# **ENGINEERING TEST REPORT**



# RTMS MODEL NO.: RTMS X3

## FCC ID: J7TRTMS-X3

Applicant:

EIS Electronic Integrated System Inc. 150 Bridgeland Ave. Suite 204 Toronto, Ontario Canada, M6A 1Z5

Tested in Accordance With

## FCC Part 15, Subpart C, Section 15.245 Field Disturbance Sensor Operating in the Frequency Band 10500-10550 MHz

UltraTech's File No.: EIS-029F15C245



# **UltraTech**

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com













# TABLE OF CONTENTS

| EXHIBI                                               | T 1.                                                          | SUBMITTAL CHECK LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                          |
|------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| EXHIBI                                               | T 2.                                                          | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                          |
| 2.1.<br>2.2.<br>2.3.                                 | SCOF<br>RELA<br>NORI                                          | PE<br>TED SUBMITTAL(S)/GRANT(S)<br>MATIVE REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>2<br>2                                |
| EXHIBI                                               | Т 3.                                                          | PERFORMANCE ASSESSMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                          |
| 3.1.<br>3.2.<br>3.3.<br>3.4.<br>3.5.<br>3.6.         | CLIEI<br>EQUI<br>OPER<br>EUT'S<br>LIST<br>GENE                | NT INFORMATION<br>PMENT UNDER TEST (EUT) INFORMATION<br>ATIONAL DESCRIPTION<br>S TECHNICAL SPECIFICATIONS<br>OF EUT'S PORTS<br>ERAL TEST SETUP                                                                                                                                                                                                                                                                                                                             | 3<br>4<br>5<br>5<br>6                      |
| EXHIBI                                               | Т 4.                                                          | EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                          |
| 4.1.<br>4.2.                                         | CLIM<br>OPEF                                                  | ATE TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7<br>7                                     |
| EXHIBI                                               | Т 5.                                                          | SUMMARY OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                          |
| 5.1.<br>5.2.<br>5.3.                                 | LOCA<br>APPL<br>MOD                                           | ATION OF TESTS<br>ICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                         | 8<br>8<br>8                                |
| 6.1.<br>6.2.<br>6.3.<br>6.4.<br>6.5.<br>6.6.<br>6.7. | TEST<br>MEAS<br>MEAS<br>ESSE<br>Powe<br>20 dB<br>FUNC<br>(RAD | PROCEDURES<br>SUREMENT ONCERTAINTIES<br>SUREMENT UNCERTAINTIES<br>SUREMENT EQUIPMENT USED<br>INTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER<br>INTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER<br>INTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER<br>INTIAL/PRIMARY FUNCTIONS (§ 15.107 (B) & 15.207]<br>BANDWIDTH<br>DAMETAL FIELD STRENGTH AND HARMONIC EMISSIONS AND BAND-EDGE RADIATED EMISS<br>IATED @ 3 METERS) [§ 15.245, 15.209 & 15.205] | 9<br>9<br>9<br>9<br>10<br>19<br>SONS<br>22 |
| EXHIBI                                               | T 7.                                                          | MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34                                         |
| 7.1.<br>7.2.                                         | LINE<br>RADI                                                  | CONDUCTED EMISSION MEASUREMENT UNCERTAINTY<br>ATED EMISSION MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                        | 34<br>35                                   |

## EXHIBIT 1. SUBMITTAL CHECK LIST

| Annex No. | Exhibit Type            | Description of Contents                                                                                                                                        | Quality Check (OK) |
|-----------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|           | Test Report             | Test Report                                                                                                                                                    | ОК                 |
| 1         | Test Setup Photos       | <ul> <li>AC Conducted Emissions Setup Photos</li> <li>Radiated Emission Setup Photos</li> </ul>                                                                | ОК                 |
| 2         | External Photos of EUT  | External EUT Photos                                                                                                                                            | ОК                 |
| 3         | Internal Photos of EUT  | Internal EUT Photos                                                                                                                                            | ОК                 |
| 4         | Cover Letters           | Letter from Ultratech for Certification Request                                                                                                                | ОК                 |
| 5         | Attestation Statements  | <ul> <li>Letter from the Applicant to appoint Ultratech to act as an agent</li> <li>Letter from the Applicant to request for Confidentiality Filing</li> </ul> | ок<br>ок           |
| 6         | ID Label/Location Info  | ID Label     Location of ID Label                                                                                                                              | ОК                 |
| 7         | Block Diagrams          | Block Diagram                                                                                                                                                  | ОК                 |
| 8         | Schematic Diagrams      | Schematic Diagram                                                                                                                                              | ОК                 |
| 9         | Parts List/Tune Up Info | -                                                                                                                                                              | N/A                |
| 10        | Operational Description | Operational Description                                                                                                                                        | ОК                 |
| 11        | RF Exposure Info        | -                                                                                                                                                              | N/A                |
| 12        | Users Manual            | RTMS X3 User Guide                                                                                                                                             | ОК                 |

