Indyme Solutions, LLC

REVISED TEST REPORT FOR 101176-6

Body Detection Sensor and Transmitter Model: DM9032

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928 MHz)

Report No.: 101176-6A

Date of issue: May 18, 2018

Test Certificate # 803.02

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 62 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	
Test Report Information	
Report Authorization	
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	
Modifications During Testing	
Conditions During Testing	
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	8
15.247(a) Transmitter Characteristics	8
15.247(a)(1) 20 dB Bandwidth	C
15.247(a)(1) Carrier Separation	11
15.247(a)(1)(iii) Number of Hopping Channels	12
15.247(a)(1)(iii) Time of Occupancy	14
15.247(b)(2) Output Power	18
15.35(c) Duty Cycle Correction Factor	22
15.247(d) RF Conducted Emissions & Band Edge	24
15.247(d) Radiated Emissions & Band Edge	31
15.207 AC Conducted Emissions	46
Supplemental Information	61
Measurement Uncertainty	61
Funicaiona Took Dataila	C1

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Indyme Solutions, LLCDianne Dudley8295 Aero PlaceCKC Laboratories, Inc.San Diego, CA 921235046 Sierra Pines DriveMariposa, CA 95338

Representative: Carl Lozada Project Number: 101176

Customer Reference Number: 5916-00

DATE OF EQUIPMENT RECEIPT: May 9, 2018 **DATE(S) OF TESTING:** May 9-11, 2018

Revision History

Original: Testing of Body Detection Sensor and Transmitter, Model: DM9032 to FCC 15.207 & 15.247. **Revision A:** To delete W units from Conducted Output Power tables in Section 15.247 (b)(2).

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 27 Bel

Page 3 of 62 Report No.: 101176-6A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version		
EMITest Emissions	5.03.11		

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Brea A, CA	US0060	SL2-IN-E-1146R	3082D-1	US1025	A-0147

Page 4 of 62 Report No.: 101176-6A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	Pass
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions	

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of	Conditions
Nono	

Page 5 of 62 Report No.: 101176-6A

EQUIPMENT UNDER TEST (EUT)

The following model has been tested by CKC Laboratories: DM9032

The manufacturer states that the above model tested - DM9032, is a fully configured model representing the best sample having the most hardware and firmware for the worst case EMI performance amongst all the models listed under the family Model DM903x-yy, all of which are identical to the model electrically, and/or any differences between them do not affect their EMC characteristics, therefore they meet the level of testing equivalent to the tested model.

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
POE Power Supply	HDE	LZD103-24W-48	NA
Body Detection Sensor and Transmitter	Indyme Solutions, LLC	DM9032	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
None			

Page 6 of 62 Report No.: 101176-6A

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	918.1-923
Number of Hopping Channels:	52
Modulation Type(s):	FSK
Maximum Duty Cycle:	98% (test mode)
Number of TX Chains:	1
Antenna Type(s) and Gain:	0 dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral (External connector provided to facilitate testing)
Nominal Input Voltage:	48V (POE 115Vac,)
Nominal input voltage.	Battery powered model 3 V
Firmware / Software used for Test:	FCC Test.

Page 7 of 62 Report No.: 101176-6A

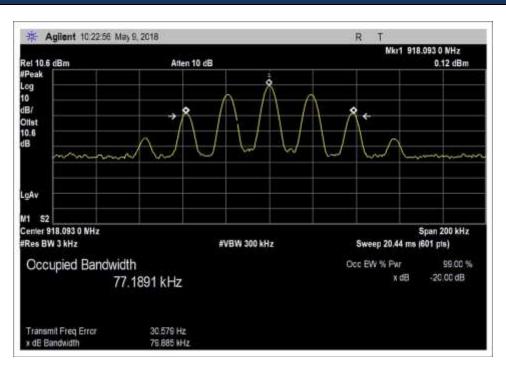
FCC Part 15 Subpart C

15.247(a) Transmitter Characteristics

Test Setup/Conditions				
Test Location:	Brea Lab A	Test Engineer:	E. Wong	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	5/9/2018	
Configuration:	1			
Test Setup: The EUT is placed on the test bench, RF characteristic is evaluated at the temporary antenna port.				
The EUT under evaluation is POE variant.				
Frequency: 902-928MHz				
TX frequency:918.1MHz, 920.6MHz, 923MHz				

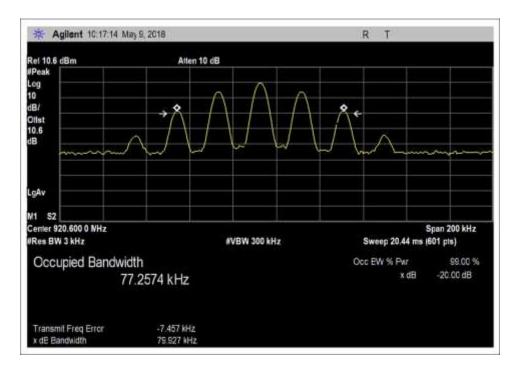
Environmental Conditions				
Temperature (°C) 22 Relative Humidity (%): 54.8				

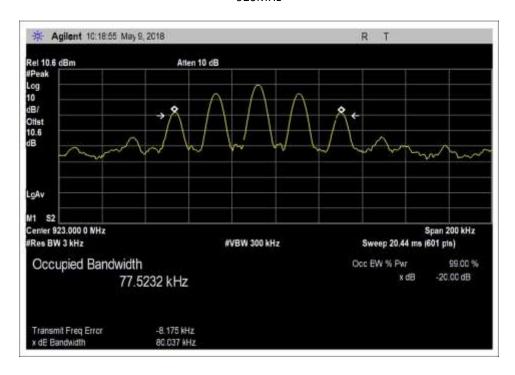
	Test Equipment					
Asset#	Description	Cal Date	Cal Due			
02672	Spectrum Analyzer	Agilent	E4446A	3/2/2017	3/2/2019	
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	12/19/2017	12/19/2019	
P06544	Cable	Astro Steel	32026-29094K- 29094K-36TC	12/21/2017	12/21/2019	


Page 8 of 62 Report No.: 101176-6A

15.247(a)(1) 20 dB Bandwidth

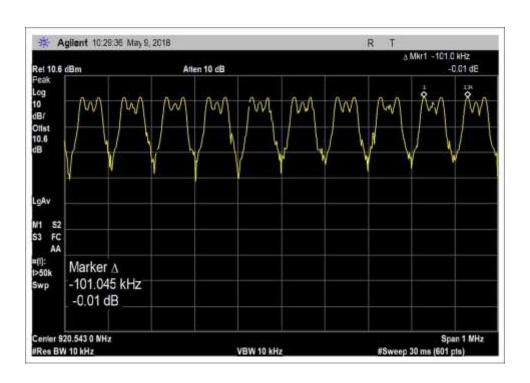
Test Data Summary							
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results		
918.1	1	FSK	79.8	≤500	Pass		
920.6	1	FSK	79.9	≤500	Pass		
923.0	1	FSK	80.0	≤500	Pass		


