

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

DC544D_2 PCIe DAUGHTER CARD FOR 2.4 / 5GHz AP APPLICATIONS_DFS

MODEL NUMBER: 65-VN780-P2

FCC ID: J9C-DC544D2 IC: 2723A-DC544D2

REPORT NUMBER: 09U12687-5

ISSUE DATE: JULY 22, 2009

Prepared for QUALCOMM INC. 3165 KIFER ROAD SANTA CLARA, CA 95051 USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	7/22/2009	Initial Issue	F. Ibrahim

Page 2 of 193

TABLE OF CONTENTS

1.	ATTI	ESTATION OF TEST RESULTS	.5
2.	TES	ſ METHODOLOGY	.6
3.	FAC	ILITIES AND ACCREDITATION	.6
4.	CAL	IBRATION AND UNCERTAINTY	.6
4	.1.	MEASURING INSTRUMENT CALIBRATION	. 6
4	.2.	SAMPLE CALCULATION	. 6
4	.3.	MEASUREMENT UNCERTAINTY	. 6
5.	EQU	IPMENT UNDER TEST	.7
5	.1.	DESCRIPTION OF EUT	. 7
5	.2.	MAXIMUM OUTPUT POWER	. 7
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS	. 7
5	.4.	SOFTWARE AND FIRMWARE	. 8
5	.5.	WORST-CASE CONFIGURATION AND MODE	. 8
5	.6.	DESCRIPTION OF TEST SETUP	. 9
6.	TES	TAND MEASUREMENT EQUIPMENT1	11
7			
7.		ENNA PORT TEST RESULTS1	12
	AN I .1.	ENNA PORT TEST RESULTS1 2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE1	
	. <i>1.</i> 7.1.1	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE	<i>12</i> 12
	7.1. 7.1.1 7.1.2	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1	<i>12</i> 12 15
	. <i>1.</i> 7.1.1	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1	12 12 15 18
	7.1. 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE	12 12 15 18 25 26
7	7.1. 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE	12 12 15 18 25 26 29
7	7.1. 7.1.2 7.1.3 7.1.3 7.1.4 7.1.5 7.1.6	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3	12 12 15 18 25 26 29 33
7	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 1 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3 6 dB BANDWIDTH 3	12 15 18 25 26 29 33 33
7	7.1. 7.1.2 7.1.3 7.1.3 7.1.4 7.1.5 7.1.6	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3 6 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3	12 12 15 18 25 26 29 33 33 36
7	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3 6 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 AVERAGE POWER 3	<i>12</i> 12 15 18 25 29 33 36 39 46
7	7.1.2 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3 6 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 OUTPUT POWER 3 POWER SPECTRAL DENSITY 3 99% & 26 dB BANDWIDTH 3 OUTPUT POWER 3 POWER SPECTRAL DENSITY 3 OUTPUT POWER 3 AVERAGE POWER 4 POWER SPECTRAL DENSITY 4	<i>12</i> 12 15 18 25 29 33 36 39 46 47
7	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3 6 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 OUTPUT POWER 3 AVERAGE POWER 4 POWER SPECTRAL DENSITY 4 CONDUCTED SPURIOUS EMISSIONS 5	<i>12</i> 115 115 125 229 333 336 339 46 47 50
7	7.1.2 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3 6 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 OUTPUT POWER 3 AVERAGE POWER 4 POWER SPECTRAL DENSITY 4 CONDUCTED SPURIOUS EMISSIONS 4 2.4 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 5 2.4 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 5	12 12 15 18 26 29 33 36 39 46 47 50 54
7	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6 7.3.1 7.3.1 7.3.2	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3 6 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 OUTPUT POWER 3 AVERAGE POWER 4 POWER SPECTRAL DENSITY 3 99% & 26 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 2.4 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 4 POWER SPECTRAL DENSITY 4 CONDUCTED SPURIOUS EMISSIONS 5 2.4 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 5 6 dB BANDWIDTH 5 99% & 26 dB BANDWIDTH 5	<i>12</i> 12 15 18 22 9 33 36 9 47 50 <i>4</i> 57 57
7	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3.1 7.3.2 7.3.1 7.3.2 7.3.3	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3 6 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 OUTPUT POWER 3 AVERAGE POWER 4 POWER SPECTRAL DENSITY 3 99% & 26 dB BANDWIDTH 3 QUTPUT POWER 3 AVERAGE POWER 4 POWER SPECTRAL DENSITY 4 CONDUCTED SPURIOUS EMISSIONS 5 2.4 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 5 6 dB BANDWIDTH 5 99% & 26 dB BANDWIDTH	<i>12</i> 12 15 18 22 9 33 36 96 47 55 44 57 60
7	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6 7.3.1 7.3.2 7.3.3 7.3.4	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE	<i>12</i> 12 12 12 12 12 12 12 12 12 12
7	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.3.1 7.3.2 7.3.1 7.3.2 7.3.3	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3 6 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 OUTPUT POWER 3 AVERAGE POWER 4 POWER SPECTRAL DENSITY 4 CONDUCTED SPURIOUS EMISSIONS 5 2.4 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 5 6 dB BANDWIDTH 5 99% & 26 dB BANDWIDTH 5	<i>12</i> 12 15 12 22 33 36 9 47 55 44 56 76 67 66 76
7 7 7	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5	2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE 1 6 dB BANDWIDTH 1 99% & 26 dB BANDWIDTH 1 OUTPUT POWER 1 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2 CONDUCTED SPURIOUS EMISSIONS 2 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE 3 6 dB BANDWIDTH 3 99% & 26 dB BANDWIDTH 3 0UTPUT POWER 4 CONDUCTED SPURIOUS EMISSIONS 5 2.4 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 5 6 dB BANDWIDTH 5 99% & 26 dB BANDWIDTH 5 99% &	122158529 333696755566781

Page 3 of 193

	6 dB BANDWIDTH 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER POWER SPECTRAL DENSITY CONDUCTED SPURIOUS EMISSIONS GHz BAND CHANNEL TESTS FOR 802.11a MODE	
7.5.1. 7.5.2. 7.5.3. 7.5.4. 7.5.5. 7.5.6.	6 dB BANDWIDTH 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER POWER SPECTRAL DENSITY CONDUCTED SPURIOUS EMISSIONS	
7.6. 5.8 7.6.1. 7.6.2. 7.6.3. 7.6.4. 7.6.5. 7.6.6.	GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE 6 dB BANDWIDTH 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER POWER SPECTRAL DENSITY CONDUCTED SPURIOUS EMISSIONS	117 120 123 130 131
7.7.1. 7.7.2. 7.7.3. 7.7.4. 7.7.5. 7.7.6.	GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE 6 dB BANDWIDTH 99% & 26 dB BANDWIDTH OUTPUT POWER AVERAGE POWER POWER SPECTRAL DENSITY CONDUCTED SPURIOUS EMISSIONS CEIVER CONDUCTED SPURIOUS EMISSIONS	
	ED TEST RESULTS	
8.2. TRA 8.2.1. 8.2.2. 8.2.3. 8.2.4. 8.2.5. 8.2.6. 8.2.7.	ITS AND PROCEDURE ANSMITTER ABOVE 1 GHz 802.11b MODE IN THE 2.4 GHz BAND 802.11g MODE IN THE 2.4 GHz BAND 802.11n HT20 MODE IN THE 2.4 GHz BAND 802.11n HT40 MODE IN THE 2.4 GHz BAND 802.11a MODE IN THE 5.8 GHz BAND 802.11n HT20 MODE IN THE 5.8 GHz BAND 802.11n HT20 MODE IN THE 5.8 GHz BAND 802.11n HT40 MODE IN THE 5.8 GHz BAND 802.11n HT40 MODE IN THE 5.8 GHz BAND	
	ER LINE CONDUCTED EMISSIONS	
10. MAXII	MUM PERMISSIBLE EXPOSURE	188
11. SETU	P PHOTOS	191

Page 4 of 193

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	QUALCOMM INC. 3165 KIFER RD SANTA CLARA, CA 95051 USA
EUT DESCRIPTION:	DC544D_2 PCIE DAUGHTER CARD FOR 2.4 / 5GHZ AP APPLICATIONS_DFS
MODEL:	65-VN780-P2
SERIAL NUMBER:	7916 for Antenna Port, 7929 for Radiated Emission, and 02324 for DFS
DATE TESTED:	JUNE 24 – JULY 17, 2009
	APPLICABLE STANDARDS

STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	Pass
INDUSTRY CANADA RSS-210 Issue 7 Annex 8	Pass
INDUSTRY CANADA RSS-GEN Issue 2	Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

FRANK IBRAHIM EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

VIEN TRAN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 5 of 193

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 193

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n WLAN transceiver module in a PCI form factor, for 2.4 / 5GHz AP Applications that include DFS bands. It is equipped with four identical transmitter / receiver chains.

The radio module is manufactured by Qualcomm, Inc.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2.4 GHz BAND			
2412 - 2462	802.11b	24.37	273.53
2412 - 2462	802.11g	26.20	416.87
2412 - 2462	802.11n HT20	26.15	412.10
2422 - 2452	802.11n HT40	26.05	402.72
5.8 GHz BAND	-		
5745 - 5825	802.11a	25.15	327.34
5745 - 5825	802.11n HT20	25.24	334.20
5755 - 5795	802.11n HT40	25.05	319.89

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dual band omni monopole (4 identical) antenna, each with a maximum gain of 2 dBi in the 2.4 GHz band and 3 dBi in the 5.8 GHz band.

For the 802.11a/b/g legacy modes the effective legacy antenna gain is:

		Effective Legacy Gain
(dBi)	(dB)	(dBi)
2	6.02	8.02
3	6.02	9.02

Page 7 of 193

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Qualcomm, rev. 0.0.500.5.

The test utility software used during emissions testing was PTT Gui, rev. 5.1.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module installed in a test jig board connected to a host Laptop PC.

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11b Mode (20 MHz BW operation): 1 Mbps, CCK.
802.11g Mode (20 MHz BW operation): 6 Mbps, OFDM.
802.11n MIMO HT20 Mode: MCS31, 260 Mbps, 4 Spatial Streams.
802.11n MIMO HT40 Mode: MCS31, 540 Mbps, 4 Spatial Streams.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power, that was determined to be 11g mode, mid channel.

For bandwidth measurement preliminary testing showed that there is no significant difference among different chains, so the measurements were performed using Chain 0.

For conducted spurious measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore final measurements were performed using combiner for all channels and modes.

For PSD measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore final measurements were performed using combiner for all channels and modes.

For Radiated Band Edge measurements preliminary testing showed that the worst case was vertical polarization, so final measurements were performed with vertical polarization.

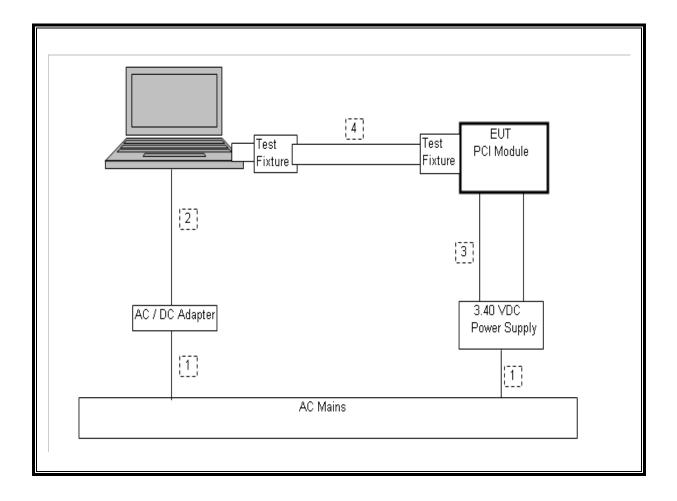
Page 8 of 193

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	FCC ID			
Laptop	IBM	T43 ThinkPad	L3-XDLXW06/02	DoC			
AC Adapter	IBM	08K8204	11S08K8204Z1Z9	DoC			
DC Power Supply	Tektronic	PS2521G	N/A	N/A			
DC Power Supply	HP	336108	KR24104150	N/A			
Extender PCI	ALLION	V1 EC-PEM V1.0	A073	N/A			

I/O CABLES


	I/O CABLE LIST								
Cable No.	Port	# of Identical Ports	Connecto Type	Cable Type	Cable Length	Remarks			
1	AC	2	US115	Un-shielded	1.5 m	For laptop			
2	DC	1	DC	Un-shielded	1.5 m	For laptop			
3	DC	1	Cable	Un-shielded	1.0 m	For EUT			
4	Ribbon	1	Ribbon	Un-shielded	.4 m	Test Fixture			

TEST SETUP

The EUT is connected to a host laptop computer via a test fixture during the tests. Test software exercised the radio card.

Page 9 of 193

SETUP DIAGRAM FOR TESTS

Page 10 of 193

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description Manufacturer Model Asset Cal Date Cal Due							
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/09	01/05/10		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/09	01/14/10		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	04/22/10		
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	09/29/08	11/28/09		
Antenna, Horn, 40 GHz	ARA	MWH-2640B	C00981	05/21/09	05/21/10		
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	10/11/08	10/11/09		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/09	03/31/10		
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	08/05/08	08/05/09		
Peak Power Meter	Boonton	4541	C01186	01/19/09	01/19/10		
Peak Power Sensor	Boonton	4541	C01189	01/15/09	01/15/10		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/29/08	10/29/09		
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	02/06/08	08/06/09		

Page 11 of 193

7. ANTENNA PORT TEST RESULTS

7.1. 2.4 GHz BAND CHANNEL TESTS FOR 802.11b MODE

7.1.1.6 dB BANDWIDTH

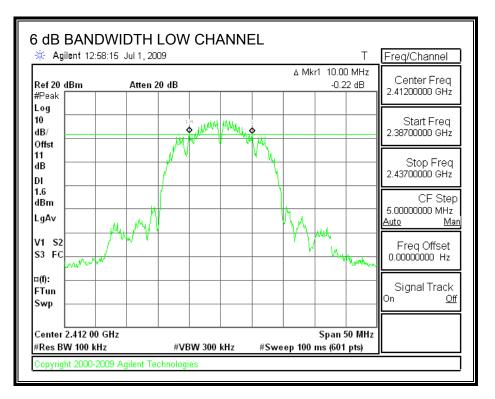
LIMITS

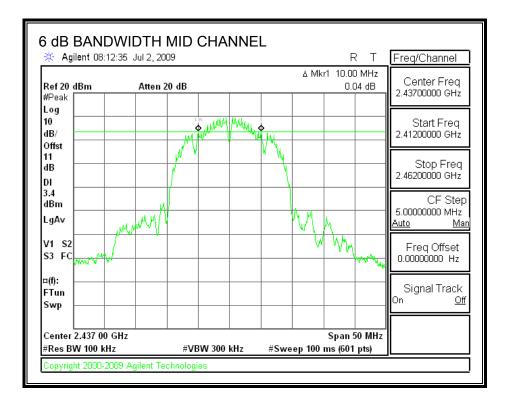
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

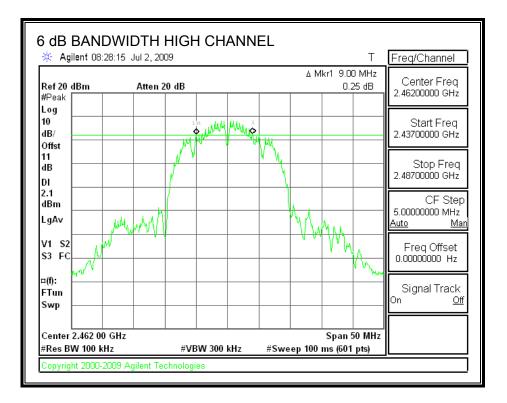
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

Channel	el Frequency 6 dB BW		Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	10.00	0.5
Middle	2437	10.00	0.5
High	2462	9.00	0.5


Page 12 of 193

6 dB BANDWIDTH

Page 13 of 193

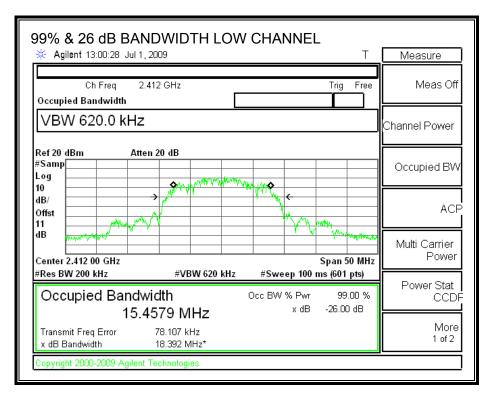
Page 14 of 193

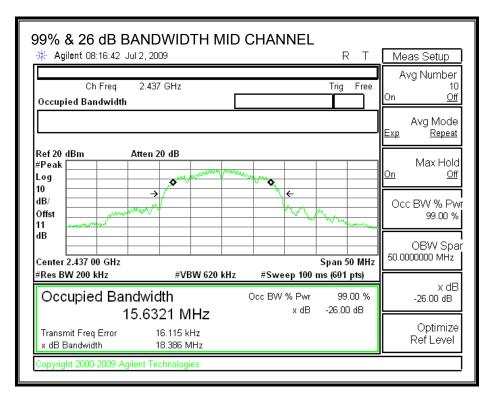
7.1.2. 99% & 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	2412	15.46	18.39
Middle	2437	15.63	18.39
High	2462	15.61	18.45

Page 15 of 193

99% & 26 dB BANDWIDTH

Page 16 of 193

99% & 26 dB BANI		GH CHANNE	L т		
Rylient 00.20.56 Jul 2, 2	009			┢──	
Ch Freq 2.48 Occupied Bandwidth	62 GHz		Trig Free	Auto	Res BW 200.0 kHz <u>Man</u>
RBW 200.0 kHz				Auto	Video BW 620.0 kHz Man
#Peak	20 dB	annan anna		Auto	VBW/RBM 3.00000 <u>Man</u>
10 dB/ Offst 11		\ ←	Win has	On	Average 10 <u>Off</u>
dB	VBW 620 kH	z #Sweep 100	Span 50 MHz ms (601 pts)	Log-P	′BW Type wr (Video) ► <u>Man</u>
Occupied Bandwi	dth	Occ BW % Pwr	99.00 %		
	128 MHz	x dB	-26.00 dB		Span/RBW
Transmit Freq Error x dB Bandwidth	151.036 kHz 18.448 MHz			<u>Auto</u>	106 106
Copyright 2000-2009 Agilent T	echnologies			-	

Page 17 of 193

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

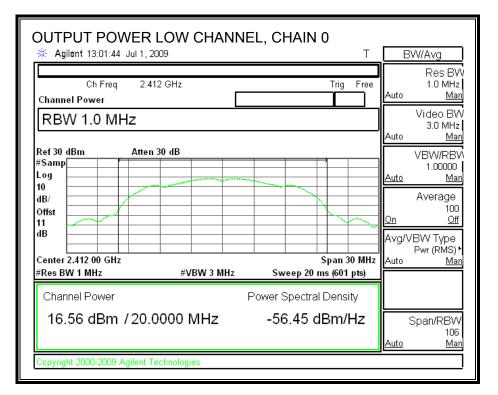
IC RSS-210 A8.4

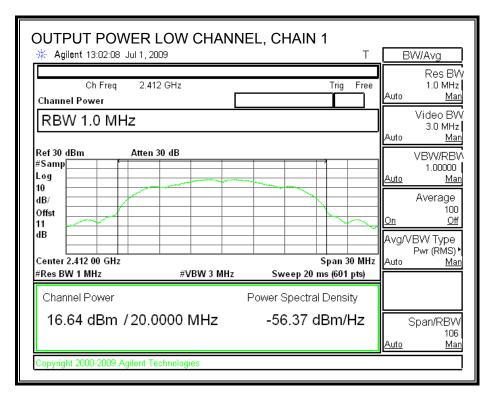
TEST PROCEDURE

Output power was measured based on the use of RMS averaging over a time interval in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

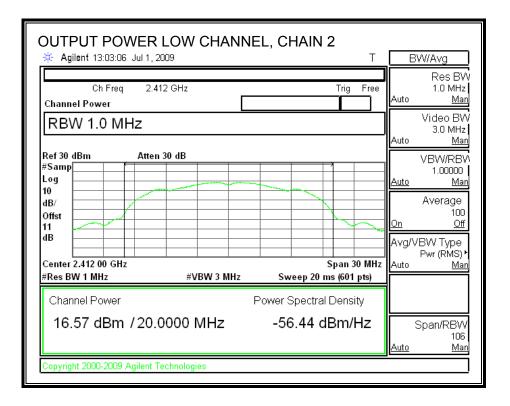
RESULTS

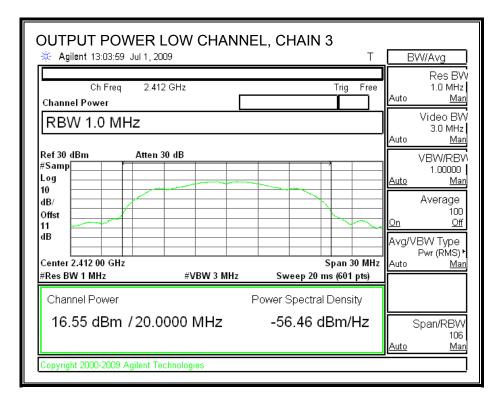
Effective Legacy Mode Composite Gain of 4 Identical Antennas:

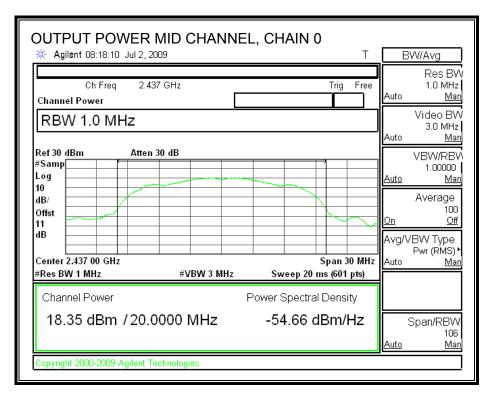

Antenna Gain (dBi)	• • • •	Effective Legacy Gain (dBi)
2	6.02	8.02

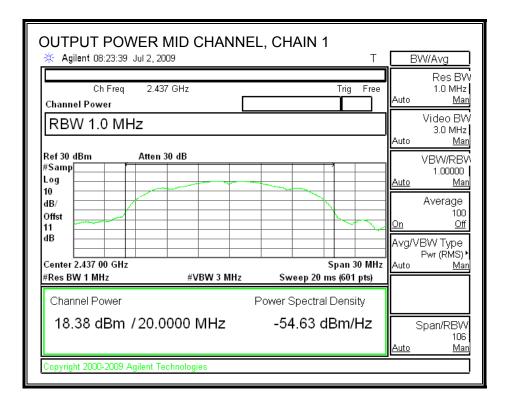

The composite antenna gain is 8.02 dBi, therefore the limit is 27.98 dBm.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	16.56	16.64	16.57	16.55	22.60	27.98	-5.38
Mid	2437	18.35	18.38	18.35	18.30	24.37	27.98	-3.61
High	2462	16.70	16.80	16.79	16.65	22.76	27.98	-5.22

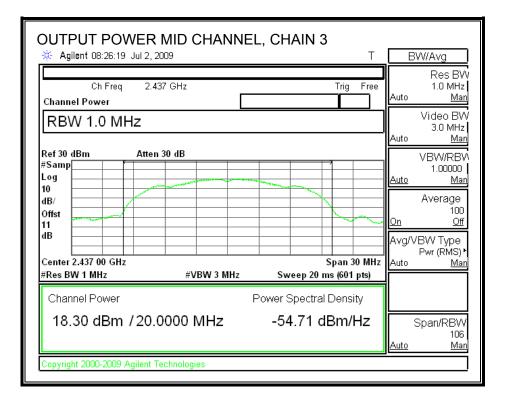

Page 18 of 193


OUTPUT POWER, LOW CHANNEL

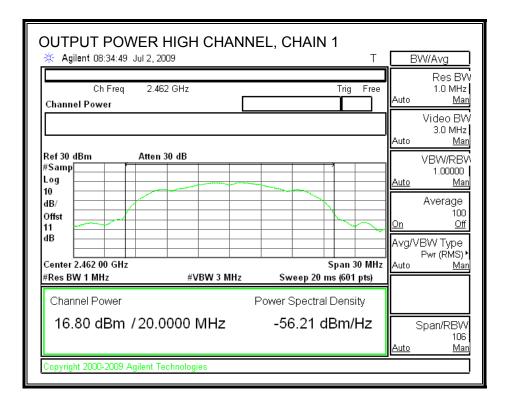

Page 19 of 193



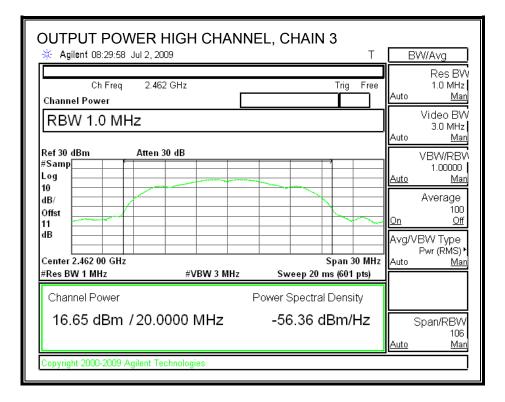
Page 20 of 193


OUTPUT POWER, MID CHANNEL

Page 21 of 193


Ch Freq 2.437 GHz Trig Free 1.0 MHz Channel Power Image: constraint of the stress of t	OUTPUT POWER		EL, CHAIN 2	Т	B	W/Avg
Ref 30 dBm Atten 30 dB 3.0 MHz Auto Main Log VBW/RBV 10 0 dB/ 0 Offst 0 11 0 dB 0 Center 2.437 00 GHz Span 30 MHz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (601 pts) Channel Power Power Spectral Density 18.35 dBm / 20.0000 MHz -54.66 dBm/Hz Span/RBW	1	7 GHz		Trig Free	Auto	Res BW 1.0 MHz <u>Man</u>
#Samp Image: Control of the second secon		20. J.D.			Auto	3.0 MHz <u>Man</u>
Center 2.437 00 GHz Span 30 MHz Auto Máz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (601 pts)	#Samp Log 10 dB/ Offst 11				<u>On</u>	1.00000 <u>Man</u> Average 100 <u>Off</u> 'BW Type
18.35 dBm / 20.0000 MHz -54.66 dBm/Hz Span/RBW		#VBW 3 MHz		•	Auto	Pwr (RMS)∙ <u>Mar</u>
						Span/RBW 106 <u>Mar</u>

Page 22 of 193


OUTPUT POWER, HIGH CHANNEL

Page 23 of 193

OUTPUT POWER		EL, CHAIN 2	Т	B	W/Avg
Ch Freq 2.462 Channel Power	2 GHz	nT I	ig Free	Auto	Res BW 1.0 MHz <u>Man</u>
				Auto	Video BW 3.0 MHz <u>Man</u>
Ref 30 dBm Atten 3 #Samp				<u>Auto</u> On	VBW/RBW 1.00000 <u>Man</u> Average 100 <u>Off</u> BW Type
Center 2.462 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Spa Sweep 20 ms (6	n 30 MHz 501 pts)	Auto	Pwr (RMS) ► <u>Man</u>
Channel Power Power Spectral Density 16.79 dBm / 20.0000 MHz -56.22 dBm/Hz					Span/RBW 106 <u>Man</u>
Copyright 2000-2009 Agilent Te	chnologies				

Page 24 of 193

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	16.54	16.67	16.65	16.50
Middle	2437	18.23	18.36	18.29	18.04
High	2462	16.69	16.88	16.68	16.77

Page 25 of 193

7.1.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

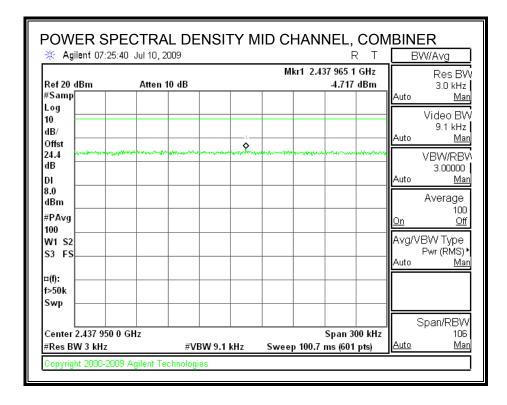
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of RMS averaging over a time interval, therefore the power spectral density was measured using PSD Option 2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-9.55	8	-17.55
Middle	2437	-4.72	8	-12.72
High	2462	-7.01	8	-15.01

Page 26 of 193

POWER SPECTRAL DENSITY

🔆 Agilent 07:22	2:18 Jul 10, 2009			RT	BV	///Avg
Ref 20 dBm Samp	Atten 10 dB		Mkr1 2.4	14 224 7 GHz -9.547 dBm	Auto	Res BV 3.0 kHz <u>Ma</u>
.og 0 IB/					Auto	Video BV 9.1 kHz <u>Ma</u>
	an hang gang an	ungeletise in a second and a second	1	The ward in the second second	Auto	VBW/RB 3.00000 <u>Ma</u>
:.0 IBm :PA∨g 00					<u>On</u>	Average 100 <u>Off</u>
N1 S2 53 FS AA					Avg/VI Auto	BW Type Pwr (RMS) <u>Ma</u>
l(f): >50k Swp						
Center 2.414 150 Res BW 3 kHz		3W 9.1 kHz	Sweep 100.7	Span 300 kHz ms (601 pts)	Auto S	pan/RBV 106 <u>Ma</u> i

Page 27 of 193

* Agilent 07:29			HCHANNEL, COR	BW/Avg
Project: Ref 20 dBm #Samp	Atten 10 dB		Mkr1 2.460 447 4 GHz -7.006 dBm	Res BV 3.0 kHz Auto <u>Ma</u>
Log 10 dB/ Offst				Video BV 9.1 kHz Auto <u>Ma</u>
dB DI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VBW/RB\ 1.00000 <u>Auto Ma</u>
8.0 dBm #PAvg 100				Average 100 <u>On Off</u>
W1 S2 S3 FS				Avg/VBW Type Pwr (RMS) Auto <u>Ma</u>
¤(f): f>50k Swp				
Center 2.460 500 #Res BW 3 kHz	0 GHz #VBW 1).1 kHz Sw	Span 300 kHz eep 100.7 ms (601 pts)	Span/RBW z 106 <u>Auto Ma</u>

Page 28 of 193

7.1.6. CONDUCTED SPURIOUS EMISSIONS

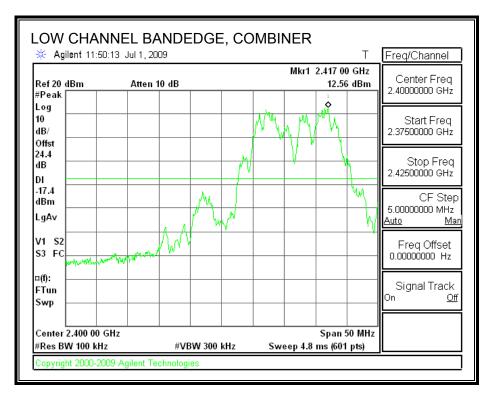
LIMITS

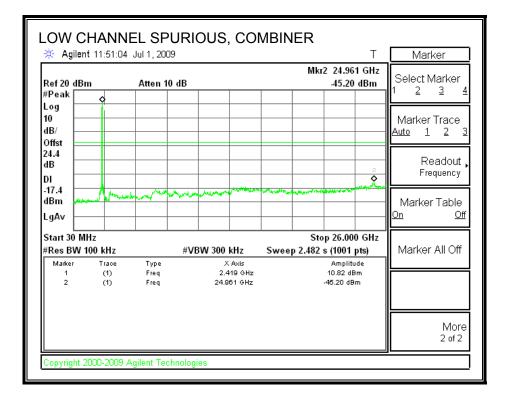
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of RMS averaging over a time interval, therefore the required attenuation is 30 dBc.