# EXHIBIT 2. INTRODUCTION

## 2.1. SCOPE

| Reference:                    | FCC Part 15, Subpart C, Section 15.245                                                                                                                                                                                                                                                                       |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Title:                        | Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15                                                                                                                                                                                                                                     |  |
| Purpose of Test:              | To gain FCC Certification Authorization for Field Disturbance Sensor operating in the Frequency Band 10500-10550 MHz.                                                                                                                                                                                        |  |
| Test Procedures:              | Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. |  |
| Environmental Classification: | Commercial, industrial or business environment                                                                                                                                                                                                                                                               |  |

## 2.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

## 2.3. NORMATIVE REFERENCES

| Publication                 | Year                             | Title                                                                                                                                                                      |
|-----------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC CFR Parts 0-19          | 2004                             | Code of Federal Regulations – Telecommunication                                                                                                                            |
| ANSI C63.4                  | 2003                             | American National Standard for Methods of Measurement of Radio-<br>Noise Emissions from Low-Voltage Electrical and Electronic<br>Equipment in the Range of 9 kHz to 40 GHz |
| CISPR 22<br>+A1<br>EN 55022 | 2003-04-10<br>2004-10-14<br>2003 | Limits and Methods of Measurements of Radio Disturbance<br>Characteristics of Information Technology Equipment                                                             |
| CISPR 16-1-1                | 2003                             | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus                                                            |
| CISPR 16-2-1                | 2003                             | Specification for radio disturbance and immunity measuring apparatus and methods. Part 2-1: Conducted disturbance measurement                                              |
| CISPR 16-2-3                | 2003                             | Specification for radio disturbance and immunity measuring apparatus and methods. Part 2-3: Radiated disturbance measurement                                               |

## EXHIBIT 3. PERFORMANCE ASSESSMENT

## 3.1. CLIENT INFORMATION

| APPLICANT       |                                                                                                                             |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| Name:           | EIS Electronic Integrated System Inc.                                                                                       |  |
| Address:        | 150 Bridgeland Ave. Suite 204<br>Toronto, Ontario<br>Canada, M6A 1Z5                                                        |  |
| Contact Person: | Chris Gosciniak<br>Phone #: (416) 785-9248<br>Fax #: (416) 785-9332<br>Email Address: <u>chris.gosciniak@eistraffic.com</u> |  |

| MANUFACTURER    |                                                                                                                             |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| Name:           | EIS Electronic Integrated System Inc.                                                                                       |  |
| Address:        | 150 Bridgeland Ave. Suite 204<br>Toronto, Ontario<br>Canada, M6A 1Z5                                                        |  |
| Contact Person: | Chris Gosciniak<br>Phone #: (416) 785-9248<br>Fax #: (416) 785-9332<br>Email Address: <u>chris.gosciniak@eistraffic.com</u> |  |

## 3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

| Equipment Identification:      | EIS Electronic Integrated System Inc.  |  |
|--------------------------------|----------------------------------------|--|
| Brand or Trade Name:           | RTMS                                   |  |
| Model Name or Number:          | RTMS X3                                |  |
| Serial Number:                 | Test Sample                            |  |
| Type of Equipment:             | Field Disturbance Sensor               |  |
| Input Power Supply Type:       | 12 - 24 Vac or Vdc Power Supply        |  |
| Primary User Functions of EUT: | Radar based vehicular traffic detector |  |

