

# FCC 15.247 & RSS-247 2.4GHz Test Report

for

# **Sunrex Technology Corp**

No. 475, Sec. 4, Chang Ping Road, Daya Dist., Taichung City 428, Taiwan

**Product Name : HP Wireless Keypad** 

Model Name : TPA-S003K

Brand : hp

FCC ID : J75TPAS003K

IC : 7090A-TPAS003K

Prepared by: : AUDIX Technology Corporation,

**EMC Department** 





The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo.

# TABLE OF CONTENTS

| De         | scrip                           | tion Pa                                       | <u>age</u> |  |  |  |  |
|------------|---------------------------------|-----------------------------------------------|------------|--|--|--|--|
| TES        | ST RE                           | EPORT                                         | 4          |  |  |  |  |
| 1.         | REVISION RECORD OF TEST REPORT5 |                                               |            |  |  |  |  |
| 2.         | SUMMARY OF TEST RESULTS6        |                                               |            |  |  |  |  |
| 3.         |                                 | VERAL INFORMATION                             |            |  |  |  |  |
| <i>J</i> . | 3.1.                            | Description of Application                    |            |  |  |  |  |
|            | 3.2.                            | Description of EUT                            |            |  |  |  |  |
|            | 3.3.                            | Antenna Information                           |            |  |  |  |  |
|            | 3.4.                            | EUT Specifications Assessed in Current Report |            |  |  |  |  |
|            | 3.5.                            | Descriptions of Key Components                |            |  |  |  |  |
|            | 3.6.                            | Test Configuration                            |            |  |  |  |  |
|            | 3.7.                            | Output Power Setting                          |            |  |  |  |  |
|            | 3.8.                            | Tested Supporting System List                 | 10         |  |  |  |  |
|            | 3.9.                            | Setup Configuration.                          |            |  |  |  |  |
|            |                                 | Operating Condition of EUT                    |            |  |  |  |  |
|            |                                 | Description of Test Facility                  |            |  |  |  |  |
|            |                                 | Measurement Uncertainty                       |            |  |  |  |  |
| 4.         | MEA                             | ASUREMENT EQUIPMENTLIST                       | . 13       |  |  |  |  |
|            | 4.1.                            | Radiated Emission Measurement                 |            |  |  |  |  |
|            | 4.2.                            | RF Conducted Measurement                      | 13         |  |  |  |  |
| <b>5.</b>  | CON                             | NDUCTED EMISSION                              | . 14       |  |  |  |  |
| 6.         | RAD                             | DIATED EMISSION                               | . 15       |  |  |  |  |
|            | 6.1.                            | Block Diagram of Test Setup                   | 15         |  |  |  |  |
|            | 6.2.                            | Radiated Emission Limits                      |            |  |  |  |  |
|            | 6.3.                            | Test Procedure                                | 17         |  |  |  |  |
|            | 6.4.                            | Measurement Result Explanation                | 18         |  |  |  |  |
|            | 6.5.                            | Test Results                                  | 18         |  |  |  |  |
| 7.         | DTS                             | OCCUPIED BANDWIDTH                            | . 19       |  |  |  |  |
|            | 7.1.                            | Block Diagram of Test Setup                   | 19         |  |  |  |  |
|            | 7.2.                            | Specification Limits                          | 19         |  |  |  |  |
|            | 7.3.                            | Test Procedure                                | 19         |  |  |  |  |
|            | 7.4.                            | Test Results                                  |            |  |  |  |  |
| 8.         | MAX                             | XIMUM PEAK OUTPUT POWER                       | . 20       |  |  |  |  |
|            | 8.1.                            | Block Diagram of Test Setup                   | 20         |  |  |  |  |
|            | 8.2.                            | Specification Limits                          | 20         |  |  |  |  |
|            | 8.3.                            | Test Procedure                                |            |  |  |  |  |
|            | 8.4.                            | Test Results                                  | 21         |  |  |  |  |
| 9.         | <b>EMI</b>                      | SSION LIMITATIONS                             | . 22       |  |  |  |  |
|            | 9.1.                            | Block Diagram of Test Setup                   | 22         |  |  |  |  |
|            | 9.2.                            | Specification Limits                          |            |  |  |  |  |
|            | 9.3.                            | Test Procedure                                |            |  |  |  |  |
|            | 9.4.                            | Test Results                                  |            |  |  |  |  |
| 10.        | POV                             | VER SPECTRAL DENSITY                          | . 24       |  |  |  |  |
|            |                                 | Block Diagram of Test Setup                   |            |  |  |  |  |
|            | 10.2.                           | Specification Limits                          | 24         |  |  |  |  |
| File       | Numb                            | er: C1M2306090 Report Number: EM-F230         | 9331       |  |  |  |  |



Tel: +886 2 26099301



Audix Technology Corp. No. 491, Zhongfu Rd., Linkou Dist., New Taipei City244, Taiwan

| 91, Zhongfu Rd., Linkou Dist., | Fax: +886 2 26099303 |
|--------------------------------|----------------------|
| Taipei City244,Taiwan          |                      |
| 10.3. Test Procedure           | 24                   |
|                                | 2.4                  |

|     | 10.4. Test Results               | 24 |
|-----|----------------------------------|----|
| 11. | DEVIATION TO TEST SPECIFICATIONS | 25 |

APPENDIX A TEST DATA AND PLOTS APPENDIX B TESTPHOTOGRAPHS





# **TEST REPORT**

**Applicant** Sunrex Technology Corp Manufacturer Sunrex Technology Corp :

**Factory** Jing Mold Electronics Technology (ShenZhen) Co., Ltd.

**EUT Description** 

(1) Product HP Wireless Keypad

(2) Model TPA-S003K

(3) Brand hp

(4) Power Supply: DC 1.5V (Battery AAx1)

### Applicable Standards:

Title 47 CFR FCC Part 15 Subpart C RSS-Gen (Issue 5), Amendment 2, February 2021 RSS-247 (Issue 2), February 2017

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. Audix Technology Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report: 2023. 07. 11

Reviewed by: Johnny Handh (Tina Huang/Section Manager)

Approved by: (Johnny Hsueh/Section Manager)





# 1. REVISION RECORD OF TEST REPORT

| Edition No | Issued Date  | Revision Summary | Report Number |
|------------|--------------|------------------|---------------|
| 0          | 2023. 07. 11 | Original Report  | EM-F230331    |



# 2. SUMMARY OF TEST RESULTS

|                        | Rule            | Degarintian                 | Results    |  |
|------------------------|-----------------|-----------------------------|------------|--|
| FCC IC                 |                 | Description                 | Results    |  |
| 15.207                 | RSS-Gen §8.8    | Conducted Emission          | N/A        |  |
| 15.247(d)/             | RSS-Gen §8.9    | Radiated Band Edge and      | PASS       |  |
| 15.205                 | RSS-247 §5.5    | Radiated Spurious Emission  | PASS       |  |
| 15.247(a)(2)           | RSS-247 §5.2(1) | DTS/Occupied Bandwidth      | PASS       |  |
| 15.247(b)(3)           | RSS-247 §5.4(4) | Maximum Peak Output Power   | PASS       |  |
| 15.247(d)              | RSS-247 §5.5    | Conducted Band Edges and    | PASS       |  |
| 13.247(d) KSS-247 §3.3 |                 | Conducted Spurious Emission | rass       |  |
| 15.247 (e)             | RSS-247 §5.2(2) | Peak Power Spectral Density | PASS       |  |
| 15.203                 |                 | Antenna Requirement         | Compliance |  |

#### Note:

- 1. Decision rule according to the limit of the test standard chapter, the test value is lower than the limit specified in the test chapter, and it is judged as Pass.
- 2. The uncertainties value is not used in determining the result.
- 3. N/A is an abbreviation for Not Applicable.