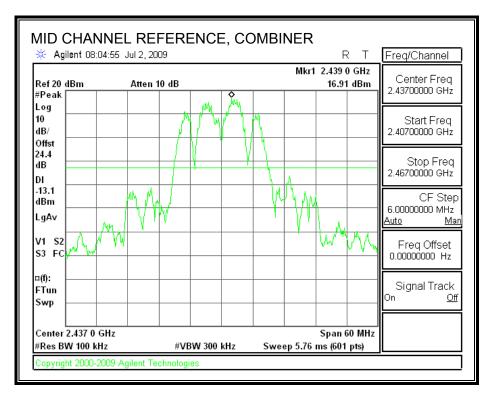
TEST PROCEDURE

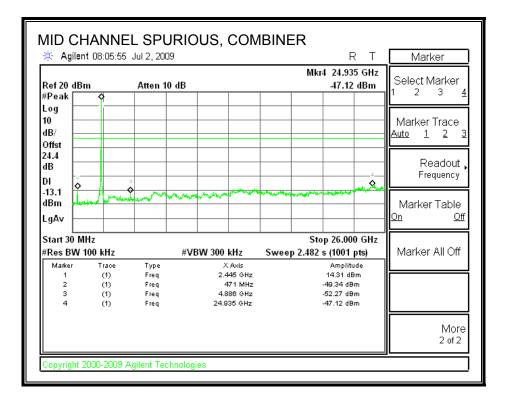

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

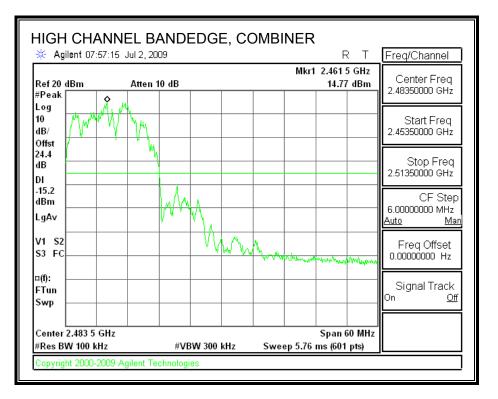
Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

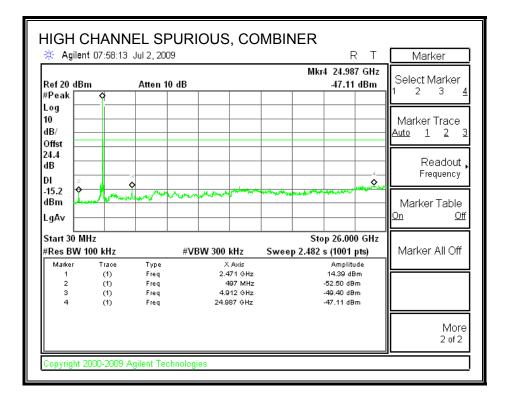
Page 29 of 193


LOW CHANNEL SPURIOUS EMISSIONS



Page 30 of 193


MID CHANNEL SPURIOUS EMISSIONS



Page 31 of 193

HIGH CHANNEL SPURIOUS EMISSIONS

Page 32 of 193

7.2. 2.4 GHz BAND CHANNEL TESTS FOR 802.11g MODE

7.2.1. 6 dB BANDWIDTH

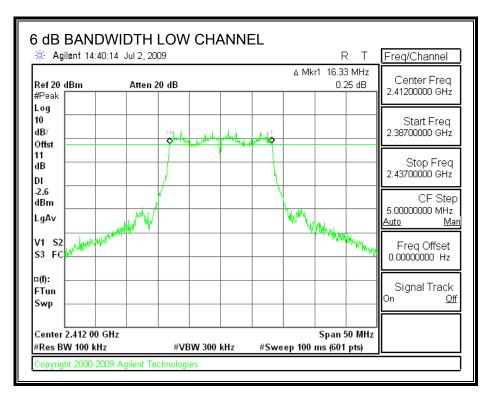
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

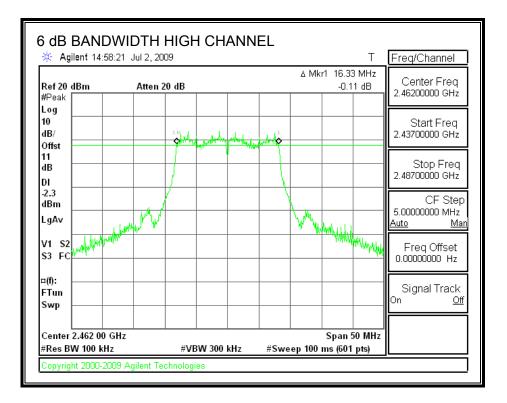
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency	6 dB BW	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	16.33	0.5
Middle	2437	16.33	0.5
High	2462	16.33	0.5


Page 33 of 193

6 dB BANDWIDTH

Page 34 of 193

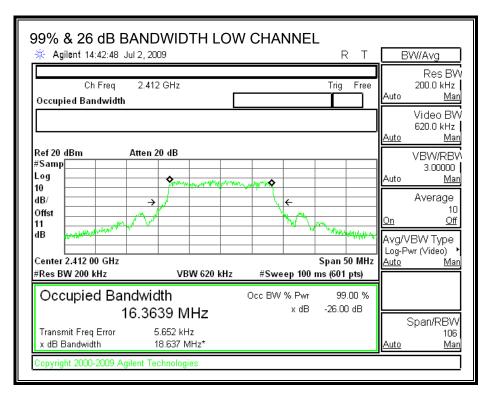
Page 35 of 193

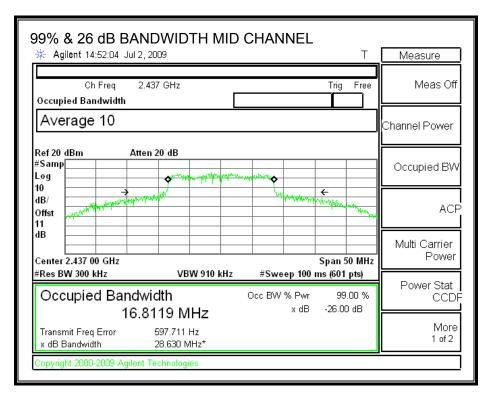
7.2.2. 99% & 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	2412	16.36	18.64
Middle	2437	16.81	28.63
High	2462	16.49	18.38

Page 36 of 193

99% & 26 dB BANDWIDTH

Page 37 of 193

99% & 26 dB BANDWIDT	H HIGH	I CHANNEI	_	
🔆 Agilent 14:59:10 Jul 2, 2009			Т	Measure
Ch Freq 2.462 GHz Occupied Bandwidth			Trig Free	Meas Off
				Channel Power
Ref 20 dBm Atten 20 dB #Samp Log 10 \$	AN A			Occupied BW
dB/ Offst 11		· · · · · · · · · · · · · · · · · · ·	Mary Mary Mary Mary	ACP
Center 2.462 00 GHz			Span 50 MHz	Multi Carrier Power
#Res BW 180 kHz #VBV Occupied Bandwidth	V 560 kHz	#Sweep 100 r	· · ·	Power Stat CCDF
16.4874 MH	Ηz	x dB	-26.00 dB	
Transmit Freq Error 12.553 kH: x dB Bandwidth 18.376 MH	z			More 1 of 2
Copyright 2000-2009 Agilent Technologies	3			

Page 38 of 193

7.2.3. OUTPUT POWER

LIMITS

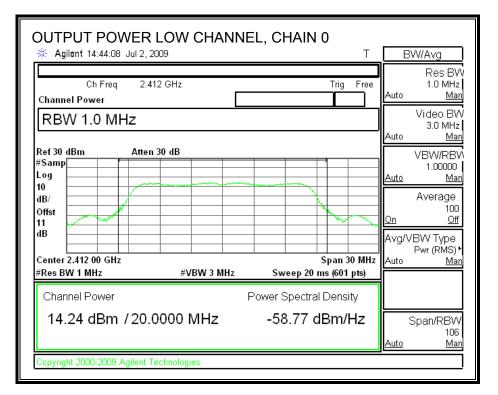
FCC §15.247 (b)

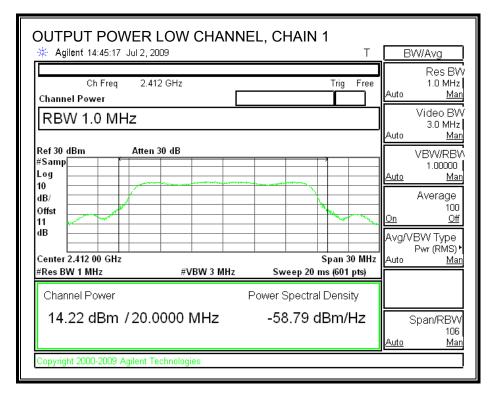
IC RSS-210 A8.4

TEST PROCEDURE

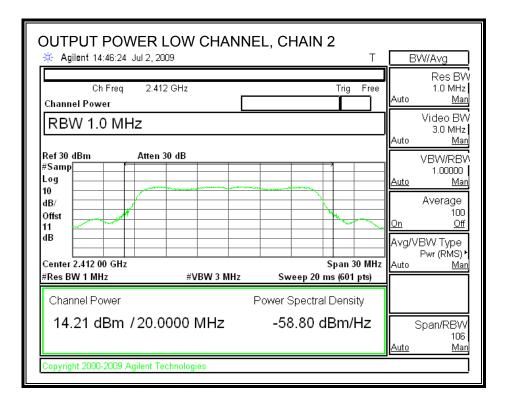
Output power was measured based on the use of RMS averaging over a time interval in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

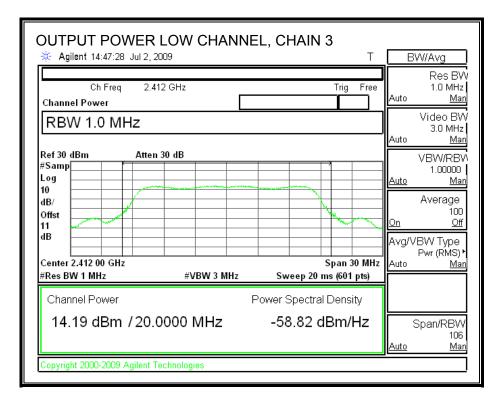
RESULTS

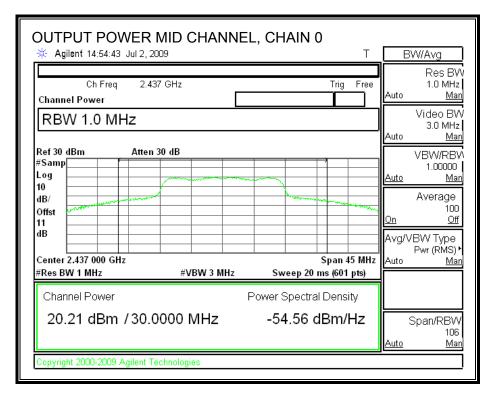

Effective Legacy Mode Composite Gain of 4 Identical Antennas:

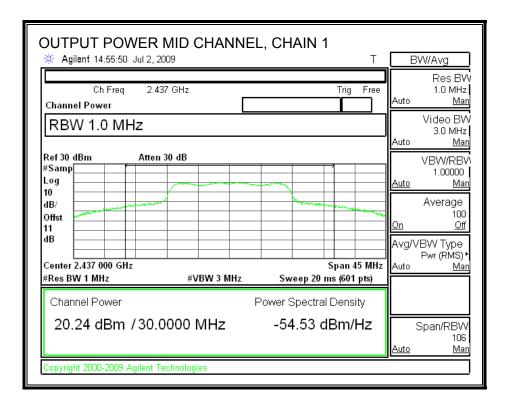

• • • •		Effective Legacy Gain (dBi)		
2	6.02	8.02		

The composite antenna gain is 8.02 dBi, therefore the limit is 27.98 dBm.

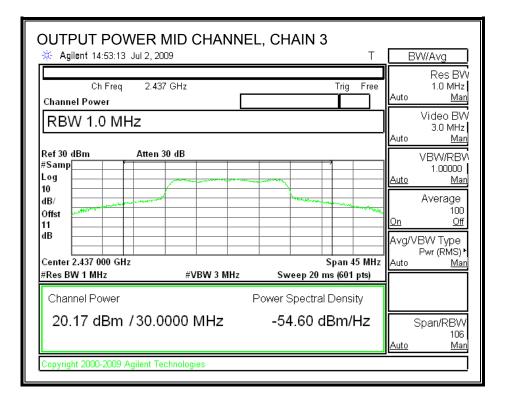

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	14.24	14.22	14.21	14.19	20.24	27.98	-7.74
Mid	2437	20.21	20.24	20.11	20.17	26.20	27.98	-1.78
High	2462	14.13	13.99	14.14	14.08	20.11	27.98	-7.87

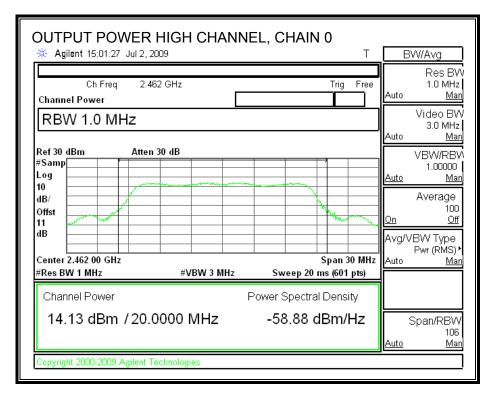

OUTPUT POWER, LOW CHANNEL

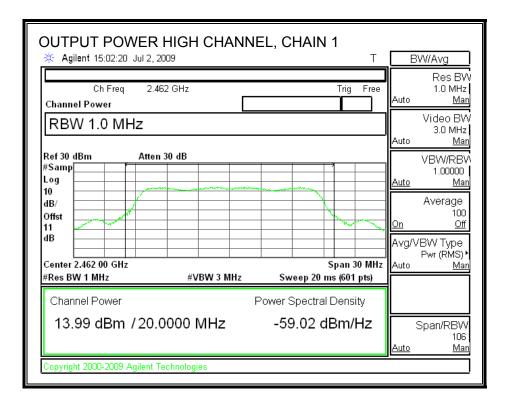

Page 40 of 193



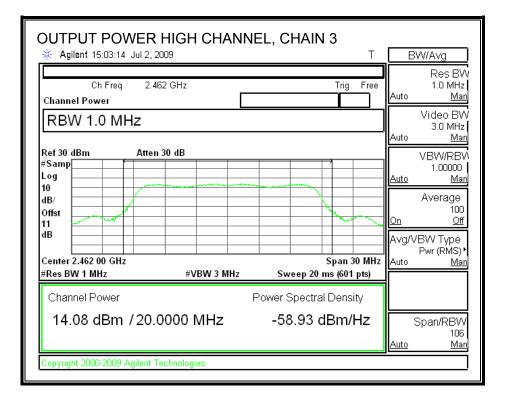
Page 41 of 193


OUTPUT POWER, MID CHANNEL


Page 42 of 193


OUTPUT POWER		L, CHAIN 2	Т	BV	N/Avg
Channel Power	7 GHz	Tri	ig Free	Auto	Res BW 1.0 MHz <u>Man</u> Video BW
RBW 1.0 MHZ	30 dB]	Auto	3.0 MHz <u>Man</u>
#Samp Log 10 dB/ Offst 11 dB				<u>Auto</u> On	1.00000 <u>Man</u> Average 100 <u>Off</u>
Center 2.437 000 GHz #Res BW 1 MHz	#VBW 3 MHz	Spa Sweep 20 ms (6	n 45 MHz 01 pts)		BW Type Pwr (RMS)∙ <u>Man</u>
Channel Power 20.11 dBm /30.0		Power Spectral Dei -54.66 dBn	, i	S <u>Auto</u>)pan/RBW 106 <u>Man</u>
Copyright 2000-2009 Agilent Te	echnologies			1	

Page 43 of 193


OUTPUT POWER, HIGH CHANNEL

Page 44 of 193

OUTPUT POWER		EL, CHAIN 2	BW/Avg
	2 GHz	Trig Free	Res BW 1.0 MHz Auto <u>Man</u>
RBW 1.0 MHz	30 dB		Video BW 3.0 MHz Auto <u>Man</u>
#Samp Attent			VBW/RBV 1.00000 <u>Auto Man</u> Average 100 0n <u>Off</u>
dB Center 2.462 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 30 MHz Sweep 20 ms (601 pts)	Avg/VBW Type Pwr (RMS) •
Channel Power 14.14 dBm /20.0		Power Spectral Density -58.87 dBm/Hz	Span/RBW 106 <u>Auto Man</u>
Copyright 2000-2009 Agilent Te	chnologies		

Page 45 of 193

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412.00	14.12	14.04	14.11	14.14
Middle	2437.00	20.15	20.21	20.12	20.14
High	2462.00	13.95	14.10	14.02	14.11

Page 46 of 193

7.2.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

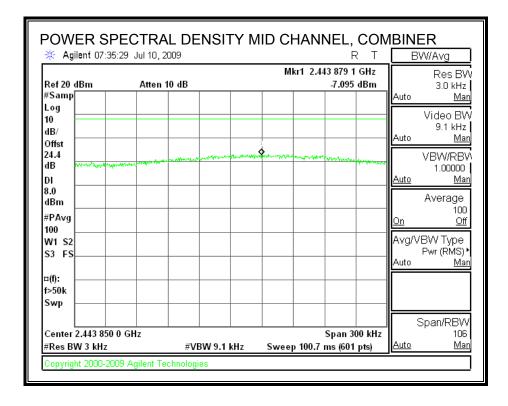
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of RMS averaging over a time interval, therefore the power spectral density was measured using PSD Option 2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-10.12	8	-18.12
Middle	2437	-7.10	8	-15.10
High	2462	-11.32	8	-19.32

Page 47 of 193

POWER SPECTRAL DENSITY

🔆 Agilent 07:32	:33 Jul 10, 2009			RΤ	Peak Search
Ref 20 dBm #Samp	Atten 10 dB		Mkr1 2.419 20 -10.1	89 GHz 16 dBm	Next Peak
Log 10 dB/ Offst					Next Pk Right
24.4 dB ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	www.eeks.gr.esuers.esuer.enview.www.eeks.gr.esuers.esuer.e	Person and and a start of the start	when the second s	,	Next Pk Left
8.0 dBm ≠PA∨g					Min Search
100 W1 S2 S3 FS					Pk-Pk Search
¤(f): i>50k Swp					Mkr © Cf
Center 2.419 250 #Res BW 3 kHz		/ 9.1 kHz	Spar Sweep 100.7 ms (6	n 300 kHz 601 pts)	More 1 of 2

Page 48 of 193

🔆 Agilent 07:37	:24 Jul 10, 2009		R	T BW/Avg
Ref 20 dBm #Samp	Atten 10 dB		Mkr1 2.464 507 5 -11.317	Kes Di
Log 10 dB/ Offst				Video BV 9.1 kHz Auto <u>Ma</u>
24.4		1	"Marine harring a second and	VBW/RB ¹ 1.00000 <u>Auto Ma</u>
dBm #PAvg 100				Average 100 <u>On Off</u>
W1 S2 S3 FS				Avg/VBW Type Pwr (RMS) Auto <u>Ma</u>
¤(f): f>50k Swp				
Center 2.464 500 #Res BW 3 kHz		9.1 kHz S	Span 30 weep 100.7 ms (601	

Page 49 of 193

7.2.6. CONDUCTED SPURIOUS EMISSIONS

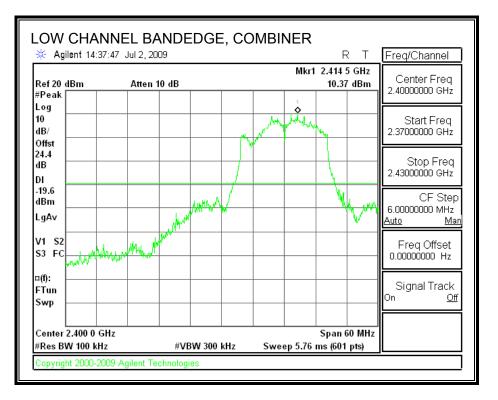
<u>LIMITS</u>

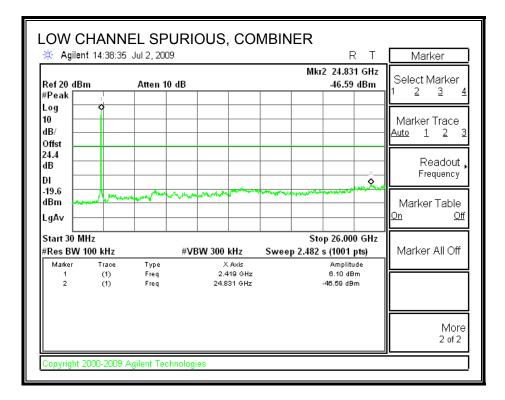
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of RMS averaging over a time interval, therefore the required attenuation is 30 dBc.

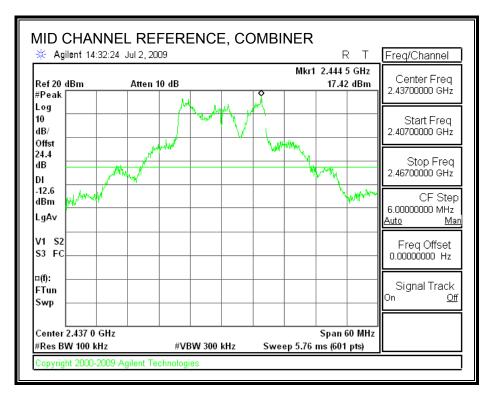
TEST PROCEDURE

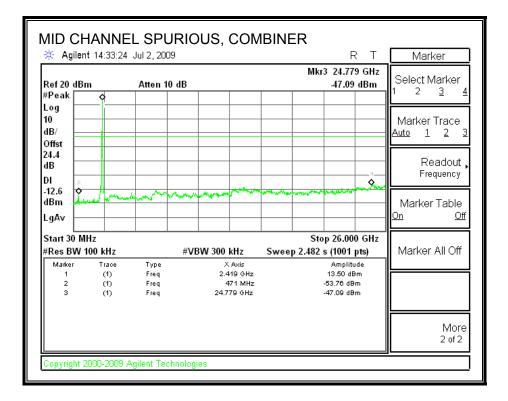

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

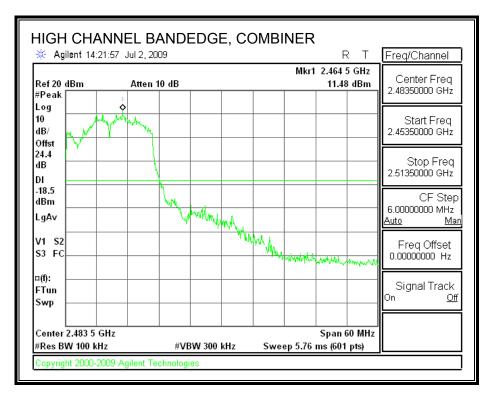
Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

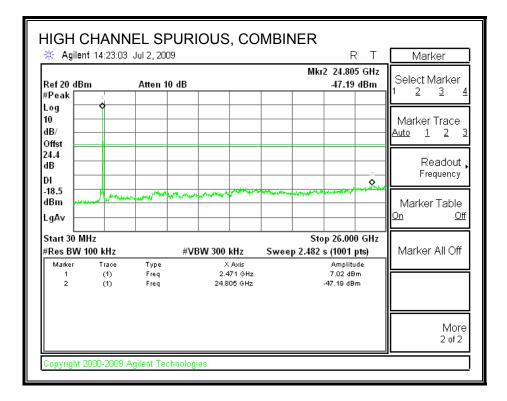
Page 50 of 193


LOW CHANNEL SPURIOUS EMISSIONS



Page 51 of 193


MID CHANNEL SPURIOUS EMISSIONS



Page 52 of 193

HIGH CHANNEL SPURIOUS EMISSIONS

Page 53 of 193

7.3. 2.4 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

7.3.1. 6 dB BANDWIDTH

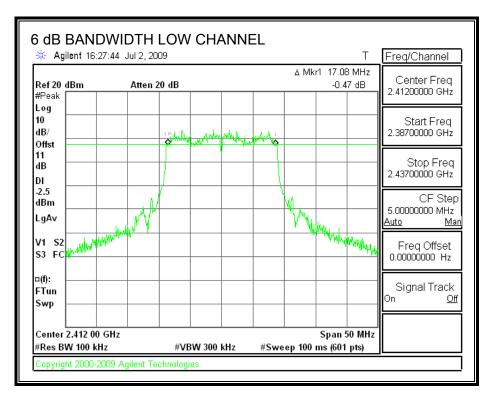
LIMITS

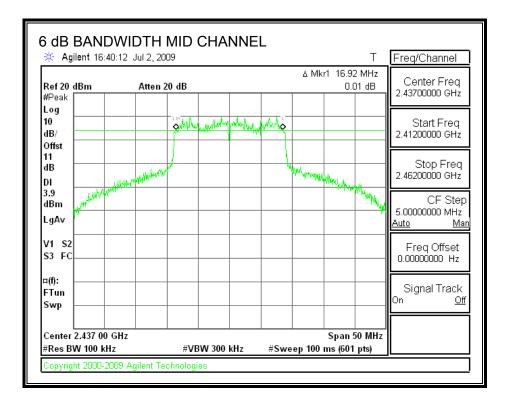
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

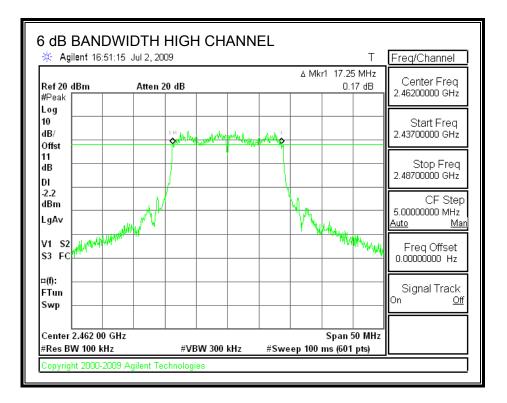
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

Channel	Frequency	6 dB BW	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	17.08	0.5
Middle	2437	16.92	0.5
High	2462	17.25	0.5