## 3.3. OPERATIONAL DESCRIPTION

- 1. The RTMS Model X3 consists of a Processor Board, a horn microwave Antenna and a Microwave X Band module assembly.
  - A. The Microwave module is powered from the board and includes 3 microwave diodes; The Gunn diode which is placed in a cavity, is powered by 9 Volts, oscillates and generates microwave energy, which is transmitted through the antenna. A varactor diode controls (within a narrow band) the oscillation frequency. The diode voltage is controlled by the FGO circuit in the Processor Board. A Schottky barrier mixer diode performs the mixing of the transmitted (Gunn) signal with the received signal (coming through the antenna). The resulting (IF) signal is provided to the IF amplifier in the Processor board.
  - B. A thermistor, which is attached to the microwave module, is connected to the processor board.
  - C. The Processor board is fed by AC or DC low voltage power through an MS connector. All the output signals from the RTMS are sent through the same connector, including contact pairs and serial port.
- 2. The Processor Board (see circuit schematic) consists of the following:
  - A. Power supply (DC/DC converter) based on a bridge rectifier, filter and switching regulator provides 3.3 Volts for logic circuits and 9 Volts for analog circuits.
  - B. 9 Opto-isolators (OPTOs), providing translation of logic signals into dry relay contacts.
  - C. IF Amplifier and filter receives the signal from the Mixer and amplifies it with proper filtering to the proper level which can be controlled by software.
  - D. Frequency Generating Oscillator (FGO), which controls the microwave module Varactor diode. It is a softwaregenerated signal, which is stored in the RAM chip and calculated by the microcontroller (MCU).
  - E. ADC is an A/D converter, which converts the received analog signal into digital form.
  - F. DSP is a Digital Signal Processor which runs at 36 MHz (generated internally by
  - PLL from 3.6 MHz). It receives the digitized signal and processes it based on various sophisticated proprietary radar signal-processing algorithms. The DSP produces its reports on a digital bus to the microcomputer.
  - G. MCU is a microcontroller, which performs additional processing on the received data from the DSP in real time. The microcontroller performs various tasks, such as communicating with internal devices on the board (including the opto-isolators) via CPLD (a proprietary programmable logic array) and with outside world through its serial port. The microcontroller controls various functions of the RTMS through its resident software (one time programmable), including presence of vehicles, calculation of traffic parameters, storage of setup parameters, Self-Test and other auxiliary functions. All software algorithms are proprietary.
  - H. UART, DRIVER and OPTOs are RS-232 a level translation and isolation circuit, which translates the serial port of the microcomputer to the correct voltage levels.

## 3.4. EUT'S TECHNICAL SPECIFICATIONS

| TRANSMITTER                                                                 |                                                                                                                    |  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| Equipment Type:                                                             | Transceiver                                                                                                        |  |
| Intended Operating Environment: Commercial, light industry & heavy industry |                                                                                                                    |  |
| Power Supply Requirement:         12 to 24 Vac or Vdc Power Supply          |                                                                                                                    |  |
| Operating Frequency:                                                        | 10500 – 10550 MHz                                                                                                  |  |
| RF Output Impedance:                                                        | 50 Ohms                                                                                                            |  |
| 20 dB Bandwidth:                                                            | 43.888 MHz                                                                                                         |  |
| Modulation Type:                                                            | FMCW (Frequency Modulated Continuous Wave)                                                                         |  |
| Duty Cycle:                                                                 | 12.84 %                                                                                                            |  |
| Antenna Connector Type:                                                     | Integral, Flange waveguide WR-90, UG-39/U                                                                          |  |
| Antenna Description:                                                        | Manufacturer: Alpha Industries<br>Type: Horn<br>M/N: GAH3835-01<br>Frequency Range: 9.4 – 10.7 GHz<br>Gain: 18 dBi |  |

## 3.5. LIST OF EUT'S PORTS

| Port<br>Number | EUT's Port<br>Description | Number of<br>Identical Ports | Connector Type | Cable Type<br>(Shielded/Non-<br>shielded) |
|----------------|---------------------------|------------------------------|----------------|-------------------------------------------|
| 1              | Power                     | 2                            | MS 32-pins     | Shielded                                  |
| 2              | Serial port RS232         | 4                            | MS 32-pins     | Shielded                                  |
| 3              | Contact closure           | 18                           | MS 32-pins     | Shielded                                  |

## 3.6. GENERAL TEST SETUP



# EXHIBIT 4. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

## 4.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

| Temperature:        | 21°C     |
|---------------------|----------|
| Humidity:           | 55%      |
| Pressure:           | 102 kPa  |
| Power input source: | 4.5 V DC |