## 3. GENERAL INFORMATION

# 3.1. Description of Application

| Applicant    | Sunrex Technology Corp<br>No. 475, Sec. 4, Chang Ping Road, Daya Dist., Taichung City<br>428, Taiwan                                  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer | Sunrex Technology Corp<br>No. 475, Sec. 4, Chang Ping Road, Daya Dist., Taichung City<br>428, Taiwan                                  |
| Factory      | Jing Mold Electronics Technology (ShenZhen) Co., Ltd.<br>Xinqiao 3rd Industrial Estate, Shajing, Baoan, Shenzhen,<br>Guangdong, China |
| Product      | HP Wireless Keypad                                                                                                                    |
| Model        | TPA-S003K                                                                                                                             |
| Brand        | hp                                                                                                                                    |

# 3.2. Description of EUT

| Model                  | TPA-S003K                                         |  |  |  |  |  |
|------------------------|---------------------------------------------------|--|--|--|--|--|
| Serial Number          | N/A                                               |  |  |  |  |  |
| Software Version       | N/A                                               |  |  |  |  |  |
| Power Rating           | DC 1.5V (Battery AAx1)                            |  |  |  |  |  |
| RF Features            | BLE                                               |  |  |  |  |  |
| Transmit Type          | 1T1R                                              |  |  |  |  |  |
| Sample Status          | Trial sample                                      |  |  |  |  |  |
| Test Sample            | Sample No.Test ItemFirmware01RSE, Output PowerN/A |  |  |  |  |  |
| Date of Receipt        | 2023. 06. 09                                      |  |  |  |  |  |
| Date of Test           | 2023. 06. 13 ~ 16                                 |  |  |  |  |  |
| Interface Ports of EUT | None                                              |  |  |  |  |  |
| Accessories Supplied   | None                                              |  |  |  |  |  |

Note: Pursuant ISO 17025:2017 section 7.8.2, Audix Technology Corp. does not assume responsibility for all EUT's information including RF features, transmit type, antenna information etc are provided by customer.



#### 3.3. Reference Test Guidance

KDB 662911 D01 Multiple Transmitter Output v02r01 ANSI C63.10:2013

#### 3.4. Antenna Information

| No. | Model | Manufacture | Antenna Type | Frequency (MHz) | Gain(dBi) |
|-----|-------|-------------|--------------|-----------------|-----------|
| 1.  | CW321 | Unictron    | Chip         | 2400-2500       | 0.6       |

# 3.5. EUT Specifications Assessed in Current Report

| Mode | Fundamental Range (MHz) | Channel Number | Modulation | Data Rate (Mbps) |
|------|-------------------------|----------------|------------|------------------|
| BLE  | 2402-2480               | 40             | GFSK       | 1                |

|                   | Channel List    |                   |                 |                   |                 |                   |                 |  |
|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|--|
| BLE               |                 |                   |                 |                   |                 |                   |                 |  |
| Channel<br>Number | Frequency (MHz) |  |
| 37                | 2402            | 09                | 2422            | 18                | 2442            | 28                | 2462            |  |
| 00                | 2404            | 10                | 2424            | 19                | 2444            | 29                | 2464            |  |
| 01                | 2406            | 38                | 2426            | 20                | 2446            | 30                | 2466            |  |
| 02                | 2408            | 11                | 2428            | 21                | 2448            | 31                | 2468            |  |
| 03                | 2410            | 12                | 2430            | 22                | 2450            | 32                | 2470            |  |
| 04                | 2412            | 13                | 2432            | 23                | 2452            | 33                | 2472            |  |
| 05                | 2414            | 14                | 2434            | 24                | 2454            | 34                | 2474            |  |
| 06                | 2416            | 15                | 2436            | 25                | 2456            | 35                | 2476            |  |
| 07                | 2418            | 16                | 2438            | 26                | 2458            | 36                | 2478            |  |
| 08                | 2420            | 17                | 2440            | 27                | 2460            | 39                | 2480            |  |

# 3.6. Descriptions of Key Components

| Item  | Supplier/Brand | Model   | Specification |
|-------|----------------|---------|---------------|
| RF IC | PXI            | PAR2832 | BLE: GFSK     |



# 3.7. Test Configuration

| Mode | TX <sub>on</sub> (ms) | TX <sub>on+off</sub> (ms) | 1/ TX <sub>on</sub> (kHz) | Duty Cycle (x) | $\begin{array}{c} \text{VBW}(>1/\text{TX}_{\text{on}}) \\ \text{(kHz)} \end{array}$ |
|------|-----------------------|---------------------------|---------------------------|----------------|-------------------------------------------------------------------------------------|
| BLE  | 0.380                 | 0.540                     | 2.632                     | 0.704          | 2.7                                                                                 |



| Item                  |                                                | Mode | Data Rate | Test Channel |
|-----------------------|------------------------------------------------|------|-----------|--------------|
|                       | Radiated Spurious<br>Emission(30MHz~1GHz)      | BLE  | 1Mbps     | 39           |
| Radiated<br>Test Case | Radiated Band Edge Note1                       | BLE  | 1Mbps     | 37/39        |
| Test case             | Radiated Spurious<br>Emission <sup>Note1</sup> | BLE  | 1Mbps     | 37/17/39     |

| Item                   |                                | Mode | Data Rate | Test Channel |
|------------------------|--------------------------------|------|-----------|--------------|
|                        | DTS/Occupied<br>Bandwidth      | BLE  | 1Mbps     | 37/17/39     |
|                        | Peak Output Power              | BLE  | 1Mbps     | 37/17/39     |
| Conducted<br>Test Case | Band Edge                      | BLE  | 1Mbps     | 37/39        |
|                        | Spurious Emission              | BLE  | 1Mbps     | 37/17/39     |
|                        | Peak Power Spectral<br>Density | BLE  | 1Mbps     | 37/17/39     |

Note 1: Mobile Device Portable Device, and 3 axis were assessed. The worst scenario for Radiated Spurious Emission as follow: Lie Side Stand

# 3.8. Output Power Setting

| Mode | Centre Frequency (MHz) | Power Setting |
|------|------------------------|---------------|
|      | 2402                   | Default       |
| BLE  | 2440                   | Default       |
|      | 2480                   | Default       |





# 3.9. Tested Supporting System List

None

# 3.10. Setup Configuration

3.10.1. EUT Configuration for Radiated Emission

HP Wireless Keypad (EUT)

3.10.2. EUT Configuration for RF Conducted Test Items

HP Wireless Keypad (EUT)

# 3.11. Operating Condition of EUT

To set EUT on BLE function under continues transmitting and choosing channel.



# 3.12.Description of Test Facility

| Name of Test Firm | Audix Technology Corporation / EMC Department No. 491, Zhongfu Rd., Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website: www.audixtech.com Contact e-mail: attemc_report@audixtech.com |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accreditations    | The laboratory is accredited by following organizations under ISO/IEC 17025:2017  (1) NVLAP(USA)  NVLAP Lab Code 200077-0  (2) TAF(Taiwan)  No. 1724                                                                           |
| Test Facilities   | FCC OET Designation Number under APEC MRA by NCC is: TW1724 ISED CAB Identifier Number under APEC TEL MRA by NCC is TW1724 (1) No.1 3m Semi Anechoic Chamber                                                                   |



