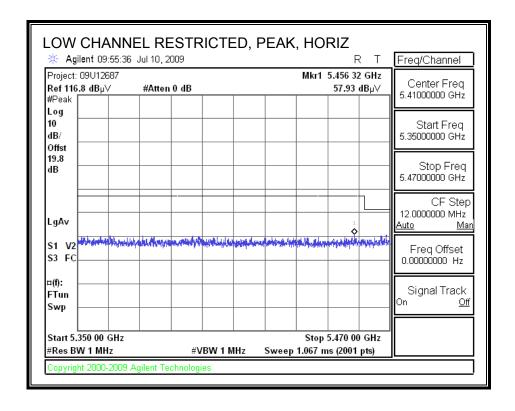

8.2.7. 802.11a MODE IN THE 5.6 GHz BAND

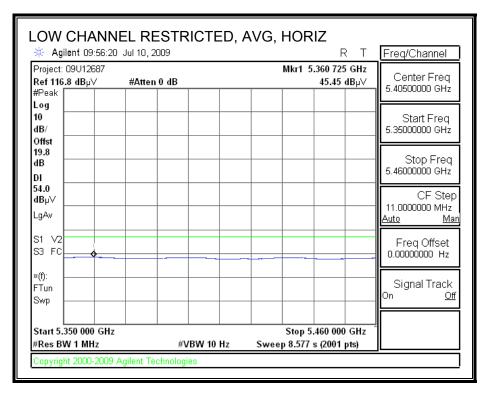
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

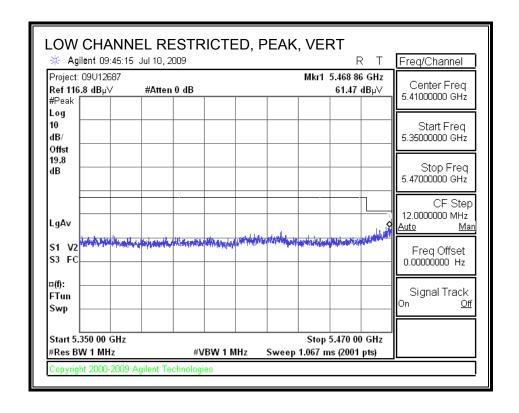
AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

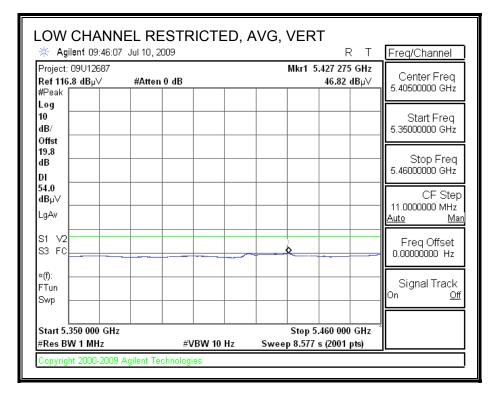

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2


HARMONICS AND SPURIOUS EMISSIONS

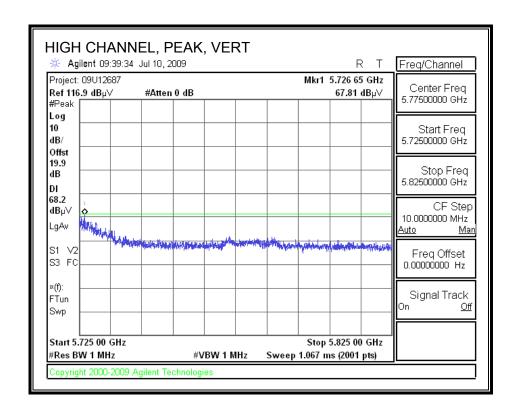
8.2.8. 802.11n HT20 MODE IN THE 5.6 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

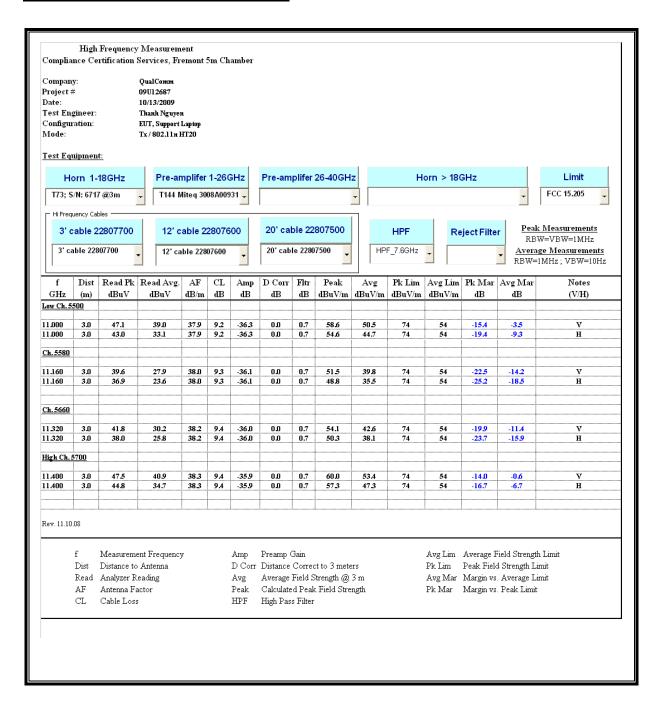




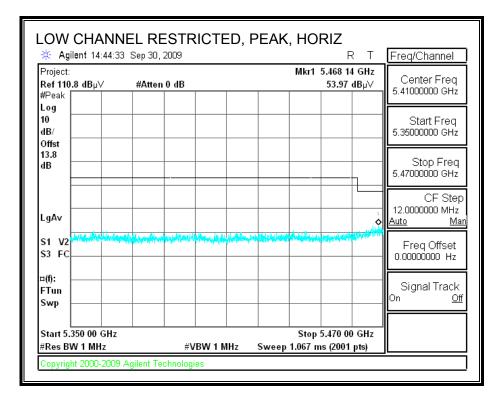
DATE: OCTOBER 21, 2009

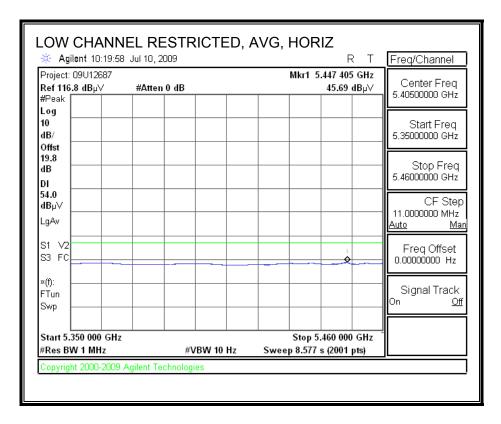

IC: 2723A-DC544D2

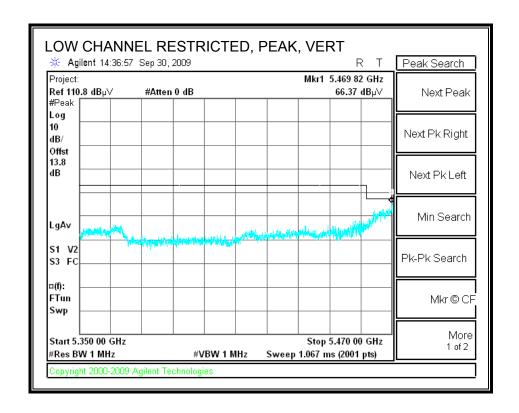
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