## 4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

| Operating Modes:          | EUT was configured and put into built-in RF test mode to transmit burst with the designated duty cycle for measurements. |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Special Test Software:    | None                                                                                                                     |  |
| Special Hardware Used:    | None                                                                                                                     |  |
| Transmitter Test Antenna: | The EUT is tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.      |  |

| Transmitter Test Signals:               |                       |  |  |  |
|-----------------------------------------|-----------------------|--|--|--|
| Frequency Band(s):                      | 10500 – 10550 MHz     |  |  |  |
| Test Frequency(ies):                    | 10530 MHz             |  |  |  |
| Transmitter Wanted Output Test Signals: |                       |  |  |  |
| • Max. Field Strength @ 3 meters :      | 112.91 dBuV/m average |  |  |  |
| Normal Test Modulation:                 | FMCW                  |  |  |  |
|                                         |                       |  |  |  |

#### **EXHIBIT 5.** SUMMARY OF TEST RESULTS

#### LOCATION OF TESTS 5.1.

- All of the measurements described in this report were performed at Ultratech Group of Labs located in the city • of Oakville, Province of Ontario, Canada.
- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H). •
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the . Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049-1). Last Date of Site Calibration: June. 20, 2005.

#### 5.2. **APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS**

| FCC Section(s)            | Test Requirements                                                                   | Compliance (Yes/No) |
|---------------------------|-------------------------------------------------------------------------------------|---------------------|
| 15.107(b) & 15.207        | Power Line Conducted Emissions                                                      | Yes                 |
|                           | 20 dB Bandwidth                                                                     | Yes                 |
| 15.245, 15.209,<br>15.205 | Transmitter Radiated Emissions, Harmonic Emissions and Band Edge Radiated Emissions | Yes                 |

#### 5.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES None.

## EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

## 6.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4 and ULTR-P001-2004.

## 6.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

## 6.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1.

## 6.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER

The EUT is a remote control with 916.289 MHz RF link. The battery powered remote unit sends commands to an interface unit and receives command acknowledges and data from the same interface via RF link. The interface unit communicates via a serial link (I2C) with IQ2020 spa controller made by Invensys for Watkins. The interface unit is powered from the spa controller. The EUT incorporates and LCD graphic screen and 3 keys allowing spa control.

## 6.5. Power Line Conducted Emissions [§ 15.107 (B) & 15.207]

### 6.5.1. LIMITS

The equipment shall meet the limits of the following table:

| Frequency of emission | Class A Conducted  | d Limits (dBµV) |                                                                  |
|-----------------------|--------------------|-----------------|------------------------------------------------------------------|
| (MHz)                 | Quasi-peak Average |                 | Measuring Bandwidth                                              |
| 0.15–0.5<br>0.5–30    | 79<br>73           | 66<br>60        | RBW = 9 kHz<br>VBW $\geq$ 9 kHz for QP<br>VBW = 1 Hz for Average |

\* Decreases linearly with logarithm of the frequency

#### 6.5.2. METHOD OF MEASUREMENTS

Refer to Section 8.2 of this test report & ANSI C63.4.

#### 6.5.3. TEST ARRANGEMENT



#### 6.5.4. TEST EQUIPMENT LIST

| Test Instruments                               | Manufacturer        | Model No. | Serial No. | Frequency Range                      |
|------------------------------------------------|---------------------|-----------|------------|--------------------------------------|
| Spectrum Analyzer/<br>EMI Receiver             | Hewlett<br>Packard  | HP 8593EM | 3412A00103 | 9 kHz – 26.5 GHz                     |
| Transient Limiter                              | Hewlett<br>Packard  | 11947A    | 310701998  | 9 kHz – 200 MHz<br>10 dB attenuation |
| L.I.S.N.                                       | EMCO                | 3825/2    | 89071531   | 9 kHz – 200 MHz<br>50 Ohms / 50 μH   |
| 24'(L) x 16'(W) x 8'(H)<br>RF Shielded Chamber | Braden<br>Shielding |           |            |                                      |