Plots


918MHz

Page 9 of 62 Report No.: 101176-6A

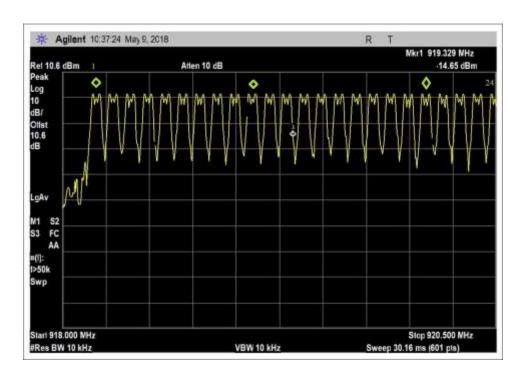
920MHz


923MHz

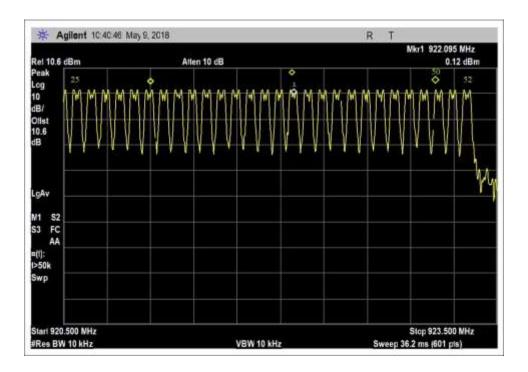
15.247(a)(1) Carrier Separation

Test Data Summary						
Limit applied: 20dB bandwidth of the hopping channel.						
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results		
1	Hopping	101	> 80	Pass		

Plot


Page 11 of 62 Report No.: 101176-6A

15.247(a)(1)(iii) Number of Hopping Channels


Test Data Summary							
$Limit = \begin{cases} 50 & 0 \\ 25 & 0 \end{cases}$	$Limit = \begin{cases} 50 \text{ Channels } 20 \text{ dB BW} < 250 \text{kHz} \\ 25 \text{ Channels } 20 \text{ dB BW} \ge 250 \text{kHz} \end{cases}$						
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results			
1	Hopping	52	≥ 50	Pass			

Plots

Page 12 of 62 Report No.: 101176-6A

15.247(a)(1)(iii) Time of Occupancy

Test Data Summary

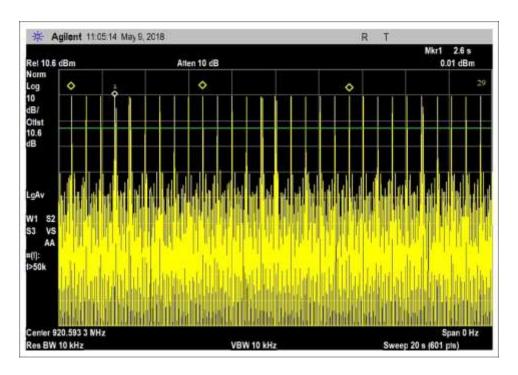
Observation Period, Pobs is derived from the following:

$$P_{Obs} = \begin{cases} 20 \ Seconds \ | 20 \ dB \ BW < 250 kHz \\ 10 \ Seconds \ | 20 \ dB \ BW \ge 250 kHz \end{cases}$$

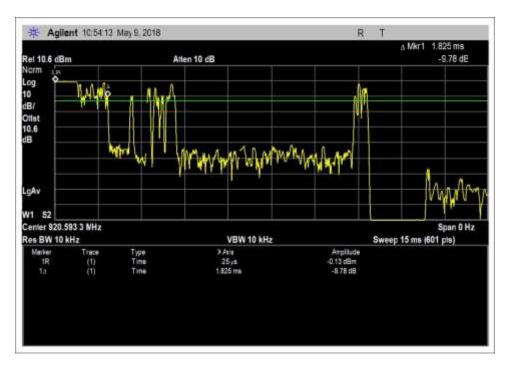
Antenna Port	Operational Mode	Measured (ms)	Limit (ms/P _{obs})	Results
1	Hopping	69.6	≤400	Pass

Measured results are calculated as follows:

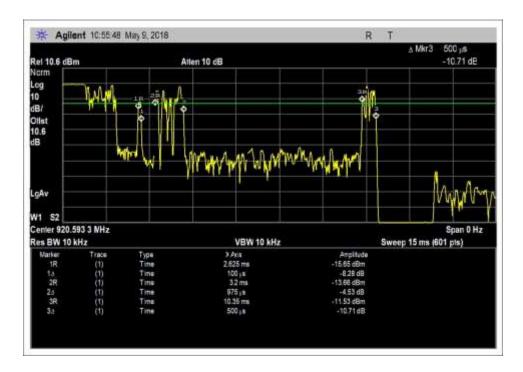
$$\textit{Dwell time} = \left(\sum_{\textit{Bursts}} \textit{RF Burst On Time} + \sum_{\textit{Control}} \textit{Control Signal On time} \right) \bigg|_{P_{obs}}$$


Actual Calculated Values:

Parameter	Value		
Observation Period (Pobs):	20 sec		
Number of RF Bursts / Pobs::	29		
On time of RF Burst:	1.825ms		
Number of Control or other signals / Pobs:	3		
On time of Control or other Signals:	0.1+0.975+0.5 = 1.575ms		
Total Measured On Time:	2.4ms /burst		
Total Measured Off Tillie.	69.6ms/20sec (ie 29burst)		

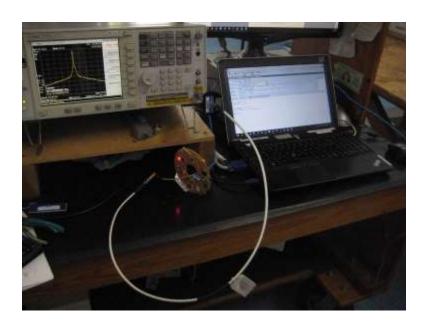

Page 14 of 62 Report No.: 101176-6A

Plots



Number of Burst_20sec

Time_Burst time



Time_Control Signal

Test Setup Photo

Page 17 of 62 Report No.: 101176-6A

15.247(b)(2) Output Power

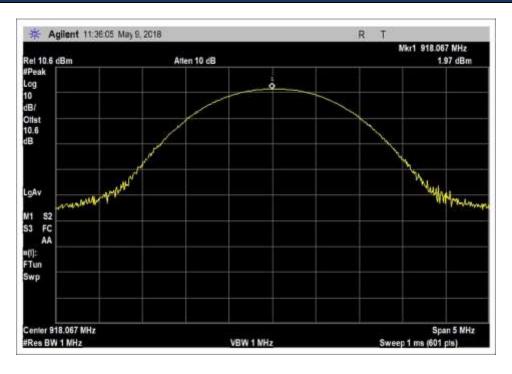
Test Data Summary - Voltage Variations						
Frequency	Modulation / Ant Port	V _{Minimum}	V _{Nominal}	V _{Maximum}	Max Deviation	
(MHz)	modulation / Anti-ore	(dBm)	(dBm)	(dBm)	from V _{Nominal} (dB)	
918.1	FSK (temp ant port)	1.97/ 0.016	1.97/ 0.016	1.97/ 0.016	0	
920.6	FSK (temp ant port)	1.98/0.016	1.98/0.016	1.98/0.016	0	
923.0	FSK (temp ant port)	2.00/0.016	2.00/0.016	2.00/0.016	0	

Test performed using operational mode with the highest output power, representing worst case.