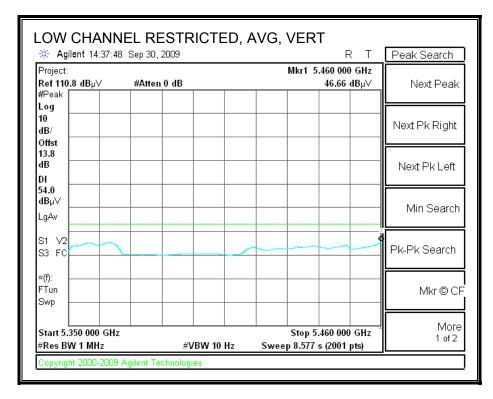


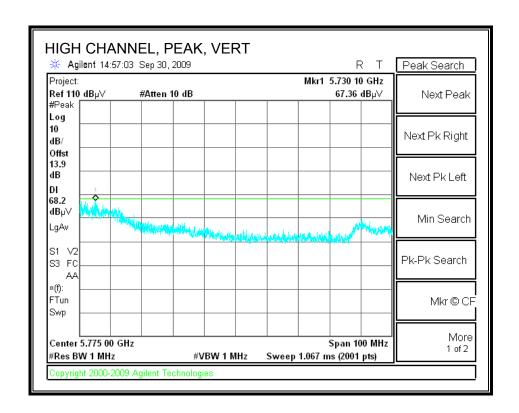
AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)



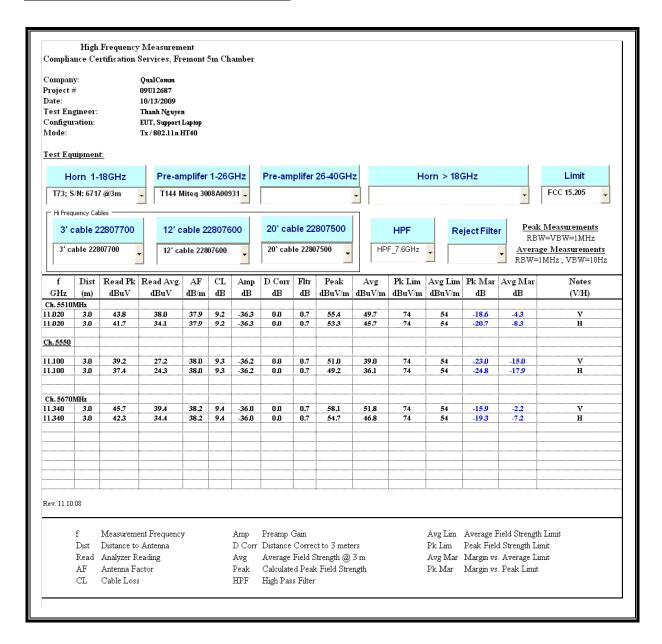

HARMONICS AND SPURIOUS EMISSIONS


8.2.9. 802.11n HT40 MODE IN THE 5.6 GHz BAND

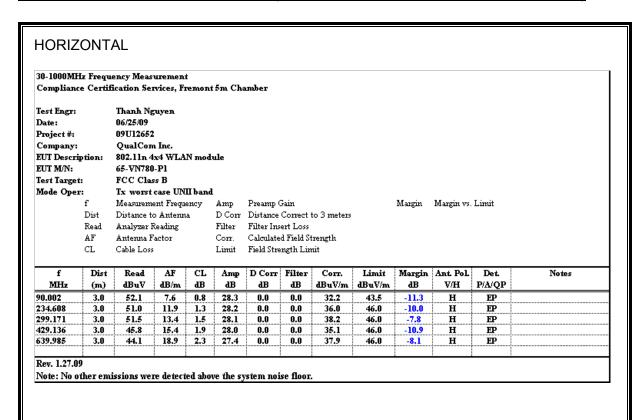

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)


HARMONICS AND SPURIOUS EMISSIONS

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTICAL

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Thanh Nguyen
Date: 06/25/09
Project #: 09U12652
Company: QualCom Inc.

EUT Description: 802.11n 4x4 WLAN module

EUT M/N: 65-VN780-P1
Test Target: FCC Class B

Mode Oper: Tx worst case UNII band

 f
 Measurement Frequency
 Amp
 Preamp Gain

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters

 Read
 Analyzer Reading
 Filter
 Filter Insert Loss

 AF
 Antenna Factor
 Corr
 Calculated Field Strength

 CL
 Cable Loss
 Limit
 Field Strength Limit

Limit Margin Ant. Pol. Dist Read AF CL Amp D Corr Filter Corr. Det. Notes MHz (m) dBuV dB/m dB dВ dВ dB dBuV/m dBuV/m dВ V/H P/A/QP 33.7 3.0 7.9 0.7 28.4 0.0 0.0 61.441 53.4 40.0 EР -6.3 142.925 3.0 45.9 13.1 1.1 28.3 0.0 0.031.8 43.5 -11.7 EP 0.0 498,379 3.0 39.0 16.7 2.0 27.8 0.0 29.9 46.0 -16.1 v КĐ 599.303 3.0 41.0 18.4 27.5 0.0 0.0 34.1 46.0 -11.9 \mathbf{v} EP 799.952 3.0 21.0 2.6 27.4 V EP

Margin Margin vs. Limit

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

This report shall not be reproduced except in full, without the written approval of CCS.

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

DATE: OCTOBER 21, 2009

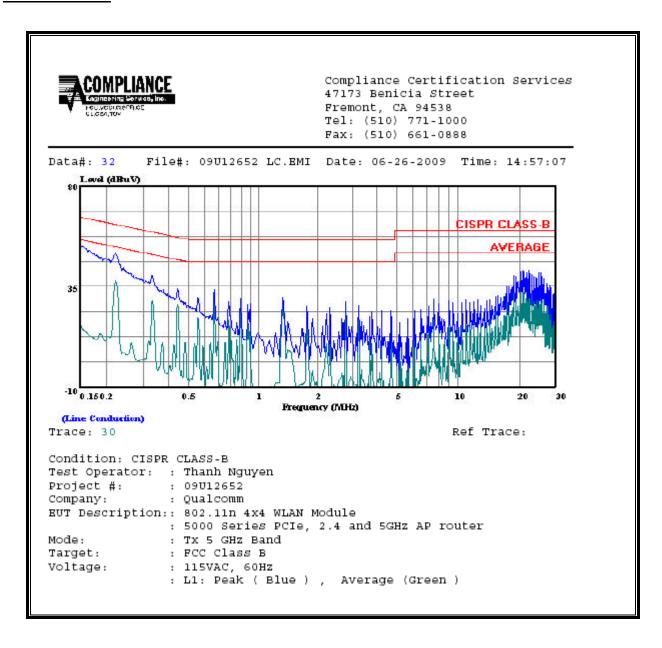
IC: 2723A-DC544D2

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.


Decreases with the logarithm of the frequency.

RESULTS

6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)								
Freq.		Reading		Closs	Limit	EN_B	Marg	in	Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2
0.22	49.94		36.55	0.00	62.74	52.74	-12.80	-16.19	L1
0.33	39.76		28.62	0.00	59.35	49.35	-19.59	-20.73	L1
21.15	41.63		37.25	0.00	60.00	50.00	-18.37	-12.75	L1
0.22	49.89		36.03	0.00	62.82	52.82	-12.93	-16.79	L2
0.33	39.80		27.12	0.00	59.35	49.35	-19.55	-22.23	L2
21.71	38.81		32.20	0.00	60.00	50.00	-21.19	-17.80	L2
6 Worst l	 Data 								

LINE 1 RESULTS

LINE 2 RESULTS

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888 File#: 09U12652 LC.EMI Date: 06-26-2009 Time: 14:46:54 Data#: 25 Lord (dBuV) CISPR CLASS-B AVERAGE 35 ·10 0.150.2 Frequency (MHz) (Line Conduction) Trace: 23 Ref Trace: Condition: CISPR CLASS-B Test Operator: : Thanh Nguyen Project #: : 09U12652 Company: : Qualcomm EUT Description:: 802.11n 4x4 WLAN Module : 5000 Series PCIe, 2.4 and 5GHz AP router Mode: : Tx 5 GHz Band : FCC Class B Target: : 115VAC, 60Hz Voltage: : L2: Peak (Blue) , Average (Green)

DATE: OCTOBER 21, 2009

10. DYNAMIC FREQUENCY SELECTION

10.1. OVERVIEW

10.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 2: Applicability of DFS requirements during normal operation

Table 217 (ppileability 61 21	rabio 217 applicability of 21 o requirements daring normal operation							
Requirement	Operational	Operational Mode						
	Master Client		Client					
		(without DFS)	(with DFS)					
DFS Detection Threshold	Yes	Not required	Yes					
Channel Closing Transmission Time	Yes	Yes	Yes					
Channel Move Time	Yes	Yes	Yes					

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

momoning	
Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the *Burst*.