## 6.5.5. SETUP PHOTOGRAPHS





File #: EIS-029F15C245 September 16, 2005



### 6.5.6. TEST DATA

#### Line Voltage: 24 VDC

| Frequency<br>(MHz) | RF Level<br>(dBµV) | Receiver<br>Detector<br>(P/QP/AVG) | QP Limit<br>(dBuV) | AVG Limit<br>(dBuV) | Margin<br>(dB) | Pass/ Fail | Line Tested<br>(L1/L2) |
|--------------------|--------------------|------------------------------------|--------------------|---------------------|----------------|------------|------------------------|
|                    |                    | Test C                             | onfiguration       | : Transmitte        | r Mode         |            |                        |
| 0.49               | 38.3               | QP                                 | 79                 | 66                  | -40.7          | Pass       | L1                     |
| 0.49               | 35.6               | AVG                                | 79                 | 66                  | -30.4          | Pass       | L1                     |
| 19.38              | 49.9               | QP                                 | 73                 | 60                  | -23.1          | Pass       | L1                     |
| 19.38              | 47.4               | AVG                                | 73                 | 60                  | -12.6          | Pass       | L1                     |
|                    |                    |                                    |                    |                     |                |            |                        |
| 0.48               | 38.6               | QP                                 | 79                 | 66                  | -40.4          | Pass       | L2                     |
| 0.48               | 37.2               | AVG                                | 79                 | 66                  | -28.8          | Pass       | L2                     |
| 19.36              | 49.8               | QP                                 | 73                 | 60                  | -23.2          | Pass       | L2                     |
| 19.36              | 49.2               | AVG                                | 73                 | 60                  | -10.8          | Pass       | L2                     |

#### Line Voltage: 24 VAC

| Frequency<br>(MHz) | RF Level<br>(dBµV) | Receiver<br>Detector<br>(P/QP/AVG) | QP Limit<br>(dBuV) | AVG Limit<br>(dBuV) | Margin<br>(dB) | Pass/ Fail | Line Tested<br>(L1/L2) |
|--------------------|--------------------|------------------------------------|--------------------|---------------------|----------------|------------|------------------------|
|                    |                    | Test C                             | onfiguration       | : Transmitte        | r Mode         |            |                        |
| 19.29              | 48.5               | QP                                 | 73                 | 60                  | -24.5          | Pass       | L1                     |
| 19.29              | 46.0               | AVG                                | 73                 | 60                  | -14.0          | Pass       | L1                     |
| 20.64              | 39.4               | QP                                 | 73                 | 60                  | -33.6          | Pass       | L1                     |
| 20.64              | 38.2               | AVG                                | 73                 | 60                  | -21.8          | Pass       | L1                     |
|                    |                    |                                    |                    |                     |                |            |                        |
| 19.31              | 49.0               | QP                                 | 73                 | 60                  | -24.0          | Pass       | L2                     |
| 19.31              | 46.1               | AVG                                | 73                 | 60                  | -13.9          | Pass       | L2                     |
| 20.64              | 40.1               | QP                                 | 73                 | 60                  | -32.9          | Pass       | L2                     |
| 20.64              | 38.9               | AVG                                | 73                 | 60                  | -21.1          | Pass       | L2                     |

Note: See the following test data plots for detailed measurements.

Plot 1: AC Power Line Conducted Emissions Test Configuration : Transmitter Mode Line Voltage : 24 VDC Line Tested: L1

/// Signal Freq (MHz) PK Amp QP Amp AV Amp AV△L2 1 0.488225 40.8 38.3 35.6 - 30.4 2 19.382295 52.2 49.9 47.4 - 12.6



Plot 2: AC Power Line Conducted Emissions Test Configuration : Transmitter Mode Line Voltage : 24 VDC Line Tested: L2

| <i>1</i> 17 |        |            |        |        |        |        |
|-------------|--------|------------|--------|--------|--------|--------|
|             | Signal | Freq (MHz) | PK Amp | QP Amp | AV Amp | AVAL 2 |
|             | 1      | Ø. 48Ø35Ø  | 4Ø.3   | 38.6   | 37.2   | -28.8  |
|             | 2      | 19.358000  | 51.3   | 49.8   | 49.2   | -1Ø.8  |



Plot 3: AC Power Line Conducted Emissions Test Configuration : Transmitter Mode Line Voltage : 24 VAC Line Tested: L1

hp AV Amp Signal Freq (MHz) PK Amp QP Amp AV\_L 2 19.29292Ø 51.5 48.5 46.Ø -14.Ø 1 2 20.644450 39.4 38.2 - 21.8 41.Ø