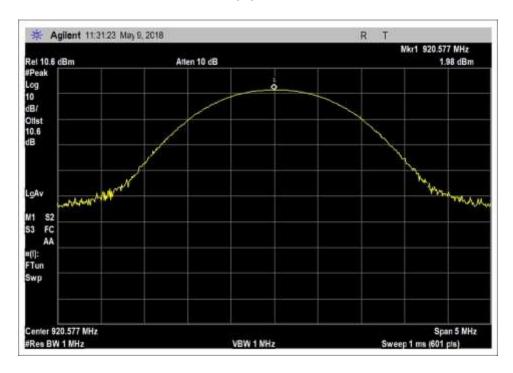
Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

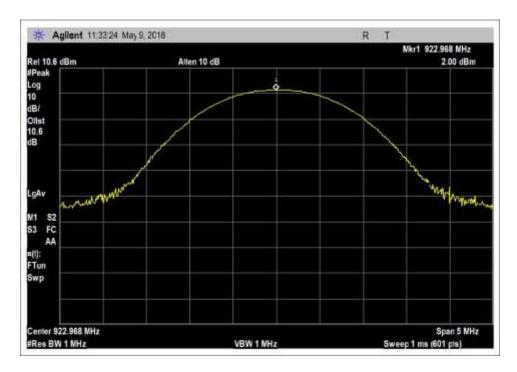
Parameter	Value
V _{Nominal} :	138
V _{Minimum} :	120
V _{Maximum} :	102


Note: Voltage variation performed at AC main of the POE power supply to be provided at the user at time of sale.

Test Data Summary - RF Conducted Measurement							
$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \geq 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \mid < 50 \ Channels \ (min 25) \end{cases}$							
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm Results				
918.1	FSK	Trace, OdBi	1.97/ 0.016	≤ 30 / 1	Pass		
920.6	FSK	Trace, OdBi	1.98/0.016	≤ 30/ 1	Pass		
923.0	FSK	Trace, OdBi	2.00/0.016	≤ 30/ 1	Pass		


Page 18 of 62 Report No.: 101176-6A

Plots



918MHz

920.6MHz

923MHz

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92821 • 714 993 6112

Customer: Indyme Solutions, LLC

Specification: 15.247(b) Power Output (902-928 MHz DTS)

 Work Order #:
 101176
 Date: 5/11/2018

 Test Type:
 Conducted Emissions
 Time: 09:07:27

Tested By: E. Wong

Software: EMITest 5.03.11 120/60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Sequence#: 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The EUT is placed on the test bench, RF characteristic is evaluated at the temporary antenna port.

The EUT under evaluation is POE variant.

Frequency: 902-928MHz

TX frequency:918.1MHz, 920.6MHz, 923MHz

Frequency range of measurement = Fundamental

RBW=VBW=1MHz

Test environment conditions:

Temperature: 22°C Relative Humidity: 55 % Pressure: 100kPa

Site A

ANSI C63.10-2013

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	3/2/2017	3/2/2019
T2	ANP06544	Cable	32026-29094K- 29094K-36TC	12/21/2017	12/21/2019
T3	AN03430	Attenuator	75A-10-12	12/19/2017	12/19/2019

Measurement Data: Reading listed by margin. Test Lead: Antenna port

#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	918.067M	98.4	+0.0	+0.5	+10.1		+0.0	109.0	137.0	-28.0	Anten
2	920.577M	98.4	+0.0	+0.5	+10.1		+0.0	109.0	137.0	-28.0	Anten
3	922.968M	98.4	+0.0	+0.5	+10.1		+0.0	109.0	137.0	-28.0	Anten

Page 21 of 62 Report No.: 101176-6A

15.35(c) Duty Cycle Correction Factor

Test Data Summary					
Antenna Port	Operational Mode	Measured On Time (mS / Pobs)	Calculated DCCF (dB)		
1	Hopping	10.5ms	-19.5		

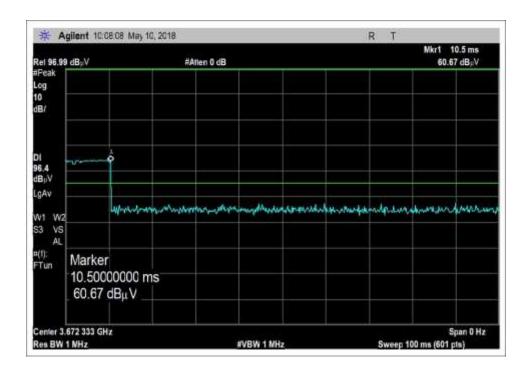
Observation Period, P_{obs} is the duration of the pulse train or maximum 100mS

Measured results are calculated as follows:

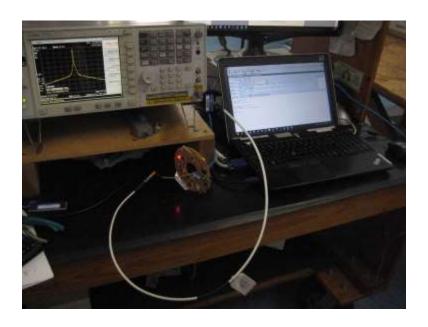
$$\textit{On Time} = \left(\sum_{\textit{Bursts}} \textit{RF Burst On Time} + \sum_{\textit{Control}} \textit{Control Signal On time} \right) \bigg|_{P_{obs} \, (\max 100ms)}$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100ms
Number of RF Bursts / Pobs::	1
On time of RF Burst:	10.5ms
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	10.5ms


Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$DCCF = 20 \cdot Log\left(\frac{On\ Time}{P_{obs}}\right)$$


Page 22 of 62 Report No.: 101176-6A

Duty Cycle Correction Factor Test Data

Test Setup Photo

Page 23 of 62 Report No.: 101176-6A

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92821 • 714 993 6112

Customer: **Indyme Solutions, LLC**

15.247(d) Conducted Spurious Emissions Specification:

Work Order #: 101176 Date: 5/9/2018 Test Type: **Conducted Emissions** Time: 11:22:42

Tested By: E. Wong Sequence#: 1

Software: EMITest 5.03.11 120/60Hz

Equipment Tested:

Device Manufacturer Model # S/N Configuration 1

Support Equipment:

Manufacturer Device Model # S/N Configuration 1

Test Conditions / Notes:

The EUT is placed on the test bench, RF characteristic is evaluated at the temporary antenna port.

The EUT under evaluation is POE variant.