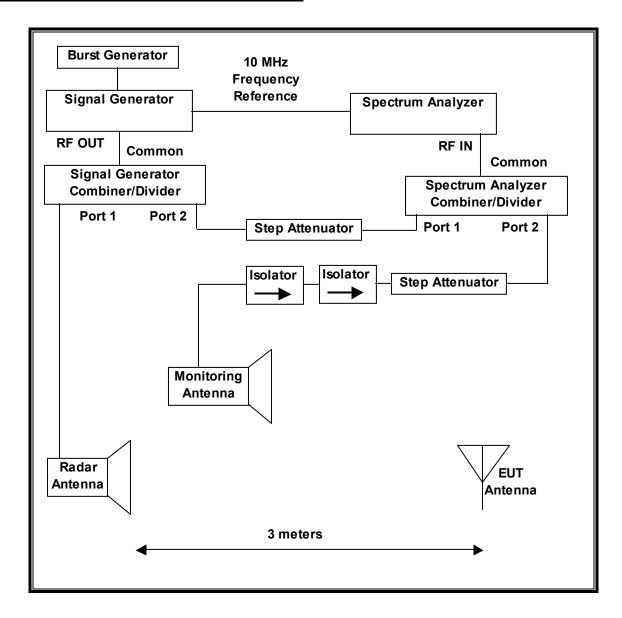
For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 - Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials
				Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (F	80%	120			


Table 6 - Long Pulse Radar Test Signal

. 45.5 6 =0	rabio o zong raioo raaar root orginar							
Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials	
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30	

Table 7 - Frequency Hopping Radar Test Signal

1 4510 1	Tubio i Troquorioj riopping rauda root orginal							
Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum	
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials	
	(µsec)		(ms)	Нор	(kHz)	Successful		
						Detection		
6	1	333	300	9	.333	70%	30	

RADIATED METHOD SYSTEM BLOCK DIAGRAM

DATE: OCTOBER 21, 2009

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

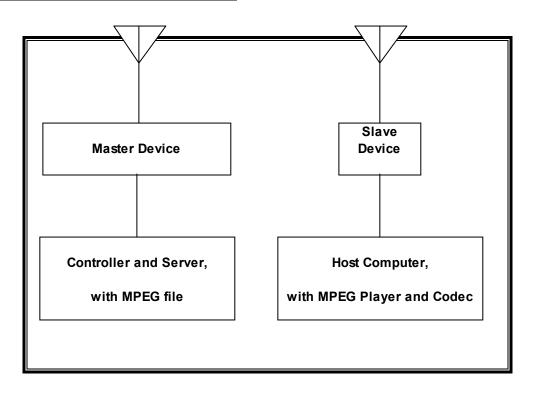
A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

Establish a link between the Master and Slave, adjusting the distance between the units as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.


TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4407B	C01098	02/07/10		
Vector signal generator, 20GHz	Agilent / HP	E8267C	C01066	11/16/09		
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	05/04/10		

10.1.3. **SETUP OF EUT**

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	FCC ID			
AC Adapter (EUT)	PI Electronics	P030WF120A	0910000153	DoC			
Notebook PC (Host)	HP	Compaq 6710b	CNUL032TY1	DoC			
AC Adapter (Host PC)	HP	PA-1900-18HN	9406310104	DoC			
USB to RS-232 Adapter	Keyspan	USA-19HS	02300	DoC			
Notebook PC (Client)	IBM	Type 2668-46U	L3-XDLW 06/02	DoC			
AC Adapter (Client PC)	IBM	02K6749	11S02K6749ZJ1	DoC			
			MN328Z9DE				
Dual Band Wireless USB Network Adapter (Slave Device)	Linksys/Cisco	WUSB600N	001C10EB00CB	Q87- WUSB600N			

This report shall not be reproduced except in full, without the written approval of CCS.

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

10.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges. For the Canadian version, all channels that have emissions falling within 5600 to 5650 MHz are blocked out.

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

The EUT is a Master Device.

The highest power level within these bands is 25.15 dBm EIRP in the 5250-5350 MHz band and 26.78 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of 3 dBi; in the 802.11a legacy mode it has an effective transmit antenna gain of 6.01 dBi.

Four identical antennas are utilized to meet the diversity and MIMO operational requirement, except in the 802.11a mode where two identical antennas are active for the transmitter and four identical antennas are active for the receiver.

The EUT uses four transmitter/receiver chains, each connected to an antenna to perform radiated tests.

The rated output power of the EUT is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required radiated threshold is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

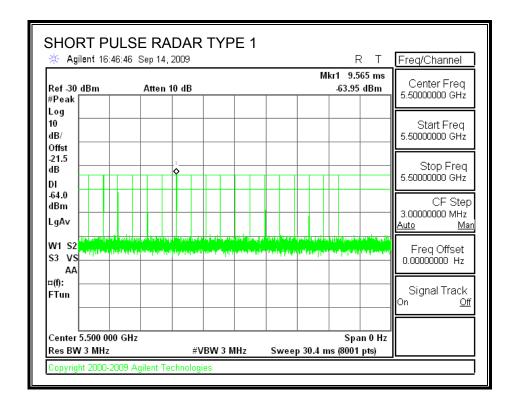
TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths are implemented: 20 MHz and 40 MHz.

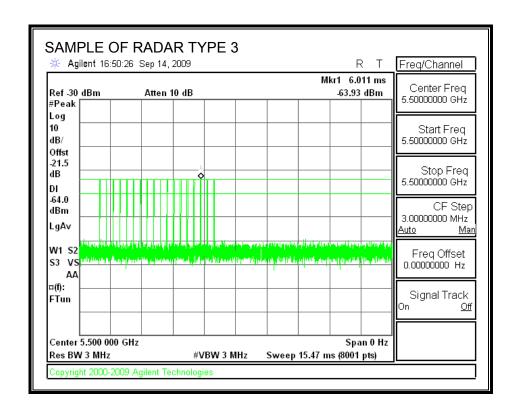
The software installed in the EUT is version 5.0.300.52.

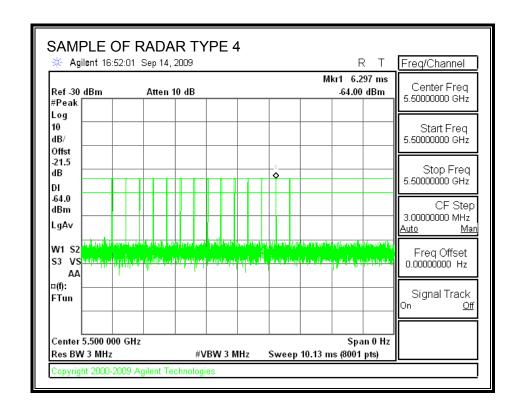
MANUFACTURER'S STATEMENT REGARDING UNIFORM CHANNEL SPREADING

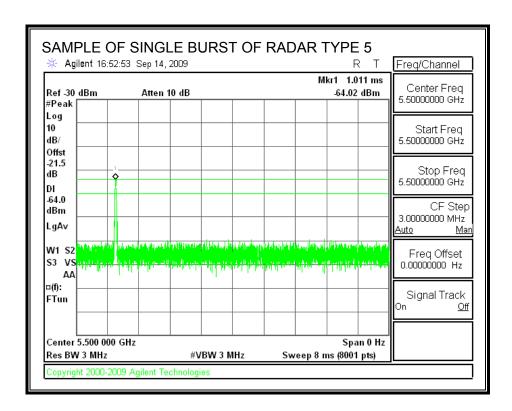
This statement is in a separate document.