Plot 4: AC Power Line Conducted Emissions Test Configuration : Transmitter Mode Line Voltage : 24 VAC Line Tested: L2

| hp - |         |            |        |        |        |          |
|------|---------|------------|--------|--------|--------|----------|
|      | Si gnal | Freq (MHz) | PK Amp | QP Amp | AV Amp | AV 🛆 L 2 |
|      | 1       | 19.314735  | 5Ø.7   | 49.Ø   | 46.1   | -13.9    |
|      | 2       | 20.644445  | 42.4   | 4Ø.1   | 38.9   | - 21. 1  |



## 6.6. 20 dB BANDWIDTH

### 6.6.1. LIMITS

No limit. Test is performed for information only.

#### 6.6.2. METHOD OF MEASUREMENTS

The transmitter output was loosely coupled to the spectrum analyzer through a receiving antenna and the bandwidth of bandwidth of the fundamental frequency was measured with the spectrum analyzer with the resolution bandwidth of the spectrum analyzer set per ANSI 63.4

#### 6.6.3. TEST EQUIPMENT LIST

| Test Instruments  | Manufacturer    | Model No.     | Serial No. | Frequency Range |
|-------------------|-----------------|---------------|------------|-----------------|
| Spectrum Analyzer | Rohde & Schwarz | FSEK20/B4/B21 | 834157/005 | 9 kHz- 40 GHz   |
| Log Periodic      | EMCO            | 3148          | 23845      | 200 MHz – 2 GHz |

#### 6.6.4. TEST ARRANGEMENT



#### 6.6.5. TEST DATA

| Bandwidth | Channel Frequency (MHz) | (MHz)  |
|-----------|-------------------------|--------|
| 20 dB     | 10530                   | 43.888 |
| 99 %      | 10530                   | 42.285 |

#### Plot 5: 20 dB Bandwidth Test Frequency: 10530 MHz



ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050

File #: EIS-029F15C245 September 16, 2005



#### Plot 6: 99% Occupied Bandwidth Test Frequency: 10530 MHz

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050

File #: EIS-029F15C245 September 16, 2005

## 6.7. FUNDAMETAL FIELD STRENGTH AND HARMONIC EMISSIONS AND BAND-EDGE RADIATED EMISSONS (RADIATED @ 3 METERS) [§ 15.245, 15.209 & 15.205]

#### 6.7.1. LIMITS

• The Field Strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

| Fundamental Frequency | Field Strength of Fundamental | Field Strength of Harmonics |
|-----------------------|-------------------------------|-----------------------------|
| (MHz)                 | (mV/m)                        | (μV/m)                      |
| 10500-10550           | 50                            | 500                         |

• Regardless of the limits shown in the above table, harmonic emissions in the restricted bands below 17.7 GHz, as specified in 15.205, shall not exceed the field strength limits shown in 15.209. Harmonic emissions in the restricted bands at and above 17.7 GHz shall not exceed the following field strength limits:

(ii) For all other field disturbance sensors, 7.5 mV/m.

 The fundamental frequency shall not fall within any restricted frequency band specified in 15.205 All rf other emissions that fall in the restricted bands shall not exceed the general radiated emission limits specified in @ 15.209(a).

|                 |                   | Equency Danus |               |
|-----------------|-------------------|---------------|---------------|
| MHz             | MHz               | MHz           | GHz           |
| 0.090 - 0.110   | 162.0125 - 167.17 | 2310 - 2390   | 9.3 - 9.5     |
| 0.49 – 0.51     | 167.72 - 173.2    | 2483.5 - 2500 | 10.6 - 12.7   |
| 2.1735 - 2.1905 | 240 - 285         | 2655 - 2900   | 13.25 - 13.4  |
| 8.362 - 8.366   | 322 - 335.4       | 3260 - 3267   | 14.47 - 14.5  |
| 13.36 - 13.41   | 399.9 - 410       | 3332 - 3339   | 14.35 - 16.2  |
| 25.5 – 25.67    | 608 - 614         | 3345.8 - 3358 | 17.7 - 21.4   |
| 37.5 – 38.25    | 960 - 1240        | 3600 - 4400   | 22.01 - 23.12 |
| 73 - 75.4       | 1300 - 1427       | 4500 - 5250   | 23.6 - 24.0   |
| 108 – 121.94    | 1435 - 1626.5     | 5350 - 5460   | 31.2 - 31.8   |
| 123 – 138       | 1660 - 1710       | 7250 - 7750   | 36.43 - 36.5  |
| 149.9 – 150.05  | 1718.8 - 1722.2   | 8025 - 8500   | Above 38.6    |
| 156.7 – 156.9   | 2200 – 2300       | 9000 - 9200   |               |