# 3.13.Measurement Uncertainty

The measurement uncertainty levels have been estimated as specified in ETSI TR 100 028-2001

|            |   | ems/Facilities                   | Frequency Range                | Uncertainty |
|------------|---|----------------------------------|--------------------------------|-------------|
|            |   | N - 7 Cl.:-11-1D                 | 9kHz-150kHz                    | ±3.7dB      |
| Conduction | Ш | No. 7 Shielded Room              | 150kHz-30MHz                   | ±3.4dB      |
| Test       |   | No. 0 Chialded Doom              | 9kHz-150kHz                    | ±3.7dB      |
|            | Ш | No. 8 Shielded Room              | 150kHz-30MHz                   | ±3.5dB      |
|            |   |                                  | 30MHz-200MHz, 3m, Horizontal   | ±3.6dB      |
|            |   |                                  | 200MHz-1000MHz, 3m, Horizontal | ±4.3dB      |
|            |   | No.1 3m Semi                     | 30MHz-200MHz, 3m, Vertical     | ±4.4dB      |
|            |   | Anechoic Chamber                 | 200MHz-1000MHz, 3m, Vertical   | ±4.8dB      |
|            |   |                                  | 1GHz-6GHz, 3m                  | ±4.8dB      |
|            |   |                                  | 6GHz-18GHz, 3m                 | ±4.5dB      |
|            |   |                                  | 30MHz-200MHz, 3m, Horizontal   | ±4.0dB      |
|            |   |                                  | 200MHz-1000MHz, 3m, Horizontal | ±4.4dB      |
|            | П | No.3 3m Semi<br>Anechoic Chamber | 30MHz-200MHz, 3m, Vertical     | ±4.7dB      |
|            | ш |                                  | 200MHz-1000MHz, 3m, Vertical   | ±4.5dB      |
|            |   |                                  | 1GHz-6GHz, 3m                  | ±4.8dB      |
|            |   |                                  | 6GHz-18GHz, 3m                 | ±4.5dB      |
| Radiation  |   |                                  | 30MHz-200MHz, 3m, Horizontal   | ±4.3dB      |
| Test       |   |                                  | 200MHz-1000MHz, 3m, Horizontal | ±4.2dB      |
|            | П | No.4 3m Semi                     | 30MHz-200MHz, 3m, Vertical     | ±4.8dB      |
|            | Ш | Anechoic Chamber                 | 200MHz-1000MHz, 3m, Vertical   | ±4.7dB      |
|            |   |                                  | 1GHz-6GHz, 3m                  | ±4.6dB      |
|            |   |                                  | 6GHz-18GHz, 3m                 | ±4.4dB      |
|            |   |                                  | 30MHz-200MHz, 3m, Horizontal   | ±4.6dB      |
|            |   |                                  | 200MHz-1000MHz, 3m, Horizontal | ±4.4dB      |
|            |   | No.5 3m Semi                     | 30MHz-200MHz, 3m, Vertical     | ±4.5dB      |
|            | Ш | Anechoic Chamber                 | 200MHz-1000MHz, 3m, Vertical   | ±4.9dB      |
|            |   |                                  | 1GHz-6GHz, 3m                  | ±4.9dB      |
|            |   |                                  | 6GHz-18GHz, 3m                 | ±4.6dB      |
|            |   | Radiated emissions (18GHz-40GHz) | 18GHz-40GHz, 3m                | ±3.4dB      |

Remark : Uncertainty =  $ku_c(y)$ 

| Test Items                     | Uncertainty             |
|--------------------------------|-------------------------|
| 6dB Bandwidth                  | $\pm 0.05 \mathrm{kHz}$ |
| Maximum peak output power      | ± 0.33dB                |
| Power spectral density         | ± 0.13dB                |
| Conducted Emission Limitations | ± 0.13dB                |

# 4. MEASUREMENT EQUIPMENTLIST

## 4.1. Radiated Emission Measurement

| Item | Туре                          | Manufacturer  | Model No.                    | Serial No.  | Cal. Date  | Cal. Interval |
|------|-------------------------------|---------------|------------------------------|-------------|------------|---------------|
| 1.   | Spectrum Analyzer             | Agilent       | N9010A-526                   | MY53400071  | 2022.08.24 | 1 Year        |
| 2.   | Test Receiver                 | R&S           | ESCS30                       | 100038      | 2022.06.15 | 1 Year        |
| 3.   | Amplifier                     | НР            | 8447D                        | 2944A06305  | 2022.12.29 | 1 Year        |
| 4.   | Microwave Amplifier           | Agilent       | 8449B                        | 3008A01284  | 2023.06.06 | 1 Year        |
| 5.   | Microwave Amplifier           | Keysight      | 83051A                       | MY56480113  | 2022.09.07 | 1 Year        |
| 6.   | Loop Antenna                  | TESEQ         | HLA 6121                     | 60478       | 2023.02.21 | 1 Year        |
| 7.   | Bilog Antenna                 | TESEQ         | CBL6112D                     | 33821       | 2022.07.01 | 1 Year        |
| 8.   | Horn Antenna                  | EMCO          | 3115                         | 9609-4927   | 2022.07.13 | 1 Year        |
| 9.   | Horn Antenna                  | COM-POWER     | AH-840                       | 101092      | 2022.12.30 | 1 Year        |
| 10.  | 2.4GHz Notch Filter           | K&L Microwave | 7NSL10-2441.5/<br>E130.5-O/O | 2           | 2022.07.23 | 1 Year        |
| 11.  | 3GHz Notch Filter             | Microwave     | H3G018G1                     | 484796      | 2022.07.23 | 1 Year        |
| 12.  | Coaxial Cable                 | MIYAZAKI      | 5D2W                         | RE-11       | 2023.01.07 | 1 Year        |
| 13.  | Coaxial Cable                 | HUBER+SUHNER  | SUCOFLEX 106                 | RE-14       | 2023.01.07 | 1 Year        |
| 14.  | Coaxial Cable                 | HUBER+SUHNER  | SUCOFLEX 102                 | RE-30       | 2022.08.22 | 1 Year        |
| 15.  | Digital Thermo-Hygro<br>Meter | iMax          | HTC-1                        | No.1 3m A/C | 2023.04.13 | 1 Year        |
| 16.  | Test Software                 | Audix         | e3                           | V9 18621a   | N.C.R.     | N.C.R.        |

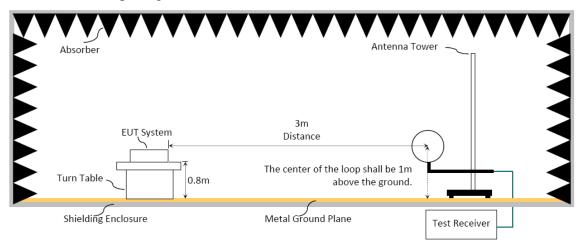
## 4.2. RF Conducted Measurement

|   | Item | Туре                          | Manufacturer | Model No.  | Serial No. | Cal. Date  | Cal. Interval |
|---|------|-------------------------------|--------------|------------|------------|------------|---------------|
| I | 1.   | Spectrum Analyzer             | Keysight     | N9020B-544 | MY57120357 | 2023.02.22 | 1 Year        |
|   | 7    | Digital Thermo-Hygro<br>Meter | iMax         | HTC-1      | RF-03      | 2023.04.13 | 1 Year        |

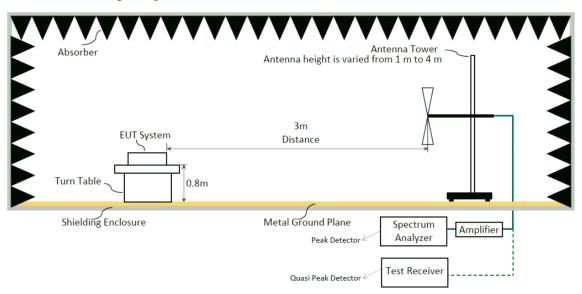




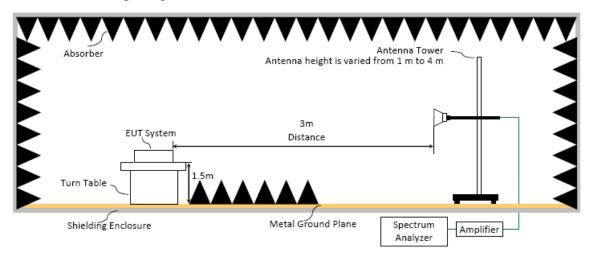
# 5. CONDUCTED EMISSION


The conducted disturbance voltage limits are not required for EUT which only employ DC battery for operation.