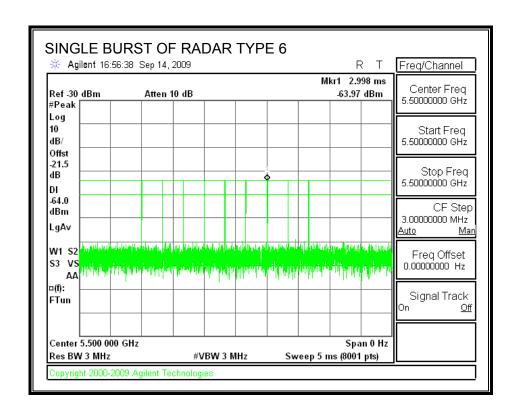

10.2. RESULTS FOR 20 MHz BANDWIDTH

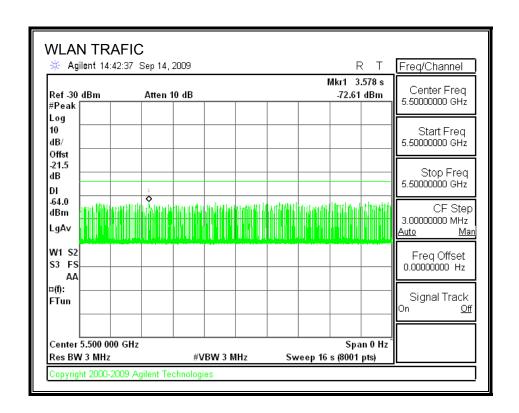

10.2.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5500 MHz.


10.2.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC


PLOTS OF RADAR WAVEFORMS





PLOT OF WLAN TRAFFIC FROM MASTER

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

10.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 FCC ID: J9C-DC544D2

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
31.12	169.3	138.2	78.2

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.26	110.5	80.2	2.0

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30	167.6	137.6	59.4

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC End of CAC Traffic is Initiated TINING PLOT WITHOUT RADAR - NORMAL POWER-ON CYCLE Agilent 15:40:24 Sep 14, 2009 R T Freg/Channel Mkr2 169.3 s Center Freq Ref -30 dBm -85.51 dBm Atten 10 B 5.500000000 GHz #Peak Log 10 Start Freq dB/ 5.50000000 GHz Offst -21.5 Stop Freq dΒ 5.50000000 GHz DΙ 64.0 CF Step dBm 3.00000000 MHz LgA∨ Center 5.500 000 GHz Span 0 Hz Freq Offset Res BW 3 MHz #VBW 3 MHz Sweep 300 s (8001 pts) 0.000000000 Hz Amplitude X Axis Marker Type Trace 31.12 s -78.68 dBm (1) Time 169.3 s -85.51 dBm Signal Track <u>Off</u>

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Copyright 2000-2009 Agilent Technologies

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC Agilent 16:09:18 Sep 14, 2009 R T Freg/Channel Mkr2 110.5 s Center Freq <u>63.4</u>5 dBm Atten 10 dB Ref -0 dBm 5.50000000 GHz #Pea Log 10 Start Freq dB/ 5.500000000 GHz Offst -21.5 dB Stop Freq 5.50000000 GHz DΙ 64.0 CF Step dBm 3.00000000 MHz LgAv <u>Auto</u> Center 5.500 000 GHz Span 0 Hz Freq Offset 0.00000000 Hz Res BW 3 MHz #VBW 3 MHz Sweep 300 s (8001 pts) Amplitude -72.04 dBm Marker X Axis 30.26 s (1) Time (1) -63.45 dBm Signal Track <u>Off</u>

No EUT transmissions were observed after the radar signal.

opyright 2000-2009 Agilent Technologies

DATE: OCTOBER 21, 2009

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLOT WITH FADAR NEAR END OF CAC Agilent 16:23:24 Sep 14, 200 Freq/Channel Mkr2 167.6 s Center Freq Ref 10 dBm Atten 10 dB -63.58 dBm 5.50000000 GHz #Pea Log 10 Start Freq dB/ 5.500000000 GHz Offst -21.5 dB Stop Freq 5.50000000 GHz DΙ 64.0 CF Step dBm 3.000000000 MHz LgAv <u>Auto</u> Center 5.500 000 GHz Span 0 Hz Freq Offset 0.00000000 Hz Res BW 3 MHz #VBW 3 MHz Sweep 300 s (8001 pts) X Axis 30 s Amplitude -76.71 dBm Marker (1) Time (1) Signal Track <u>Off</u>

No EUT transmissions were observed after the radar signal.

opyright 2000-2009 Agilent Technologies

DATE: OCTOBER 21, 2009

10.2.4. **OVERLAPPING CHANNEL TESTS**

RESULTS

These tests are not applicable.

10.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

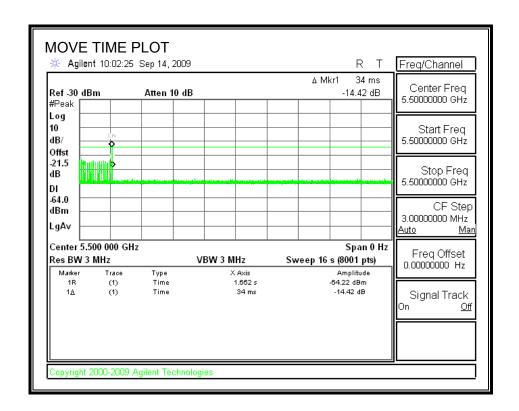
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

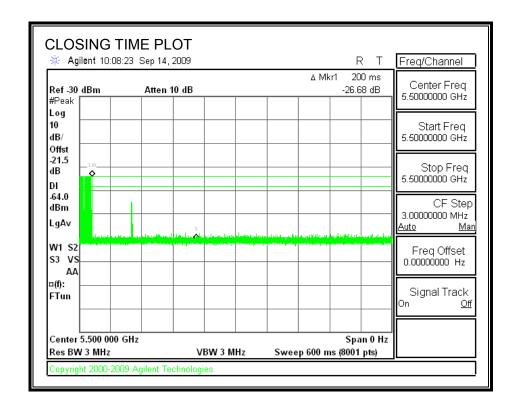
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

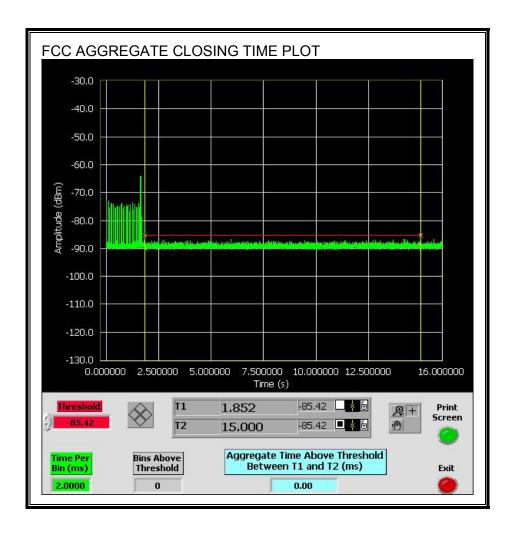

RESULTS

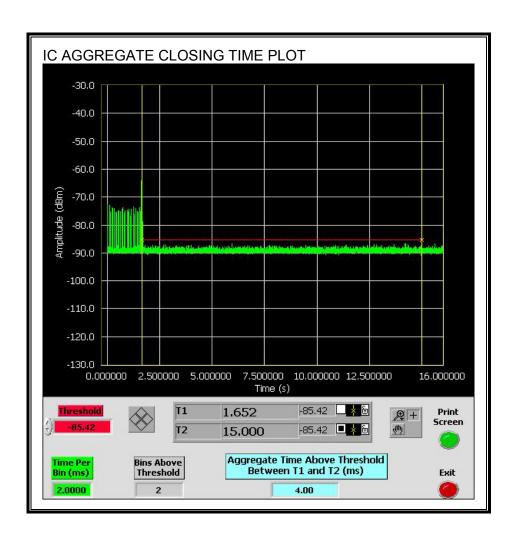
Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.034	10


Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	4.0	260

DATE: OCTOBER 21, 2009

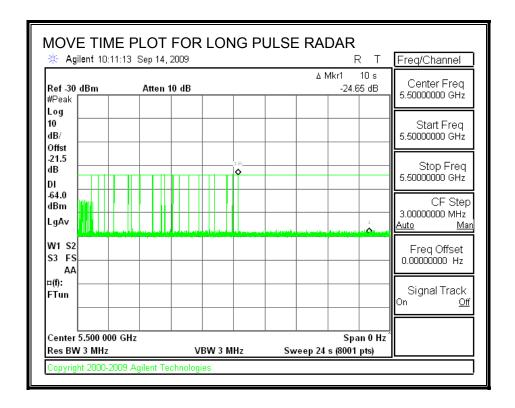
MOVE TIME


CHANNEL CLOSING TIME


DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

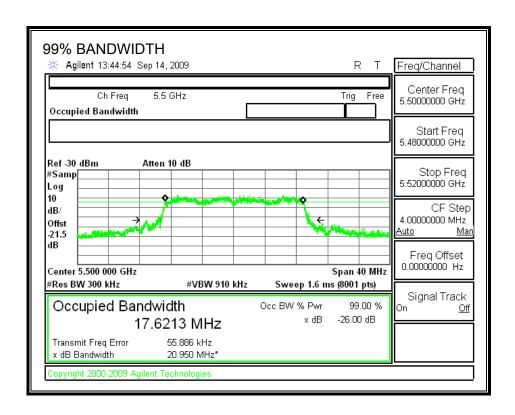
AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.