Page 54 of 193

6 dB BANDWIDTH

Page 55 of 193

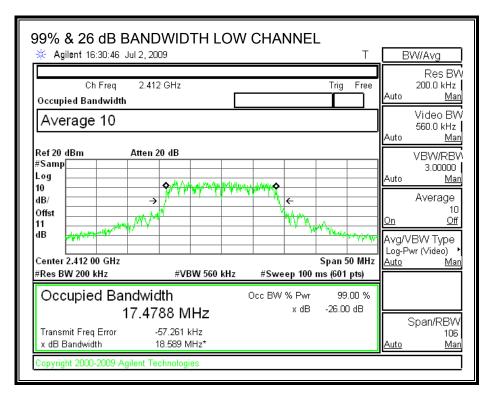
Page 56 of 193

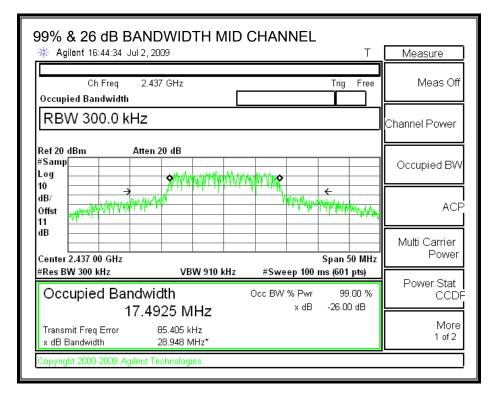
7.3.2. 99% & 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	2412	17.48	18.59
Middle	2437	17.49	28.95
High	2462	17.43	18.30

Page 57 of 193

99% & 26 dB BANDWIDTH

Page 58 of 193

99% & 26 dB BANI	-	H CHANNE	L T	В	W/Avg
Ch Freq 2.48 Occupied Bandwidth	62 GHz		Trig Free	Auto	Res BW 200.0 kHz <u>Man</u>
Average 10				Auto	Video BW 560.0 kHz <u>Man</u>
#Samp Log 10	20 dB	· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Logi	
Center 2.462 00 GHz #Res BW 200 kHz	#VBW 560 kHz	#Sweep 100 i	Span 50 MHz ns (601 pts)	<u>Auto</u>	<u>Man</u>
Occupied Bandwi 17.43	dth 306 MHz	Occ BW % Pwr x dB	99.00 % -26.00 dB		Span/RBW
Transmit Freq Error x dB Bandwidth	-31.402 kHz 18.300 MHz*			<u>Auto</u>	106 <u>Man</u>
Copyright 2000-2009 Agilent T	echnologies				

Page 59 of 193

7.3.3. OUTPUT POWER

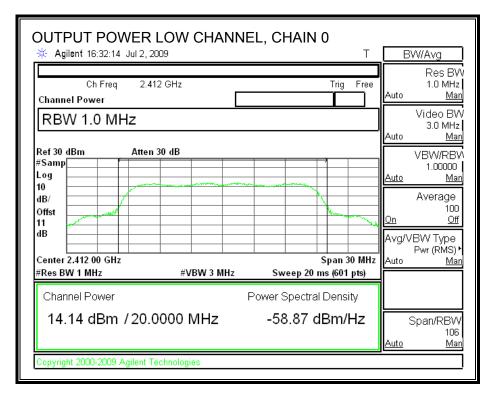
LIMITS

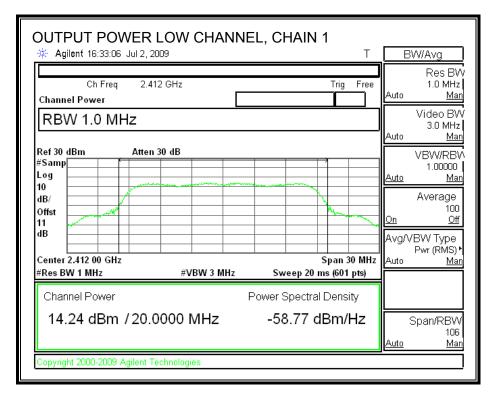
FCC §15.247 (b)

IC RSS-210 A8.4

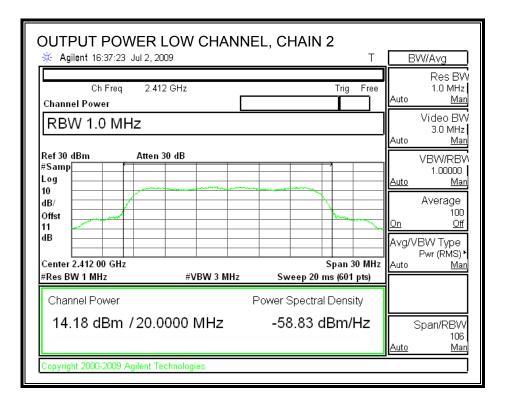
TEST PROCEDURE

Output power was measured based on the use of RMS averaging over a time interval in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

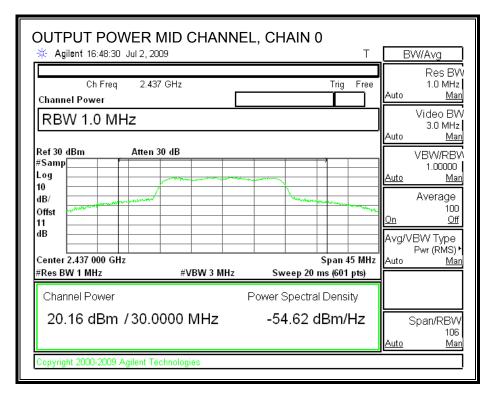

RESULTS

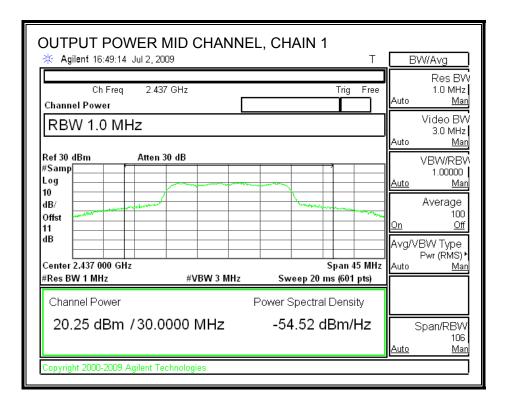

The antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	14.14	14.24	14.18	13.98	20.16	30	-9.84
Mid	2437	20.16	20.25	19.99	20.10	26.15	30	-3.85
High	2462	14.22	14.20	14.22	14.17	20.22	30	-9.78

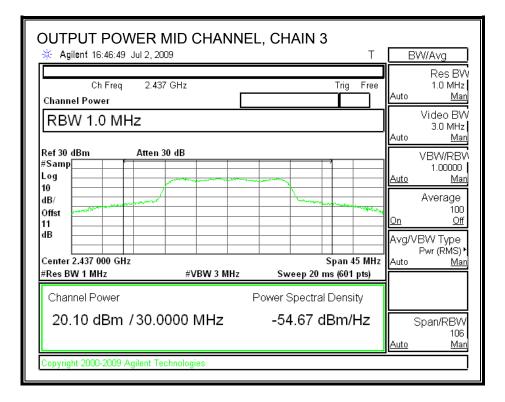

Page 60 of 193

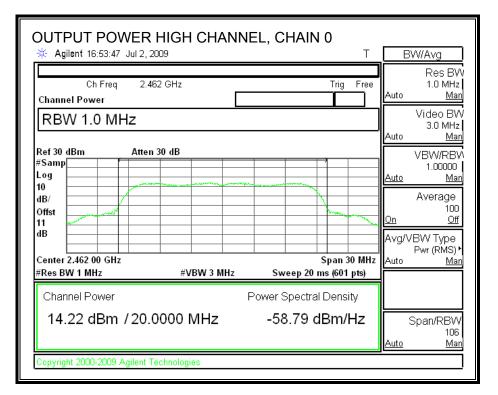
OUTPUT POWER, LOW CHANNEL

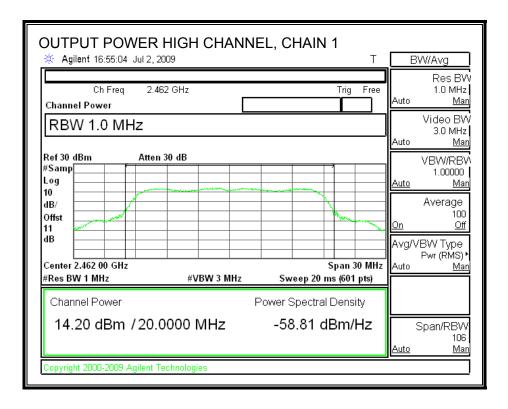

Page 61 of 193



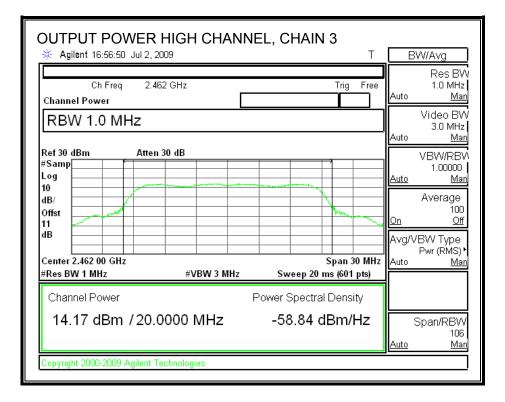
Page 62 of 193


OUTPUT POWER, MID CHANNEL


Page 63 of 193


OUTPUT POWER N		L, CHAIN 2	Т	В	///Avg
Ch Freq 2.437 Channel Power	GHz		Trig Free	Auto	Res BW 1.0 MHz <u>Man</u> Video BW
RBW 1.0 MHz	dB			Auto	3.0 MHz <u>Man</u> VBW/RBV
#Samp Log 10 dB/ Offst 11			and the state	<u>Auto</u> On	1.00000 <u>Man</u> Average 100 <u>Off</u>
dB Center 2.437 000 GHz #Res BW 1 MHz	#VBW 3 MHz	Sweep 20 ms	pan 45 MHz s (601 pts)		BW Type Pwr (RMS) ► <u>Man</u>
Channel Power 19.99 dBm / 30.00		Power Spectral [-54.78 dE	-	Auto	Span/RBW 106 <u>Man</u>
Copyright 2000-2009 Agilent Tecl	hnologies				

Page 64 of 193


OUTPUT POWER, HIGH CHANNEL

Page 65 of 193

OUTPUT POWER		EL, CHAIN 2	BW/Avg
Ch Freq 2.46 Channel Power RBW 1.0 MHz	i2 GHz	Trig Fre	Pe Res BW 1.0 MHz Auto Man Video BW 3.0 MHz
Ref 30 dBm Atten #Samp 0 Log 0 dB/ 0 offst 0 dB 0 dB 0 dB 0 dB 0 dB 0 dB 0 dB 0 dB	30 dB		Auto Man VBW/RBW 1.00000 Auto Man Average 100 On Off Avg/VBW Type
Center 2.462 00 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 30 M Sweep 20 ms (601 pts)	Pwr (RMS) ►
Channel Power 14.22 dBm /20.0		[⊃] ower Spectral Density -58.79 dBm/Hz	Span/RBW 106 <u>Auto Man</u>
Copyright 2000-2009 Agilent Te	echnologies		

Page 66 of 193

7.3.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412.00	14.16	14.11	14.05	14.14
Middle	2437.00	20.18	20.16	20.11	20.09
High	2462.00	14.17	14.14	14.08	14.18

Page 67 of 193

7.3.5. POWER SPECTRAL DENSITY

LIMITS

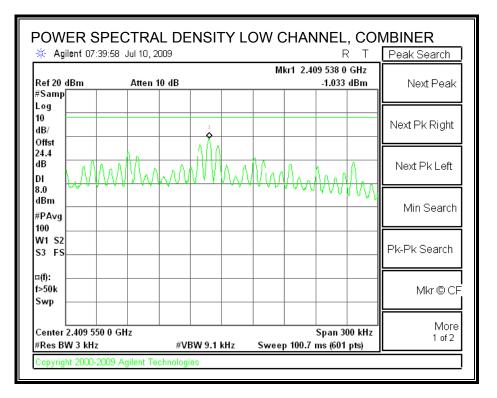
FCC §15.247 (e)

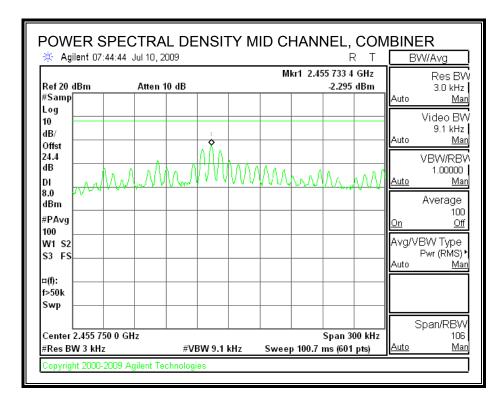
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of RMS averaging over a time interval, therefore the power spectral density was measured using PSD Option 2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-1.03	8	-9.03
Middle	2437	-2.30	8	-10.30
High	2462	-11.32	8	-19.32

Page 68 of 193

POWER SPECTRAL DENSITY

Page 69 of 193

🔆 Agilent 07:37	:24 Jul 10, 2009			RТ	BW/Avg
Ref 20 dBm #Samp	Atten 10 dB		Mkr1 2.464 50 -11.3	75GHz 317dBm	Res E 3.0 kH Auto <u>M</u>
Log 10 dB/ Offst					Video E 9.1 kH Auto <u>M</u>
24.4		1	* Marine harrow hours	man	VBW/RI 1.0000 <u>Auto M</u>
dBm #PAvg 100					Average 1(<u>On (</u>
W1 S2 S3 FS					Avg/VBW Typ Pwr (RMS Auto <u>M</u>
¤(f): f>50k Swp					
Center 2.464 500 #Res BW 3 kHz		9.1 kHz	Spa Sweep 100.7 ms (n 300 kHz 501 pts)	Span/RB 1(Auto M

Page 70 of 193

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

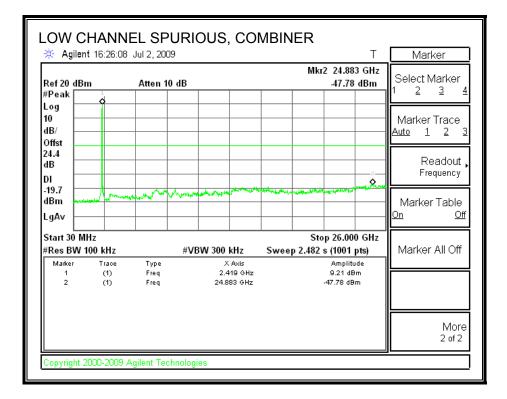
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of RMS averaging over a time interval, therefore the required attenuation is 30 dBc.

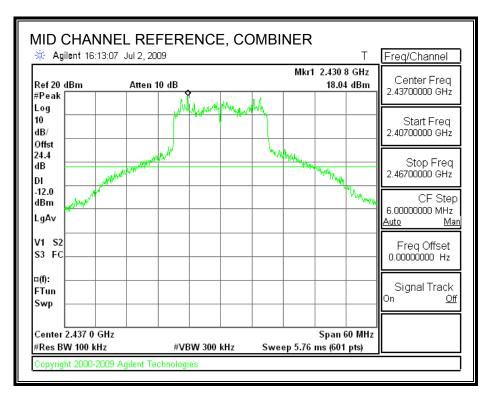
TEST PROCEDURE

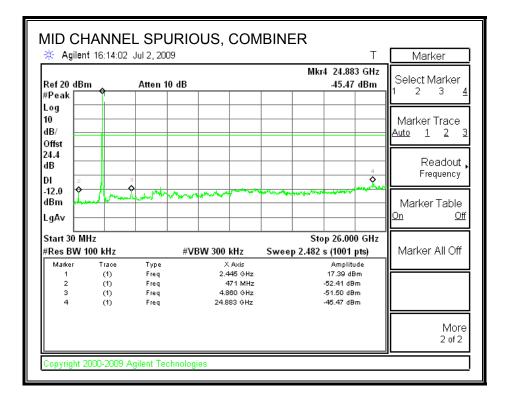

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

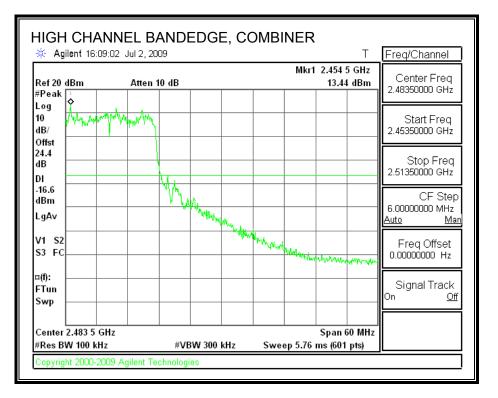
Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

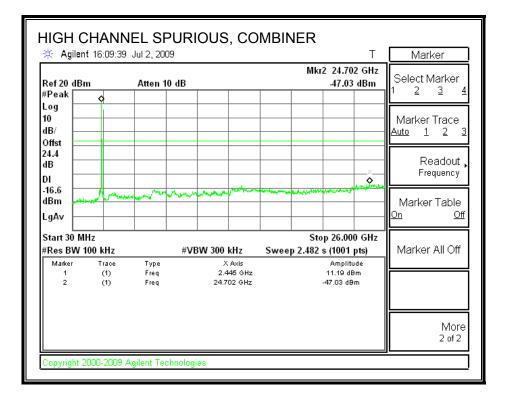
Page 71 of 193


LOW CHANNEL SPURIOUS EMISSIONS



Page 72 of 193


MID CHANNEL SPURIOUS EMISSIONS



Page 73 of 193

HIGH CHANNEL SPURIOUS EMISSIONS

Page 74 of 193

7.4. 2.4 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

7.4.1. 6 dB BANDWIDTH

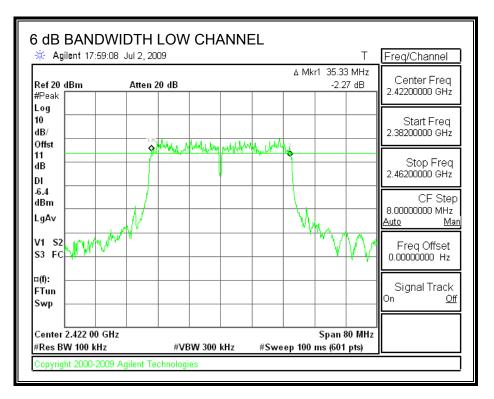
LIMITS

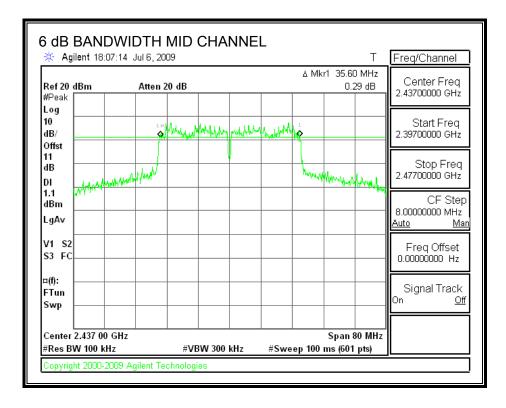
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

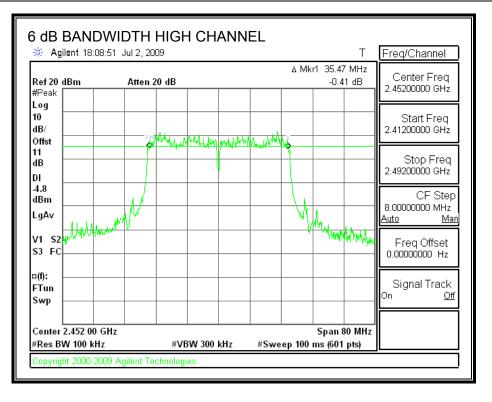
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

Channel	Frequency	6 dB BW	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2422	35.33	0.5
Mid	2437	35.60	0.5
High	2452	35.47	0.5


Page 75 of 193

6 dB BANDWIDTH

Page 76 of 193

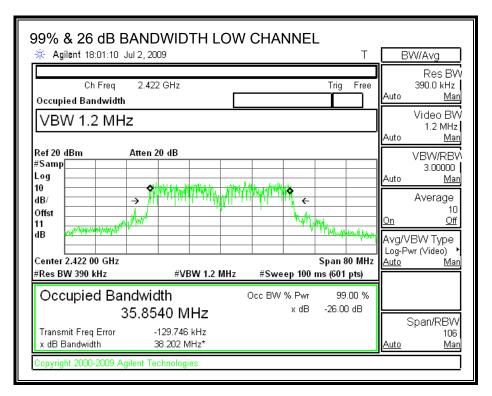
Page 77 of 193

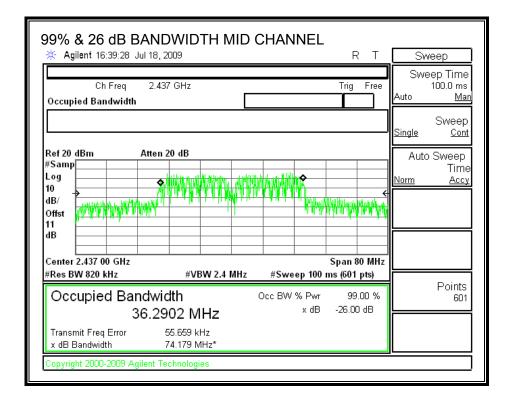
7.4.2. 99% & 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	2422	35.85	38.20
Mid	2437	36.29	74.18
High	2452	35.51	38.76

Page 78 of 193

99% & 26 dB BANDWIDTH

Page 79 of 193

🔆 Agilent 18:11:06 Jul 2,	2009		Т	BW/	Avg
Ch Freq 2. Occupied Bandwidth	452 GHz		Trig Free		Res BV 0.0 kHz <u>Ma</u> i
Average 10				Vi Auto	deo BV 1.2 MHz <u>Ma</u>
#Samp Log 10 dB/ → Offst 11 dB	n 20 dB		Versh to a section of the section of	Auto Av <u>On</u> Avg/VBV Log-Pwr (
Center 2.452 00 GHz #Res BW 390 kHz	#VBW 1.2 MHz	#Sweep 100 n		<u>Auto</u>	<u>Ma</u>
Occupied Bandw 35.5	/idth 5145 MHz	Occ BW % Pwr x dB	99.00 % -26.00 dB	Snd	an/RBV
Transmit Freq Error x dB Bandwidth	2.365 kHz 38.756 MHz*			Auto	аником 106 <u>Ма</u>

Page 80 of 193

7.4.3. OUTPUT POWER

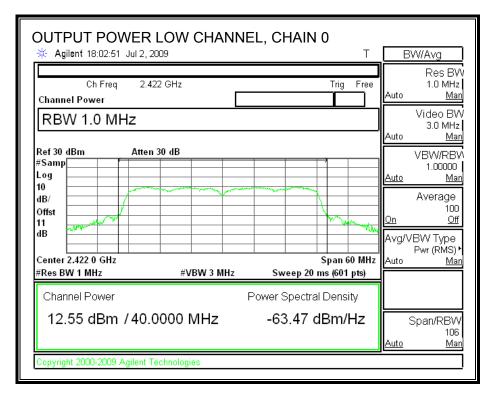
LIMITS

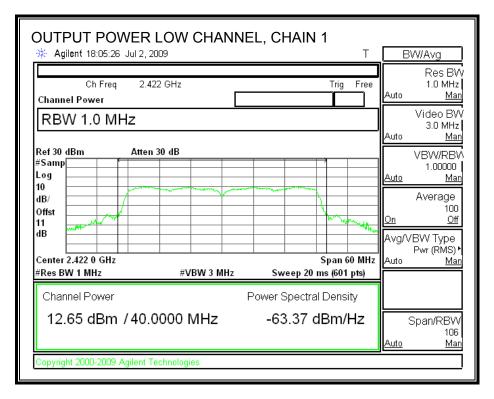
FCC §15.247 (b)

IC RSS-210 A8.4

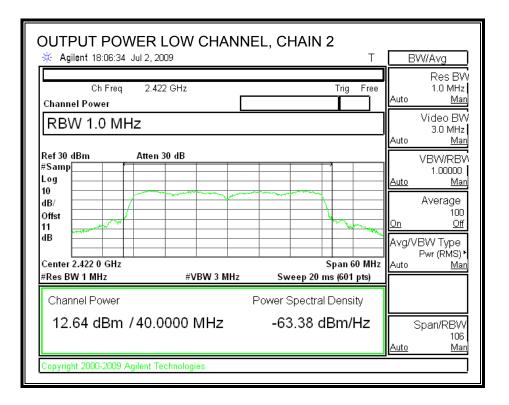
TEST PROCEDURE

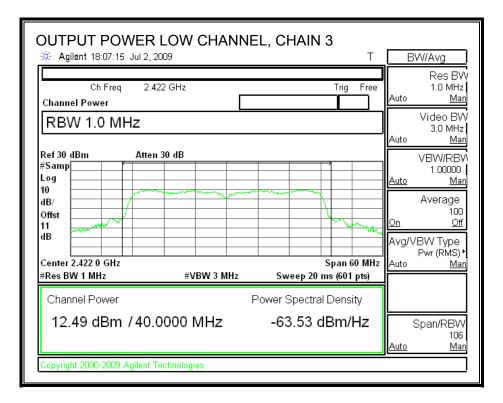
Output power was measured based on the use of RMS averaging over a time interval in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

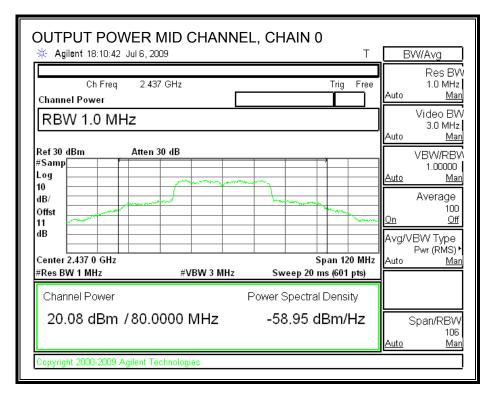

RESULTS

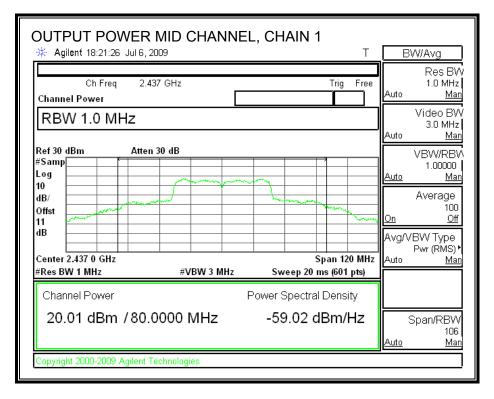

The antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

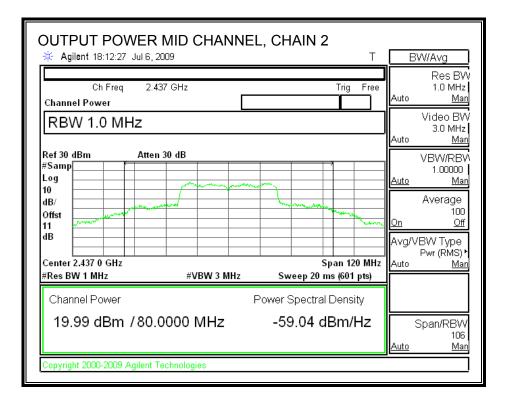
Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2422	12.55	12.65	12.64	12.49	18.60	30	-11.40
Mid	2437	20.08	20.01	19.99	20.02	26.05	30	-3.95
High	2452	13.54	13.57	13.56	13.61	19.59	30	-10.41

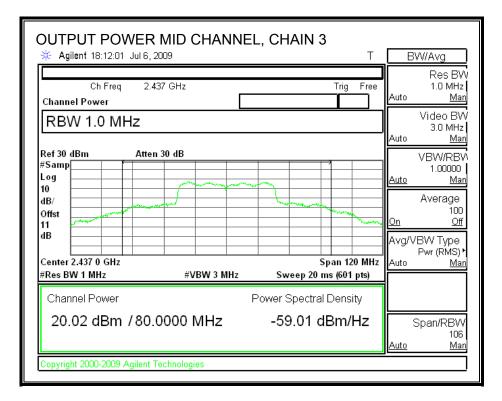

Page 81 of 193

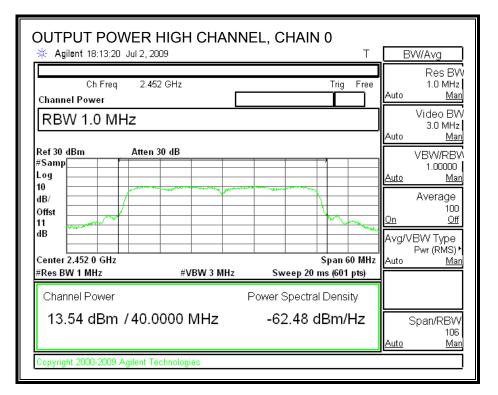

OUTPUT POWER, LOW CHANNEL

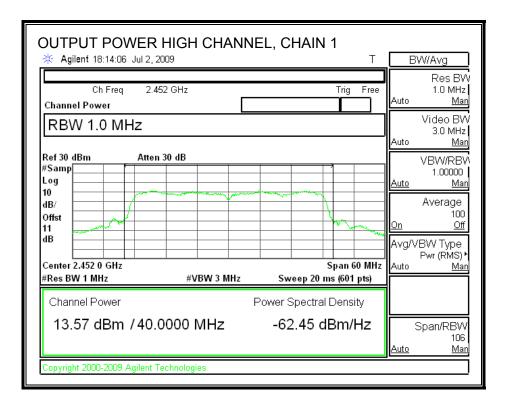

Page 82 of 193



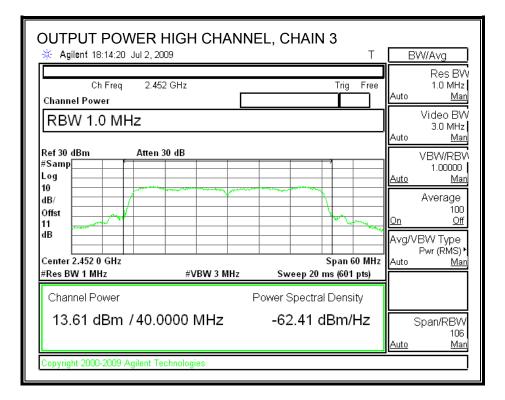

Page 83 of 193


OUTPUT POWER, MID CHANNEL


Page 84 of 193



Page 85 of 193


OUTPUT POWER, HIGH CHANNEL

Page 86 of 193

OUTPUT POWER		EL, CHAIN 2	BW/Avg
Channel Power RBW 1.0 MHz Ref 30 dBm Atten #Samp	52 GHz 30 dB	Trig Free	Res BW 1.0 MHz Auto Man Video BW 3.0 MHz Auto Man VBW/RBW VBW/RBW 1.00000
Log 10 dB/ Offst 11 dB			Auto Man Average 0n 0ff Avg/VBW Type Pwr (RMS)*
Center 2.452 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Span 60 MHz Sweep 20 ms (601 pts)	Auto <u>Man</u>
Channel Power 13.56 dBm / 40.0		Power Spectral Density -62.46 dBm/Hz	Span/RBW 106 <u>Auto Man</u>
Copyright 2000-2009 Agilent T	echnologies		