# 6. RADIATED EMISSION


# 6.1. Block Diagram of Test Setup

6.1.1. Block Diagram of EUT Indicated as section 3.10


6.1.2. Setup Diagram for 9kHz-30MHz



#### 6.1.3. Setup Diagram for 30-1000MHz



#### 6.1.4. Setup Diagram for above 1GHz



#### **6.2.** Radiated Emission Limits

In any 100kHz bandwidth outside the frequency band, the radio frequency power produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205/RSS-Gen Section 8.10 table 6, must also comply with the radiated emission limits specified as below.

| Frequency (MHz)  | Distance(m)   | Limits                                      |             |  |
|------------------|---------------|---------------------------------------------|-------------|--|
| Trequency (MITZ) | Distance(iii) | dBµV/m                                      | μV/m        |  |
| 0.009 - 0.490    | 300           | 67.6-20 log f(kHz)                          | 2400/f kHz  |  |
| 0.490 - 1.705    | 30            | 87.6-20 log f(kHz)                          | 24000/f kHz |  |
| 1.705 - 30       | 30            | 29.5                                        | 30          |  |
| 30 - 88          | 3             | 40.0                                        | 100         |  |
| 88- 216          | 3             | 43.5                                        | 150         |  |
| 216- 960         | 3             | 46.0                                        | 200         |  |
| Above 960        | 3             | 54.0                                        | 500         |  |
| Above 1000       | 3             | 74.0 dBμV/m (Peak)<br>54.0 dBμV/m (Average) |             |  |

Remark : (1)  $dB\mu V/m = 20 \log (\mu V/m)$ 

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3,if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

Tel: +886 2 26099301

Fax: +886 2 26099303



### 6.3. Test Procedure

#### Frequency Range 9kHz~30MHz:

The EUT setup on the turntable which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna fixed to 1 m to find the maximum emission level. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

- (1) RBW = 9kHz with peak and average detector.
- (2) Detector: average and peak (9kHz-490kHz)

Q.P. (490kHz-30MHz)

#### Frequency Range 30MHz ~ 25GHz:

The EUT setup on the turn table which has 80cm (for 30-1000MHz) and 1.5m (for above 1GHz) height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

#### Frequency below 1GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1)RBW = 120KHz
- (2)VBW  $\geq 3 \times RBW$ .
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- Note 1: When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required, otherwise using Q.P. for final measurement.
- Note 2: When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

# Frequency above 1GHz to 10th harmonic (up to 25 GHz): Peak Detector:

- (1)RBW = 1MHz
- (2)VBW  $\geq 3 \times RBW$ .
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

Note: When peak-detected value is lower than limit that the measurement using the average detector is not required, otherwise using average detector for final measurement.

#### **Average Detector:**

### Option 1:

(1)RBW = 1MHz

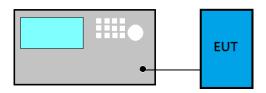
(2) VBW  $\geq 1/T$ . (Duty Cycle < 98%, when duty cycle presented in section 3.7)

| Modulation Type | VBW Setting (VBW $\geq 1/T$ ) |
|-----------------|-------------------------------|
| BLE             | 2.7 kHz                       |

- (3) VBW = 10Hz (Duty Cycle  $\geq 98\%$ , when duty cycle presented in section 3.7)
- (4)Detector = Peak.
- (5)Sweep time = auto.
- (6)Trace mode = max hold.
- (7) Allow sweeps to continue until the trace stabilizes.
- $\square$ Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.

### **6.4.** Measurement Result Explanation


- Peak Emission Level( $dB\mu V/m$ )=Antenna Factor(dB/m) + Cable Loss (dB)— Preamp Gain (dB)+ Reading( $dB\mu V$ ).
- Average Emission Level( $dB\mu V/m$ )= Antenna Factor(dB/m) + Cable Loss (dB)– Preamp Gain (dB)+ Reading( $dB\mu V$ ).
- $\square$  Average Emission Level(dB $\mu$ V/m)= Peak Emission Level(dB $\mu$ V/m)+ DCCF(dB) Duty Cycle Correction Factor (DCCF)(dB)=  $20log(TX_{on}/TX_{on+off})$  presented in section 3.7.
- $\square$ ERP(dBm)= Peak Emission Level(dB $\mu$ V/m) -95.2dB-2.14dB

#### 6.5. Test Results

Please refer to Appendix A.

## 7. DTS/OCCUPIED BANDWIDTH

## 7.1. Block Diagram of Test Setup



# 7.2. Specification Limits

The minimum 6dB bandwidth shall be at least 500kHz.

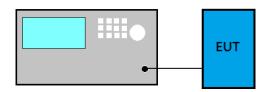
#### 7.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

#### For DTS Bandwidth

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW)  $\geq 3 \times RBW$ .
- (3) Detector = Peak.
- (4) Trace mode = max hold.
- (5) Sweep = auto couple.
- (6) Allow the trace to stabilize.
- (7) Setting channel bandwidth function x to -6dB power to record the final bandwidth...

#### For 99% Occupied Bandwidth


- (1) Set Span range 1.5~5 times the OBW
- (2) Set RBW close to 1% to 5% of OBW.
- (3) Set VBW≥3xRBW.
- (4) Detector = Peak.
- (5) Trace mode = Max hold
- (6) Sweep = Auto couple.
- (7) Allow the trace to stabilize.

#### 7.4. Test Results

Please refer to Appendix A

## 8. MAXIMUM PEAK OUTPUT POWER

# 8.1. Block Diagram of Test Setup



# 8.2. Specification Limits

The Limits of maximum Peak Output Power for digital modulation in 2400-2483.5MHz is: 1Watt. (30dBm), and E.I.R.P.: 4Watt (36dBm)

#### 8.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

### **PKPM1** Peak power meter method:

EUT is connected to power sensor and record the maximum output power.

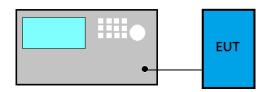
#### Maximum peak conducted output power method:

- (1) Set the RBW  $\geq$  DTS bandwidth
- (2) Set  $VBW \ge 3 \times RBW$
- (3) Set span  $\geq 3 \times RBW$ .
- (4) Sweep time = auto couple
- (5) Detector = peak.
- (6) Trace mode = max hold.
- (7) Allow trace to fully stabilize.
- (8) Use peak marker function to determine the peak amplitude level.

#### Method AVGPM (Measurement using an RF average power meter):

EUT is connected to power sensor and record the maximum average output power and duty cycle factor is added when duty cycle presented in section 3.7 is < 98%.

#### **■** Method AVGSA-2 (Spectrum channel power)


- (1) Set span to at least 1.5 times the OBW
- (2) Set RBW = 1 5% of OBW
- (3) Set the video bandwidth (VBW)  $\geq$  3 × RBW.
- (4) Detector = RMS.
- (5) Trace mode = trace average at least 100 traces
- (6) Sweep = auto couple.
- (7) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges.
- (8) Duty cycle factor is added when duty cycle presented in section 3.7 is < 98%.

#### 8.4. Test Results

Please refer to Appendix A

## 9. EMISSION LIMITATIONS

### 9.1. Block Diagram of Test Setup



# 9.2. Specification Limits

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, that the required attenuation shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in Section 15.209(a)/RSS-Gen Section 8.9 table 4is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a)/RSS-Gen Section 8.10 table 6, must also comply with the radiated emission limits specified in Section 15.209(a)/RSS-Gen Section 8.9 table 4 (See Section 15.205(c)).