Only intermittent transmissions are observed during the IC aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME


The traffic ceases prior to 10 seconds after the end of the radar waveform.

DATE: OCTOBER 21, 2009

10.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5492	5508	16	17.621	90.8	80

DETECTION BANDWIDTH PROBABILITY

etection Band	width Test Results			
CC Type 1 Wa	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per F	3urst
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5492	10	10	100	FL
5493	10	10	100	
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	9	90	
5498	10	9	90	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	9	90	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	FH

10.2.7. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	90.00	60	Pass
FCC Short Pulse Type 2	30	90.00	60	Pass
FCC Short Pulse Type 3	30	86.67	60	Pass
FCC Short Pulse Type 4	30	90.00	60	Pass
Aggregate		89.17	80	Pass
FCC Long Pulse Type 5	30	93.33	80	Pass
FCC Hopping Type 6	35	97.14	70	Pass

TYPE 1 DETECTION PROBABILITY

Data Sheet for FCC Short Pulse Radar Type 1 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst		
Trial	Successful Detection (Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	No	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	No	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

TYPE 2 DETECTION PROBABILITY

Data Sheet f Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	1.7	200.00	24	Yes
2002	2	198.00	23	Yes
2003	3.8	153.00	25	Yes
2004	2.5	210.00	28	Yes
2005	1.3	171.00	28	Yes
2006	2.5	173.00	27	Yes
2007	1.9	207.00	28	Yes
2008	2.4	195.00	24	Yes
2009	2.2	185.00	27	Yes
2010	1.6	188.00	27	Yes
2011	1.3	169.00	29	Yes
2012	3.2	199.00	29	Yes
2013	1.4	210.00	23	Yes
2014	1.2	169.00	27	Yes
2015	3.1	213.00	29	Yes
2016	4.5	213.00	23	Yes
2017	3.7	206.00	28	Yes
2018	3.1	212.00	29	Yes
2019	2.5	186.00	23	No
2020	2.8	215.00	28	Yes
2021	1	208.00	24	Yes
2022	4.3	168.00	27	Yes
2023	2.2	163.00	24	Yes
2024	3.7	216.00	28	Yes
2025	2.9	210.00	23	Yes
2026	4.5	206.00	26	Yes
2027	3.9	193.00	29	Yes
2028	2.4	230.00	29	Yes
2029	1	203.00	27	Yes
2030	3.6	208.00	27	Yes

TYPE 3 DETECTION PROBABILITY

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011	5.9 7.5 5.6 7 6.4 6.2 9.1 6.3 9.5 5.6	334.00 368.00 405.00 311.00 473.00 469.00 355.00 334.00 421.00	18 16 18 17 17 17 17 17	Yes
3003 3004 3005 3006 3007 3008 3009 3010 3011	5.6 7 6.4 6.2 9.1 6.3 9.5 5.6	405.00 311.00 473.00 469.00 355.00 334.00 421.00	18 17 17 17 17 17	Yes Yes Yes Yes Yes
3004 3005 3006 3007 3008 3009 3010 3011	7 6.4 6.2 9.1 6.3 9.5 5.6	311.00 473.00 469.00 355.00 334.00 421.00	17 17 17 17 17	Yes Yes Yes Yes
3005 3006 3007 3008 3009 3010 3011	6.4 6.2 9.1 6.3 9.5 5.6	473.00 469.00 355.00 334.00 421.00	17 17 17 17	Yes Yes Yes
3006 3007 3008 3009 3010 3011	6.2 9.1 6.3 9.5 5.6	469.00 355.00 334.00 421.00	17 17 18	Yes Yes
3007 3008 3009 3010 3011	9.1 6.3 9.5 5.6	355.00 334.00 421.00	17 18	Yes
3008 3009 3010 3011	6.3 9.5 5.6	334.00 421.00	18	
3009 3010 3011	9.5 5.6	421.00		Yes
3010 3011	5.6		4-	
3011			17	Yes
		462.00	16	Yes
	9.8	252.00	17	No
3012	5.3	364.00	16	Yes
3013	7.3	381.00	17	Yes
3014	9.2	483.00	17	No
3015	9.2	310.00	16	Yes
3016	5.9	430.00	16	Yes
3017	7.7	326.00	17	Yes
3018	6.1	413.00	17	Yes
3019	8.1	453.00	16	Yes
3020	6.3	416.00	18	Yes
3021	8.3	271.00	18	Yes
3022	7.7	288.00	16	Yes
3023	8	451.00	17	Yes
3024	8.3	459.00	17	Yes
3025	8.5	310.00	17	Yes
3026	8.8	393.00	16	Yes
3027	9.1	256.00	17	Yes
3028	5.2	275.00	16	Yes
3029	6.3	374	18	Yes

IC: 2723A-DC544D2

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	16.7	441.00	14	Yes
4002	12.2	305.00	13	Yes
4003	16.5	396.00	13	Yes
4004	13.3	485.00	12	Yes
4005	17.2	472.00	15	Yes
4006	16.9	308.00	13	Yes
4007	16.1	368.00	12	Yes
4008	18.1	373.00	13	Yes
4009	19.2	288.00	12	Yes
4010	18.8	353.00	13	Yes
4011	17.3	312.00	15	Yes
4012	16.3	481.00	12	Yes
4013	15.2	490.00	12	Yes
4014	17.7	361.00	14	Yes
4015	10.6	279.00	16	Yes
4016	11.1	346.00	14	Yes
4017	17	332.00	15	Yes
4018	11.6	300.00	15	Yes
4019	12.3	455.00	12	Yes
4020	19.1	279.00	15	Yes
4021	15.7	433.00	14	Yes
4022	20	381.00	15	Yes
4023	11.8	332.00	14	Yes
4024	14.6	265.00	14	Yes
4025	19.9	306.00	16	Yes
4026	15.3	327.00	15	Yes
4027	11.1	260.00	15	Yes
4028	13.9	356.00	13	Yes
4029	11.9	260.00	15	No
4030	17.9	444.00	12	Yes

TYPE 5 DETECTION PROBABILITY

Trial	Long Pulse Radar Type 5 Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	No
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

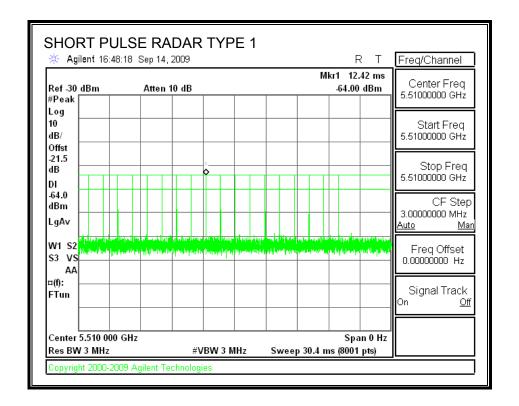
Note: The Type 5 randomized parameters are shown in a separate document.