Page 87 of 193

7.4.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power Power	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2422.00	12.64	12.53	12.50	12.65
Mid	2437.00	20.19	20.20	20.19	20.23
High	2452.00	13.65	13.54	13.52	13.53

Page 88 of 193

7.4.5. POWER SPECTRAL DENSITY

LIMITS

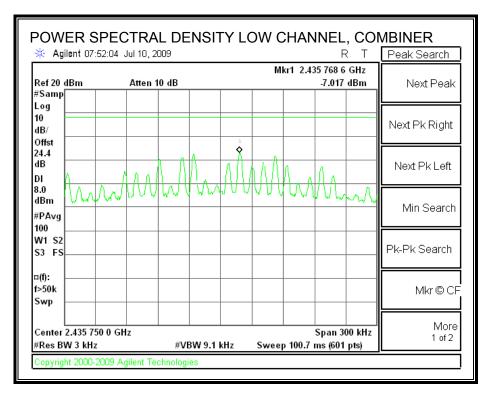
FCC §15.247 (e)

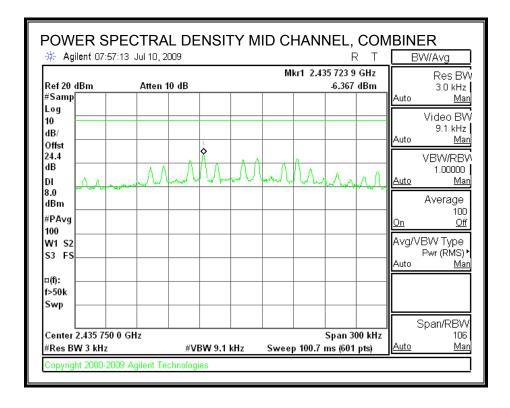
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

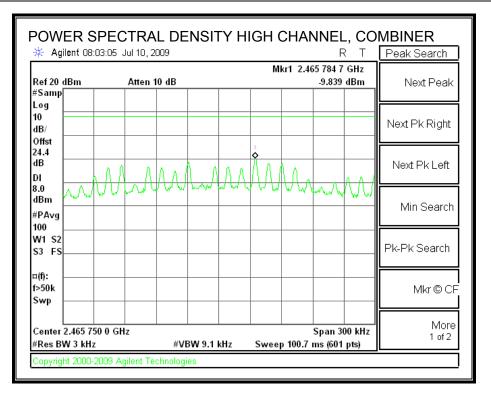
TEST PROCEDURE

Output power was measured based on the use of RMS averaging over a time interval, therefore the power spectral density was measured using PSD Option 2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2422	-7.02	8	-15.02
Mid	2437	-6.37	8	-14.37
High	2452	-9.84	8	-17.84


Page 89 of 193

POWER SPECTRAL DENSITY

Page 90 of 193

Page 91 of 193

7.4.6. CONDUCTED SPURIOUS EMISSIONS

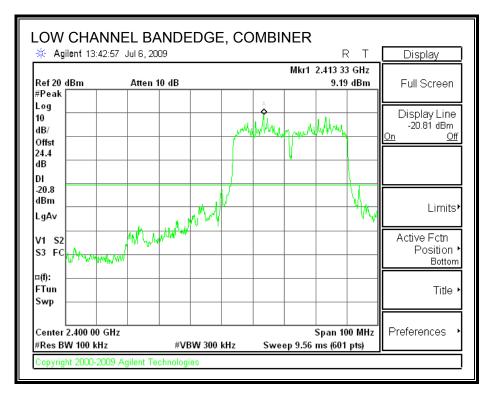
LIMITS

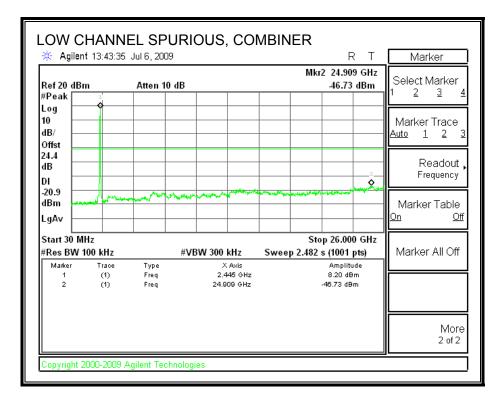
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of RMS averaging over a time interval, therefore the required attenuation is 30 dBc.

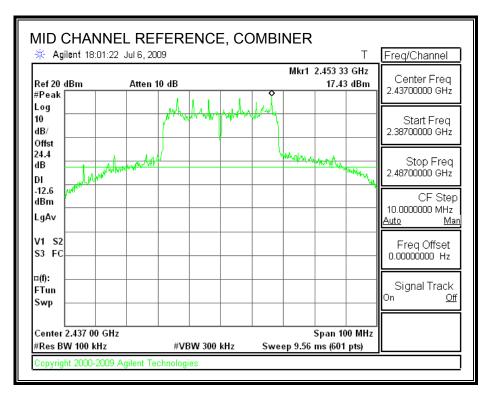
TEST PROCEDURE

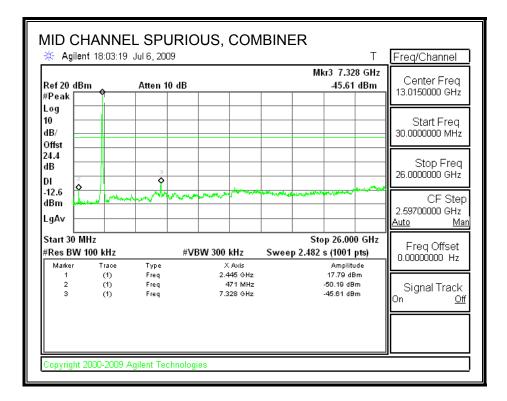

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

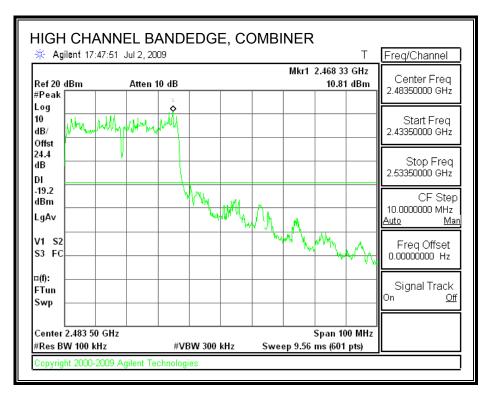
Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

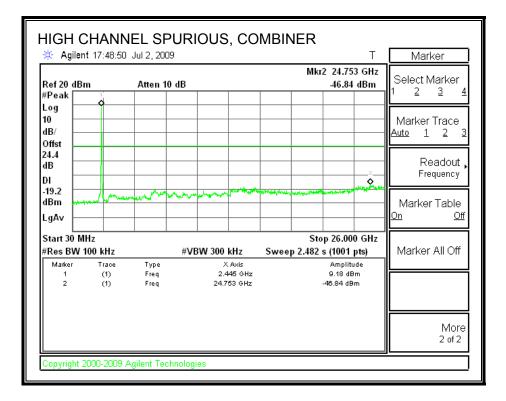
Page 92 of 193


LOW CHANNEL SPURIOUS EMISSIONS



Page 93 of 193


MID CHANNEL SPURIOUS EMISSIONS



Page 94 of 193

HIGH CHANNEL SPURIOUS EMISSIONS

Page 95 of 193

7.5. 5.8 GHz BAND CHANNEL TESTS FOR 802.11a MODE

7.5.1. 6 dB BANDWIDTH

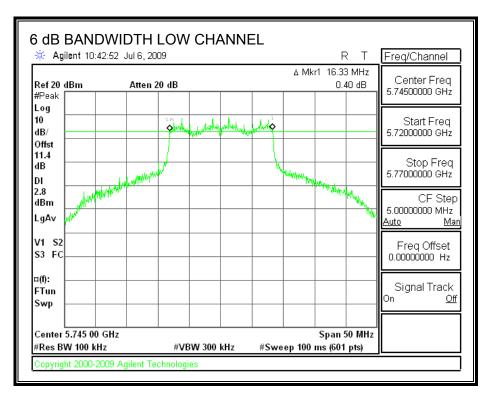
LIMITS

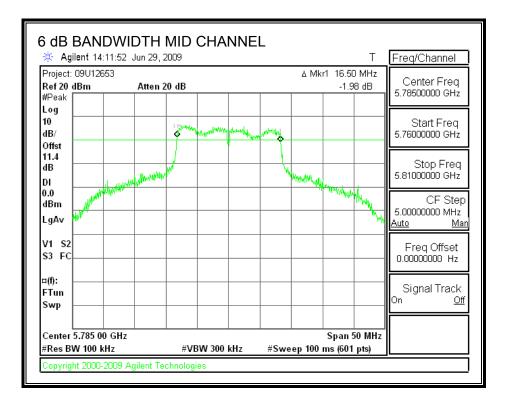
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

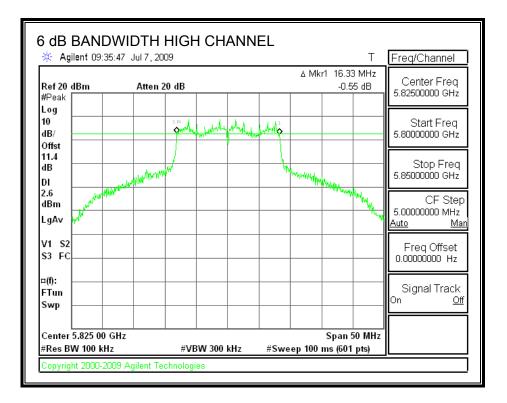
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

Channel	Frequency	6 dB BW	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	5745	16.33	0.5
Middle	5785	16.50	0.5
High	5825	16.33	0.5


Page 96 of 193

6 dB BANDWIDTH

Page 97 of 193

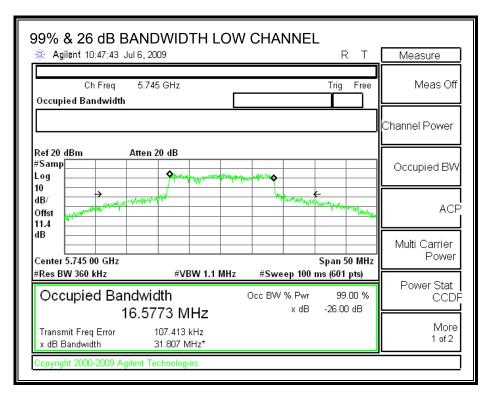
Page 98 of 193

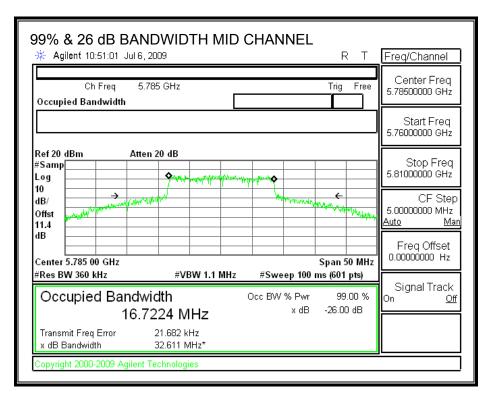
7.5.2. 99% & 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5745	16.58	31.81
Middle	5785	16.72	32.61
High	5825	16.79	31.51

Page 99 of 193

99% & 26 dB BANDWIDTH

Page 100 of 193

99% & 26 dB BAN		IGH CHAN		
🔆 Agilent 09:31:48 Jul 7,	, 2009		RT	BW/Avg
Ch Freq 5. Occupied Bandwidth	825 GHz		Trig Free	Res BW 360.0 kHz Auto <u>Man</u>
				Video BW 1.2 MHz Auto <u>Man</u>
#Samp	en 20 dB	- Marine and a second		VBW/RBW 3.00000 Auto <u>Man</u>
10 dB/ Offst 11.4				Average 10 <u>On Off</u>
dB			Span 50 MHz	Avg/VBW Type Log-Pwr (Video) ► Auto Man
#Res BW 360 kHz	#VBW 1.2 M	/Hz #Sweep	100 ms (601 pts)	
Occupied Bandv	vidth 7895 MHz	Occ BW % x	Pwr 99.00 % :dB -26.00 dB	
TO./ Transmit Freq Error x dB Bandwidth	141.052 kHz 31.512 MHz*			Span/RBW 106 <u>Auto Man</u>
Copyright 2000-2009 Agilent	Technologies			

Page 101 of 193

7.5.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

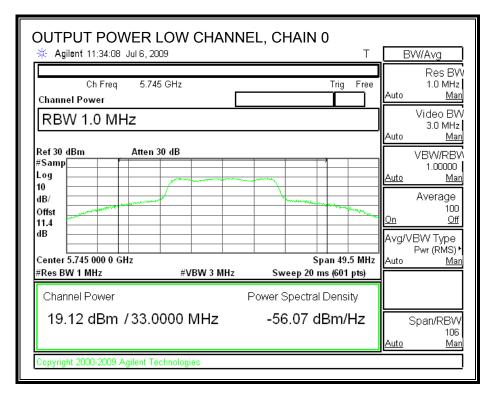
IC RSS-210 A8.4

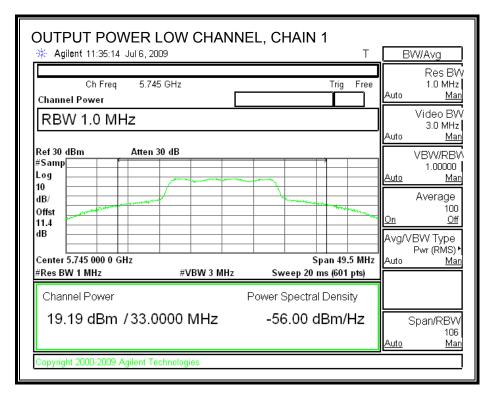
TEST PROCEDURE

Output power was measured based on the use of RMS averaging over a time interval in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

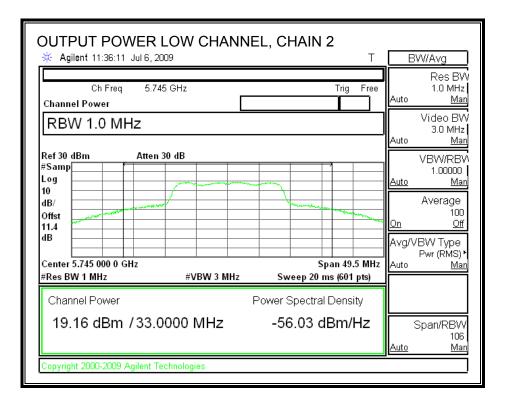
RESULTS

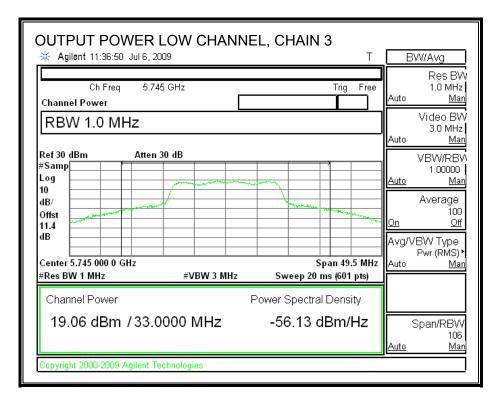
Effective Legacy Mode Composite Gain of 4 Identical Antennas:

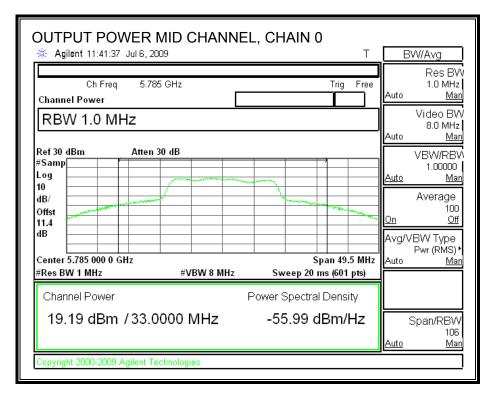

Antenna Gain 10 Log (# Tx Chains)		Effective Legacy Gain	
(dBi) (dB)		(dBi)	
3	6.02	9.02	

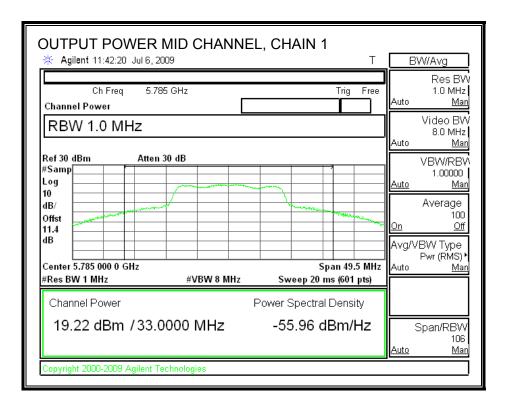

The composite antenna gain is 9.02 dBi, therefore the limit is 26.98 dBm.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	19.12	19.19	19.16	19.06	25.15	26.98	-1.83
Mid	5785	19.19	19.22	19.11	18.94	25.14	26.98	-1.84
High	5825	19.14	19.08	19.11	19.07	25.12	26.98	-1.86

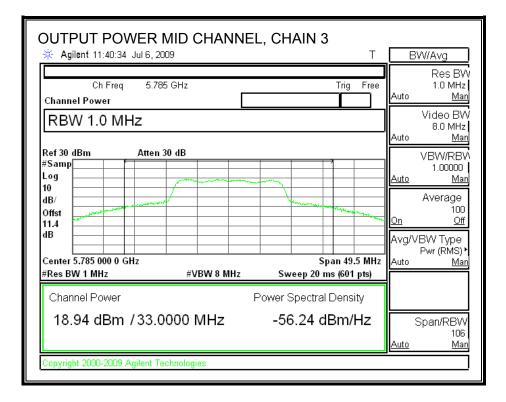

Page 102 of 193

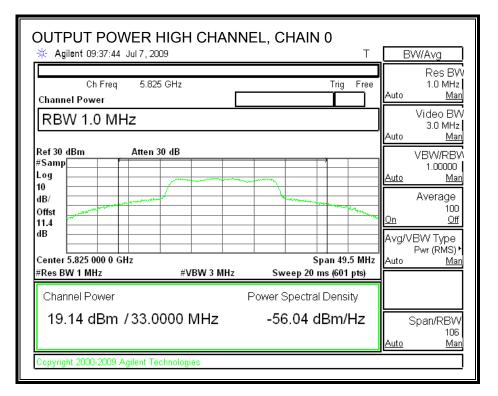

OUTPUT POWER, LOW CHANNEL

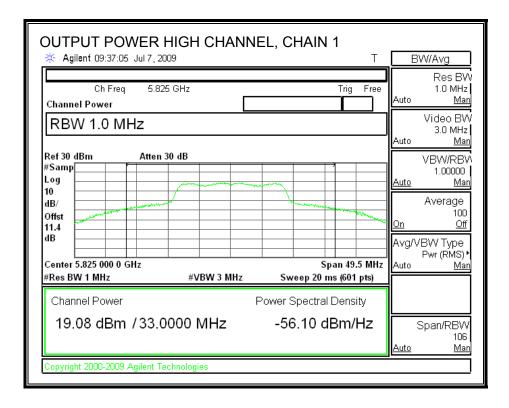

Page 103 of 193



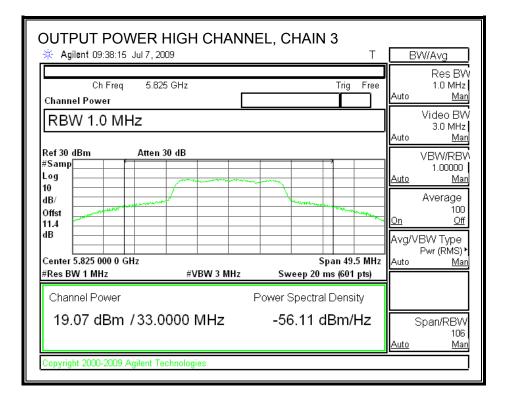
Page 104 of 193


OUTPUT POWER, MID CHANNEL


Page 105 of 193


OUTPUT POWER		L, CHAIN 2	Т	BW/Avg
Ch Freq 5.78 Channel Power	5 GHz	Ţ	rig Free	Res BW 1.0 MHz Auto <u>Man</u>
RBW 1.0 MHz	20. JD]	Video BW 8.0 MHz Auto <u>Man</u>
Ref 30 dBm Atten . #Samp			Welkerson Marco	VBW/RBV 1.00000 <u>Auto Man</u> Average 100 <u>On Off</u> Avg/VBW Type
Center 5.785 000 0 GHz #Res BW 1 MHz	#VBW 8 MHz	Span Sweep 20 ms (49.5 MHz 601 pts)	Pwr (RMS) ► Auto <u>Man</u>
Channel Power 19.11 dBm /33.0	Span/RBW 106 <u>Auto Man</u>			
Copyright 2000-2009 Agilent Te	chnologies			

Page 106 of 193


OUTPUT POWER, HIGH CHANNEL

Page 107 of 193

OUTPUT POWER		EL, CHAIN 2	2 T	BW/Avg	
Ch Freq 5.82 Channel Power	5 GHz		Trig Free		Hz ∕lan
RBW 1.0 MHz				Video E 3.0 M Auto <u>h</u>	
Ref 30 dBm Atten #Samp	30 dB			Averag 1 <u>On</u> Avg/VBW Typ	00 <u>vlan</u> 19 00 00 00
Center 5.825 000 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Spa Sweep 20 ms	an 49.5 MHz s (601 pts)	Pwr (RM: Auto <u>N</u>	S) ^ ∦an
Channel Power 19.11 dBm /33.0	II	3VV 06 1/an			
Copyright 2000-2009 Agilent Te	echnologies				

Page 108 of 193

7.5.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5745	19.17	18.99	19.22	19.11
Middle	5785	19.18	19.04	19.13	19.17
High	5825	19.21	18.90	19.22	19.13

Page 109 of 193

7.5.5. POWER SPECTRAL DENSITY

<u>LIMITS</u>

FCC §15.247 (e)

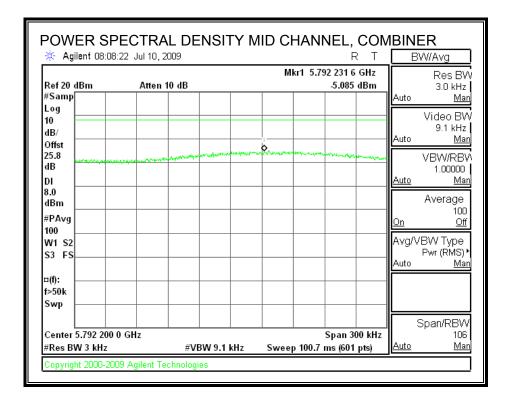
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of RMS averaging over a time interval, therefore the power spectral density was measured using PSD Option 2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	-6.00	8	-14.00
Middle	5785	-5.09	8	-13.09
High	5825	-6.41	8	-14.41

Page 110 of 193

POWER SPECTRAL DENSITY

🄆 Agilent 08:08	6:52 Jul 10, 2009			RT	Peak Search
Ref 20 dBm #Samp	Atten 10 dB		Mkr1 5.75	51 914 6 GHz -6.000 dBm	Next Peak
Log 10 dB/ Offst			1		Next Pk Right
25.8	and the second	an market and the		aborton and and a second second	Next Pk Left
3.0 dBm ≠PA∨g					Min Search
100 W1 S2 S3 FS					Pk-Pk Search
ɪ(f): ⇒50k Swp					Mkr © CF
Center 5.751 850 #Res BW 3 kHz		BW 9.1 kHz	Sweep 100.7	Span 300 kHz ms (601 pts)	More 1 of 2

Page 111 of 193

🔆 Agilent 08:10):50 Jul 10, 2009			RT	BW/Avg
Ref 20 dBm #Samp	Atten 10 dB		Mkr1 5.4	319 763 5 GHz -6.410 dBm	Res B\ 3.0 kHz Auto <u>Ma</u>
Log 10 dB/ Offst		1			Video B\ 9.1 kHz Auto <u>Ma</u>
dB DI	and the second	Mineter Mars Spran	- marine marine	the same the second second	VBVV/RB 1.00000 <u>Auto Ma</u>
8.0 dBm #PAvg					Average 100 <u>On Of</u>
100 W1 S2 S3 FS					Avg/VBW Type Pwr (RMS) Auto <u>Ma</u>
⊏(f): f>50k Swp					
Center 5.819 750 #Res BW 3 kHz		W 9.1 kHz	Sweep 100.7	Span 300 kHz ′ms (601 pts)	Span/RBV 108 <u>Auto Ma</u>

Page 112 of 193

7.5.6. CONDUCTED SPURIOUS EMISSIONS

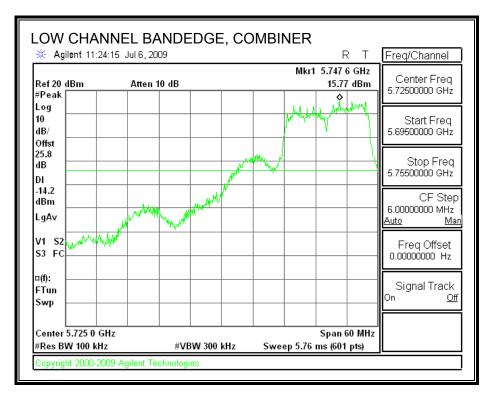
LIMITS

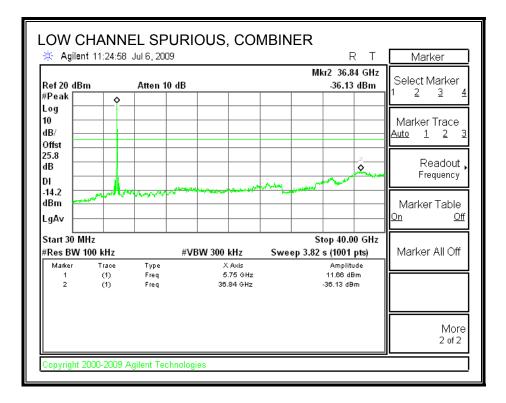
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of RMS averaging over a time interval, therefore the required attenuation is 30 dBc.