Frequency: 902-928MHz

TX frequency:918.1MHz, 920.6MHz, 923MHz

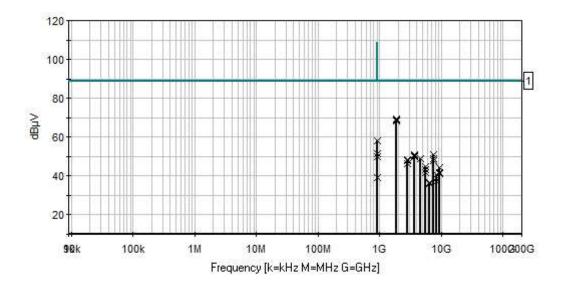
Frequency range of measurement = 9 kHz- 10GHz.

RBW=VBW=100kHz

Test environment conditions:

Temperature: 22°C Relative Humidity: 55 %

Pressure: 100kPa


Site A

ANSI C63.10-2013

Page 24 of 62 Report No.: 101176-6A

Indyme Solutions, LLC WO#: 101176 Sequence#: 1 Date: 5/9/2018 15.247(d) Conducted Spurious Emissions Test Lead: 120/60Hz Antenna port

Readings

1 - 15.247(d) Conducted Spurious Emissions

Peak Readings

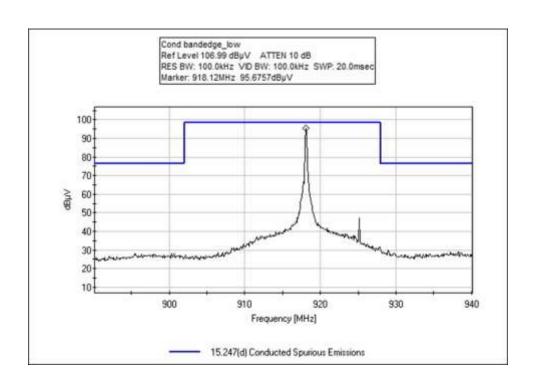
Software Version: 5.03.11

Test Equipment:

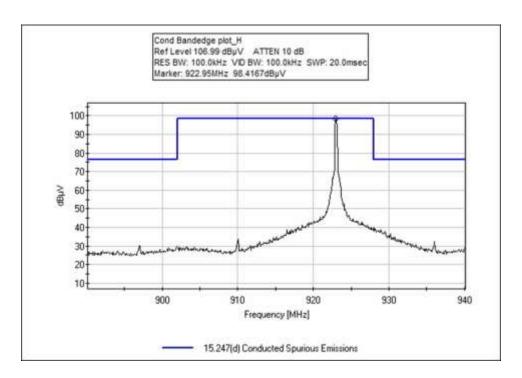
ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	3/2/2017	3/2/2019
T2	ANP06544	Cable	32026-29094K-	12/21/2017	12/21/2019
			29094K-36TC		
Т3	AN03430	Attenuator	75A-10-12	12/19/2017	12/19/2019

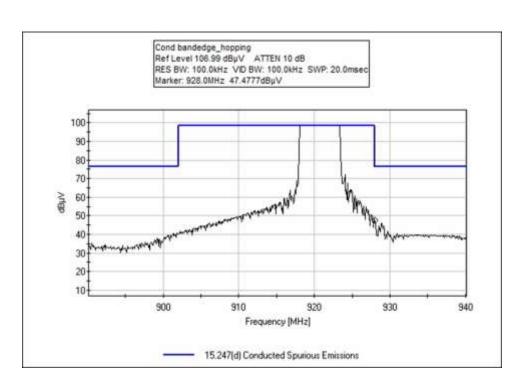
Measu	Measurement Data: Reading listed by margin.						Test Lead: Antenna port					
#	Freq	Rdng	T1	T2	T3		Dist	Corr		Margin	Polar	
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant	
1	1846.000M	58.6	+0.0	+0.7	+10.1		+0.0	69.4	89.0	-19.6	Anten	
									Н			
2	1841.167M	58.0	+0.0	+0.7	+10.1		+0.0	68.8	89.0	-20.2	Anten	
									M			
3	1836.233M	57.5	+0.0	+0.7	+10.1		+0.0	68.3	89.0	-20.7	Anten	
									L			
4	928.000M	47.5	+0.0	+0.5	+10.1		+0.0	58.1	89.0	-30.9	Anten	
									bandedge			
									H_hopping			
5	902.000M	40.9	+0.0	+0.5	+10.1		+0.0	51.5	89.0	-37.5	Anten	
									bandedge L			
									hopping			
6	7344.600M	39.0	+0.0	+1.9	+10.1		+0.0	51.0	89.0	-38.0	Anten	
									L			
7	3682.333M	39.4	+0.0	+1.2	+10.1		+0.0	50.7	89.0	-38.3	Anten	
									M			
8	3672.400M	39.3	+0.0	+1.2	+10.1		+0.0	50.6	89.0	-38.4	Anten	
									L			
9	3692.000M	38.6	+0.0	+1.2	+10.2		+0.0	50.0	89.0	-39.0	Anten	
									Н			
10	928.000M	39.3	+0.0	+0.5	+10.1		+0.0	49.9	89.0	-39.1	Anten	
									bandedge h			
11	4602.917M	37.5	+0.0	+1.6	+10.0		+0.0	49.1	89.0	-39.9	Anten	
									M			
12	4590.550M	37.3	+0.0	+1.6	+10.0		+0.0	48.9	89.0	-40.1	Anten	
									L			
13	4615.000M	37.3	+0.0	+1.6	+10.0		+0.0	48.9	89.0	-40.1	Anten	
									H			
14	7364.667M	36.9	+0.0	+1.9	+10.1		+0.0	48.9	89.0	-40.1	Anten	
									M			
15	2761.750M	37.5	+0.0	+0.9	+10.0		+0.0	48.4	89.0	-40.6	Anten	
									M			
16	7384.000M	35.7	+0.0	+1.9	+10.1		+0.0	47.7	89.0	-41.3	Anten	
									Н			
17	2769.000M	36.8	+0.0	+0.9	+10.0		+0.0	47.7	89.0	-41.3	Anten	
									Н			
18	2754.283M	35.4	+0.0	+0.9	+10.0		+0.0	46.3	89.0	-42.7	Anten	
									L			
19	5508.533M	32.9	+0.0	+1.6	+10.2		+0.0	44.7	89.0	-44.3	Anten	
									L			