#### 9.3. Test Procedure

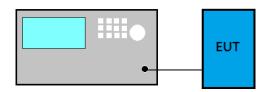
Following measurement procedure is reference to ANSI C63.10:2013:

#### **Reference Level**

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: 100 kHz.
- (4) Set the VBW  $\geq$  3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = max hold.
- (8) Allow trace to fully stabilize to find the max PSD as reference level.



#### **Emission Level Measurement**


- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: 100 kHz.
- (4) Set the VBW  $\geq$  3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = max hold.
- (8) Allow trace to fully stabilize to find the max level.

### 9.4. Test Results

Please refer to Appendix A

## 10. POWER SPECTRAL DENSITY

### 10.1.Block Diagram of Test Setup



# **10.2.Specification Limits**

The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band.

#### 10.3.Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

### Method PKPSD (peak PSD)

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to:  $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$ .
- (4) Set the VBW  $\geq$  3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = max hold.
- (8) Allow trace to fully stabilize.
- (9) Use the peak marker function to determine the maximum amplitude level.
- (10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### Method AVGPSD-2

- (1) Using peak PSD procedure step 1 to step 4.
- (2) Detector= RMS detector
- (3) Sweep time = auto couple
- (4) Trace mode = trace averaging over a minimum of 100 traces
- (5) Use the peak marker function to determine the maximum amplitude level.
- (6) Duty cycle factor is added when duty cycle presented in section 3.7< 98%.
- (7) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### **10.4.Test Results**

Please refer to Appendix A





# 11.DEVIATION TO TEST SPECIFICATIONS

[NONE]



# APPENDIX A

# TEST DATA AND PLOTS

(Model: TPA-S003K)



Tel: +886 2 26099301 Fax: +886 2 26099303

## TABLE OF CONTENTS

| <b>A.1</b> | RADI  | IATED EMISSION                               | 2   |
|------------|-------|----------------------------------------------|-----|
|            | A.1.1 | Emissions within Restricted Frequency Bands  | 2   |
|            | A.1.2 | Emissions outside the frequency band:        | 7   |
|            | A.1.3 | Emissions in Non-restricted Frequency Bands: | 8   |
| <b>A.2</b> | DTS/  | OCCUPIED BANDWIDTH                           | 9   |
|            | A.2.1 | DTS/Occupied Bandwidth Result                | 9   |
|            | A.2.2 | Measurement Plots                            | 10  |
| <b>A.3</b> | MAX   | IMUM PEAK OUTPUT POWER                       | 11  |
|            | A.3.1 | Peak Output Power                            | 11  |
|            | A.3.2 | Measurement Plots                            | 11  |
| <b>A.4</b> | EMIS  | SSION LIMITATIONS                            | 12  |
| <b>A.5</b> | POW   | ER SPECTRAL DENSITY                          | 14  |
|            | A.5.1 | Power Spectral Density Result                | 14  |
|            | A 5 2 | Massurament Diots                            | 1.4 |



Tel: +886 2 26099301 Fax: +886 2 26099303

# **A.1 RADIATED EMISSION**

| Test Date    | 2023/06/13            | Temp./Hum. | 24°C/40%  |
|--------------|-----------------------|------------|-----------|
| Test Voltage | DC 1.5V (Via Battery) | Tested By  | Kuper Hsu |

# A.1.1 Emissions within Restricted Frequency Bands

## A.2.1.1 Frequency 9kHz~30MHz

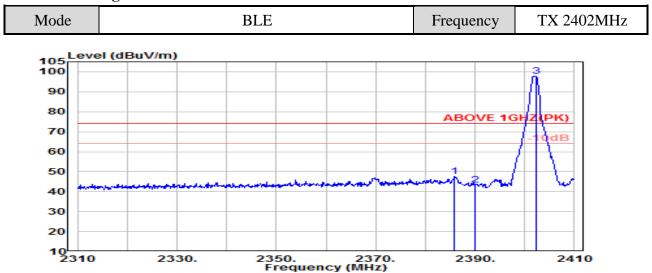
The emissions (9kHz~30MHz) not reported for there is no emission be found.

A.2.1.2 Frequency Below 1GHz

| Mode          |               |           | BLE    |             | Frequency     | TX 24            | 80MHz  |          |
|---------------|---------------|-----------|--------|-------------|---------------|------------------|--------|----------|
| Antenna at Ho | orizontal Pol | arization |        |             |               |                  |        |          |
| Emission      | Antenna       | Cable     | Preamp | Read        | Emissio       | on Limits        | Margin |          |
| Frequency     | Factor        | Loss      | Gain   | Level       | Level         |                  |        | Detector |
| (MHz)         | (dB/m)        | (dB)      | (dB)   | $(dB\mu V)$ | $(dB\mu V/1)$ | m) $(dB\mu V/m)$ | (dB)   |          |
| 30.970        | 23.08         | 1.43      | 26.49  | 31.95       | 29.97         | 40.00            | 10.03  | Peak     |
| 119.240       | 17.98         | 2.84      | 26.16  | 33.80       | 28.46         | 43.50            | 15.04  | Peak     |
| 431.580       | 22.25         | 6.21      | 26.67  | 33.89       | 35.68         | 46.00            | 10.32  | Peak     |
| 709.970       | 24.79         | 7.69      | 27.41  | 33.06       | 38.13         | 46.00            | 7.87   | Peak     |
| 896.210       | 25.99         | 8.74      | 27.00  | 33.85       | 41.58         | 46.00            | 4.42   | Peak     |
| 979.630       | 26.89         | 9.19      | 26.72  | 32.02       | 41.37         | 54.00            | 12.63  | Peak     |

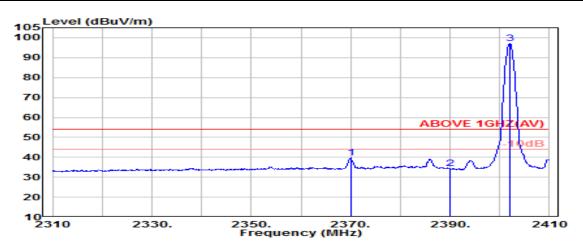
#### Antenna at Vertical Polarization

| Emission  | Antenna | Cable | Preamp | Read        | Emission      | Limits        | Margin |          |
|-----------|---------|-------|--------|-------------|---------------|---------------|--------|----------|
| Frequency | Factor  | Loss  | Gain   | Level       | Level         |               |        | Detector |
| (MHz)     | (dB/m)  | (dB)  | (dB)   | $(dB\mu V)$ | $(dB\mu V/m)$ | $(dB\mu V/m)$ | (dB)   |          |
| 30.970    | 23.08   | 1.43  | 26.49  | 30.09       | 28.11         | 40.00         | 11.89  | Peak     |
| 118.270   | 17.94   | 2.83  | 26.17  | 33.58       | 28.19         | 43.50         | 15.31  | Peak     |
| 431.580   | 22.25   | 6.21  | 26.67  | 34.00       | 35.79         | 46.00         | 10.21  | Peak     |
| 703.180   | 24.75   | 7.65  | 27.42  | 32.07       | 37.04         | 46.00         | 8.96   | Peak     |
| 901.060   | 26.03   | 8.77  | 26.99  | 29.92       | 37.73         | 46.00         | 8.27   | Peak     |
| 977.690   | 26.88   | 9.18  | 26.73  | 32.53       | 41.85         | 54.00         | 12.15  | Peak     |