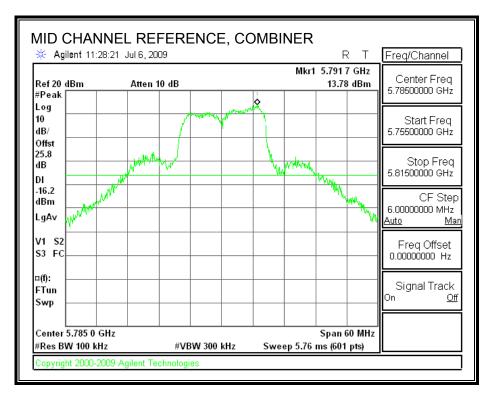
TEST PROCEDURE

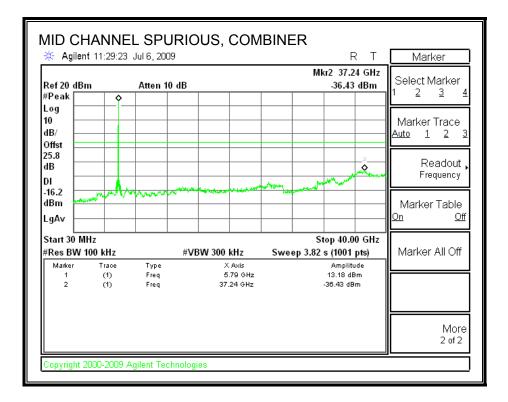

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

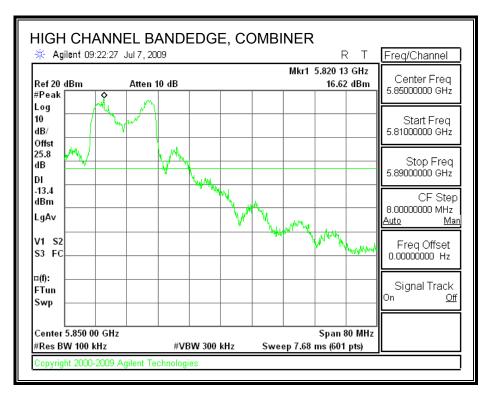
Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 113 of 193


LOW CHANNEL SPURIOUS EMISSIONS



Page 114 of 193


MID CHANNEL SPURIOUS EMISSIONS

Page 115 of 193

HIGH CHANNEL SPURIOUS EMISSIONS

Page 116 of 193

7.6. 5.8 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

7.6.1. 6 dB BANDWIDTH

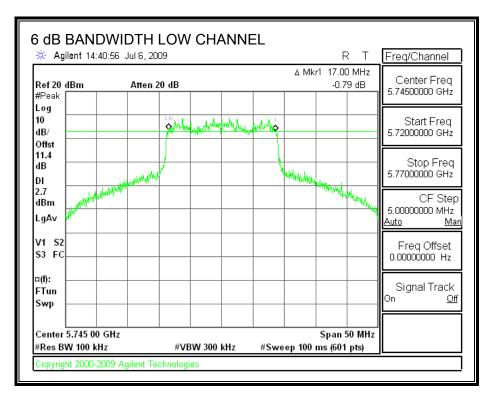
LIMITS

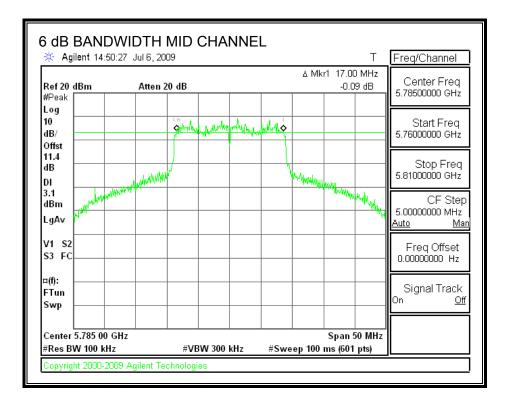
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

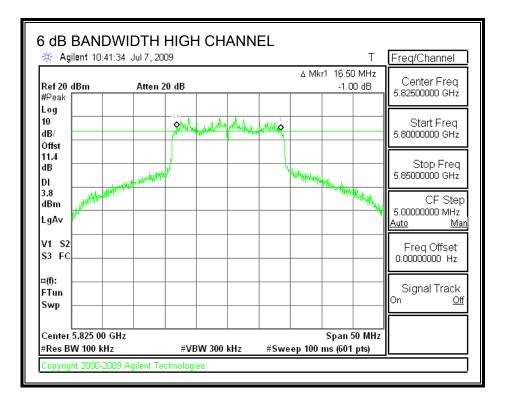
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

Channel	Frequency	6 dB BW	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	5745	17.00	0.5
Middle	5785	17.00	0.5
High	5825	16.50	0.5


Page 117 of 193

6 dB BANDWIDTH

Page 118 of 193

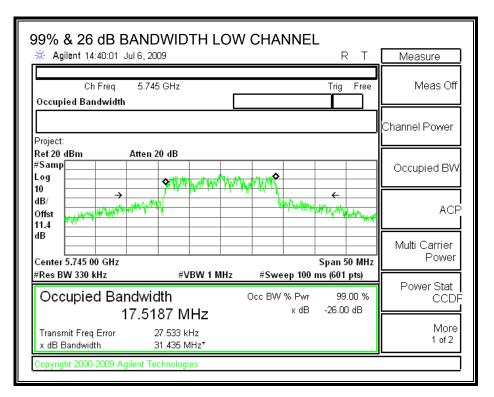
Page 119 of 193

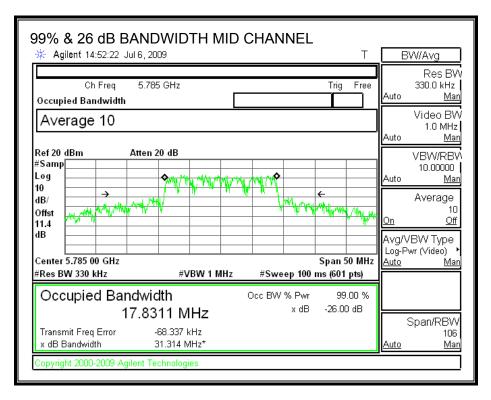
7.6.2. 99% & 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW
	(MHz)	(MHz)	(MHz)
Low	5745	17.52	31.44
Middle	5785	17.83	31.31
High	5825	17.58	31.29

Page 120 of 193

99% & 26 dB BANDWIDTH

Page 121 of 193

99% & 26 dB BANDWIDTH HIGH CHANNEL	
	Measure
Ch Freq 5.825 GHz Trig Free Occupied Bandwidth	Meas Off
Average 10	Channel Power
Ref 20 dBm Atten 20 dB #Samp Log 10 Atten 20 dB	Occupied BW
dB/ offst 11.4	ACF
dB Center 5.825 00 GHz Span 50 MHz	Multi Carrier Power
#Res BW 330 kHz #VBW 1.2 MHz #Sweep 100 ms (601 pts)	Power Stat
Occupied Bandwidth Occ BW % Pwr 99.00 % 17.5760 MHz × dB -26.00 dB	CCDF
Transmit Freq Error 61.513 kHz x dB Bandwidth 31.285 MHz*	More 1 of 2
Copyright 2000-2009 Agilent Technologies	

Page 122 of 193

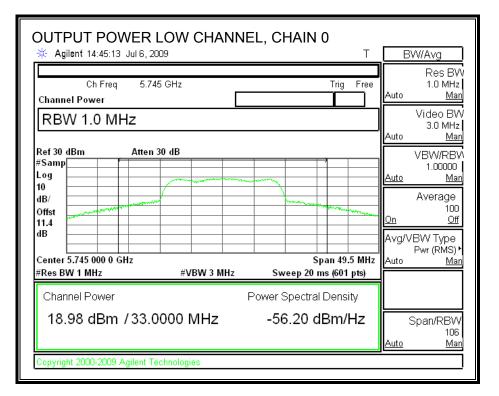
7.6.3. OUTPUT POWER

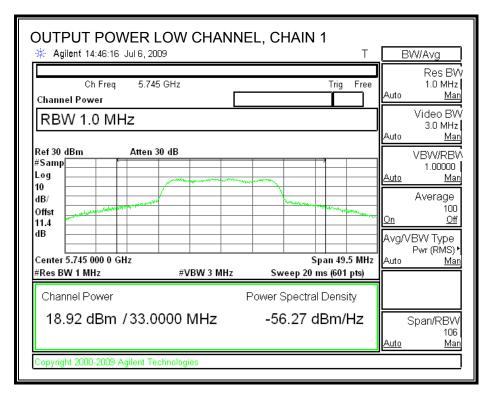
LIMITS

FCC §15.247 (b)

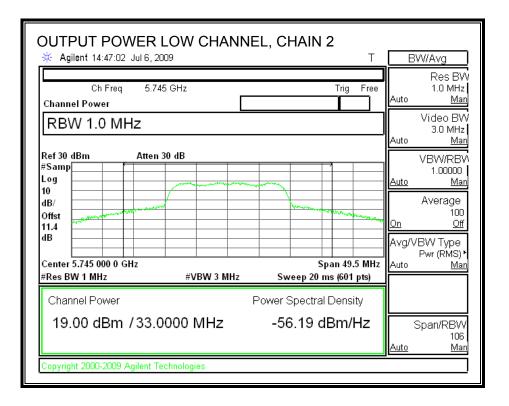
IC RSS-210 A8.4

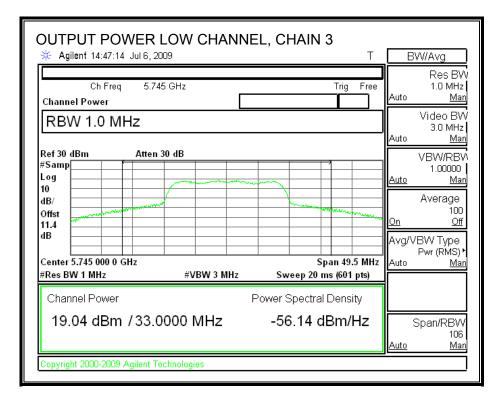
TEST PROCEDURE

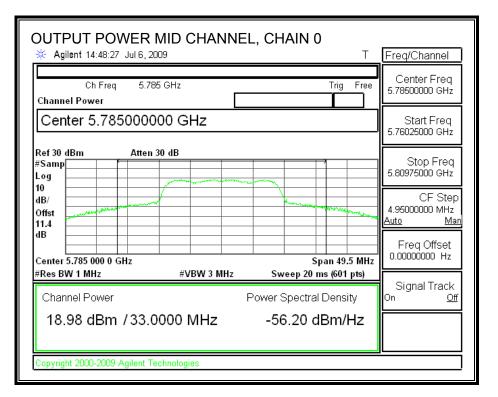

Output power was measured based on the use of RMS averaging over a time interval in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

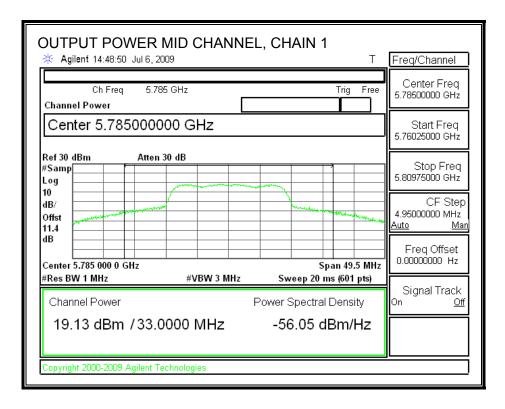

RESULTS

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

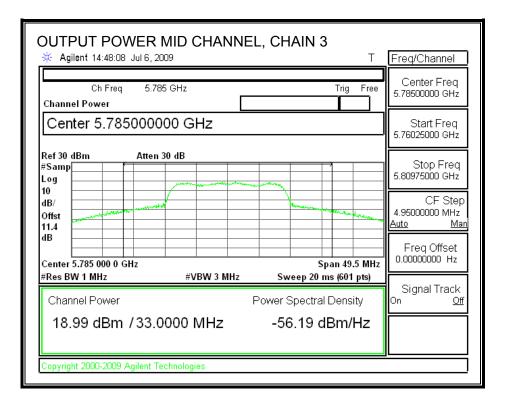

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5745	18.98	18.92	19.00	19.04	25.01	30	-4.99
Mid	5785	18.98	19.13	18.96	18.99	25.04	30	-4.96
High	5825	19.23	19.19	19.28	19.16	25.24	30	-4.76

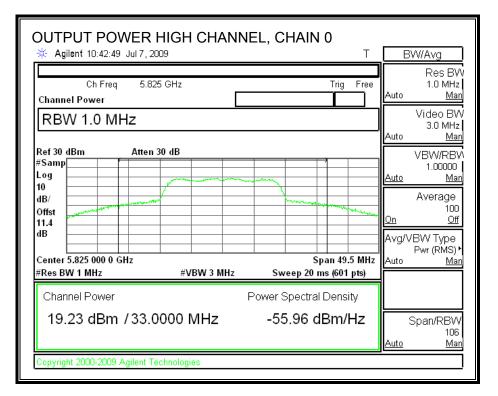

OUTPUT POWER, LOW CHANNEL

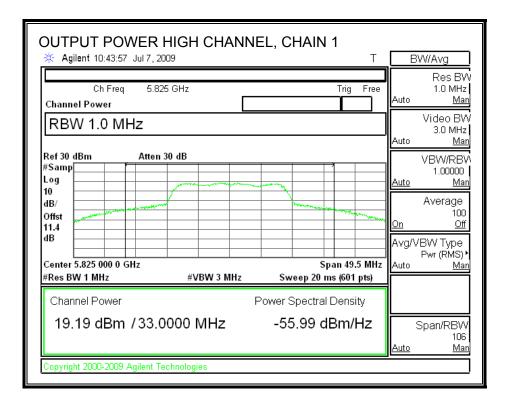

Page 124 of 193



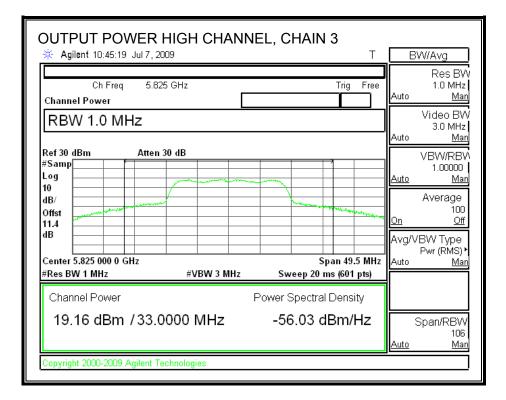
Page 125 of 193


OUTPUT POWER, MID CHANNEL


Page 126 of 193


OUTPUT POWER N * Agilent 14:49:16 Jul 6, 20		L, CHAIN 2	Т	Freq/Channel
Ch Freq 5.785 Channel Power			Trig Free	Center Freq 5.78500000 GHz
Center 5.7850000				Start Freq 5.76025000 GHz Stop Freq
#Samp Log 10 dB/ Offst 11.4			197-201-10-10-10-10-10-10-10-10-10-10-10-10-1	5.80975000 GHz CF Step 4.95000000 MHz <u>Auto Man</u>
dB Center 5.785 000 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Spa Sweep 20 ms	n 49.5 MHz (601 pts)	Freq Offset 0.00000000 Hz
Channel Power Power Spectral Density Signal Track On 18.96 dBm / 33.0000 MHz -56.23 dBm/Hz				
Copyright 2000-2009 Agilent Tee	chnologies			

Page 127 of 193


OUTPUT POWER, HIGH CHANNEL

Page 128 of 193

OUTPUT POWER		EL, CHAIN 2	2 T	BW/Avg
Ch Freq 5.825 Channel Power	i GHz		Trig Free	Res BW 1.0 MHz Auto <u>Man</u> Video BW
RBW 1.0 MHz	0 dB	· · · · · · · · · · · · · · · · · · ·]	3.0 MHz Auto <u>Man</u> VBW/RBV
#Samp Log 10 dB/ Offst			······	1.00000 <u>Auto Man</u> Average 100 <u>On Off</u>
dB Center 5.825 000 0 GHz #Res BW 1 MHz	#VBW 3 MHz	Spa Sweep 20 ms	n 49.5 MHz (601 pts)	Avg/VBW Type Pwr (RMS) • Auto <u>Man</u>
Channel Power Power Spectral Density 19.28 dBm / 33.0000 MHz -55.91 dBm/Hz				Span/RBW 106 <u>Auto Man</u>
Copyright 2000-2009 Agilent Ter	chnologies			

Page 129 of 193

7.6.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5745	18.93	18.98	19.04	19.13
Middle	5785	19.13	18.95	19.09	19.19
High	5825	19.23	19.2	19.27	19.17

Page 130 of 193

7.6.5. POWER SPECTRAL DENSITY

LIMITS

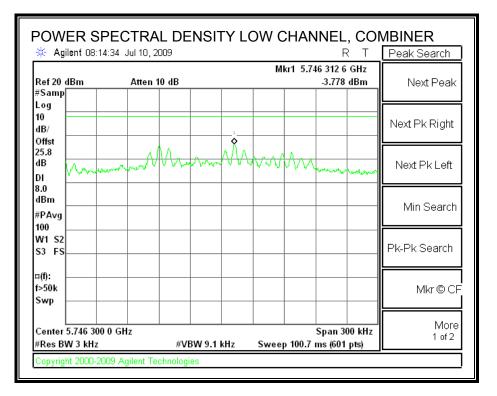
FCC §15.247 (e)

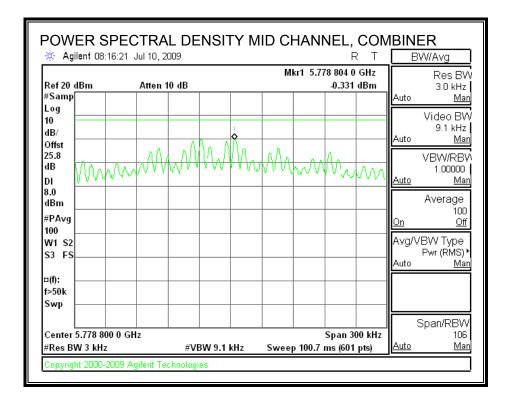
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of RMS averaging over a time interval, therefore the power spectral density was measured using PSD Option 2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	-3.778	8	-11.78
Middle	5785	-0.331	8	-8.33
High	5825	0.326	8	-7.67

Page 131 of 193

POWER SPECTRAL DENSITY

Page 132 of 193

🔆 Agilent 08:18:0	Agilent 08:18:01 Jul 10, 2009 R T			BW/Avg	
Ref 20 dBm #Samp	Atten 10 dB	Mkr1 5.778 805 0 GHz ten 10 dB 0.326 dBm			Res BV 3.0 kHz Auto <u>Ma</u>
Log 10 dB/ Offst					Video BV 9.1 kHz Auto <u>Ma</u>
25.8 dB DI 8.0	~~~~	WWW	MALAN	Mum	VBW/RB\ 1.00000 <u>Auto Ma</u>
dBm #PA∨g 100					Average 100 <u>On Off</u>
W1 S2 S3 FS					Avg/VBW Type Pwr (RMS) Auto <u>Ma</u>
⊏(f): f>50k Swp					
Center 5.778 800 0 #Res BW 3 kHz		BW 9.1 kHz	Sweep 100.7	Span 300 kHz ms (601 pts)	Span/RBV 106 Auto Ma

Page 133 of 193

7.6.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

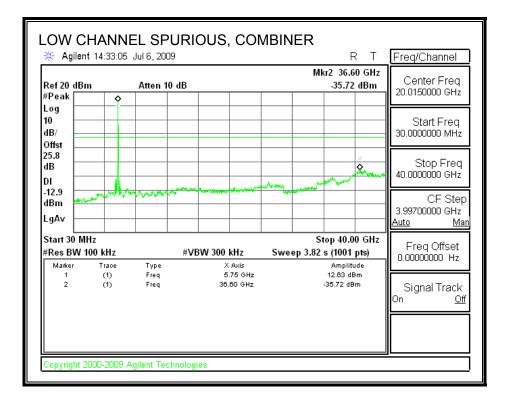
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of RMS averaging over a time interval, therefore the required attenuation is 30 dBc.

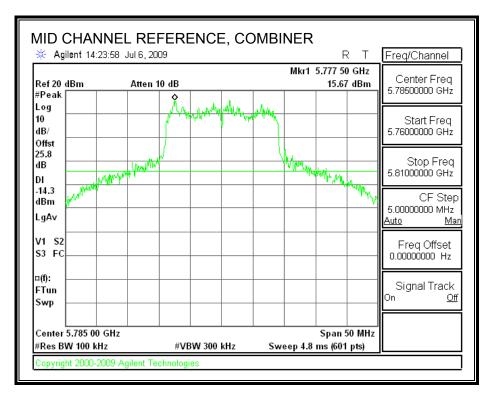
TEST PROCEDURE

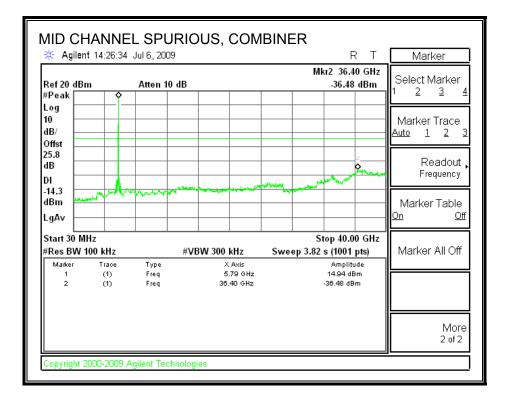
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

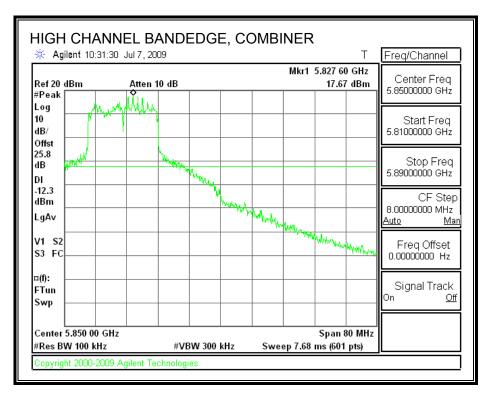
Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

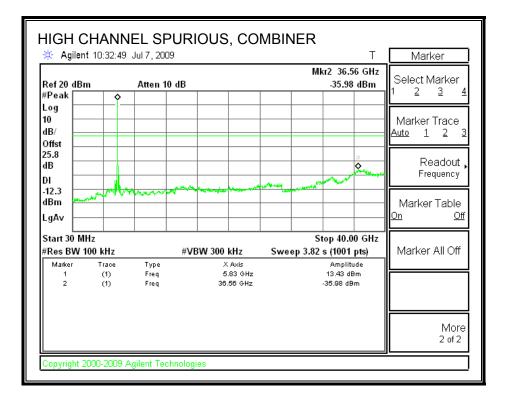
Page 134 of 193


LOW CHANNEL SPURIOUS EMISSIONS



Page 135 of 193


MID CHANNEL SPURIOUS EMISSIONS



Page 136 of 193

HIGH CHANNEL SPURIOUS EMISSIONS

Page 137 of 193

7.7. 5.8 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

7.7.1. 6 dB BANDWIDTH

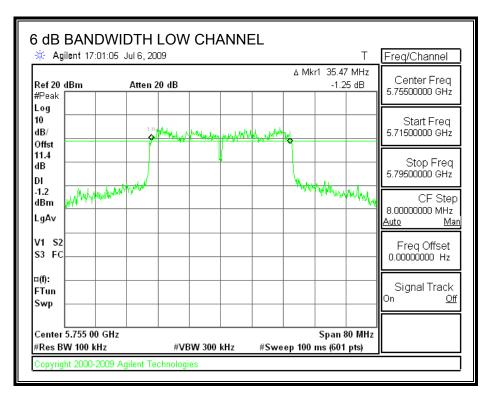
LIMITS

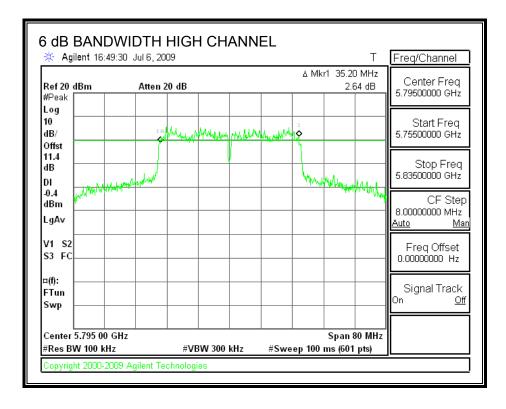
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

Channel	Frequency	6 dB BW	Minimum Limit		
	(MHz)	(MHz)	(MHz)		
Low	5755	35.47	0.5		
High	5795	35.20	0.5		

Page 138 of 193

6 dB BANDWIDTH

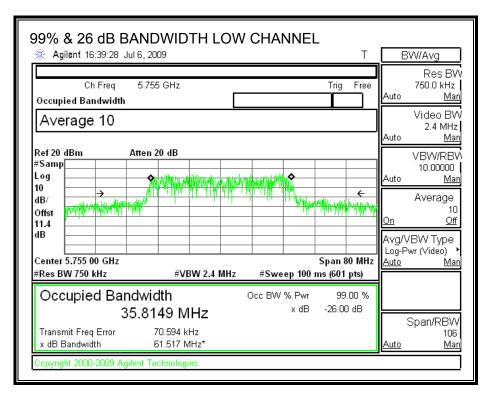
Page 139 of 193

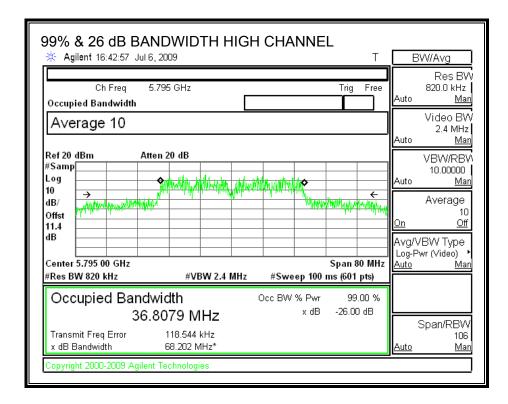
7.7.2. 99% & 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5755	35.8149	61.517	
High	5795	36.8079	68.202	

Page 140 of 193

99% & 26 dB BANDWIDTH

Page 141 of 193

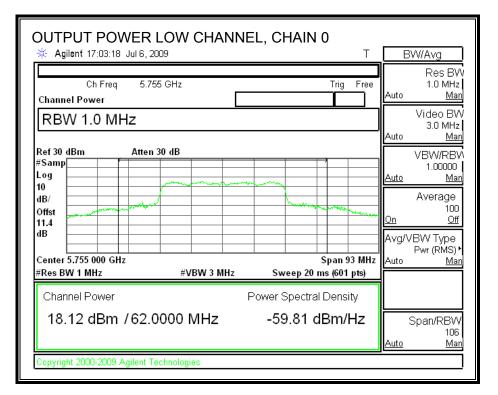
7.7.3. OUTPUT POWER

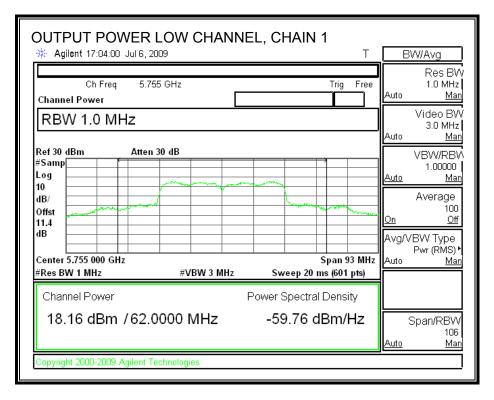
LIMITS

FCC §15.247 (b)

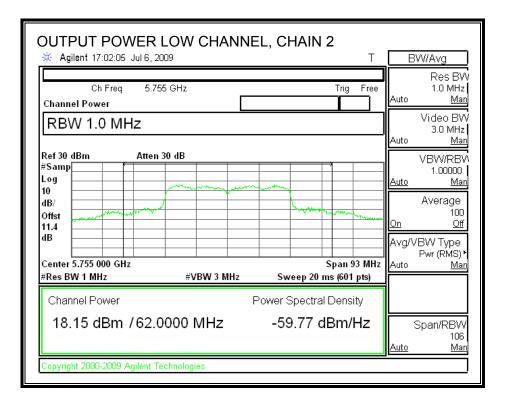
IC RSS-210 A8.4

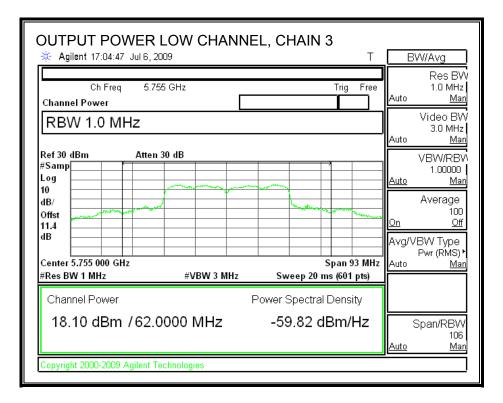
TEST PROCEDURE

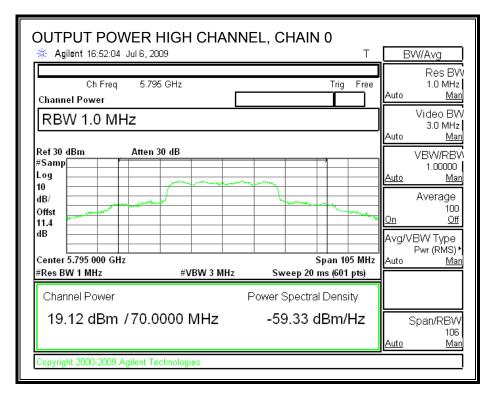

Output power was measured based on the use of RMS averaging over a time interval in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

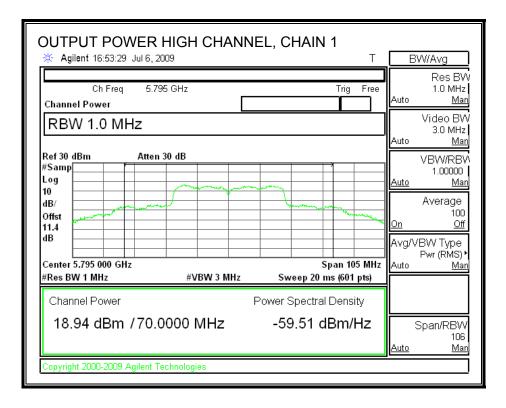

RESULTS

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

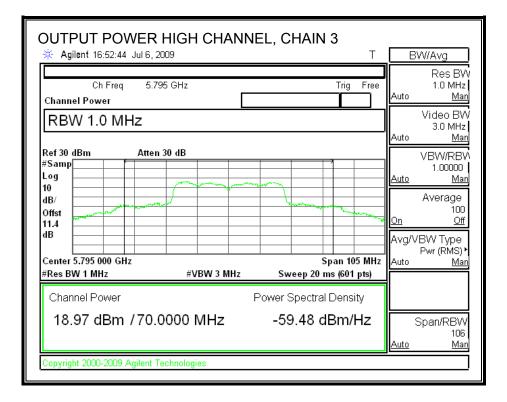

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5755	18.12	18.16	18.15	18.10	24.15	30.00	-5.85
High	5795	19.12	18.94	19.04	18.97	25.04	30.00	-4.96