Page 26 of 62 Report No.: 101176-6A

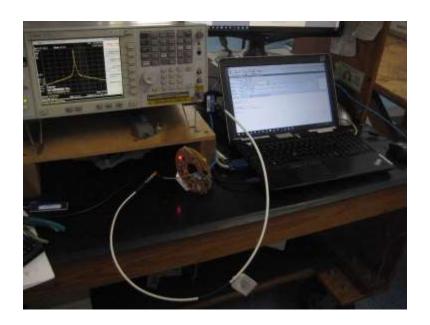

20	9180.767M	32.6	+0.0	+1.7	+10.1	+0.0	44.4	89.0	-44.6	Anten
								L		
21	5523.500M	31.4	+0.0	+1.6	+10.2	+0.0	43.2	89.0	-45.8	Anten
21	3323.300W	31.7	10.0	11.0	110.2	10.0	73.2		- -1 3.0	Anten
								M		
22	9230.000M	30.0	+0.0	+1.6	+10.2	+0.0	41.8	89.0	-47.2	Anten
								Н		
22	5520 000M	20.0	. 0. 0	.1.6	. 10.2	. 0. 0	41.7		47.2	A4
23	5538.000M	29.9	+0.0	+1.6	+10.2	+0.0	41.7	89.0	-47.3	Anten
								H		
24	9205.833M	29.2	+0.0	+1.7	+10.2	+0.0	41.1	89.0	-47.9	Anten
) 2 00.033111	27.2	10.0	,	110.2	10.0			17.2	7 1111011
								M		
25	8262.717M	29.2	+0.0	+1.7	+10.0	+0.0	40.9	89.0	-48.1	Anten
								L		
26	902.000M	28.4	+0.0	+0.5	+10.1	+0.0	39.0	89.0	-50.0	Anten
20	702.000111	20.1	10.0	10.5	110.1	10.0	37.0			7 tinton
								bandedge L		
27	8285.250M	27.1	+0.0	+1.7	+10.0	+0.0	38.8	89.0	-50.2	Anten
								M		
20	8307.000M	25.4	+0.0	+1.6	+10.0	١٠٠٠	37.0	89.0	-52.0	Anten
20	8307.000M	23.4	+0.0	+1.0	+10.0	+0.0	37.0		-32.0	Amen
								Н		
29	6426.650M	24.7	+0.0	+1.7	+10.1	+0.0	36.5	89.0	-52.5	Anten
	0.20.00011	,	. 0.0	,	. 10.1	10.0	20.5	L	02.0	1 1111011
30	6444.083M	24.4	+0.0	+1.7	+10.0	+0.0	36.1	89.0	-52.9	Anten
								M		
31	6461.000M	24.2	+0.0	+1.7	+10.0	ΙΟ Ο	35.9	89.0	-53.1	Anton
31	0401.0001	24.2	+0.0	+1./	+10.0	+0.0	33.9		-33.1	Anten
								Н		

Band Edge


	Band Edge Summary										
Limit applied: Max Power/100kHz - 20dB.											
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results							
902	FSK	-68.0	<-18	Pass							
928	FSK	-57.1	<-18	Pass							
902	FSK (hopping)	-55.5	<-18	Pass							
928	FSK (hopping)	-48.9	<-18	Pass							


Band Edge Plots

Page 28 of 62 Report No.: 101176-6A



Test Setup Photo

Page 30 of 62 Report No.: 101176-6A

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92821 • 714 993 6112

Customer: Indyme Solutions, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 101176 Date: 5/10/2018
Test Type: Radiated Scan Time: 13:51:17
Tested By: E. Wong Sequence#: 1

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The ceiling mount EUT is placed on the Styrofoam platform. The Ethernet port of the EUT is connected to a POE power supply. An unterminated Ethernet cable is connected to the network port of the POE power supply.

Frequency: 902-928MHz

TX frequency:918.1MHz, 920.6MHz, 923MHz

Frequency range of measurement = 9 kHz- 10GHz.

9 kHz -150 kHz;RBW=200 Hz,VBW=200 Hz;150 kHz-30 MHz;RBW=9 kHz,VBW=9 kHz;30 MHz-1000 MHz;RBW=120 kHz,VBW=120 kHz,1000 MHz-26000 MHz;RBW=1 MHz,VBW=1 MHz

Test environment conditions:

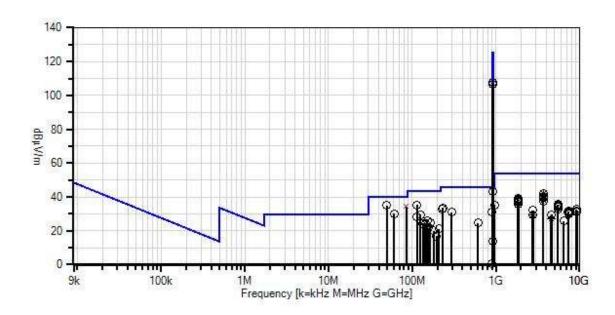
Temperature: 22°C Relative Humidity: 55 %

Pressure: 100kPa

Site A

ANSI C63.10-2013

Emission profile of the EUT rotated along tow orthogonal axis was investigated. Recorded data represent worse case emission.


Worst case emission profile of battery operated, standalone variant was verified. Fresh battery was used.

Duty cycle correction factor of 19.5dB applied above 1000MHz. 20 Log 10.5ms/100ms

Page 31 of 62 Report No.: 101176-6A

Indyme Solutions, LLC WO#: 101176 Sequence#: 1 Date: 5/10/2018 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
 QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings * Average Readings

Average Readings
 Software Version: 5.03.11

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	3/2/2017	3/2/2019
T2	AN01995	Biconilog Antenna	CBL6111C	4/23/2018	4/23/2020
Т3	ANP05275	Attenuator	1W	4/5/2018	4/5/2020
T4	ANP05198	Cable-Amplitude	8268	12/7/2016	12/7/2018
		+15C to +45C (dB)			
T5	AN00309	Preamp	8447D	2/19/2018	2/19/2020
Т6	ANP05050	Cable	RG223/U	1/20/2017	1/20/2019
	AN00314	Loop Antenna	6502	5/20/2016	5/20/2018
T7	AN00787	Preamp	83017A	6/9/2017	6/9/2019
T8	AN01646	Horn Antenna	3115	3/14/2018	3/14/2020
Т9	AN02946	Cable	32022-2-2909K-	12/12/2017	12/12/2019
			36TC		
T10	ANP07139	Cable	ANDL1-	3/1/2017	3/1/2019
			PNMNM-48		
T11	AN02749	High Pass Filter	9SH10-	9/11/2017	9/11/2019
			1000/T10000-		
			0/0		
T12	ANC.1.3	Test Data		No Cal Required	No Cal Required
		Adjustment			

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	Test Distance: 3 Meters			
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	49.880M	47.6	+0.0	+8.4	+6.0	+1.1	+0.0	35.1	40.0	-4.9	Vert
			-28.1	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
2	84.467M	46.7	+0.0	+8.2	+6.0	+1.4	+0.0	34.3	40.0	-5.7	Vert
	QP		-28.1	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
^	84.467M	44.7	+0.0	+8.2	+6.0	+1.4	+0.0	32.3	40.0	-7.7	Vert
			-28.1	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
4	114.313M	44.1	+0.0	+11.3	+6.0	+1.7	+0.0	35.2	43.5	-8.3	Vert
			-28.0	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
5	61.150M	45.2	+0.0	+5.7	+6.0	+1.2	+0.0	30.1	40.0	-9.9	Vert
			-28.1	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
6	960.000M	26.3	+0.0	+23.7	+6.1	+6.1	+0.0	35.4	46.0	-10.6	Vert
			-27.3	+0.5	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
7	3672.300M	63.9	+0.0	+0.0	+0.0	+0.0	+0.0	42.0	54.0	-12.0	Horiz
			+0.0	+0.0	-40.3	+31.8					
			+1.8	+3.8	+0.5	-19.5					