#### FCC 47 CFR 15.205(a) Restricted Frequency Bands

FCC 47 CFR 15.209(a) -- Field Strength Limits within Restricted Frequency Bands --

| Frequency (MHz) | Field Strength Limits (µV/m) | Distance (Meters) |
|-----------------|------------------------------|-------------------|
| 0.009 - 0.490   | 2,400 / F (KHz)              | 300               |
| 0.490 - 1.705   | 24,000 / F (KHz)             | 30                |
| 1.705 - 30.0    | 30                           | 30                |
| 30 – 88         | 100                          | 3                 |
| 88 – 216        | 150                          | 3                 |
| 216 – 960       | 200                          | 3                 |
| Above 960       | 500                          | 3                 |
|                 |                              |                   |

#### ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050

File #: EIS-029F15C245 September 16, 2005

## 6.7.2. METHOD OF MEASUREMENTS

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

#### 6.7.3. TEST EQUIPMENT LIST

| Test Instruments                   | Manufacturer    | Model No.     | Serial No. | Frequency Range                       |
|------------------------------------|-----------------|---------------|------------|---------------------------------------|
| Spectrum Analyzer/<br>EMI Receiver | Rohde & Schwarz | FSEK20/B4/B21 | 834157/005 | 9 kHz – 40 GHz<br>with external mixer |
| Microwave Amplifier                | Hewlett Packard | HP 83017A     |            | 1 GHz to 26.5 GHz                     |
| Biconilog Antenna                  | EMCO            | 3143          | 1029       | 20 MHz to 2 GHz                       |
| Horn Antenna                       | EMCO            | 3155          | 9701-5061  | 1 GHz – 18 GHz                        |
| Horn Antenna                       | EMCO            | 3160-09       | 1007       | 18 GHz – 26.5 GHz                     |
| Horn Antenna                       | EMCO            | 3160-10       | 1001       | 26.5 GHz – 40 GHz                     |
| Mixer/Horn Antenna                 | OML             | M19HW/FCC     | U30625-1   | 40 GHz – 60 GHz                       |

## 6.7.4. SETUP PHOTO



ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax. : 905-829-8050

File #: EIS-029F15C245 September 16, 2005





File #: EIS-029F15C245 September 16, 2005



File #: EIS-029F15C245 September 16, 2005



File #: EIS-029F15C245 September 16, 2005



File #: EIS-029F15C245 September 16, 2005

#### 6.7.5. TEST DATA

Duty Cycle Measurements: 12.84 % or Peak-Average Conversion factor = -17.83 dB Please refer to the Plot # 9 for Plots of duty cycle measurements

Frequency 10530 MHz

| Frequency<br>(MHz)                                                                                                 | Peak<br>E-Field @3m<br>(dBµV/m) | Average<br>E-Field @3m<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Field Strength Limit of<br>Fundamental/Harmonic<br>(dBµV/m) | Field Strength<br>Limit of § 15.209<br>(dBµV/m) | Margin<br>(dB) |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|---------------------------|-------------------------------------------------------------|-------------------------------------------------|----------------|
| 10530                                                                                                              | 129.55                          | 111.72                             | V                         | 127.96                                                      |                                                 | -16.24         |
| 10530                                                                                                              | 130.74                          | 112.91                             | Н                         | 127.96                                                      |                                                 | -15.05         |
| 21060                                                                                                              | 76.65                           | 58.82                              | V                         | 77.50                                                       |                                                 | -18.68         |
| 21060                                                                                                              | 77.38                           | 59.55                              | Н                         | 77.50                                                       |                                                 | -17.95         |
| The emissions were scanned from 30 MHz to 52.65 GHz and all emissions within 20 dB below the limits were recorded. |                                 |                                    |                           |                                                             |                                                 |                |





File #: EIS-029F15C245 September 16, 2005







Plot 9 : Duty cycle analysis



 $TX_{ON}$  / ( $TX_{ON}$  +  $TX_{OFF}$ ) = 12.84 ms / 100 ms = 0.1284  $\approx$  20 log (0.1284) = -17.83 dB

