

Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density

P = power input to the antenna

G = antenna gain

R = distance

Conducted output power:	12.30	(dBm)
	17	(mW)
	0.017	(W)
Antenna gain:	1.282	(dBi)
Maximum antenna gain:	1.34	(numeric)
EIRP	0.023	(W)
Distance:	20	(cm)
Duty Cycle:	100	(%)
Frequency:	2400	(MHz)
MPE Limit:	1	(mW/cm^2)
Power density:	0.005	(mW/cm^2)
	0.05	(W/m^2)
Margin	23.4	(dB)