Page 33 of 62 Report No.: 101176-6A

8	3682.400M	63.7	+0.0	+0.0	+0.0	+0.0	+0.0	41.9	54.0	-12.1	Horiz
	Ave		+0.0	+0.0	-40.3	+31.9					
			+1.8	+3.8	+0.5	-19.5					
٨	3682.400M	65.2	+0.0	+0.0	+0.0	+0.0	+0.0	43.4	54.0	-10.6	Horiz
			+0.0	+0.0	-40.3	+31.9					
			+1.8	+3.8	+0.5	-19.5					
٨	3682.400M	61.4	+0.0	+0.0	+0.0	+0.0	+0.0	39.6	54.0	-14.4	Horiz
			+0.0	+0.0	-40.3	+31.9			battery unit		
			+1.8	+3.8	+0.5	-19.5					
11	231.770M	41.0	+0.0	+11.6	+6.0	+2.7	+0.0	33.5	46.0	-12.5	Horiz
			-28.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	3692.000M	62.5	+0.0	+0.0	+0.0	+0.0	+0.0	40.9	54.0	-13.1	Horiz
	Ave		+0.0	+0.0	-40.2	+32.0					
			+1.8	+3.8	+0.5	-19.5					
	3692.000M	62.4	+0.0	+0.0	+0.0	+0.0	+0.0	40.8	54.0	-13.2	Horiz
	Ave		+0.0	+0.0	-40.2	+32.0			Y		
			+1.8	+3.8	+0.5	-19.5					
٨	3692.000M	64.4	+0.0	+0.0	+0.0	+0.0	+0.0	42.8	54.0	-11.2	Horiz
			+0.0	+0.0	-40.2	+32.0					
			+1.8	+3.8	+0.5	-19.5					
٨	3692.000M	63.4	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	54.0	-12.2	Horiz
			+0.0	+0.0	-40.2	+32.0			Y		
			+1.8	+3.8	+0.5	-19.5					
^	3691.967M	61.2	+0.0	+0.0	+0.0	+0.0	+0.0	39.6	54.0	-14.4	Horiz
			+0.0	+0.0	-40.2	+32.0			battery unit		
			+1.8	+3.8	+0.5	-19.5					
17	229.420M	40.4	+0.0	+11.4	+6.0	+2.6	+0.0	32.6	46.0	-13.4	Vert
			-28.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	3672.450M	62.4	+0.0	+0.0	+0.0	+0.0	+0.0	40.5	54.0	-13.5	Horiz
	Ave		+0.0	+0.0	-40.3	+31.8					
			+1.8	+3.8	+0.5	-19.5					
19	124.900M	37.6	+0.0	+11.9	+6.0	+1.9	+0.0	29.5	43.5	-14.0	Horiz
			-28.0	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
20	3672.283M	61.8	+0.0	+0.0	+0.0	+0.0	+0.0	39.9	54.0	-14.1	Horiz
			+0.0	+0.0	-40.3	+31.8			battery unit		
			+1.8	+3.8	+0.5	-19.5					
21	1841.200M	67.5	+0.0	+0.0	+0.0	+0.0	+0.0	39.1	54.0	-14.9	Vert
			+0.0	+0.0	-39.9	+27.0			battery unit		
			+1.1	+2.5	+0.4	-19.5					
22	294.270M	36.4	+0.0	+13.3	+6.0	+3.1	+0.0	31.0	46.0	-15.0	Horiz
			-28.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
23	113.900M	37.5	+0.0	+11.2	+6.0	+1.7	+0.0	28.5	43.5	-15.0	Horiz
			-28.0	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
24	1836.250M	67.1	+0.0	+0.0	+0.0	+0.0	+0.0	38.7	54.0	-15.3	Vert
			+0.0	+0.0	-39.9	+27.0			battery unit		
			+1.1	+2.5	+0.4	-19.5					