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: 905-829-1570, Fax.: 905-829-8050

File #: EIS-029F15C245 September 16, 2005

## EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and LAB 34

## 7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

| CONTRIBUTION                                                                                                                                                         | PROBABILITY    | UNCERTAINTY (dB) |               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|---------------|--|
| (Line Conducted)                                                                                                                                                     | DISTRIBUTION   | 9-150 kHz        | 0.15-30 MHz   |  |
| EMI Receiver specification                                                                                                                                           | Rectangular    | <u>+</u> 1.5     | <u>+</u> 1.5  |  |
| LISN coupling specification                                                                                                                                          | Rectangular    | <u>+</u> 1.5     | <u>+</u> 1.5  |  |
| Cable and Input Transient Limiter calibration                                                                                                                        | Normal (k=2)   | <u>+</u> 0.3     | <u>+</u> 0.5  |  |
| Mismatch: Receiver VRC $\Gamma_1 = 0.03$<br>LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$<br>Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$ | U-Shaped       | <u>+</u> 0.2     | <u>+</u> 0.3  |  |
| System repeatability                                                                                                                                                 | Std. deviation | <u>+</u> 0.2     | <u>+</u> 0.05 |  |
| Repeatability of EUT                                                                                                                                                 |                |                  |               |  |
| Combined standard uncertainty                                                                                                                                        | Normal         | <u>+</u> 1.25    | <u>+</u> 1.30 |  |
| Expanded uncertainty U                                                                                                                                               | Normal (k=2)   | <u>+</u> 2.50    | <u>+</u> 2.60 |  |

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

$$u_{c}(y) = \sqrt{\sum_{i=1}^{m} u_{i}^{2}(y)} = \pm \sqrt{(1.5^{2} + 1.5^{2})/3 + (0.5/2)^{2} + (0.05/2)^{2} + 0.35^{2}} = \pm 1.30 \text{ dB}$$

 $U = 2u_c(y) = + 2.6 \text{ dB}$ 

## 7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

| CONTRIBUTION                                                                                                                                    | PROBABILITY    | UNCERTAINTY ( <u>+</u> dB) |               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|---------------|--|
| (Radiated Emissions)                                                                                                                            | DISTRIBUTION   | 3 m                        | 10 m          |  |
| Antenna Factor Calibration                                                                                                                      | Normal (k=2)   | <u>+</u> 1.0               | <u>+</u> 1.0  |  |
| Cable Loss Calibration                                                                                                                          | Normal (k=2)   | <u>+</u> 0.3               | <u>+</u> 0.5  |  |
| EMI Receiver specification                                                                                                                      | Rectangular    | <u>+</u> 1.5               | <u>+</u> 1.5  |  |
| Antenna Directivity                                                                                                                             | Rectangular    | +0.5                       | +0.5          |  |
| Antenna factor variation with height                                                                                                            | Rectangular    | <u>+</u> 2.0               | <u>+</u> 0.5  |  |
| Antenna phase center variation                                                                                                                  | Rectangular    | 0.0                        | <u>+</u> 0.2  |  |
| Antenna factor frequency interpolation                                                                                                          | Rectangular    | <u>+</u> 0.25              | <u>+</u> 0.25 |  |
| Measurement distance variation                                                                                                                  | Rectangular    | <u>+</u> 0.6               | <u>+</u> 0.4  |  |
| Site imperfections                                                                                                                              | Rectangular    | <u>+</u> 2.0               | <u>+</u> 2.0  |  |
| Mismatch: Receiver VRC $\Gamma_1 = 0.2$<br>Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp)<br>Uncertainty limits 20Log(1 $\pm$ $\Gamma_1\Gamma_R$ ) | U-Shaped       | +1.1<br>-1.25              | <u>+</u> 0.5  |  |
| System repeatability                                                                                                                            | Std. Deviation | <u>+</u> 0.5               | <u>+</u> 0.5  |  |
| Repeatability of EUT                                                                                                                            |                | -                          | -             |  |
| Combined standard uncertainty                                                                                                                   | Normal         | +2.19 / -2.21              | +1.74 / -1.72 |  |
| Expanded uncertainty U                                                                                                                          | Normal (k=2)   | +4.38 / -4.42              | +3.48 / -3.44 |  |

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

 $U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$  And  $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$