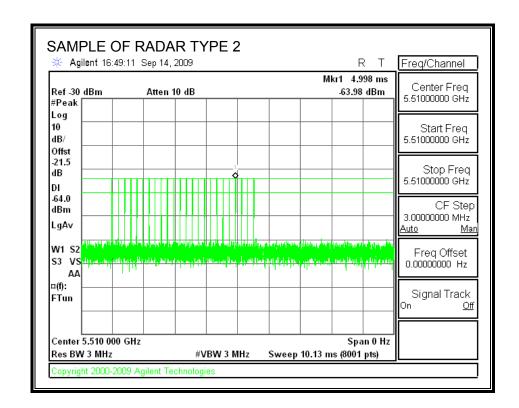
TYPE 6 DETECTION PROBABILITY

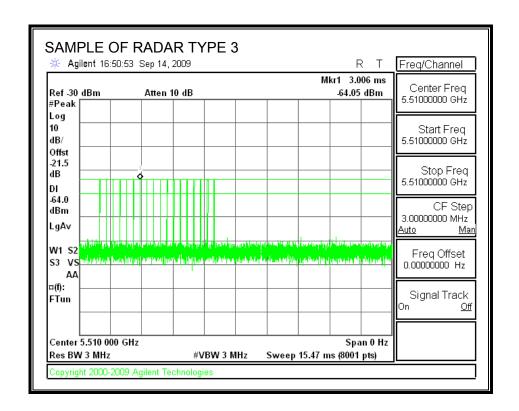
	e Width, 333 us PRI,	•	1 Burst per Hop	
TIA Aug	just 2005 Hopping Se			
Trial	Starting Index	Signal Generator	Hops within	Successful
	Within Sequence	Frequency	Detection BW	Detection
		(MHz)		(Yes/No)
1	354	5492	1	Yes
2	829	5493	2	Yes
3	1304	5494	7	Yes
4	1779	5495	7	Yes
5	2254	5496	4	Yes
6	2729	5497	1	Yes
7	3679	5498	4	Yes
8	4154	5499	4	Yes
9	4629	5500	2	Yes
10	5104	5501	2	Yes
11	5579	5502	4	Yes
12	6529	5503	5	Yes
13	7004	5504	2	Yes
14	7479	5505	3	Yes
15	7954	5506	2	Yes
16	8429	5507	3	Yes
17	8904	5508	5	Yes
18	9379	5492	6	Yes
19	9854	5493	2	Yes
20	10329	5494	5	Yes
21	10804	5495	6	Yes
22	11279	5496	5	Yes
23	11754	5497	2	Yes
24	12229	5498	1	Yes
25	12704	5499	2	Yes
26	13179	5500	3	Yes
27	13654	5501	1	Yes
28	14129	5502	4	Yes
29	14604	5503	4	Yes
30	15079	5504	4	Yes
31	15554	5505	2	Yes
32	16029	5506	5	Yes
33	16504	5507	6	Yes
34	16979	5508	4	Yes

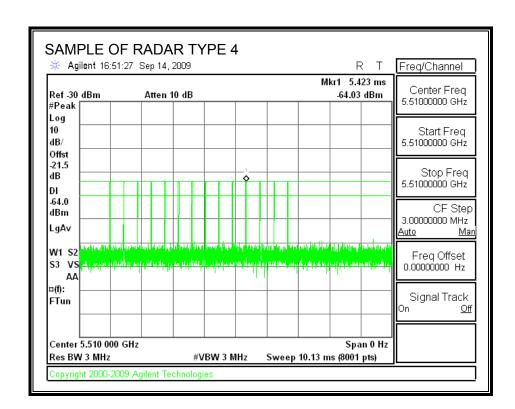
DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

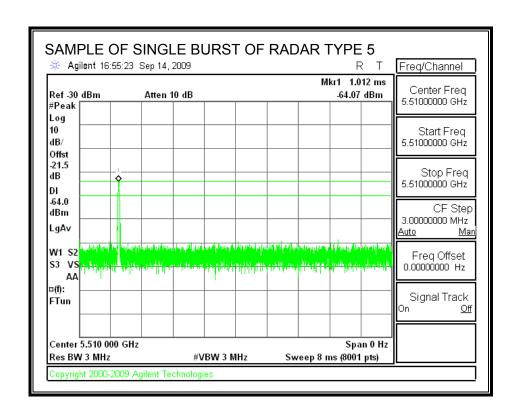
10.3. **RESULTS FOR 40 MHz BANDWIDTH**

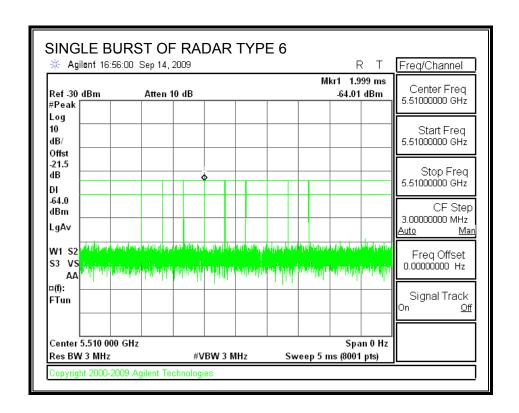

10.3.1. **TEST CHANNEL**

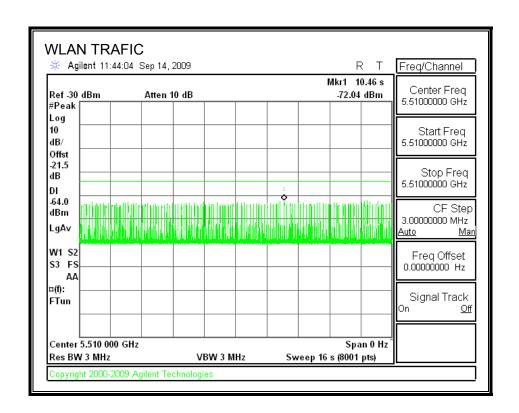

All tests were performed at a channel center frequency of 5510 MHz.


10.3.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC


IC: 2723A-DC544D2


PLOTS OF RADAR WAVEFORMS





PLOT OF WLAN TRAFFIC FROM MASTER

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

10.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

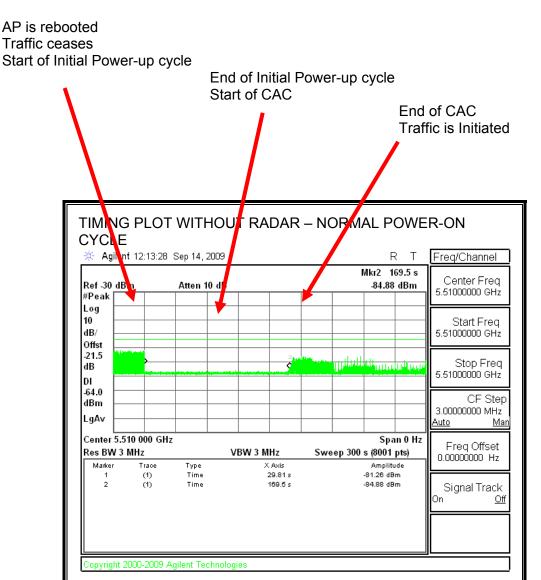
REPORT NO: 09U12687-7 DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2 FCC ID: J9C-DC544D2

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
29.81	169.5	139.7	79.7

Radar Near Beginning of CAC

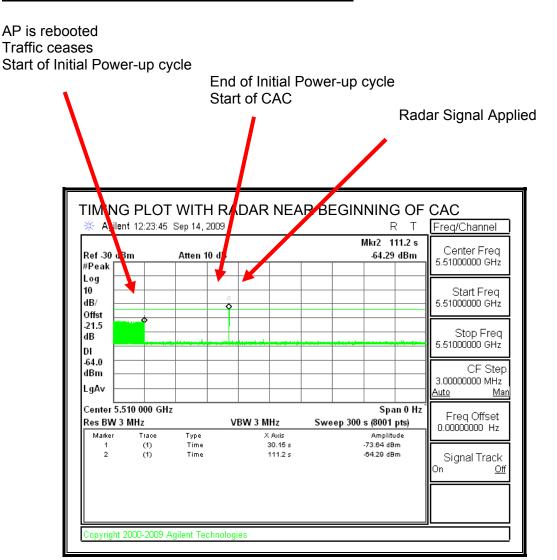

Timing of Reboot	Timing of Radar Burst	Radar Relative to Reboot	Radar Relative to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.15	111.2	81.1	1.4

Radar Near End of CAC

Timing of Reboot	Timing of Radar Burst	Radar Relative to Reboot	Radar Relative to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.23	168.8	138.6	58.9

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel



Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

TEL: (510) 771-1000

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

AP is rebooted

Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMNG PLOT WITH RADAR NEAR END OF CAC Allent 12:36:04 Sep 14, 2009. Peak Search Mkr2 168.8 s Ref -30 🔀 m -64.05 dBm Atten 10 di Next Peak #Peak Log 10 Next Pk Right dB/ Offst -21.5 dB Next Pk Left DΙ -64.0 dBm Min Search LgA∨ Span 0 Hz Center 5.510 000 GHz Res BW 3 MHz VBW 3 MHz Sweep 300 s (8001 pts) Pk-Pk Search Amplitude -73.32 dBm Marker X Axis 30.23 s (1) Time (1) Mkr © CF More 1 of 2 opyright 2000-2009 Agilent Technologies

No EUT transmissions were observed after the radar signal.