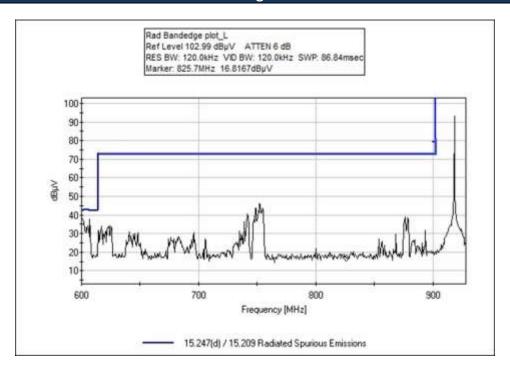
25 1836.235M												
1.1	25	1836.235M	67.0	+0.0				+0.0	38.6	54.0	-15.4	Vert
26 3692,000M Ave												
Ave												
1.8			60.1					+0.0	38.5	54.0	-15.5	Vert
A 3692.000M		Ave										
1												
1.8	^	3692.000M	61.3					+0.0	39.7	54.0	-14.3	Vert
A 3691.917M												
+0.0												
1.8	^	3691.917M	58.3					+0.0	36.7		-17.3	Vert
29 3672.333M										battery unit		
Ave												
1.8			60.4					+0.0	38.5	54.0	-15.5	Vert
3672.333M 62.0		Ave										
+0.0												
1.8	٨	3672.333M	62.0					+0.0	40.1	54.0	-13.9	Vert
31 3682.400M												
Ave												
1.8			59.9					+0.0	38.1	54.0	-15.9	Vert
^ 3682.400M 61.5 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 40.3 +31.9 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.1 +2.5 +0.4 -19.5 +1.1 +2.5 +0.4 -19.5 +1.1 +2.5 +0.4 -19.5 +1.1 +2.5 +0.4 +19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +3.8 +0.5 -19.5 +1.8 +1.8 +3.8 +0.5 -19.5 +1.8 +1.8 +3.8 +0.5 -19.5 +1.1 +2.5 +0.4 -19.5 +1.1 +2.5 +0.		Ave										
+0.0												
1.8	^	3682.400M	61.5					+0.0	39.7	54.0	-14.3	Vert
^ 3682.400M 59.9												
+0.0												
1.8	^	3682.400M	59.9					+0.0	38.1		-15.9	Vert
34 1841.200M 66.2										battery unit		
+0.0												
1.1	34	1841.200M	66.2					+0.0	37.8		-16.2	Horiz
35 1836.200M 66.0										battery unit		
Holing H												
1.1 +2.5 +0.4 -19.5 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 battery unit +1.1 +1.8 +3.8 +0.5 -19.5 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 battery unit +1.8 +3.8 +0.5 -19.5 +0.0 +0.	35	1836.200M	66.0					+0.0	37.6	54.0	-16.4	Horiz
36 3672.450M 59.5 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 battery unit -16.4 Vert 40 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -16.6 Horiz 37 1846.000M 65.8 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 37.4 54.0 -16.6 Horiz 40 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -16.6 Horiz 38 1845.983M 65.7 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 37.3 54.0 -16.7 Horiz 40 1836.131M 65.2 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.8 54.0 -17.2 Horiz 40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.3 Horiz 41 1846.017M 65.0 +0.0 +0.0 <td></td>												
+0.0												
1.8	36	3672.450M	59.5					+0.0	37.6		-16.4	Vert
37 1846.000M 65.8 +0.0 +0.0 +0.0 +0.0 +0.0 37.4 54.0 -16.6 Horiz 38 1845.983M 65.7 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -16.7 Horiz 39 1836.131M 65.2 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.2 Horiz 40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.2 Horiz 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.3 Horiz 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.4 Vert 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.4 Vert 40 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>battery unit</td> <td></td> <td></td>										battery unit		
+0.0 +0.0 -39.9 +27.0 +1.1 +2.5 +0.4 -19.5 38 1845.983M 65.7 +0.0 +0.0 +0.0 +0.0 +0.0 37.3 54.0 -16.7 Horiz +0.0 +0.0 +0.0 +0.0 +0.0 54.0 battery unit +1.1 +2.5 +0.4 -19.5 39 1836.131M 65.2 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.8 54.0 -17.2 Horiz +0.0 +0.0 +0.0 -39.9 +27.0 +1.1 +2.5 +0.4 -19.5 40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.7 54.0 -17.3 Horiz +0.0 +0.0 +0.0 -39.9 +27.0 battery unit +1.1 +2.5 +0.4 -19.5 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.6 54.0 -17.4 Vert +0.0 +0.0 +0.0 -39.9 +27.0 battery unit												
38 1845.983M 65.7 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -16.7 Horiz 39 1836.131M 65.2 +0.0 <t< td=""><td>37</td><td>1846.000M</td><td>65.8</td><td></td><td></td><td></td><td></td><td>+0.0</td><td>37.4</td><td>54.0</td><td>-16.6</td><td>Horiz</td></t<>	37	1846.000M	65.8					+0.0	37.4	54.0	-16.6	Horiz
38 1845.983M 65.7 +0.0 +0.0 +0.0 +0.0 +0.0 37.3 54.0 -16.7 Horiz +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 battery unit +1.1 +2.5 +0.4 -19.5 39 1836.131M 65.2 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.8 54.0 -17.2 Horiz +0.0 +0.0 +0.0 -39.9 +27.0 +1.1 +2.5 +0.4 -19.5 40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.7 54.0 -17.3 Horiz +0.0 +0.0 +0.0 -39.9 +27.0 battery unit +1.1 +2.5 +0.4 -19.5 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.6 54.0 -17.4 Vert +0.0 +0.0 +0.0 -39.9 +27.0 battery unit												
40 +0.0 +0.0 -39.9 +27.0 battery unit 39 1836.131M 65.2 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.8 54.0 -17.2 Horiz 40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.3 Horiz 40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.3 Horiz 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.4 Vert 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.4 Vert												
+1.1 +2.5 +0.4 -19.5 39 1836.131M 65.2 +0.0 +0.0 +0.0 +0.0 +0.0 36.8 54.0 -17.2 Horiz +0.0 +0.0 -39.9 +27.0 +1.1 +2.5 +0.4 -19.5 40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 36.7 54.0 -17.3 Horiz +0.0 +0.0 -39.9 +27.0 battery unit +1.1 +2.5 +0.4 -19.5 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.6 54.0 -17.4 Vert +0.0 +0.0 -39.9 +27.0 battery unit	38	1845.983M	65.7					+0.0	37.3		-16.7	Horiz
39 1836.131M 65.2 +0.0 +0.0 +0.0 +0.0 +0.0 36.8 54.0 -17.2 Horiz +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.8 54.0 -17.2 Horiz +0.0 +0.0 +0.0 +0.0 +0.5 +0.0 +0.0 +0.0										battery unit		
40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.3 Horiz 40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.3 Horiz +0.0 +0.0 +0.0 -39.9 +27.0 battery unit battery unit -17.4 Vert 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.4 Vert +0.0 +0.0 -39.9 +27.0 battery unit battery unit									<u> </u>			
40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.3 Horiz 40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.3 Horiz +0.0 +0.0 +0.0 -19.5 -17.4 Vert 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 54.0 -17.4 Vert +0.0 +0.0 +0.0 -39.9 +27.0 battery unit battery unit	39	1836.131M	65.2					+0.0	36.8	54.0	-17.2	Horiz
40 1836.267M 65.1 +0.0 +0.0 +0.0 +0.0 +0.0 36.7 54.0 -17.3 Horiz +0.0 +0.0 +0.0 -39.9 +27.0 battery unit +1.1 +2.5 +0.4 -19.5 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.6 54.0 -17.4 Vert +0.0 +0.0 +0.0 -39.9 +27.0 battery unit												
+0.0 +0.0 -39.9 +27.0 battery unit +1.1 +2.5 +0.4 -19.5 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.6 54.0 -17.4 Vert +0.0 +0.0 -39.9 +27.0 battery unit												
+1.1 +2.5 +0.4 -19.5 41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.6 54.0 -17.4 Vert +0.0 +0.0 -39.9 +27.0 battery unit	40	1836.267M	65.1					+0.0	36.7		-17.3	Horiz
41 1846.017M 65.0 +0.0 +0.0 +0.0 +0.0 +0.0 36.6 54.0 -17.4 Vert +0.0 +0.0 -39.9 +27.0 battery unit										battery unit		
+0.0 +0.0 -39.9 +27.0 battery unit		101:5:										<u> </u>
·	41	1846.017M	65.0					+0.0	36.6		-17.4	Vert
+1.1 +2.5 +0.4 -19.5										battery unit		
				+1.1	+2.5	+0.4	-19.5					