OUTPUT POWER, LOW CHANNEL


Page 143 of 193



Page 144 of 193


OUTPUT POWER, HIGH CHANNEL

Page 145 of 193

OUTPUT POWER		EL, CHAIN	2	BW	/Avg
Ch Freq 5.79 Channel Power	5 GHz		Trig Free	Auto	Res BW 1.0 MHz <u>Man</u>
RBW 1.0 MHz	20 dB			Auto	ideo BW 3.0 MHz <u>Man</u>
#Samp Atten #Samp defined and the second def				<u>Auto</u> A <u>On</u>	BW/RBV 1.00000 <u>Man</u> verage 100 <u>Off</u>
Center 5.795 000 GHz #Res BW 1 MHz	#VBW 3 MHz	Sweep 20 n	pan 105 MHz 1s (601 pts)	Avg/VB\ Pv Auto	wr(RMS)∙ <u>Man</u>
Channel Power 19.04 dBm /70.0		[⊃] ower Spectral -59.41 d	, i	Sp <u>Auto</u>	an/RBW 106 <u>Man</u>
Copyright 2000-2009 Agilent Te	echnologies				

Page 146 of 193

7.7.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5755	18.13	18.29	18.15	17.92
High	5795	18.91	18.96	19.02	19.06

Page 147 of 193

7.7.5. POWER SPECTRAL DENSITY

<u>LIMITS</u>

FCC §15.247 (e)

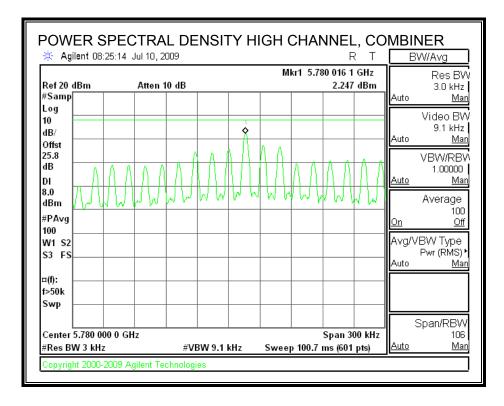
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of RMS averaging over a time interval, therefore the power spectral density was measured using PSD Option 2 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


RESULTS

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5755	2.332	8	-5.67
High	5795	2.25	8	-5.75

Page 148 of 193

POWER SPECTRAL DENSITY

Page 149 of 193

7.7.6. CONDUCTED SPURIOUS EMISSIONS

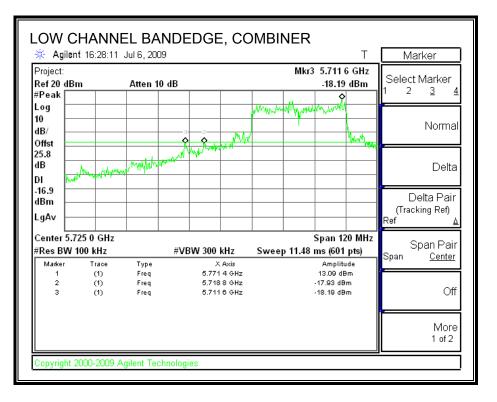
<u>LIMITS</u>

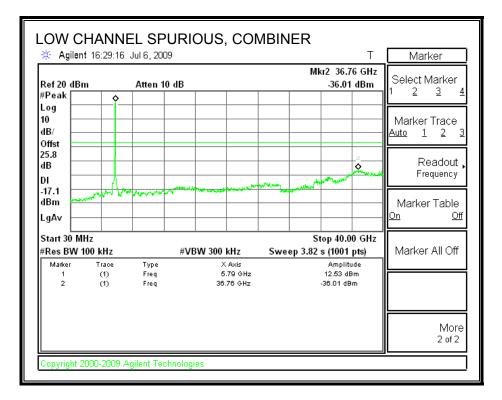
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of RMS averaging over a time interval, therefore the required attenuation is 30 dBc.

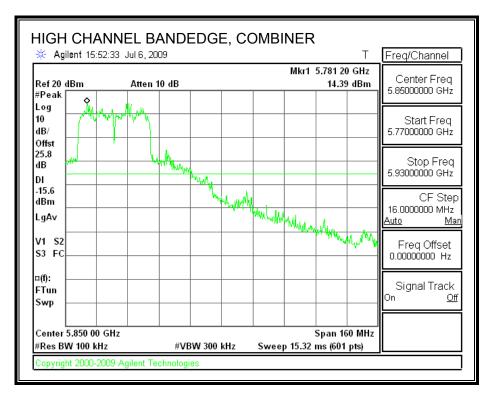
TEST PROCEDURE

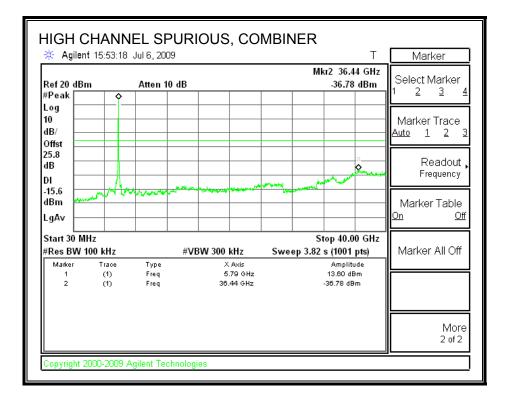

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Page 150 of 193


LOW CHANNEL SPURIOUS EMISSIONS



Page 151 of 193

HIGH CHANNEL SPURIOUS EMISSIONS

Page 152 of 193

7.8. RECEIVER CONDUCTED SPURIOUS EMISSIONS

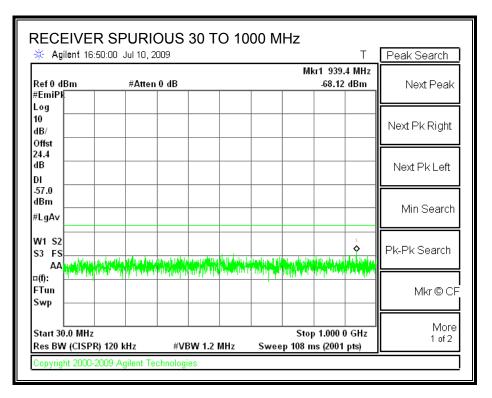
LIMITS

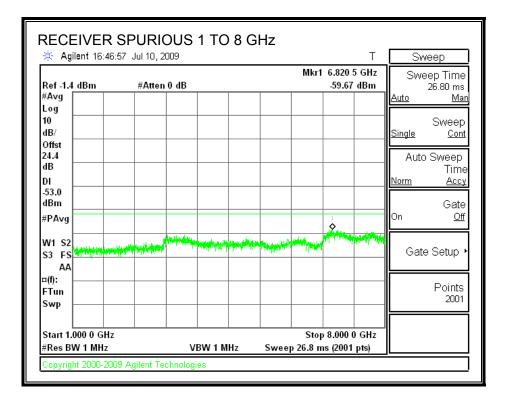
IC RSS-GEN 7.2.3.1

Antenna Conducted Measurement: Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

TEST PROCEDURE

IC RSS-GEN 4.10, Conducted Method

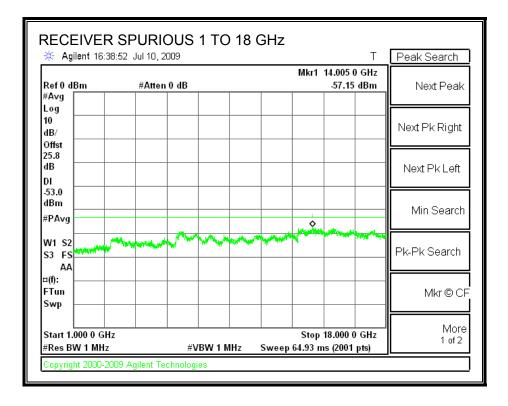

The receiver antenna port is connected to a spectrum analyzer.


The spectrum from 30 MHz to 8 GHz is investigated with the receiver set to the middle channel of the 2.4 GHz band.

The spectrum from 30 MHz to 18 GHz is investigated with the receiver set to the middle channel of each 5 GHz band.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

RECEIVER SPURIOUS EMISSIONS IN THE 2.4 GHz BAND



Page 154 of 193

RECEIVER SPURIOUS EMISSIONS IN THE 5.8 GHz BAND

🔆 Agilent 16:3			TO 10				Т	Peak Search
Ref0dBm #EmiPk	#Atten	0 dB			Mk	r1 607. _67.23		Next Peak
Log 10 dB/ Offst								Next Pk Right
dB DI								Next Pk Left
-57.0 dBm #LgAv								Min Search
W1 S2 S3 FS								Pk-Pk Search
¤(f): FTun Swp	and the sector	••••••••••••••••••••••••••••••••••••••						Mkr © CF
Start 30.0 MHz #Res BW (CISP	R) 120 kHz	VBW 1.	2 MHz	Swee	Stop p108 m	1.000 (s (2001		More 1 of 2

Page 155 of 193

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

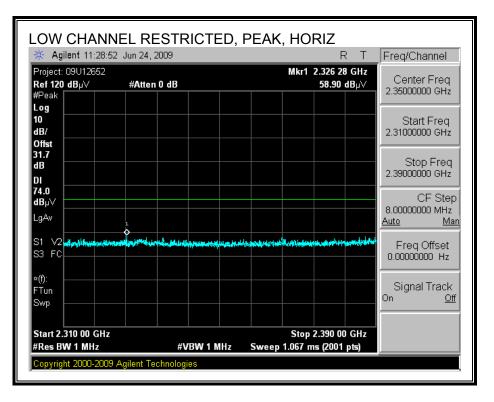
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

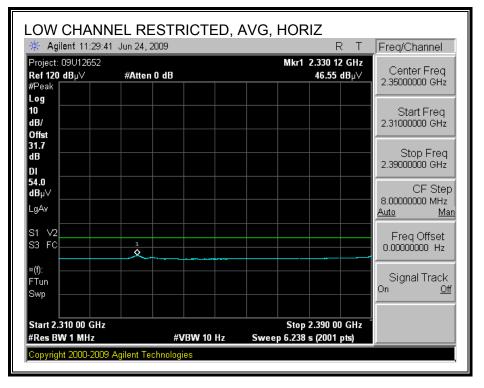
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

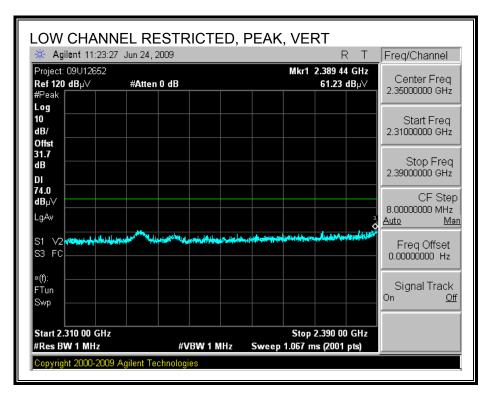
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

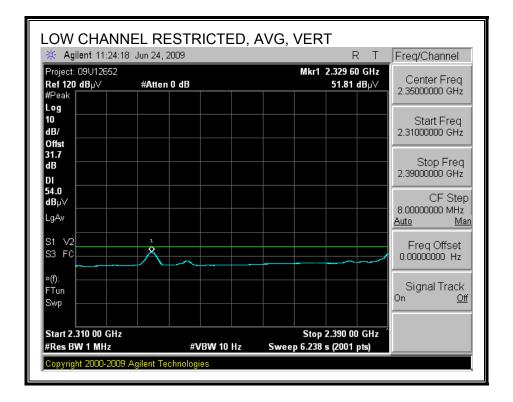

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


Page 156 of 193

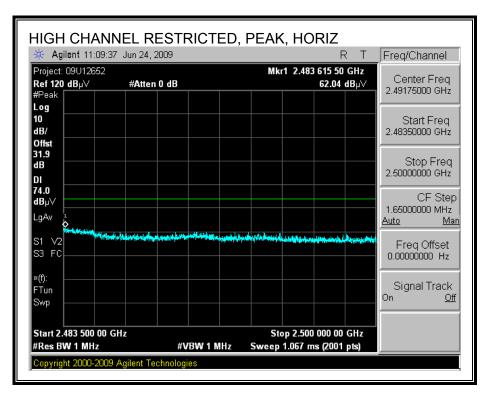
8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. 802.11b MODE IN THE 2.4 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

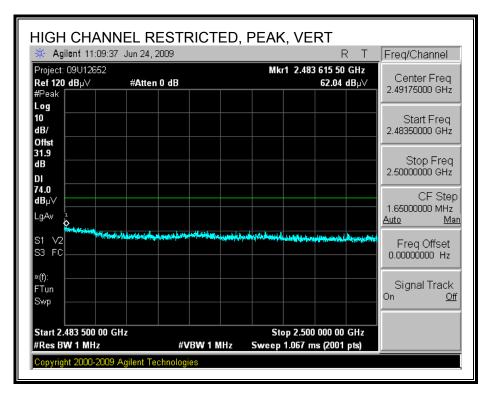


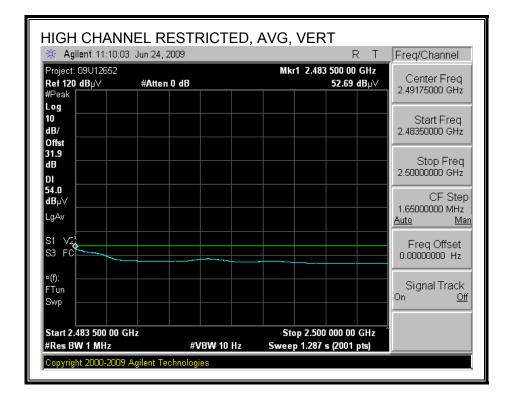
Page 157 of 193


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 158 of 193

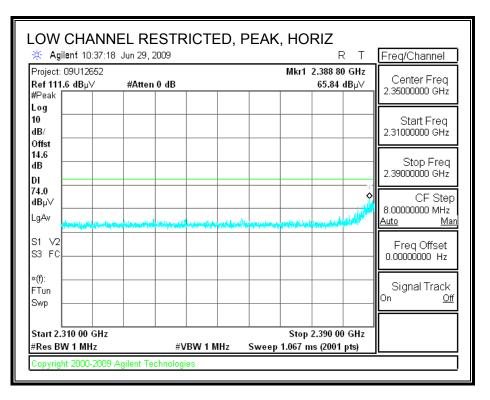

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

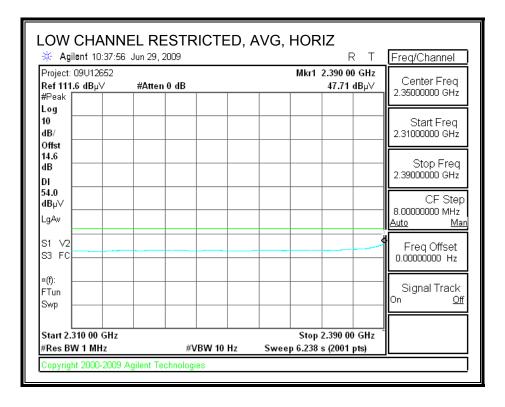


Page 159 of 193

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

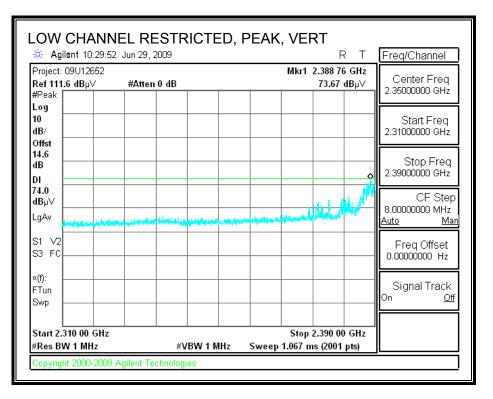
Page 160 of 193

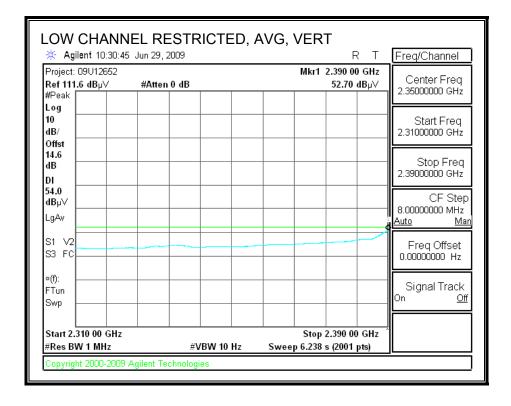

HARMONICS AND SPURIOUS EMISSIONS


		Measurer tification	nent Services, F	remoi	nt 5m C	hamber									
Test Engr	•		Thanh Ng	uven											
Date:	•		06/30/09	uyen.											
Company			Qualcom	n Inc											
EUT Desc			802.11 abs		Module										
EUT M/N:			65-VN780			-									
Test Targ			FCC Clas												
Mode Op			Transmit		e										
LIVEL OF	f	Measurer	nent Frequer		Amp	Preamp (Gain			Average	Field Stren;	th Limit			
	Dist		to Antenna	,	-	Distance		t to 3 me	ters	-	ld Strength	-			
	Read	Analyzer	Reading		Avg			trength @			rs. Average				
	AF	Antenna			Peak			Field Stre		-	rs. Peak Lir				
	CL	Cable Lo:			HPF	High Pas:	s Filter			-					
f	Dist	Read	AF	CL	Атр	D Corr	Fltr	Corr.	Limit	N	Ant. Pol.	Det	A	Table Angle	Notes
GHz	(m)	nead dBuV	Ar dB/m	dB	Amp dB	dB	dB		dBuV/m	Margin dB	ANL POL V/H	Det. P/A/QP	Ant fligh cm	Degree	110162
		t 16.5dbn							abu rall		****	Tura		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
4.824	3.0	44.8	33.0	5.8	-36.5	0.0	0.0	47.1	74.0	-26.9	v	Р	129.4	241.0	
4.824	3.0	41.4	33.0	5.8	-36.5	0.0	0.0	43.8	54.0	-10.2	v	Ā	129.4	241.0	
4.824	3.0	40.2	33.0	5.8	-36.5	0.0	0.0	42.6	74.0	-31.4	н	Р	116.2	197.3	Noise floor
4.824	3.0	31.4	33.0	5.8	-36.5	0.0	0.0	33.8	54.0	-20.2	H	A	116.2	197.3	Noise floor
		, set 20db													
4.874	3.0	46.0	33.1	5.8	-36.5	0.0	0.0	48.5	74.0	-25.5	v	Р	116.1	272.7	
4.874	3.0	42.9	33.1	5.8	-36.5	0.0	0.0	45.3	54.0	- 8. 7	V	A	116.1	272.7	
7.311	3.0	45.0 39.5	35.3	7.3	-36.2 -36.2	0.0 0.0	0.0	51.3 45.9	74.0	-22.7	v v	P	157.9	305.2	
7.311 12.185	3.0 3.0	39.5	35.3 39.0	9.8	-36.2	0.0 0.0	0.0 0.0	45.9	54.0 74.0	-8.1 -23.8	v V	A P	157.9 103.8	305.2 360.0	Noise floor
12.185	3.0	23.6	39.0	9.8	-35.4	0.0	0.0	37.0	74.0 54.0	-17.0	v	A	103.8	360.0	Noise floor
4.874	3.0	40.3	33.1	5.8	-36.5	0.0	0.0	42.8	74.0	-31.2	Ĥ	P	103.9	221.2	110132 11001
4.874	3.0	32.7	33.1	5.8	-36.5	0.0	0.0	35.1	54.0	-18.9	H	Ā	103.9	221.2	
7.311	3.0	37.5	35.3	7.3	-36.2	0.0	0.0	43.9	74.0	-30.1	Н	P	142.0	211.3	
7.311	3.0	27.6	35.3	7.3	-36.2	0.0	0.0	33.9	54.0	- 20.1	H	A	142.0	211.3	
12.185	3.0	35.7	39.0	9.8	-35.4	0.0	0.0	49.1	74.0	-24.9	H	Р	116.2	356.5	Noise floor
12.185	3.0	23.5	39.0	9.8	-35.4	0.0	0.0	36.9	54.0	-17.1	H	A	116.2	356.5	Noise floor
		Lz set 16.							- 40			ъ	100.1		
4.924 4.924	3.0 3.0	45.3 41.4	33.1 33.1	5.9 5.9	-36.5 -36.5	0.0 0.0	0.0 0.0	47.9 43.9	74.0 54.0	-26.1 -10.1	v v	P A	198.1 198.1	245.8 245.8	
4.924 7.386	3.0	41.4	35.4	7.3	-36.2	0.0	0.0 0.6	43.9	54.0 74.0	-10.1	v V	А Р	198.1	170.9	
7.386	3.0	39.8	35.4	7.3	-36.2	0.0	0.6	40.9 38.2	74.0 54.0	-15.8	v	A	156.2	170.9	
4.924	3.0	40.6	33.1	5.9	-36.5	0.0	0.0	43.2	24.0 74.0	-30.8	Н	P	102.3	150.9	
4.924	3.0	33.1	33.1	5.9	-36.5	0.0	0.0	35.7	54.0	-18.3	н	Â	102.3	150.9	
7.386	3.0	36.8	35.4	7.3	-36.2	0.0	0.6	43.9	74.0	- 30.1	Н	Р	173.5	156.4	Noise floor
7.386	3.0	24.9	35.4	7.3	-36.2	0.0	0.6	32.0	54.0	-22.0	Н	A	173.5	156.4	Noise floor
														<u> </u>	
Rev. 4.1.2															
Note: No	other e	missions	were detec	ted ab	ove the	system n	oise fl	00T.							

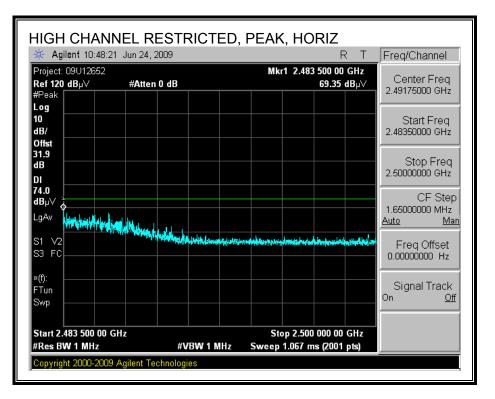
Page 161 of 193

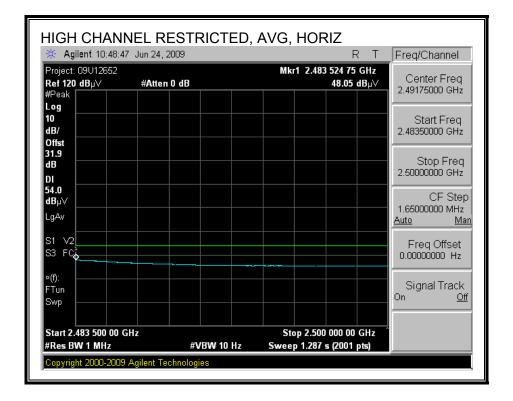
8.2.2. 802.11g MODE IN THE 2.4 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