Tel: +886 2 26099301

Fax: +886 2 26099303


# A.2.1.3 Frequency Above 1 GHz to 10<sup>th</sup> harmonics

### **Band Edge:**



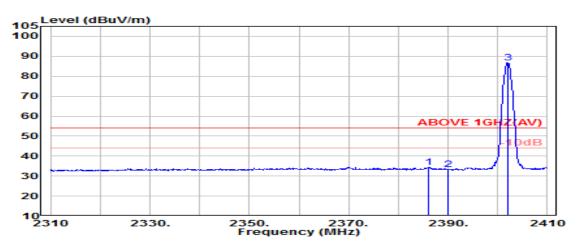
#### Antenna at Horizontal Polarization

| _  |           |         |       |        |             |               |                          |        |          |
|----|-----------|---------|-------|--------|-------------|---------------|--------------------------|--------|----------|
|    | Emission  | Antenna | Cable | Preamp | Read        | Emission      | Limits                   | Margin |          |
| ]  | Frequency | Factor  | Loss  | Gain   | Level       | Level         |                          |        | Detector |
|    | (MHz)     | (dB/m)  | (dB)  | (dB)   | $(dB\mu V)$ | $(dB\mu V/m)$ | $\left(dB\mu V/m\right)$ | (dB)   |          |
|    | 2385.900  | 28.30   | 6.03  | 34.44  | 47.76       | 47.66         | 74.00                    | 26.34  | Peak     |
|    | 2390.000  | 28.30   | 6.03  | 34.44  | 43.36       | 43.25         | 74.00                    | 30.75  | Peak     |
| (a | 2402.300  | 28.30   | 6.05  | 34.44  | 97.82       | 97.74         |                          |        | Peak     |



#### Antenna at Horizontal Polarization

|   | Emission        | Antenna | Cable | Preamp | Read        | Emission      | Limits        | Margin |          |
|---|-----------------|---------|-------|--------|-------------|---------------|---------------|--------|----------|
|   | Frequency       | Factor  | Loss  | Gain   | Level       | Level         |               |        | Detector |
|   | (MHz)           | (dB/m)  | (dB)  | (dB)   | $(dB\mu V)$ | $(dB\mu V/m)$ | $(dB\mu V/m)$ | (dB)   |          |
|   | 2370.000        | 28.30   | 6.01  | 34.43  | 39.75       | 39.62         | 54.00         | 14.38  | Average  |
|   | 2390.000        | 28.30   | 6.03  | 34.44  | 34.31       | 34.21         | 54.00         | 19.79  | Average  |
| ( | <b>2402.000</b> | 28.30   | 6.05  | 34.44  | 97.05       | 96.96         |               |        | Average  |

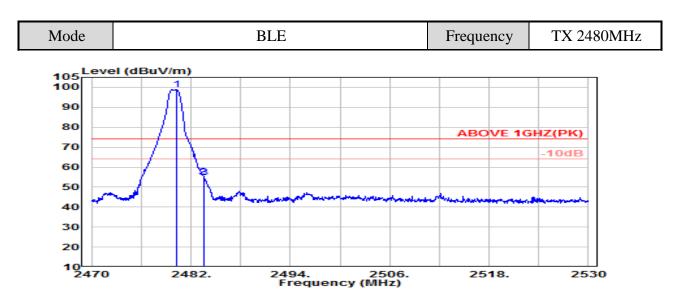



Tel: +886 2 26099301 Fax: +886 2 26099303



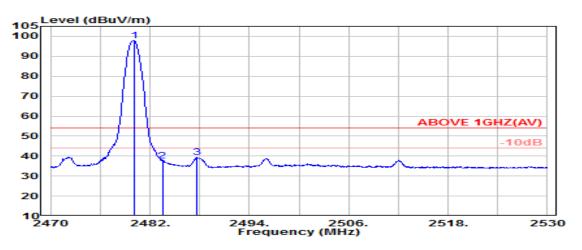
#### Antenna at Vertical Polarization

| Emission   | Antenna | Cable | Preamp | Read        | Emission      | Limits        | Margin |          |
|------------|---------|-------|--------|-------------|---------------|---------------|--------|----------|
| Frequency  | Factor  | Loss  | Gain   | Level       | Level         |               |        | Detector |
| (MHz)      | (dB/m)  | (dB)  | (dB)   | $(dB\mu V)$ | $(dB\mu V/m)$ | $(dB\mu V/m)$ | (dB)   |          |
| 2364.200   | 28.30   | 6.00  | 34.43  | 44.59       | 44.45         | 74.00         | 29.55  | Peak     |
| 2390.000   | 28.30   | 6.03  | 34.44  | 43.48       | 43.38         | 74.00         | 30.62  | Peak     |
| @ 2402.300 | 28.30   | 6.05  | 34.44  | 87.67       | 87.58         |               |        | Peak     |




#### Antenna at Vertical Polarization

| Emission   | Antenna | Cable | Preamp | Read        | Emission      | Limits                   | Margin |          |
|------------|---------|-------|--------|-------------|---------------|--------------------------|--------|----------|
| Frequency  | Factor  | Loss  | Gain   | Level       | Level         |                          |        | Detector |
| (MHz)      | (dB/m)  | (dB)  | (dB)   | $(dB\mu V)$ | $(dB\mu V/m)$ | $\left(dB\mu V/m\right)$ | (dB)   |          |
| 2386.100   | 28.30   | 6.03  | 34.44  | 34.63       | 34.52         | 54.00                    | 19.48  | Average  |
| 2390.000   | 28.30   | 6.03  | 34.44  | 33.47       | 33.37         | 54.00                    | 20.63  | Average  |
| @ 2402.000 | 28.30   | 6.05  | 34.44  | 86.86       | 86.78         |                          |        | Average  |

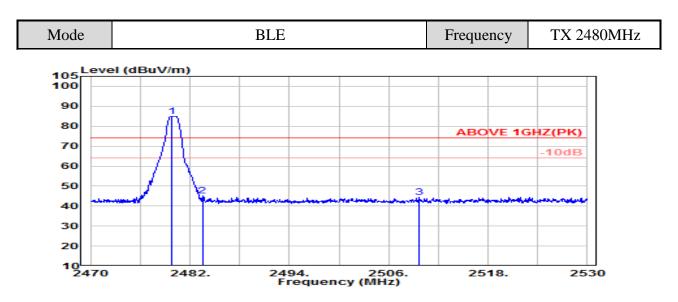



Tel: +886 2 26099301 Fax: +886 2 26099303



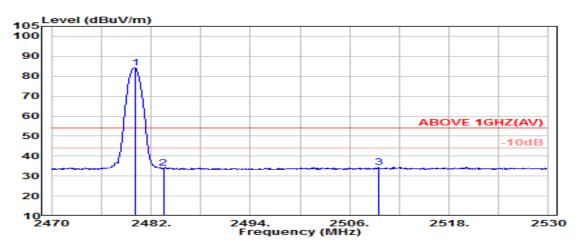
#### Antenna at Horizontal Polarization

| Emission   | Antenna | Cable | Preamp | Read        | Emission      | Limits        | Margin |          |
|------------|---------|-------|--------|-------------|---------------|---------------|--------|----------|
| Frequency  | Factor  | Loss  | Gain   | Level       | Level         |               |        | Detector |
| (MHz)      | (dB/m)  | (dB)  | (dB)   | $(dB\mu V)$ | $(dB\mu V/m)$ | $(dB\mu V/m)$ | (dB)   |          |
| @ 2480.250 | 28.46   | 6.16  | 34.46  | 98.61       | 98.78         |               |        | Peak     |
| 2483.500   | 28.47   | 6.17  | 34.46  | 55.01       | 55.19         | 74.00         | 18.81  | Peak     |
| 2483.650   | 28.47   | 6.17  | 34.46  | 54.80       | 54.97         | 74.00         | 19.03  | Peak     |