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

B BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0
This report shall not be reproduced except in full, without the written approval of CCS.

10.3.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

10.3.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

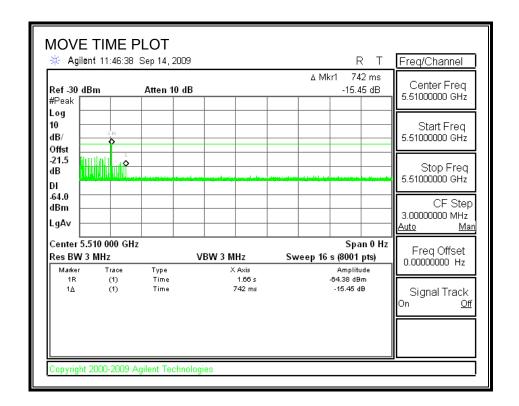
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

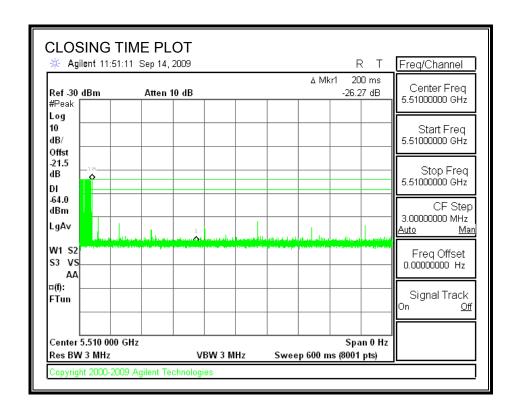
The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS


Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.742	10

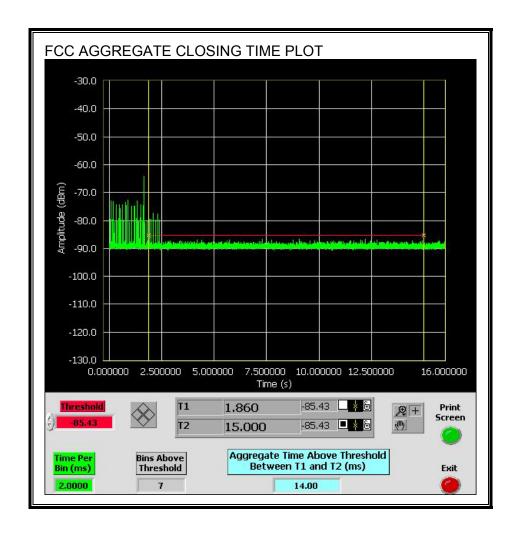
Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	14.0	60
IC	18.0	260

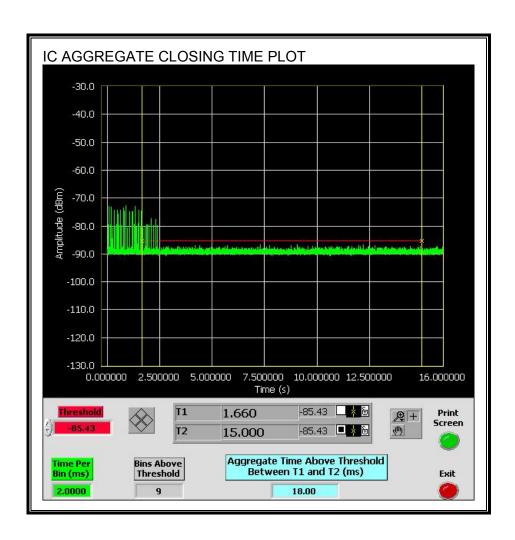
DATE: OCTOBER 21, 2009


IC: 2723A-DC544D2

MOVE TIME

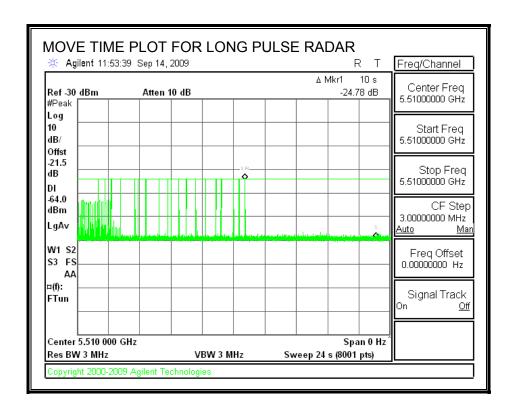
DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2


CHANNEL CLOSING TIME


Only intermittent transmissions are observed during the FCC aggregate monitoring period.

DATE: OCTOBER 21, 2009

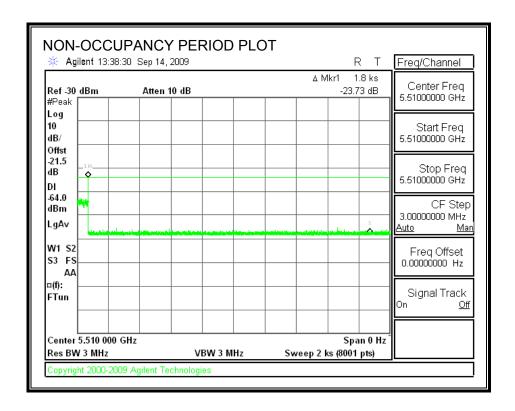
IC: 2723A-DC544D2



Only intermittent transmissions are observed during the IC aggregate monitoring period.

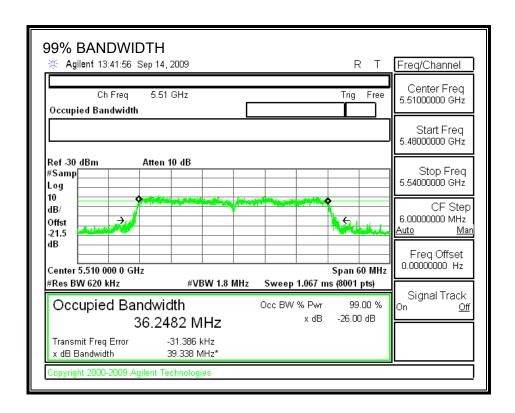
LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.


10.3.6. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.


DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

10.3.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5493	5527	34	36.248	93.8	80

DETECTION BANDWIDTH PROBABILITY

	width Test Results			
		Vidth, 1428 us PRI, 1		
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5493	10	10	100	FL
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	
5509	10	10	100	
5510	10	10	100	
5511	10	10	100	
5512	10	10	100	
5513	10	10	100	
5514	10	9	90	
5515	10	10	100	
5516	10	10	100	
5517	10	10	100	
5518	10	10	100	
5519	10	10	100	
5520	10	10	100	
5521	10	10	100	
5522	10	10	100	
5523	10	10	100	
5524	10	10	100	
5525	10	10	100	
5526	10	10	100	
5527	10	9	90	FH

10.3.8. IN-SERVICE MONITORING

RESULTS

Signal Type	Number of Trials	Detection	Limit	Pass/Fail
, ,,		(%)	(%)	
FCC Short Pulse Type 1	30	90.00	60	Pass
FCC Short Pulse Type 2	30	90.00	60	Pass
FCC Short Pulse Type 3	30	86.67	60	Pass
FCC Short Pulse Type 4	30	90.00	60	Pass
Aggregate		89.17	80	Pass
FCC Long Pulse Type 5	30	93.33	80	Pass
FCC Hopping Type 6	35	97.14	70	Pass

TYPE 1 DETECTION PROBABILITY

1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst			
Trial	Successful Detection		
	(Yes/No)		
1	Yes		
2	Yes		
3	Yes		
4	Yes		
5	Yes		
6	Yes		
7	Yes		
8	No		
9	Yes		
10	Yes		
11	Yes		
12	Yes		
13	Yes		
14	Yes		
15	No		
16	No		
17	Yes		
18	Yes		
19	Yes		
20	Yes		
21	Yes		
22	Yes		
23	Yes		
24	Yes		
25	Yes		
26	Yes		
27	Yes		
28	Yes		
29	Yes		
30	Yes		

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	1.7	200.00	24	Yes
2002	2	198.00	23	No
2003	3.8	153.00	25	Yes
2004	2.5	210.00	28	Yes
2005	1.3	171.00	28	Yes
2006	2.5	173.00	27	Yes
2007	1.9	207.00	28	Yes
2008	2.4	195.00	24	Yes
2009	2.2	185.00	27	Yes
2010	1.6	188.00	27	Yes
2011	1.3	169.00	29	Yes
2012	3.2	199.00	29	Yes
2013	1.4	210.00	23	Yes
2014	1.2	169.00	27	Yes
2015	3.1	213.00	29	Yes
2016	4.5	213.00	23	No
2017	3.7	206.00	28	Yes
2018	3.1	212.00	29	Yes
2019	2.5	186.00	23	Yes
2020	2.8	215.00	28	Yes
2021	1	208.00	24	Yes
2022	4.3	168.00	27	Yes
2023	2.2	163.00	24	Yes
2024	3.7	216.00	28	Yes
2025	2.9	210.00	23	Yes
2026	4.5	206.00	26	Yes
2027	3.9	193.00	29	Yes
2028	2.4	230.00	29	No
2029	1	203.00	27	Yes
2030	3.6	208.00	27	Yes

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	5.9	334.00	18	Yes
3002	7.5	368.00	16	No
3003	5.6	405.00	18	Yes
3004	7	311.00	17	Yes
3005	6.4	473.00	17	Yes
3006	6.2	469.00	17	Yes
3007	9.1	355.00	17	Yes
3008	6.3	334.00	18	Yes
3009	9.5	421.00	17	Yes
3010	5.6	462.00	16	Yes
3011	9.8	252.00	17	Yes
3012	5.3	364.00	16	Yes
3013	7.3	381.00	17	Yes
3014	9.2	483.00	17	Yes
3015	9.2	310.00	16	Yes
3016	5.9	430.00	16	Yes
3017	7.7	326.00	17	Yes
3018	6.1	413.00	17	Yes
3019	8.1	453.00	16	Yes
3020	6.3	416.00	18	No
3021	8.3	271.00	18	No
3022	7.7	288.00	16	Yes
3023	8	451.00	17	Yes
3024	8.3	459.00	17	Yes
3025	8.5	310.00	17	Yes
3026	8.8	393.00	16	Yes
3027	9.1	256.00	17	Yes
3028	5.2	275.00	16	Yes
3029	6.3	374	18	No
3030	7.6	392	16	Yes

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
4001	16.7	441.00	14	Yes
4002	12.2	305.00	13	Yes
4003	16.5	396.00	13	Yes
4004	13.3	485.00	12	Yes
4005	17.2	472.00	15	Yes
4006	16.9	308.00	13	Yes
4007	16.1	368.00	12	Yes
4008	18.1	373.00	13	Yes
4009	19.2	288.00	12	Yes
4010	18.8	353.00	13	Yes
4011	17.3	312.00	15	No
4012	16.3	481.00	12	Yes
4013	15.2	490.00	12	Yes
4014	17.7	361.00	14	Yes
4015	10.6	279.00	16	Yes
4016	11.1	346.00	14	Yes
4017	17	332.00	15	Yes
4018	11.6	300.00	15	Yes
4019	12.3	455.00	12	Yes
4020	19.1	279.00	15	Yes
4021	15.7	433.00	14	Yes
4022	20	381.00	15	Yes
4023	11.8	332.00	14	Yes
4024	14.6	265.00	14	Yes
4025	19.9	306.00	16	No
4026	15.3	327.00	15	Yes
4027	11.1	260.00	15	Yes
4028	13.9	356.00	13	Yes
4029	11.9	260.00	15	No
4030	17.9	444.00	12	Yes

TYPE 5 DETECTION PROBABILITY

Data Shoot for ECC	Data Sheet for FCC Long Pulse Radar Type 5				
Trial	Successful Detection				
	(Yes/No)				
1	Yes				
2	Yes				
3	Yes				
4	Yes				
5	Yes				
6	Yes				
7	Yes				
8	Yes				
9	Yes				
10	Yes				
11	Yes				
12	Yes				
13	Yes				
14	Yes				
15	Yes				
16	Yes				
17	Yes				
18	Yes				
19	No				
20	Yes				
21	Yes				
22	Yes				
23	Yes				
24	Yes				
25	Yes				
26	Yes				
27	No				
28	Yes				
29	Yes				
30	Yes				

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

ΊΛ Λ	ust 2005 Hopping Se	auchee	1 Burst per Hop	
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	166	5493	4	Yes
2	641	5494	12	Yes
3	1116	5495	8	Yes
4	1591	5496	4	Yes
5	2066	5497	6	Yes
6	2541	5498	6	Yes
7	3016	5499	6	Yes
8	3491	5500	8	Yes
9	3966	5501	5	Yes
10	4441	5502	9	Yes
11	4916	5503	8	Yes
12	5391	5504	9	Yes
13	5866	5505	7	Yes
14	6341	5506	5	Yes
15	6816	5507	8	Yes
16	7291	5508	11	Yes
17	7766	5509	10	Yes
18	8241	5510	7	Yes
19	8716	5511	7	Yes
20	9191	5512	8	Yes
21	9666	5513	8	Yes
22	10141	5514	4	Yes
23	10616	5515	3	Yes
24	11091	5516	7	Yes
25	11566	5517	6	Yes
26	12041	5518	5	Yes
27	12516	5519	8	No
28	12991	5520	10	Yes
29	13466	5521	6	Yes
30	13941	5522	3	Yes
31	14416	5523	9	Yes
32	14891	5524	9	Yes
33	15366	5525	9	Yes
34 35	15841 16316	5526 5527	5 5	Yes Yes

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2

11. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30	
1500-100,000			1.0	30	

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of CCS.

TEL: (510) 771-1000

FAX: (510) 661-0888

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

REPORT NO: 09U12687-7 FCC ID: J9C-DC544D2

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

DATE: OCTOBER 21, 2009

IC: 2723A-DC544D2

Distance is given by:

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

(MPE distance equals 20 cm)

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
5.2 GHz	11a (2 Chains)	0.20	12.18	6.01	0.13	0.013
5.2 GHz	11n HT20 (4 Chains)	0.20	13.23	3.0	0.08	0.008
5.2 GHz	11n HT40 (4 Chains)	0.20	16.67	3.0	0.18	0.018
5.3 GHz	11a (2 Chains)	0.20	19.15	6.01	0.65	0.065
5.3 GHz	11n HT20 (4 Chains)	0.20	20.65	3.0	0.46	0.046
5.3 GHz	11n HT40 (4 Chains)	0.20	23.24	3.0	0.84	0.084
5.6 GHz	11a (2 Chains)	0.20	19.88	6.01	0.77	0.077
5.6 GHz	11n HT20 (4 Chains)	0.20	20.24	3.0	0.42	0.042
5.6 GHz	11n HT40 (4 Chains)	0.20	23.80	3.0	0.95	0.095

DATE: OCTOBER 21, 2009 IC: 2723A-DC544D2