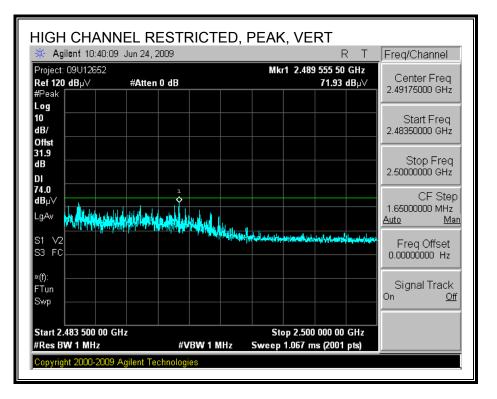


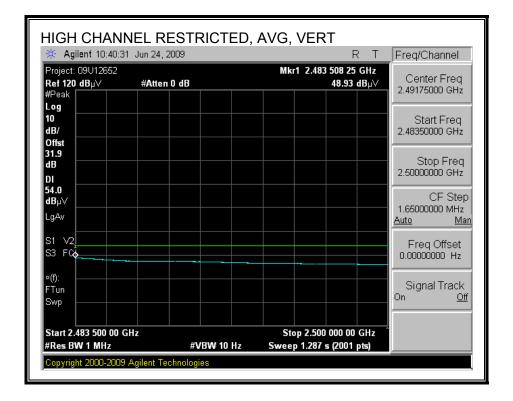
Page 162 of 193


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 163 of 193

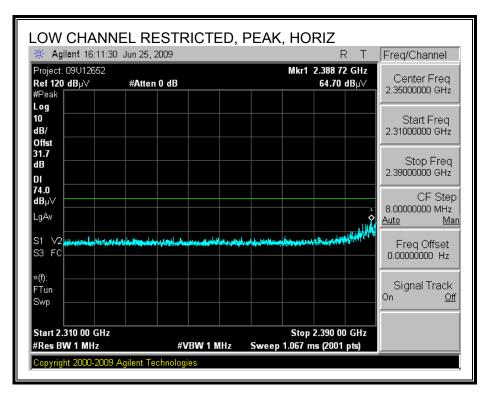

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

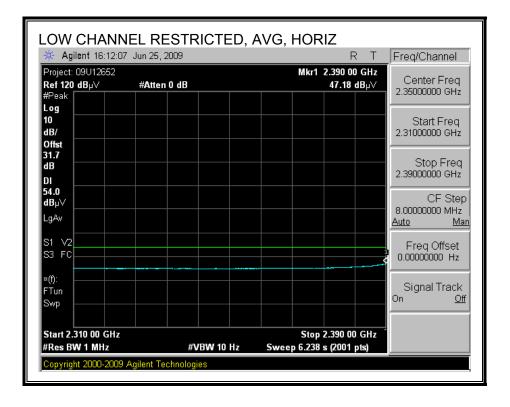


Page 164 of 193

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

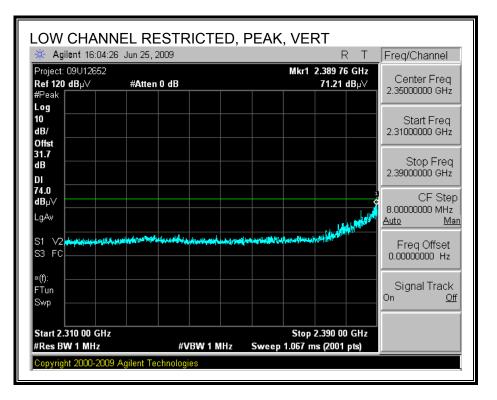
Page 165 of 193

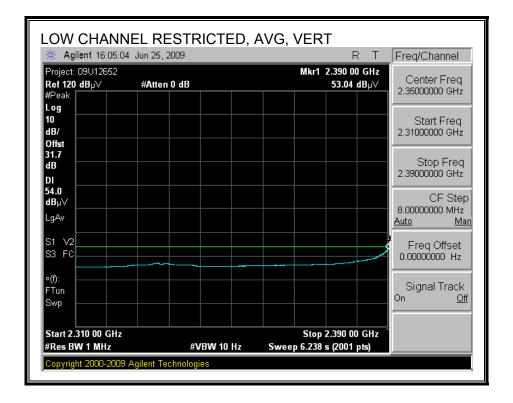

HARMONICS AND SPURIOUS EMISSIONS


9U12652 Qualcom 02.11 ab 5-VN78(CC Clar ransmit leasurem tistance t nalyzer 1 ntenna F able Loss Read dBuV 41.2 35.0	m Inc. gn 4X4)-P2 ss B ent Freq o Anten Reading factor	e puency	• Amp		Corre Field S d Peak s Filter	trength @ r Field Stre r Corr.	3 m	Peak Fie Margin Margin	Field Stren ald Strength vs. Average vs. Peak Liv	Limit Limit			
02.11 ab 5-VN78(CC Clar ransmit leasurem fistance t nalyzer l ntenna F able Loss Read dBuV 41.2	gn 4X4)-P2 ss B g mode ent Freq o Anten Reading Factor s AF dB/m	na CL	Amp D Corr Avg Peak HPF Amp	Distance Average I Calculate High Pas: D Corr	Correc Field S d Peak s Filter Fltr	trength @ r Field Stre r Corr.	3 m angth	Peak Fie Margin Margin	eld Strength vs. Average vs. Peak Lir	Limit Limit			
5-VN78(CC Clas ransmit leasurem tistance t nalyzer l ntenna F able Loss Read dBuV 41.2)-P2 ss B ent Freq o Anten Reading Factor AF dB/m	na CL	Amp D Corr Avg Peak HPF Amp	Distance Average I Calculate High Pas: D Corr	Correc Field S d Peak s Filter Fltr	trength @ r Field Stre r Corr.	3 m angth	Peak Fie Margin Margin	eld Strength vs. Average vs. Peak Lir	Limit Limit			
CC Clar ransmit leasurem iistance t nalyzer l ntenna F able Loss Read dBuV 41.2	ss B ent Freq o Anten Reading Factor AF dB/m	pency na CL	D Corr Avg Peak HPF Amp	Distance Average I Calculate High Pas: D Corr	Correc Field S d Peak s Filter Fltr	trength @ r Field Stre r Corr.	3 m angth	Peak Fie Margin Margin	eld Strength vs. Average vs. Peak Lir	Limit Limit			
ransmit leasurem istance t nalyzer l ntenna F able Loss Read dBuV 41.2	g mode ent Freg o Anten Reading Factor ; AF dB/m	pency na CL	D Corr Avg Peak HPF Amp	Distance Average I Calculate High Pas: D Corr	Correc Field S d Peak s Filter Fltr	trength @ r Field Stre r Corr.	3 m angth	Peak Fie Margin Margin	eld Strength vs. Average vs. Peak Lir	Limit Limit			
leasurem istance t nalyzer l ntenna F able Loss Read dBuV 41.2	ent Freq o Anten Reading Factor s AF dB/m	pency na CL	D Corr Avg Peak HPF Amp	Distance Average I Calculate High Pas: D Corr	Correc Field S d Peak s Filter Fltr	trength @ r Field Stre r Corr.	3 m angth	Peak Fie Margin Margin	eld Strength vs. Average vs. Peak Lir	Limit Limit			
istance t nalyzer l ntenna F able Loss Read dBuV 41.2	o Anten Reading Factor AF dB/m	na	D Corr Avg Peak HPF Amp	Distance Average I Calculate High Pas: D Corr	Correc Field S d Peak s Filter Fltr	trength @ r Field Stre r Corr.	3 m angth	Peak Fie Margin Margin	eld Strength vs. Average vs. Peak Lir	Limit Limit			
nalyzer l ntenna F able Loss Read dBuV 41.2	Reading Factor AF dB/m	CL	Avg Peak HPF Amp	Average I Calculate High Pass	Field S d Peak s Filter Fltr	trength @ r Field Stre r Corr.	3 m angth	Margin v Margin v	vs. Average vs. Peak Li	Limit			
ntenna F able Loss Read dBuV 41.2	AF dB/m		Peak HPF Amp	Calculate High Pas D Corr	d Peak s Filter Fltr	r Field Stre r Corr.	ength	Margin	vs. Peak Li				
able Loss Read dBuV 41.2	AF dB/m		HPF Amp	High Pas D Corr	s Filter Fltr	r Corr.			-	mit			
Read dBuV 41.2	AF dB/m		Amp	D Corr	Fltr	Согт.	Limit						
dBuV 41.2	dB/m						Limit			-			
dBuV 41.2	dB/m						Limit						
41.2		۵۵	<u> </u>			3D U/	dBuV/m		Ant. Pol. V/H	Det. P/A/QP		Table Angle	Notes
	22.0				ab	abuv/m	abuv/m		• •/n	PIA/QP	cm	Degree	
						40.0	- 10		v	Р	110.1	225.9	
3 2. 0 i		5.8	-36.5 -36.5	0.0	0.0	43.6	74.0	-30.4	v V	ö	113.1 113.1	225.9	
39.4	33.0 33.0	5.8 5.8	-36.5	0.0 0.0	0.0 0.0	37.4 41.7	54.0 74.0	-16.6 -32.3	V H	A P	115.1	187.4	
30.2	33.0	5.8	-36.5	0.0	0.0	32.5	54.0	-32.5	H H	F A	100.0	187.4	
			-30.2	v.v	v.v		~ 76.0				100.0	101.4	
50.2	33.1	5.8	-36.5	0.0	0.0	52.7	74.0	-21.3	v	Р	139.4	228.7	
34.5	33.1	5.8	-36.5	0.0	0.0	37.0	54.0	-17.0	v	Ā	139.4	228.7	
48.5	35.3	7.3	-36.2	0.0	0.0	56.4	74.0	-17.6	v	P	157.0	294.1	
34.6	35.3	7.3	-36.2	0.0	0.0	40.9	54.0	-13.1	V	A	157.0	294.1	
46.2	33.1	5.8	-36.5	0.0	0.0	48.8	74.0	-25.2	H	P	139.4	228.7	
30.2	33.1	5.8	-36.5	0.0	0.0	42.8	54.0	-11.2	H	A	139.4	228.7	
45.6	35.3	7.3	-36.2	0.0	0.0	56.4	74.0	-21.4	н	Р	157.0	294.1	
40.0	35.3	7.3	-36.2	0.0	0.0	47.0	54.0	- 7.0	H	A	157.0	294.1	
								ļ					
42.6	33.1	5.9	-36.5	0.0	0.0	45.2	74.0	-28.8	v		111.5	225.7	
36.3				• • • • • • • • • • • • • • • • • • • •					\$	A	¢		
			• • • • • • • • • • • • • • • • • • • •	·					¢		¢		
				•••••••••	·····			• • • • • • • • • • • • • • • • • • • •	¢		¢		
				• • • • • • • • • • • • • • • • • • • •									
			• • • • • • • • • • • • • • • • • • • •	·				• • • • • • • • • • • • • • • • • • • •	¢		¢		
					·····								
						921-7	v nv		·····			10010	
	48.5 34.6 46.2 30.2 45.6 40.0 42.6	34.5 33.1 48.5 35.3 34.6 35.3 34.6 35.3 46.2 33.1 30.2 33.1 45.6 35.3 40.0 35.3 42.6 33.1 36.3 33.1 38.5 35.4 26.0 35.4 37.3 33.1 36.5 35.4 36.5 35.4	34.5 33.1 5.8 48.5 35.3 7.3 44.6 35.3 7.3 46.2 33.1 5.8 46.2 33.1 5.8 46.2 33.1 5.8 45.6 35.3 7.3 40.0 35.3 7.3 40.0 35.3 7.3 42.6 33.1 5.9 38.5 35.4 7.3 26.0 35.4 7.3 37.3 33.1 5.9 33.4 33.1 5.9 36.5 35.4 7.3 36.5 35.4 7.3	34.5 33.1 5.8 -36.5 48.5 35.3 7.3 -36.2 34.6 35.3 7.3 -36.2 46.2 33.1 5.8 -36.5 46.2 33.1 5.8 -36.5 45.0 35.3 7.3 -36.2 40.0 35.3 7.3 -36.2 40.0 35.3 7.3 -36.2 40.0 35.3 7.3 -36.2 42.6 33.1 5.9 -36.5 36.3 33.1 5.9 -36.5 36.3 33.1 5.9 -36.5 38.5 35.4 7.3 -36.2 26.0 35.4 7.3 -36.2 37.3 33.1 5.9 -36.5 36.5 35.4 7.3 -36.2 33.1 5.9 -36.5 36.5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

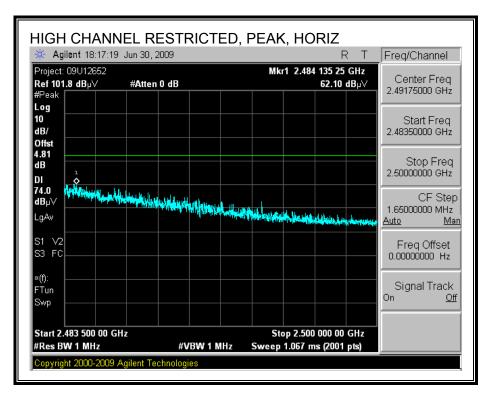
Page 166 of 193

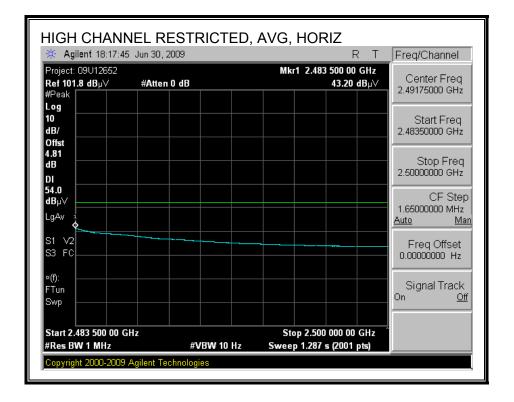
8.2.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

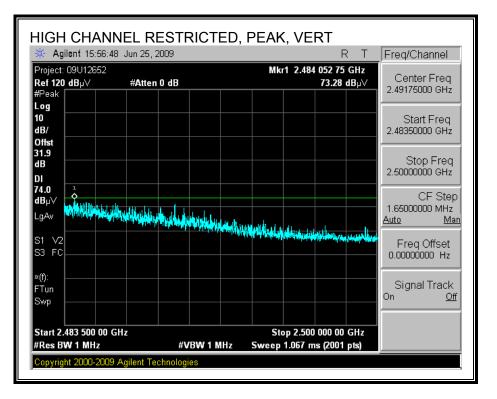


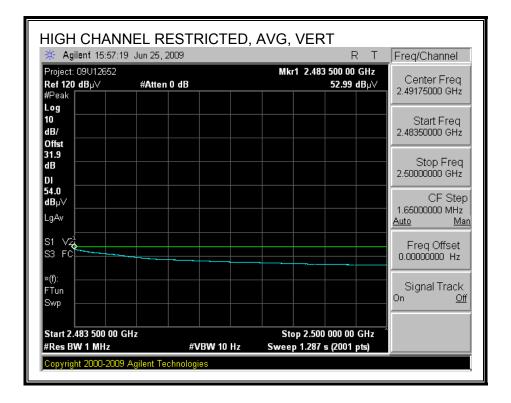
Page 167 of 193


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 168 of 193

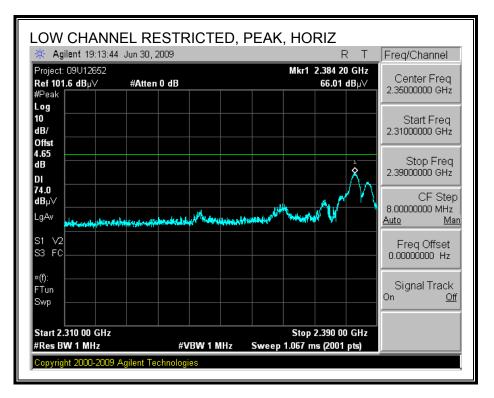

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

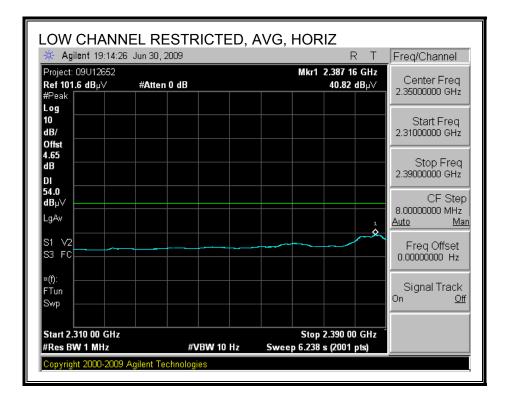


Page 169 of 193

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

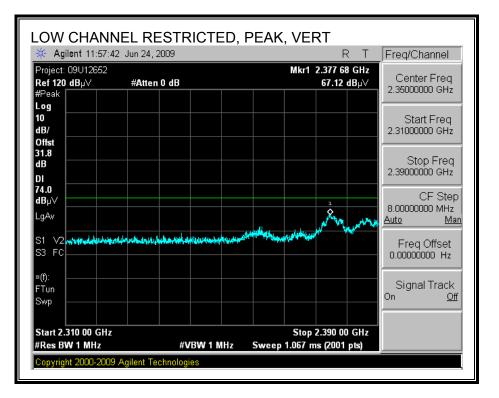
Page 170 of 193

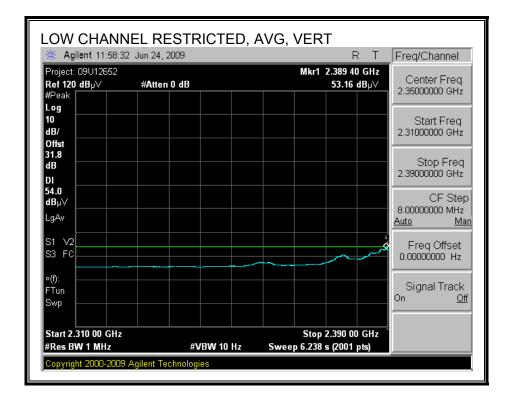

HARMONICS AND SPURIOUS EMISSIONS


сотриало	-	Measuren Lification		s, Fre	mont 51	n Chamb	er								
lest Engr:		Thanh N	zuven												
Date:		06/30/09													
Company:		Oualcon													
UT Descri		-		Mod	սե										
UT M/N:	φιιοπ.	65-VN78	-	, THEOR	uic										
lest Targei		FCC Cla													
Mode Open		Transmi		mada											
-	f	Measuren			. 4 mp	Preamp	Gain			Å 170 Y 3 70	Field Stren	eth I innit			
	Dist	Distance			-	Distance		+ + o 3 mo	tow		eld Strength				
	Read	Analyzer			Avg			trength @			vs. Average				
	AF	Antenna	-		Peak			Field Stre		-	vs. Peak Lii				
	CL	Cable Los			HPF	High Pas				margin					
		Capie 103				116111-02	, i mei								
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
.ow_set 14	ldbm		ļ												
1.824	3.0	41.3	33.0	5.8	-36.5	0.0	0.0	43.7	74.0	-30.3	V	Р	100.0	225.9	
1.824	3.0	34.2	33.0	5.8	-36.5	0.0	0.0	36.5	54.0	-17.5	V	A	100.0	225.9	
1.824	3.0	38.8	33.0	5.8	-36.5	0.0	0.0	41.1	74.0	- 32.9	H	P	114.9	197.8	
.824	3.0	29.5	33.0	5.8	-36.5	0.0	0.0	31.8	54.0	-22.2	H	A	114.9	197.8	
Iid_set 20			ļ <u>.</u>									······			
1.874	3.0	52.8	33.1	5.8	-36.5	0.0	0.0	55.3	74.0	-18.7	V	P	108.3	187.0	
1.874	3.0	35.7	33.1	5.8	-36.5	0.0	0.0	38.2	54.0	-15.8	V V	A	108.3	187.0	
7.311 7.311	3.0 3.0	50.3 30.2	35.3 35.3	7.3 7.3	-36.2 -36.2	0.0 0.0	0.6 0.6	57.3 37.1	74.0 54.0	-16.7 -16.9	v V	P	162.7 162.7	212.0 212.0	
2.185	3.0	35.6	39.0	9.8	-35.4	0.0	0.0	49.7	54.0 74.0	-10.5	v	A P	162.7	212.0	
2.185	3.0	23.6	39.0	9.8	-35.4	0.0	0.7	37.6	54.0	-16.4	v	F A	162.7	212.0	
1.874	3.0	43.7	33.1	5.8	-36.5	0.0	0.0	46.2	74.0	-27.8	Р Н	P	102.7	198.4	
.874	3.0	29.4	33.1	5.8	-36.5	0.0	0.0	31.9	54.0	-22.1	H	Å	100.0	198.4	
.311	3.0	39.3	35.3	7.3	-36.2	0.0	0.6	46.3	74.0	-27.7	H	P	136.4	245.8	
.311	3.0	25.1	35.3	7.3	-36.2	0.0	0.6	32.1	54.0	-21.9	H	Ā	136.4	245.8	
ligh_set l			1		_			1							
.924	3.0	43.5	33.1	5.9	-36.5	0.0	0.0	46.1	74.0	-27.9	V	Р	125.1	224.9	
1.924	3.0	35.6	33.1	5.9	-36.5	0.0	0.0	38.1	54.0	-15.9	V	A	125.1	224.9	
.386	3.0	37.4	35.4	7.3	-36.2	0.0	0.6	44.5	74.0	-29.5	V	P	165.5	286.8	
.386	3.0	25.8	35.4	7.3	-36.2	0.0	0.6	32.9	54.0	- 21.1	V	A	165.5	286.8	
	3.0	39.1	33.1	5.9	-36.5	0.0	0.0	41.6	74.0	-3 2. 4	H	P	100.0	198.8	
1.924	3.0	29.9	33.1	5.9	-36.5	0.0	0.0	32.4	54.0	-21.6	H	A	100.0	198.8	
1.924 1.924		36.8	35.4	7.3	-36.2	0.0	0.6	43.9	74.0	- 30.1	H	Р	100.0	198.8	
1.924	3.0 3.0	24.7	35.4	7.3	-36.2	0.0	0.6	31.8	54.0	-22.2	н	A	100.0	198.8	

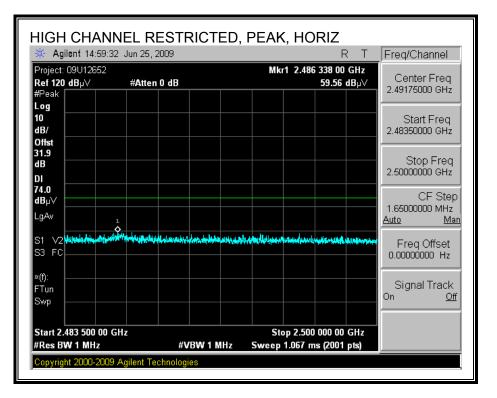
Page 171 of 193

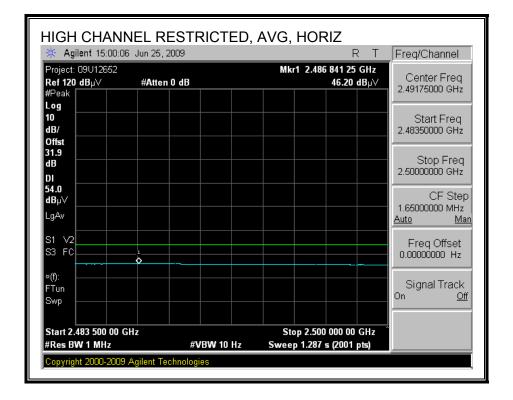
8.2.4. 802.11n HT40 MODE IN THE 2.4 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

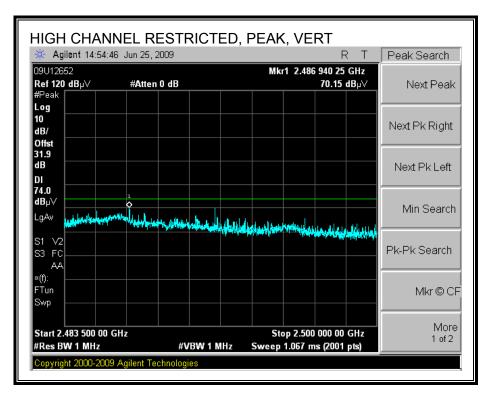


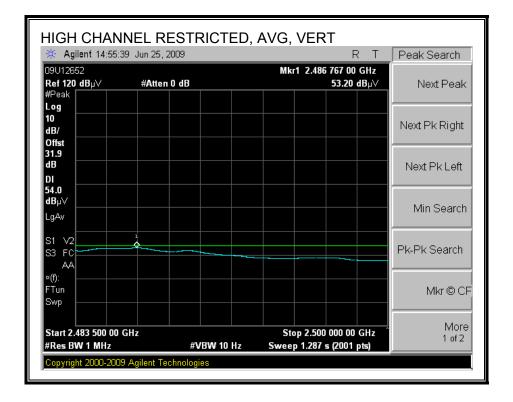
Page 172 of 193


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 173 of 193


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 174 of 193

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 175 of 193

HARMONICS AND SPURIOUS EMISSIONS

CUT M/N: Cest Target: Mode Oper: f Di	FC Tra	VN780- C Class ansmit l													
Node Oper: f	Tra														
f															
-		asureme:			A	Preamp (A	Field Stren:	-+1. T :			
		asureme: tance to				-		t to 3 mete	or:	· ·	ld Strength	-			
		alyzer R			Avg			trength @ 1			m Strengtn 75. Average				
AI		tenna Fa	~		Peak			Field Strer			rs. Peak Lir				
CI		ole Loss			HPF	High Pas									
		lead	AF	CL	-	D Corr					Ant. Pol.	Det.	Ant.High	Table Angle	Notes
	<u> </u>	BuV (dB/m	dB	dB	dB	dB	dBuV/m o	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
.ow ch set 12														ļ	
			33.1	5.8	-36.5	0.0	10.0	51.3	74.0	-22.7	V	P	188.2	209.4	Noise floor
		25.9	33.1	5.8	-36.5	0.0	10.0	38.3	54.0	-15.7	v	A	188.2	209.4	
ligh ch set l 904		39.4	33.1	5.9	-36.5	0.0	10.0	51.9	74.0	-22.1	v	Р	186.0	269.7	Noise floor
			33.1		-36.5	0.0	10.0	38.8	54.0	-15.2	v	F A	186.0	269.7	10026 1001
				***					* •••		•				
Rev. 4.1.2.7															
			ere dei	tected	ahove 1	the system	m nois	e floor.							

Page 176 of 193

8.2.5. 802.11a MODE IN THE 5.8 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS

Date:	l	Thanh N 06/30/09													
Company EUT Desci EUT M/N:		Qualcor 802.11 a 65-VN78	bgn 4X4		ule										
fest Targe	et:	FCC DT	s												
Mode Ope	T:	Transmi	t lla M	ode											
	f	Measurer	nent Fre	quency	7 Amp	Preamp (Gain			Average	Field Stren;	gth Limit			
	Dist	Distance			D Corr	Distance	Correc	et to 3 me	ters		ld Strength				
	Read	Analyzer	Reading		Avg			trength @			rs. Average				
	AF	Antenna	Factor		Peak	Calculate	d Peak	: Field Stre	ngth	Margin	rs. Peak Liz	mit			
	CL	Cable Lo:	55		HPF	High Pas	s Filter	r							
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dВ	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm –	Degree	
Low ch 57	45MHz	, set 19 d b	m												
11.490	3.0	43.3	38.4	9.5	-35.9	0.0	0.7	56.0	74.0	- 18.0	V	Р	100.1	302.3	
11.490	3.0	40.0	38.4	9.5	-35.9	0.0	0.7	52.8	54.0	-1.2	V	A	100.1	302.3	
11.490	3.0	38.6	38.4	9.5	-35.9	0.0	0.7	51.4	74.0	-22.6	H	Р	100.1	26.6	
11.490	3.0	30.9	38.4	9.5	-35.9	0.0	0.7	43.7	54.0	- 10.3	H	A	100.1	26.6	
Mid ch 57	85MHz	set 19dbı	n												
11.570	3.0	43.1	38.5	9.5		0.0	0.7	56.0	74.0	- 18.0	V	Р	149.9	303.4	
11.570	3.0	39.8	38.5	9.5	-35.8	0.0	0.7	52.7	54.0	- 1.3	V	A	149.9	303.4	
11.570	3.0	39.5	38.5	9.5	-35.8	0.0	0.7	52.4	74.0	- 21.6	H	Р	100.0	27.0	
11.570	3.0	32.1	38.5	9.5	-35.8	0.0	0.7	45.0	54.0	-9.0	H	A	100.0	27.0	
High ch 5	· · · · · · · · · · · · · · · · · · ·		·····					Ļ							
11.650	3.0	43.9	38.6	9.6		0.0	0.7	57.0	74.0	-17.0	V	P	120.4	133.7	
11.650	3.0	40.3	38.6	9.6	-35.7	0.0	0.7	53.5	54.0	-0.5	V	A	120.4	133.7	
11.650	3.0	38.1	38.6	9.6	-35.7	0.0	0.7	51.2	74.0	-22.8	H	P	102.4	18.9	
11.650	3.0	30.5	38.6	9.6	-35.7	0.0	0.7	43.6	54.0	-10.4	H	A	102.4	18.9	

Page 177 of 193

8.2.6. 802.11n HT20 MODE IN THE 5.8 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS

	:	Thanh N	guyen												
Date:		06/30/09													
Project #		09U1265	2												
Company	/ :	Qualcor	nm Inc.												
EUT Desc	ription:	802.11 a	bgn 4X4	Modu	ıle										
EUT M/N:	_	65-VN78	0-P2												
Test Targ	et:	FCC DT	5												
Mode Op	er:	Transmi	t												
-	f	Measurer	nent Freq	piency	Amp	Preamp (Gain			Average	Field Stren	gth Limit			
	Dist	Distance	to Anter	una -	D Corr	Distance	Corre	rt to 3 me	ters	Peak Fie	ld Strength	Limit			
	Read	Analyzer	Reading		Avg	Average I	Field S	trength @) 3 m	Margin v	rs. Average	Limit			
	AF	Antenna	Factor		Peak	Calculate				Margin v	rs. Peak Lii	mit			
	CL	Cable Lo:	is		HPF	High Pass				-					
						-									
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
HT20 Lov	v Ch set	19dbm						1						: :	
11.490	3.0	44.0	38.4	9.5	-35.9	0.0	0.0	56.0	74.0	-18.0	v	Р	131.7	159.5	
11.490 11.490	3.0 3.0	44.0 40.8	38.4 38.4	9.5 9.5		0.0 0.0	0.0 0.0	56.0 52.9	74.0 54.0	-18.0 -1.1	v v	P A	131.7 131.7	159.5 159.5	
11.490 11.490	3.0 3.0	40.8 41.9	38.4 38.4	9.5 9.5	-35.9 -35.9		0.0 0.0	52.9 53.9	54.0 74.0	-1.1 -20.1	V H	A P	131.7 131.9	159.5 100.7	
11.490 11.490 11.490	3.0 3.0 3.0	40.8 41.9 30.5	38.4	9.5	-35.9	0.0	0.0	52.9	54.0	- 1.1	v	A	131.7	159.5	
11.490 11.490 11.490 HT20 Mid	3.0 3.0 3.0 L Ch set	40.8 41.9 30.5 19dbm	38.4 38.4 38.4	9.5 9.5 9.5	-35.9 -35.9 -35.9	0.0 0.0 0.0	0.0 0.0 0.0	52.9 53.9 42.6	54.0 74.0 54.0	-1.1 -20.1 -11.4	V H H	A P A	131.7 131.9 131.9	159.5 100.7 100.7	
11.490 11.490 11.490 HT20 Mid 11.570	3.0 3.0 3.0 I Ch set 3.0	40.8 41.9 30.5 19dbm 43.7	38.4 38.4 38.4 38.5	9.5 9.5 9.5 9.5	-35.9 -35.9 -35.9 -35.8	0.0 0.0 0.0	0.0 0.0 0.0	52.9 53.9 42.6 56.0	54.0 74.0 54.0 74.0	-1.1 -20.1 -11.4 -18.0	V H H	A P A P	131.7 131.9 131.9 131.5	159.5 100.7 100.7 100.7 159.8	
11.490 11.490 11.490 HT20 Mid 11.570 11.570	3.0 3.0 3.0 I Ch set 3.0 3.0	40.8 41.9 30.5 19dbm 43.7 40.7	38.4 38.4 38.4 38.5 38.5	9.5 9.5 9.5 9.5 9.5 9.5	-35.9 -35.9 -35.9 -35.8 -35.8	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	52.9 53.9 42.6 56.0 52.9	54.0 74.0 54.0 74.0 54.0	-1.1 -20.1 -11.4 -18.0 -1.1	V H H V V	A P A P A	131.7 131.9 131.9 131.5 131.5	159.5 100.7 100.7 159.8 159.8	
11.490 11.490 11.490 HT20 Mid HT20 Mid 11.570 11.570 11.570	3.0 3.0 3.0 1 Ch set 3.0 3.0 3.0 3.0	40.8 41.9 30.5 19dbm 43.7 40.7 36.8	38.4 38.4 38.4 38.5 38.5 38.5 38.5	9.5 9.5 9.5 9.5 9.5 9.5 9.5	-35.9 -35.9 -35.9 -35.8 -35.8 -35.8	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	52.9 53.9 42.6 56.0 52.9 49.0	54.0 74.0 54.0 74.0 54.0 74.0	-1.1 -20.1 -11.4 -18.0 -1.1 -25.0	V H H V V H	A P A P A P	131.7 131.9 131.9 131.5 131.5 131.5 101.0	159.5 100.7 100.7 159.8 159.8 92.4	
11.490 11.490 11.490 HT20 Mid 11.570 11.570 11.570 11.570 11.570	3.0 3.0 3.0 1 Ch set 3.0 3.0 3.0 3.0 3.0	40.8 41.9 30.5 19dbm 43.7 40.7 36.8 28.2	38.4 38.4 38.4 38.5 38.5	9.5 9.5 9.5 9.5 9.5 9.5	-35.9 -35.9 -35.9 -35.8 -35.8	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	52.9 53.9 42.6 56.0 52.9	54.0 74.0 54.0 74.0 54.0	-1.1 -20.1 -11.4 -18.0 -1.1	V H H V V	A P A P A	131.7 131.9 131.9 131.5 131.5	159.5 100.7 100.7 159.8 159.8	
11.490 11.490 HT20 Mid 11.570 11.570 11.570 11.570 11.570 HT20 Hig	3.0 3.0 1 Ch set 3.0 3.0 3.0 3.0 3.0 ch Ch se	40.8 41.9 30.5 19dbm 43.7 40.7 36.8 28.2 t 19dbm	38.4 38.4 38.4 38.5 38.5 38.5 38.5 38.5	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	-35.9 -35.9 -35.9 -35.8 -35.8 -35.8 -35.8 -35.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	52.9 53.9 42.6 56.0 52.9 49.0 40.5	54.0 74.0 54.0 74.0 54.0 74.0 54.0 54.0	-1.1 -20.1 -11.4 -18.0 -1.1 -25.0 -13.5	V H H V V H H	A P A P A P	131.7 131.9 131.9 131.5 131.5 101.0 101.0	159.5 100.7 100.7 159.8 159.8 92.4 92.4	
11.490 11.490 HT20 Mid 11.570 11.570 11.570 11.570 11.570 HT20 Hig 11.650	3.0 3.0 3.0 1 Ch set 3.0 3.0 3.0 3.0 ch Ch se 3.0	40.8 41.9 30.5 19dbm 43.7 40.7 36.8 28.2 t 19dbm 45.4	38.4 38.4 38.4 38.5 38.5 38.5 38.5 38.5 38.5 38.5	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	-35.9 -35.9 -35.8 -35.8 -35.8 -35.8 -35.8 -35.8 -35.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	52.9 53.9 42.6 56.0 52.9 49.0 40.5 57.8	54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	-1.1 -20.1 -11.4 -18.0 -1.1 -25.0 -13.5 -16.2	V H V V H H	A P A P A P A P	131.7 131.9 131.9 131.5 131.5 101.0 101.0 122.8	159.5 100.7 100.7 159.8 159.8 92.4 92.4 92.4 120.5	
11.490 11.490 11.570 11.570 11.570 11.570 11.570 11.570 HT20 Hig 11.650 11.650	3.0 3.0 1 Ch set 3.0 3.0 3.0 3.0 3.0 5 Ch se 3.0 3.0 3.0 3.0	40.8 41.9 30.5 19dbm 43.7 40.7 36.8 28.2 t 19dbm 45.4 41.6	38.4 38.4 38.4 38.5 38.5 38.5 38.5 38.5 38.5 38.6 38.6	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.6 9.6	-35.9 -35.9 -35.8 -35.8 -35.8 -35.8 -35.8 -35.8 -35.7 -35.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	52.9 53.9 42.6 56.0 52.9 49.0 40.5 57.8 54.0	54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	-1.1 -20.1 -11.4 -18.0 -1.1 -25.0 -13.5 -16.2 0.0	V H H V V H H V V V	A P A P A P A	131.7 131.9 131.9 131.5 131.5 101.0 101.0 122.8 122.8	159.5 100.7 100.7 159.8 159.8 92.4 92.4 92.4 120.5 120.5	
11.490 11.490 HT20 Mid 11.570 11.570 11.570 11.570 11.570 HT20 Hig 11.650	3.0 3.0 3.0 1 Ch set 3.0 3.0 3.0 3.0 ch Ch se 3.0	40.8 41.9 30.5 19dbm 43.7 40.7 36.8 28.2 t 19dbm 45.4	38.4 38.4 38.4 38.5 38.5 38.5 38.5 38.5 38.5 38.5	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	-35.9 -35.9 -35.8 -35.8 -35.8 -35.8 -35.8 -35.8 -35.7 -35.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	52.9 53.9 42.6 56.0 52.9 49.0 40.5 57.8	54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	-1.1 -20.1 -11.4 -18.0 -1.1 -25.0 -13.5 -16.2	V H V V H H	A P A P A P A P	131.7 131.9 131.9 131.5 131.5 101.0 101.0 122.8	159.5 100.7 100.7 159.8 159.8 92.4 92.4 92.4 120.5	