#### Antenna at Horizontal Polarization

| Emission   | Antenna | Cable | Preamp | Read        | Emission      | Limits                   | Margin |          |
|------------|---------|-------|--------|-------------|---------------|--------------------------|--------|----------|
| Frequency  | Factor  | Loss  | Gain   | Level       | Level         |                          |        | Detector |
| (MHz)      | (dB/m)  | (dB)  | (dB)   | $(dB\mu V)$ | $(dB\mu V/m)$ | $\left(dB\mu V/m\right)$ | (dB)   |          |
| @ 2480.050 | 28.46   | 6.16  | 34.46  | 97.80       | 97.96         |                          |        | Average  |
| 2483.500   | 28.47   | 6.17  | 34.46  | 37.43       | 37.61         | 54.00                    | 16.39  | Average  |
| 2487.650   | 28.48   | 6.17  | 34.46  | 39.25       | 39.44         | 54.00                    | 14.56  | Average  |




Tel: +886 2 26099301 Fax: +886 2 26099303



#### Antenna at Vertical Polarization

| Emission   | Antenna | Cable | Preamp | Read        | Emission      | Limits        | Margin |          |
|------------|---------|-------|--------|-------------|---------------|---------------|--------|----------|
| Frequency  | Factor  | Loss  | Gain   | Level       | Level         |               |        | Detector |
| (MHz)      | (dB/m)  | (dB)  | (dB)   | $(dB\mu V)$ | $(dB\mu V/m)$ | $(dB\mu V/m)$ | (dB)   |          |
| @ 2479.750 | 28.46   | 6.16  | 34.46  | 84.92       | 85.08         |               |        | Peak     |
| 2483.500   | 28.47   | 6.17  | 34.46  | 44.98       | 45.16         | 74.00         | 28.84  | Peak     |
| 2509.600   | 28.50   | 6.20  | 34.46  | 44.24       | 44.48         | 74.00         | 29.52  | Peak     |



#### Antenna at Vertical Polarization

| Emission   | Antenna | Cable | Preamp | Read        | Emission      | Limits                   | Margin |          |
|------------|---------|-------|--------|-------------|---------------|--------------------------|--------|----------|
| Frequency  | Factor  | Loss  | Gain   | Level       | Level         |                          |        | Detector |
| (MHz)      | (dB/m)  | (dB)  | (dB)   | $(dB\mu V)$ | $(dB\mu V/m)$ | $\left(dB\mu V/m\right)$ | (dB)   |          |
| @ 2480.050 | 28.46   | 6.16  | 34.46  | 84.08       | 84.25         |                          |        | Average  |
| 2483.500   | 28.47   | 6.17  | 34.46  | 33.87       | 34.04         | 54.00                    | 19.96  | Average  |
| 2509.450   | 28.50   | 6.20  | 34.46  | 34.28       | 34.52         | 54.00                    | 19.48  | Average  |



Tel: +886 2 26099301 Fax: +886 2 26099303

## A.1.2 Emissions outside the frequency band:

The emissions (up to 25GHz) not reported for there is no emission be found.

| The en        | nissions (up   | to 25GH   | z) not rep | orted for th | iere is no | em  | ission be for | ınd.       |           |
|---------------|----------------|-----------|------------|--------------|------------|-----|---------------|------------|-----------|
| Mode          |                |           | BLE        |              |            | F   | Frequency     | TX 24      | 02MHz     |
|               |                |           |            |              |            |     | <u>'</u>      |            |           |
| Antenna at Ho | orizontal Pol  | arization |            |              |            |     |               |            |           |
| Emission      | Antenna        | Cable     | Preamp     | Read         | Emissi     | on  | Limits        | Margin     |           |
| Frequency     | Factor         | Loss      | Gain       | Level        | Leve       | el  |               |            | Detector  |
| (MHz)         | (dB/m)         | (dB)      | (dB)       | (dBµV)       | (dBµV      | /m) | $(dB\mu V/m)$ | (dB)       |           |
| 4804.000      | 32.92          | 8.32      | 34.34      | 38.93        | 45.83      | 3   | 54.00         | 8.17       | Peak      |
| Antenna at Ve | rtical Polari  | zation    |            |              |            |     |               |            |           |
| Emission      | Antenna        | Cable     | Preamp     | Read         | Emissi     | on  | Limits        | Margin     |           |
| Frequency     | Factor         | Loss      | Gain       | Level        | Leve       | el  |               |            | Detector  |
| (MHz)         | (dB/m)         | (dB)      | (dB)       | $(dB\mu V)$  | (dBµV      | /m) | $(dB\mu V/m)$ | (dB)       |           |
| 4804.000      | 32.92          | 8.32      | 34.34      | 39.04        | 45.9       | 5   | 54.00         | 8.05       | Peak      |
|               |                |           |            |              |            |     |               |            |           |
| Mode          |                |           | BLE        |              |            | F   | Frequency     | TX 24      | 40MHz     |
|               |                |           |            |              |            |     |               |            |           |
| Antenna at Ho | orizontal Pol  | arization |            |              |            |     |               |            |           |
| Emission      | Antenna        | Cable     | Preamp     | Read         | Emissi     |     | Limits        | Margin     |           |
| Frequency     | Factor         | Loss      | Gain       | Level        | Leve       | el  |               |            | Detector  |
| (MHz)         | (dB/m)         | (dB)      | (dB)       | $(dB\mu V)$  | (dBµV      | /m) | $(dB\mu V/m)$ | (dB)       |           |
| 4880.000      | 33.16          | 8.37      | 34.32      | 37.68        | 44.89      | 9   | 54.00         | 9.11       | Peak      |
| Antenna at Ve | rtical Polari: | zation    |            |              |            |     |               |            |           |
| Emission      | Antenna        | Cable     | Preamp     | Read         | Emissi     | on  | Limits        | Margin     |           |
| Frequency     | Factor         | Loss      | Gain       | Level        | Leve       |     |               | 1110118111 | Detector  |
| (MHz)         | (dB/m)         | (dB)      | (dB)       | (dBµV)       | (dBµV      |     | (dBµV/m)      | (dB)       | Bettettor |
| 4880.000      | 33.16          | 8.37      | 34.32      | 37.29        | 44.50      |     | 54.00         | 9.50       | Peak      |
|               |                |           |            |              |            |     |               |            |           |
| Mode          |                |           | BLE        |              |            | F   | Frequency     | TX 24      | 80MHz     |
| Antenna at Ho | orizontal Pol  | arization |            |              |            |     |               |            |           |
| Emission      | Antenna        | Cable     | Preamp     | Read         | Emissi     | on  | Limits        | Margin     |           |
| Frequency     | Factor         | Loss      | Gain       | Level        | Leve       |     |               | C          | Detector  |
| (MHz)         | (dB/m)         | (dB)      | (dB)       | $(dB\mu V)$  | (dBµV      | /m) | $(dB\mu V/m)$ | (dB)       |           |
| 4960.000      | 33.24          | 8.42      | 34.31      | 40.76        | 48.12      |     | 54.00         | 5.88       | Peak      |
| Antenna at Ve | rtical Polari  | zation    |            |              |            |     |               |            |           |
| Emission      | Antenna        | Cable     | Preamp     | Read         | Emissi     | on  | Limits        | Margin     |           |
| Frequency     | Factor         | Loss      | Gain       | Level        | Leve       |     |               |            | Detector  |
| (MHz)         | (dB/m)         | (dB)      | (dB)       | (dBµV)       | (dBµV      |     | (dBµV/m)      | (dB)       | Detector  |
| 4960.000      | 33.24          | 8.42      | 34.31      | 40.36        | 47.72      |     | 54.00         | 6.28       | Peak      |
|               |                |           |            |              | - , , , ,  |     |               |            |           |