Page 178 of 193

8.2.7. 802.11n HT40 MODE IN THE 5.8 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS

Company: EUT Descrip EUT M/N: Fest Target:				Mod	.1.										
EUT M/N:			ogn 4A4												
		65-VIN/8	0-P2		iiic										
		FCC DT													
Mode Oper		Transmi	t HT40	Mode											
- f		Measuren	nent Free	puency	Amp	Preamp (Gain			Average	Field Stren;	zth Limit			
I	Dist	Distance [•]	to Anter	na	D Corr	Distance	Correc	rt to 3 me	ters	Peak Fie	ld Strength	Limit			
F	Read	Analyzer	Reading		Avg	Average I	Field S	trength @	3 m	Margin v	rs. Average	Limit			
-		Antenna	Factor		Peak	Calculate	d Peak	Field Stre	ngth	Margin v	rs. Peak Lir	nit			
C	CL	Cable Los	is		HPF	High Pas	s Filter	r							
	Dist	Read	AF	CL	Amp	D Corr	Fltr	Согт.		Margin	Ant. Pol.		Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
Low Ch 575	5MHz														
11.510	3.0	41.4	38.4	9.5	-35.9	0.0	0.0	53.5	74.0	-20.5	V	P	129.3	281.3	
11.510	3.0	25.4	38.4	9.5	-35.9	0.0	0.0	37.4	54.0	-16.6	v	<u>A</u>	129.3	281.3	
11.510 11.510	3.0 3.0	36.7 24.2	38.4 38.4	9.5 9.5	-35.9 -35.9	0.0 0.0	0.0 0.0	48.8 36.3	74.0 54.0	-25.2 -17.7	H H	P A	187.2 187.2	309.1 309.1	
High Ch 57				7.7	-32.9	U.U	0.0	J0.J	74.U	-1/./	п	n	10/.4	309.1	
11.585	3.0	36.5	38.6	9.6	-35.7	0.0	0.0	49.0	74.0	-25.0	v	Р	127.9	270.8	
11.585	3.0	24.0	38.6	9.6	-35.7	0.0	0.0	36.4	54.0	-17.6	v	Ā	127.9	270.8	
11.585	3.0	36.8	38.6	9.6	-35.7	0.0	0.0	49.2	74.0	-24.8	н	Р	187.2	309.1	
11.585	3.0	24.2	38.6	9.6	-35.7	0.0	0.0	36.6	54.0	- 17.4	H	A	187.2	309.1	

Page 179 of 193

8.3. WORST-CASE BELOW 1 GHz

2.4 GHz BAND

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

		iency Meas fication Sei			t 5m Cha	amber							
Test Engr: Date:		Thanh Ng 06/25/09	uyen,										
Company EUT Desci EUT M/N:	ription:	QualCon PCI 802.1 65-VN780	l In modu I-PI	цle									
Test Targe		FCC Clas				_							
Mode Ope	21:	Transmit	Worst C	ase 2.	4GHz ba	and							
	f	Measureme	ant Frequ	ency	Amp	Preamp (Gain			Margin	Margin vs.	Limit	
	Dist	Distance to	-		-	-		to 3 meters		¥	¥		
	Read	Analyzer F	Reading		Filter	Filter Ins	ert Loss						
	AF	Antenna F	-		Corr.	Calculate	d Field St	trength					
	CL	Cable Loss			Limit	Field Stre	ngth Lin	nit					
f	Dist	Read	AF	CL	Amp	D Corr	Filter	Согт.	Limit	Margin	Ant. Pol.	Det.	Notes
f MHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Filter dB	Corr. dBuV/m	Limit dBuV/m	Margin dB	Ant. Pol. V/H	Det. P/A/QP	Notes
MHz										; -			Notes Full Scan
MHz 61.681	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
MHz 61.681 138.124 364.934	(m) 3.0 3.0 3.0	dBuV 53.1 45.6 41.3	dB/m 7.9 13.3 14.4	dB 0.7 1.1 1.7	dB 28.4 28.3 28.1	4B 0.0 0.0 0.0	dB 0.0 0.0 0.0	dBuV/m 33.3 31.7 29.2	dBuV/m 40.0 43.5 46.0	dB -6.7 -11.8 -16.8	V/H V V V	P/A/QP EP EP EP	
MHz 61.681 138.124 364.934 514.340	(m) 3.0 3.0 3.0 3.0 3.0	dBuV 53.1 45.6 41.3 39.0	dB/m 7.9 13.3 14.4 17.0	dB 0.7 1.1 1.7 2.1	dB 28.4 28.3 28.1 27.8	dB 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0	dBuV/m 33.3 31.7 29.2 30.3	dBuV/m 40.0 43.5 46.0 46.0	dB -6.7 -11.8 -16.8 -15.7	V/H V V V V	P/A/QP EP EP EP EP	
MHz 61.681 138.124 364.934 514.340 745.109	(m) 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 53.1 45.6 41.3 39.0 38.3	dB/m 7.9 13.3 14.4 17.0 20.2	dB 0.7 1.1 1.7 2.1 2.5	dB 28.4 28.3 28.1 27.8 27.3	dB 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0	dBuV/m 33.3 31.7 29.2 30.3 33.8	dBuV/m 40.0 43.5 46.0 46.0 46.0	dB -6.7 -11.8 -16.8 -15.7 -12.2	V/H V V V V V	P/A/QP EP EP EP EP EP EP	
MHz 61.681 138.124 364.934 514.340 745.109 799.952	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 53.1 45.6 41.3 39.0 38.3 44.2	dB/m 7.9 13.3 14.4 17.0 20.2 21.0	dB 0.7 1.1 1.7 2.1 2.5 2.6	dB 28.4 28.3 28.1 27.8 27.3 27.4	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0 0.0	dBuV/m 33.3 31.7 29.2 30.3 33.8 40.3	dBuV/m 40.0 43.5 46.0 46.0 46.0 46.0	dB -6.7 -11.8 -16.8 -15.7 -12.2 -5.7	V/H V V V V V V	P/A/QP EP EP EP EP EP EP	
MHz 61.681 138.124 364.934 514.340 745.109 799.952 80.042	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 53.1 45.6 41.3 39.0 38.3 44.2 50.6	dB/m 7.9 13.3 14.4 17.0 20.2 21.0 7.3	dB 0.7 1.1 1.7 2.1 2.5 2.6 0.8	dB 28.4 28.3 28.1 27.8 27.3 27.4 28.3	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dBuV/m 33.3 31.7 29.2 30.3 33.8 40.3 30.4	dBuV/m 40.0 43.5 46.0 46.0 46.0 46.0 46.0 40.0	dB 6.7 -11.8 -16.8 -15.7 -12.2 -5.7 -9.6	V/H V V V V V V H	P/A/QP EP EP EP EP EP EP EP	
MHz 61.681 138.124 364.934 514.340 745.109 799.952 80.042 233.048	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 53.1 45.6 41.3 39.0 38.3 44.2 50.6 50.7	dB/m 7.9 13.3 14.4 17.0 20.2 21.0 7.3 11.9	dB 0.7 1.1 1.7 2.1 2.5 2.6 0.8 1.3	dB 28.4 28.3 28.1 27.8 27.3 27.4 28.3 28.2	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dBuV/m 33.3 31.7 29.2 30.3 33.8 40.3 30.4 35.7	dBuV/m 40.0 43.5 46.0 46.0 46.0 46.0 40.0 46.0	dB -6.7 -11.8 -16.8 -15.7 -12.2 -5.7 -9.6 -10.3	V/H V V V V V H H	P/A/QP EP EP	
MHz 61.681 138.124 364.934 514.340 745.109 799.952 80.042 233.048 299.171	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 53.1 45.6 41.3 39.0 38.3 44.2 50.6 50.7 52.5	dB/m 7.9 13.3 14.4 17.0 20.2 21.0 7.3 11.9 13.4	dB 0.7 1.1 1.7 2.1 2.5 2.6 0.8 1.3 1.5	dB 28.4 28.3 28.1 27.8 27.3 27.4 28.3 28.2 28.1	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dBuV/m 33.3 31.7 29.2 30.3 33.8 40.3 30.4 35.7 39.3	<u>dBuV/m</u> 40.0 43.5 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	dB -6.7 -11.8 -16.8 -15.7 -12.2 -5.7 -9.6 -10.3 -6.7	V/H V V V V V H H H	P/A/QP EP EP EP EP EP EP EP EP EP	
MHz 61.681 138.124 364.934 514.340 745.109 799.952 80.042 233.048 299.171 718.348	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 53.1 45.6 41.3 39.0 38.3 44.2 50.6 50.7 52.5 42.7	dB/m 7.9 13.3 14.4 17.0 20.2 21.0 7.3 11.9 13.4 19.8	dB 0.7 1.1 2.1 2.5 2.6 0.8 1.3 1.5 2.5	dB 28.4 28.3 28.1 27.8 27.3 27.4 28.3 28.2 28.1 27.2	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dBuV/m 33.3 31.7 29.2 30.3 33.8 40.3 30.4 35.7 39.3 37.8	<u>dBuV/m</u> 40.0 43.5 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	dB -6.7 -11.8 -16.8 -15.7 -12.2 -5.7 -9.6 -10.3 -6.7 -8.2	V/H V V V V H H H H	P/A/QP EP EP EP EP EP EP EP EP EP EP EP EP	
_	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	dBuV 53.1 45.6 41.3 39.0 38.3 44.2 50.6 50.7 52.5	dB/m 7.9 13.3 14.4 17.0 20.2 21.0 7.3 11.9 13.4	dB 0.7 1.1 1.7 2.1 2.5 2.6 0.8 1.3 1.5	dB 28.4 28.3 28.1 27.8 27.3 27.4 28.3 28.2 28.1	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	dBuV/m 33.3 31.7 29.2 30.3 33.8 40.3 30.4 35.7 39.3	<u>dBuV/m</u> 40.0 43.5 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	dB -6.7 -11.8 -16.8 -15.7 -12.2 -5.7 -9.6 -10.3 -6.7	V/H V V V V V H H H	P/A/QP EP EP EP EP EP EP EP EP EP	

Page 180 of 193

5.8 GHz BAND

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

	ce Certif	ency Meas ication Se	urement rvices, Fi		t 5m Cha	mber							
Test Engr:		Thanh Ng	guyen										
Date:		06/25/09											
Company: QualComm Inc.													
EUT Desci	iption:	PCI 802.1		ıle									
EUT M/N:		65-VN780											
Test Targe		FCC Clas											
Mode Ope	r:	Tx 5 GHz	z Band_\	Worst	Case								
	f	Measurem	ent Fregu	ency	Amp	Preamp (Gain			Margin	Margin vs	Limit	
	Dist	Distance t	o Antenn	a	D Corr	Distance	Correct	to 3 meters		2	-		
	Read	Analyzer I	Reading		Filter	Filter Ins	ert Loss						
	AF	Antenna F	actor		Corr.	Calculate	d Field S	trength					
	CL	Cable Loss											
		Cable Loss	;		Limit	Field Stre	ength Lir	nit					
f	Dist	Read	AF	CL	Amp	Field Stre	-	nit Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
f MHz				CL dB			-			Margin dB	Ant Pol V/H	Det. P/A/QP	Notes
MHz 90.002	Dist (m) 3.0	Read dBuV 52.1	AF dB/m 7.6	dB 0.8	Amp dB 28.3	D Corr	Filter	Corr. dBuV/m 32.2	dBuV/m 43.5				Notes Full Scan
MHz 90.002 234.608	Dist (m) 3.0 3.0	Read dBuV 52.1 51.0	AF dB/m 7.6 11.9	dB 0.8 1.3	Amp dB 28.3 28.2	D Corr dB 0.0 0.0	- Filter dB	Corr. dBuV/m 32.2 36.0	dBuV/m	dB -11.3 -10.0	V/H	P/A/QP EP EP	
MHz 90.002 234.608 299.171	Dist (m) 3.0 3.0 3.0	Read dBuV 52.1 51.0 51.5	AF dB/m 7.6 11.9 13.4	dB 0.8 1.3 1.5	Amp dB 28.3 28.2 28.1	D Corr dB 0.0 0.0 0.0	Filter dB 0.0 0.0 0.0	Corr. dBuV/m 32.2 36.0 38.2	dBuV/m 43.5 46.0 46.0	dB -11.3 -10.0 -7.8	V/H H H H	P/A/QP EP EP EP	
MHz 90.002 234.608 299.171 429.136	Dist (m) 3.0 3.0 3.0 3.0 3.0	Read dBuV 52.1 51.0 51.5 45.8	AF dB/m 7.6 11.9 13.4 15.4	dB 0.8 1.3 1.5 1.9	Amp dB 28.3 28.2 28.1 28.0	D Corr dB 0.0 0.0 0.0 0.0	Filter dB 0.0 0.0 0.0 0.0	Corr. dBuV/m 32.2 36.0 38.2 35.1	dBuV/m 43.5 46.0 46.0 46.0	dB -11.3 -10.0 -7.8 -10.9	V/H H H H	P/A/QP EP EP EP EP	
MHz 90.002 234.608 299.171 429.136 639.985	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 52.1 51.0 51.5 45.8 44.1	AF dB/m 7.6 11.9 13.4 15.4 18.9	dB 0.8 1.3 1.5 1.9 2.3	Amp dB 28.3 28.2 28.1 28.0 27.4	D Corr dB 0.0 0.0 0.0 0.0 0.0	Filter dB 0.0 0.0 0.0 0.0 0.0 0.0	Corr. dBuV/m 32.2 36.0 38.2 35.1 37.9	dBuV/m 43.5 46.0 46.0 46.0 46.0	dB -11.3 -10.0 -7.8 -10.9 -8.1	V/H H H H H	P/A/QP EP EP EP EP EP	
MHz 90.002 234.608 299.171 429.136 639.985 799.952	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 52.1 51.0 51.5 45.8 44.1 46.2	AF dB/m 7.6 11.9 13.4 15.4 18.9 21.0	dB 0.8 1.3 1.5 1.9 2.3 2.6	Amp dB 28.3 28.2 28.1 28.0 27.4 27.4	D Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Filter dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Corr. dBuV/m 32.2 36.0 38.2 35.1 37.9 42.3	dBuV/m 43.5 46.0 46.0 46.0 46.0 46.0	dB -11.3 -10.0 -7.8 -10.9 -8.1 -3.7	V/H H H H H H	P/A/QP EP EP EP EP EP EP	
MHz 90.002 234.608 299.171 429.136 639.985 799.952 61.441	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 52.1 51.0 51.5 45.8 44.1 46.2 53.4	AF dB/m 7.6 11.9 13.4 15.4 18.9 21.0 7.9	dB 0.8 1.3 1.5 1.9 2.3 2.6 0.7	Amp dB 28.3 28.2 28.1 28.0 27.4 27.4 27.4 28.4	D Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Filter dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Corr. dBuV/m 32.2 36.0 38.2 35.1 37.9 42.3 33.7	dBuV/m 43.5 46.0 46.0 46.0 46.0 46.0 46.0 40.0	dB -11.3 -10.0 -7.8 -10.9 -8.1 -3.7 -6.3	V/H H H H H H V	P/A/QP EP EP EP EP EP EP EP EP	
MHz 90.002 234.608 299.171 429.136 639.985 799.952 61.441 142.925	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 52.1 51.5 45.8 44.1 46.2 53.4 45.9	AF dB/m 7.6 11.9 13.4 15.4 18.9 21.0 7.9 13.1	dB 0.8 1.3 1.5 1.9 2.3 2.6 0.7 1.1	Amp dB 28.3 28.2 28.1 28.0 27.4 27.4 27.4 28.4 28.3	D Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Filter dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Corr. dBuV/m 32.2 36.0 38.2 35.1 37.9 42.3 33.7 31.8	dBuV/m 43.5 46.0 46.0 46.0 46.0 46.0 40.0 43.5	dB -11.3 -10.0 -7.8 -10.9 -8.1 -3.7 -6.3 -11.7	V/H H H H H V V	P/A/QP EP EP EP EP EP EP EP EP	
MHz 90.002 234.608 299.171 429.136 639.985 799.952 61.441 142.925 498.379	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 52.1 51.0 51.5 45.8 44.1 46.2 53.4 45.9 39.0	AF dB/m 7.6 11.9 13.4 15.4 18.9 21.0 7.9 13.1 16.7	dB 0.8 1.3 1.5 1.9 2.3 2.6 0.7 1.1 2.0	Amp dB 28.3 28.2 28.1 28.0 27.4 27.4 27.4 28.4 28.3 27.8	D Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Filter dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Corr. dBuV/m 32.2 36.0 38.2 35.1 37.9 42.3 33.7 31.8 29.9	dBuV/m 43.5 46.0 46.0 46.0 46.0 46.0 40.0 43.5 46.0	dB -11.3 -10.0 -7.8 -10.9 -8.1 -3.7 -6.3 -11.7 -16.1	V/H H H H H V V V V	P/A/QP EP EP	
MHz 90.002 234.608	Dist (m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Read dBuV 52.1 51.5 45.8 44.1 46.2 53.4 45.9	AF dB/m 7.6 11.9 13.4 15.4 18.9 21.0 7.9 13.1	dB 0.8 1.3 1.5 1.9 2.3 2.6 0.7 1.1	Amp dB 28.3 28.2 28.1 28.0 27.4 27.4 27.4 28.4 28.3	D Corr dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Filter dB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Corr. dBuV/m 32.2 36.0 38.2 35.1 37.9 42.3 33.7 31.8	dBuV/m 43.5 46.0 46.0 46.0 46.0 46.0 40.0 43.5	dB -11.3 -10.0 -7.8 -10.9 -8.1 -3.7 -6.3 -11.7	V/H H H H H V V	P/A/QP EP EP EP EP EP EP EP EP	

Page 181 of 193

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 "
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

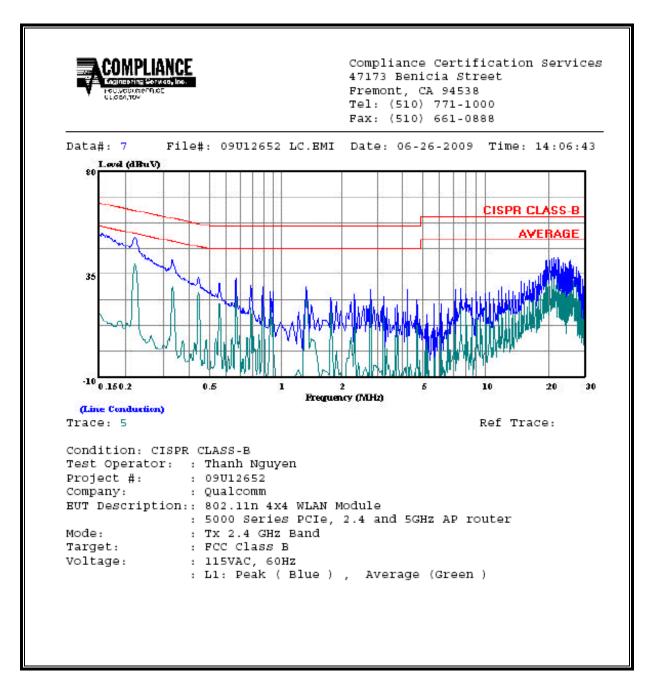
TEST PROCEDURE

ANSI C63.4

Page 182 of 193

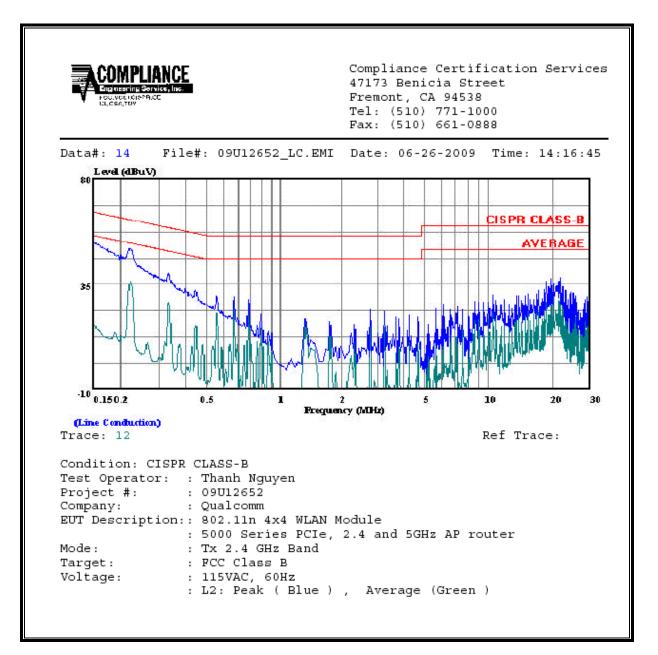
RESULTS

<u>6 WORST EMISSIONS</u>

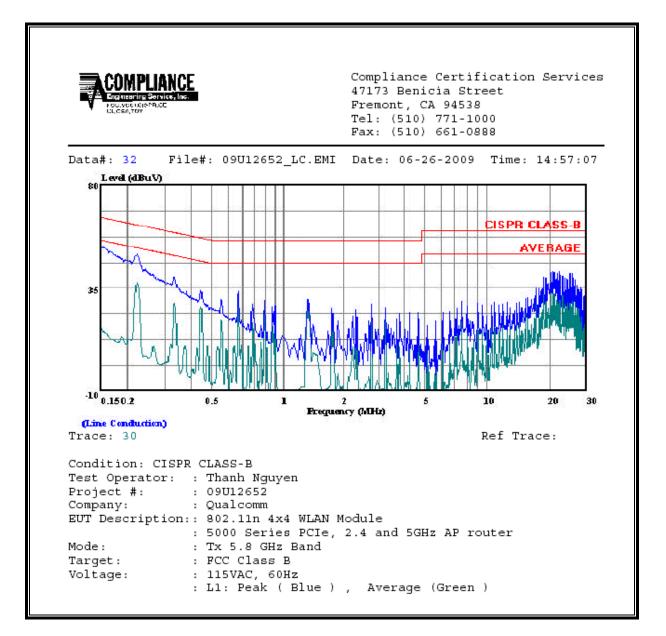

Transmit 2.4 GHz

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)												
Freq.		Closs Limit	Limit	EN_B	Margin		Remark						
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2				
0.22	51.00		38.34	0.00	62.78	52.78	-11.78	-14.44	L1				
0.33	41.16		29.23	0.00	59.35	49.35	-18.19	-20.12	L1				
21.26	42.22		35.52	0.00	60.00	50.00	-17.78	-14.48	L1				
0.22	50.33		36.39	0.00	62.78	52.78	-12.45	-16.39	L2				
0.33	39.00		27.59	0.00	59.35	49.35	-20.35	-21.76	L2				
21.71	38.01		31.87	0.00	60.00	50.00	-21.99	-18.13	L2				
6 Worst I	 Data 												
Transmi	t 5.8GHz												

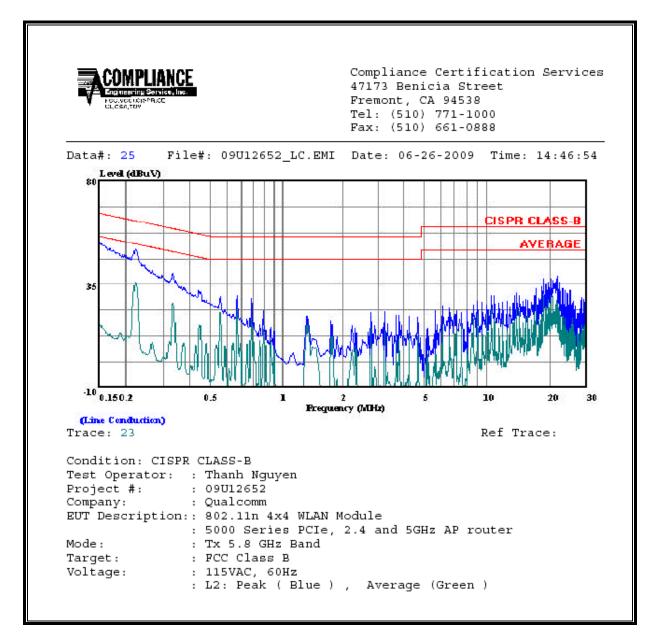
	CONDUCTED EMISSIONS DATA (115VAC 60Hz)											
Freq.		Closs	Limit	EN_B	Marg	jin .	Remark					
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2			
0.22	49.94		36.55	0.00	62.74	52.74	-12.80	-16.19	L1			
0.33	39.76		28.62	0.00	59.35	49.35	-19.59	-20.73	L1			
21.15	41.63		37.25	0.00	60.00	50.00	-18.37	-12.75	L1			
0.22	49.89		36.03	0.00	62.82	52.82	-12.93	-16.79	L2			
0.33	39.80		27.12	0.00	59.35	49.35	-19.55	-22.23	L2			
21.71	38.81		32.20	0.00	60.00	50.00	-21.19	-17.80	L2			
6 Worst I	Data											


Page 183 of 193

LINE 1 RESULTS: Transmit 2.4GHz


Page 184 of 193

LINE 2 RESULTS


Page 185 of 193

LINE 1 RESULTS: Transmit 5.8GHz

Page 186 of 193

LINE 2 RESULTS

Page 187 of 193

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	l/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/F 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100.000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-tions where a transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Page 188 of 193

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m² is equivalent to 1 mW/cm^2 .
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 189 of 193

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)

where

S = Power density in W/m² EIRP = Equivalent Isotropic Radiated Power in W D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

where

D = Separation distance in m EIRP = Equivalent Isotropic Radiated Power in W S = Power density in W/m²

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

<u>LIMITS</u>

From FCC 1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

<u>RESULTS</u>

(MPE distance equals 20 cm)

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	Legacy	0.20	26.20	8.02	5.26	0.526
2.4 GHz	MIMO	0.20	26.15	2	1.30	0.130
5.8 GHz	Legacy	0.20	25.15	9.02	5.20	0.520
5.8 GHz	MIMO	0.20	25.24	3	1.33	0.133

Page 190 of 193