Tel: +886 2 26099301 Fax: +886 2 26099303

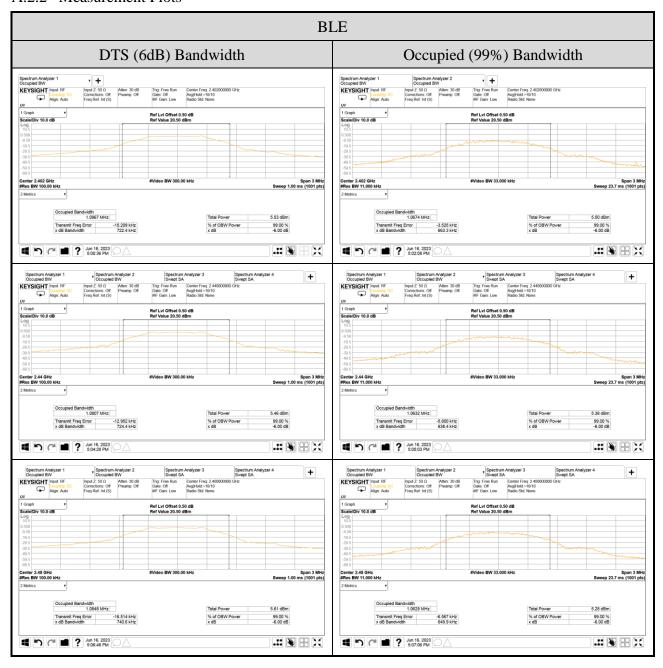
# A.1.3 Emissions in Non-restricted Frequency Bands:

Pursuant to ANSI C63.10:2013 that emission levels below the FCC 15.209(a)/RSS-Gen Section 8.9 table 4 general radiated emissions limits is not required.



Tel: +886 2 26099301 Fax: +886 2 26099303

# A.2 DTS/OCCUPIED BANDWIDTH


| Test Date    | 2023/06/16 | Temp./Hum.       | 23°C/54%  |
|--------------|------------|------------------|-----------|
| Cable Loss   | 0.50dB     | Tested By        | Kuper Hsu |
| Test Voltage | DC 1.      | 5V (Via Battery) |           |

# A.2.1 DTS/Occupied Bandwidth Result

| Mode | Centre Frequency<br>(MHz) | DTS (6dB)<br>Bandwidth (MHz) | Occupied (99%)<br>Bandwidth (MHz) | Limit   |
|------|---------------------------|------------------------------|-----------------------------------|---------|
| BLE  | 2402                      | 0.7207                       | 1.0993                            |         |
|      | 2440                      | 0.7236                       | 1.0948                            | >500kHz |
|      | 2480                      | 0.7147                       | 1.0900                            |         |

Tel: +886 2 26099301 Fax: +886 2 26099303

#### A.2.2 Measurement Plots





Tel: +886 2 26099301 Fax: +886 2 26099303

## A.3 MAXIMUM PEAK OUTPUT POWER

| Test Date    | 2023/06/16            | Temp./Hum. | 23°C/54%  |
|--------------|-----------------------|------------|-----------|
| Cable Loss   | 0.50dB                | Tested By  | Kuper Hsu |
| Test Voltage | DC 1.5V (Via Battery) |            |           |

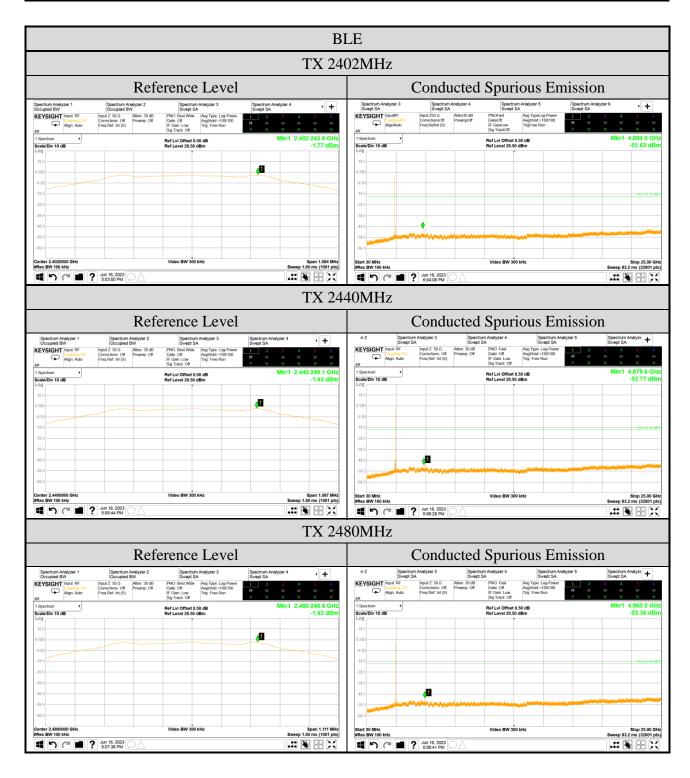
#### A.3.1 Peak Output Power

| Mode | Centre Frequency<br>(MHz) | Peak Output Power (dBm) | Antenna Gain<br>(dBi) | E.I.R.P (dBm)<br>Note 2 | Limit                                           |
|------|---------------------------|-------------------------|-----------------------|-------------------------|-------------------------------------------------|
|      | 2402                      | -1.06                   | 0.60                  | -0.46                   | <30dBm                                          |
| BLE  | 2440                      | -0.91                   | 0.60                  | -0.31                   | (Maximum Peak Output Power)<br><36dBm (E.I.R.P) |
|      | 2480                      | -0.9                    | 0.60                  | -0.30                   |                                                 |

Note: 1. The results have been included cable loss.

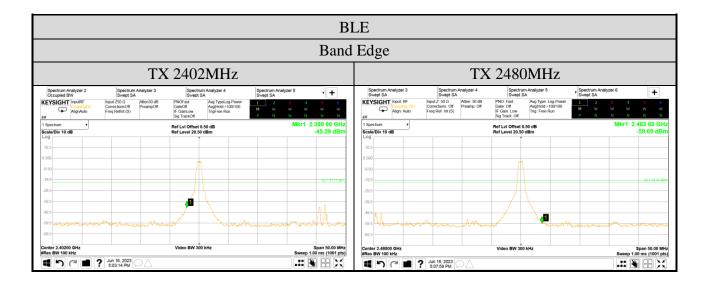
2. E.I.R.P.= The Peak Output Power (dBm)+ Antenna Gain (dBi).

#### A.3.2 Measurement Plots






Tel: +886 2 26099301 Fax: +886 2 26099303


# A.4 EMISSION LIMITATIONS

| Test Date    | 2023/06/16            | Temp./Hum. | 23°C/54%  |
|--------------|-----------------------|------------|-----------|
| Cable Loss   | 0.50dB                | Tested By  | Kuper Hsu |
| Test Voltage | DC 1.5V (Via Battery) |            |           |





Tel: +886 2 26099301 Fax: +886 2 26099303





Tel: +886 2 26099301 Fax: +886 2 26099303

## A.5 POWER SPECTRAL DENSITY

| Test Date    | 2023/06/16            | Temp./Hum. | 23°C/54%  |
|--------------|-----------------------|------------|-----------|
| Cable Loss   | 0.50dB                | Tested By  | Kuper Hsu |
| Test Voltage | DC 1.5V (Via Battery) |            |           |

#### A.5.1 Power Spectral Density Result

| Mode | Centre Frequency (MHz) | Power Spectral Density (dBm) | Limit       |
|------|------------------------|------------------------------|-------------|
|      | 2402                   | -1.77                        |             |
| BLE  | 2440                   | -1.43                        | <8 dBm/3kHz |
|      | 2480                   | -1.43                        |             |

Note: 1. All results have been included cable loss and Simultaneous Factor.

2. For KDB558074 D01V04, in the test result, when RBW set at 100kHz is stricter than 3kHz.

#### A.5.2 Measurement Plots



Note: All results have been included cable loss.



# APPENDIX B

# **TEST PHOTOGRAPHS**

(Model: TPA-S003K)