42 151.170M	34.7	+0.0	+11.2	+6.0	+2.1	+0.0	26.1	43.5	-17.4	Vert
		-28.0	+0.1	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
43 1841.200M	65.0	+0.0	+0.0	+0.0	+0.0	+0.0	36.6	54.0	-17.4	Horiz
		+0.0	+0.0	-39.9	+27.0					
		+1.1	+2.5	+0.4	-19.5					
44 918.100M	99.0	+0.0	+23.1	+6.1	+6.0	+0.0	107.5	125.2	-17.7	Vert
		-27.2	+0.5	+0.0	+0.0			Fundament	al _L	
		+0.0	+0.0	+0.0	+0.0					
45 1841.200M	64.3	+0.0	+0.0	+0.0	+0.0	+0.0	35.9	54.0	-18.1	Vert
		+0.0	+0.0	-39.9	+27.0					
		+1.1	+2.5	+0.4	-19.5					
46 1845.950M	64.3	+0.0	+0.0	+0.0	+0.0	+0.0	35.9	54.0	-18.1	Vert
		+0.0	+0.0	-39.9	+27.0					
		+1.1	+2.5	+0.4	-19.5					
47 5508.685M	53.4	+0.0	+0.0	+0.0	+0.0	+0.0	35.7	54.0	-18.3	Horiz
		+0.0	+0.0	-39.6	+34.1					
		+2.2	+4.6	+0.5	-19.5					
48 922.997M	98.0	+0.0	+23.2	+6.1	+6.0	+0.0	106.6	125.2	-18.6	Vert
		-27.2	+0.5	+0.0	+0.0			Fundament	al H	
		+0.0	+0.0	+0.0	+0.0					
49 163.730M	34.0	+0.0	+10.4	+6.0	+2.2	+0.0	24.7	43.5	-18.8	Horiz
		-28.0	+0.1	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
50 5523.600M	52.9	+0.0	+0.0	+0.0	+0.0	+0.0	35.1	54.0	-18.9	Horiz
		+0.0	+0.0	-39.6	+34.0					
		+2.2	+4.6	+0.5	-19.5					
51 133.930M	32.6	+0.0	+11.8	+6.0	+1.9	+0.0	24.4	43.5	-19.1	Horiz
		-28.0	+0.1	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
52 144.300M	32.7	+0.0	+11.5	+6.0	+2.0	+0.0	24.3	43.5	-19.2	Horiz
		-28.0	+0.1	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
53 5508.570M	52.2	+0.0	+0.0	+0.0	+0.0	+0.0	34.5	54.0	-19.5	Vert
	•	+0.0	+0.0	-39.6	+34.1					
		+2.2	+4.6	+0.5	-19.5					
54 5523.600M	51.7	+0.0	+0.0	+0.0	+0.0	+0.0	33.9	54.0	-20.1	Vert
		+0.0	+0.0		+34.0					
		+2.2	+4.6	+0.5	-19.5					
55 614.000M	21.1	+0.0	+20.0	+6.0	+4.7	+0.0	24.7	46.0	-21.3	Vert
		-27.5	+0.4	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
56 5538.000M	50.6	+0.0	+0.0	+0.0	+0.0	+0.0	32.7	54.0	-21.3	Horiz
		+0.0	+0.0	-39.6	+33.9					
		+2.2	+4.6	+0.5	-19.5					
57 9206.000M	43.3	+0.0	+0.0	+0.0	+0.0	+0.0	32.6	54.0	-21.4	Horiz
2. 2200.000111		+0.0	+0.0	-39.4	+38.3		- 2.0	20		
		+3.2	+6.3	+0.4	-19.5					
58 9181.160M	43.4	+0.0	+0.0	+0.0	+0.0	+0.0	32.6	54.0	-21.4	Horiz
22 71011100111		+0.0	+0.0	-39.4	+38.3		22.0	20		
		+3.1	+6.3	+0.4	-19.5					
L		10.1	10.5		17.0					

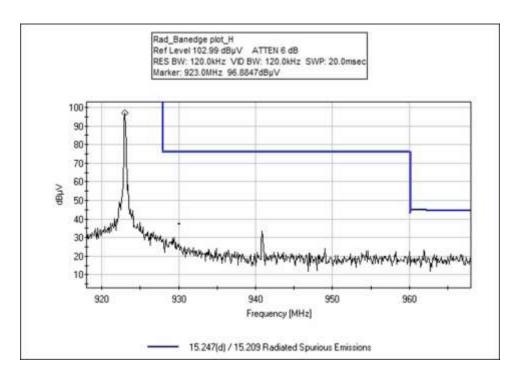
	155.02015	20.7	0.0	10.0		2.1	0.0	21.0	10.5	21.7	TT .
59	155.930M	30.7	+0.0 -28.0	+10.9	+6.0 +0.0	+2.1	+0.0	21.8	43.5	-21.7	Horiz
			+0.0	$+0.1 \\ +0.0$	+0.0	$^{+0.0}_{+0.0}$					
60	158.000M	30.8	+0.0	+10.8	+6.0	+2.1	+0.0	21.8	43.5	-21.7	Vert
	130.0001	30.0	-28.0	+0.1	+0.0	+0.0	10.0	21.0	43.3	21.7	VCIT
			+0.0	+0.0	+0.0	+0.0					
61	2761.800M	57.1	+0.0	+0.0	+0.0	+0.0	+0.0	32.1	54.0	-21.9	Vert
01	2,01,0001,1	0,11	+0.0	+0.0	-40.3	+29.0	. 0.0	02.1	<i>cc</i>		, 510
			+1.4	+3.3	+1.1	-19.5					
62	2754.182M	57.1	+0.0	+0.0	+0.0	+0.0	+0.0	32.1	54.0	-21.9	Horiz
			+0.0	+0.0	-40.3	+29.0					
			+1.4	+3.3	+1.1	-19.5					
63	208.375M	30.8	+0.0	+9.8	+6.0	+2.5	+0.0	21.3	43.5	-22.2	Vert
			-28.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
64	9230.000M	42.5	+0.0	+0.0	+0.0	+0.0	+0.0	31.8	54.0	-22.2	Vert
			+0.0	+0.0	-39.4	+38.3					
			+3.2	+6.3	+0.4	-19.5					
65	7384.000M	45.7	+0.0	+0.0	+0.0	+0.0	+0.0	31.5	54.0	-22.5	Vert
			+0.0	+0.0	-39.8	+36.4					
			+2.7	+5.6	+0.4	-19.5					
66	7384.000M	45.4	+0.0	+0.0	+0.0	+0.0	+0.0	31.2	54.0	-22.8	Horiz
			+0.0	+0.0	-39.8	+36.4					
			+2.7	+5.6	+0.4	-19.5					
67	9206.000M	41.8	+0.0	+0.0	+0.0	+0.0	+0.0	31.1	54.0	-22.9	Vert
			+0.0	+0.0	-39.4	+38.3					
			+3.2	+6.3	+0.4	-19.5					
68	7344.920M	45.5	+0.0	+0.0	+0.0	+0.0	+0.0	31.1	54.0	-22.9	Horiz
			+0.0	+0.0	-39.9	+36.4					
			+2.7	+5.6	+0.3	-19.5					
69	181.180M	30.6	+0.0	+9.1	+6.0	+2.3	+0.0	20.1	43.5	-23.4	Horiz
			-28.0	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
70	7364.800M	44.6	+0.0	+0.0	+0.0	+0.0	+0.0	30.4	54.0	-23.6	Horiz
			+0.0	+0.0	-39.8	+36.4					
7.1	7264 00034	44.1	+2.7	+5.6	+0.4	-19.5	0.0	20.0	740	0.4.1	X 7 .
7/1	7364.800M	44.1	+0.0	+0.0	+0.0	+0.0	+0.0	29.9	54.0	-24.1	Vert
			+0.0	+0.0		+36.4					
72	4602 000N#	50.2	+2.7	+5.6	+0.4	-19.5	+O O	20.4	540	24.6	Hor:-
12	4603.000M	50.3	$+0.0 \\ +0.0$	+0.0	+0.0	+0.0	+0.0	29.4	54.0	-24.6	Horiz
			+0.0 +1.8	+0.0 +4.1	-40.6 +0.6	+32.7 -19.5					
72	4603.000M	50.3	+0.0	+4.1	+0.0		+0.0	29.4	54.0	-24.6	Vert
13	4003.000101	50.5	+0.0 +0.0	+0.0	+0.0 -40.6	+0.0 +32.7	+0.0	∠ ∀. 4	34.0	-24.0	vert
			+1.8	+0.0 +4.1	+0.6	+32.7 -19.5					
7.1	2761.800M	54.3	+0.0	+0.0	+0.0	+0.0	+0.0	29.3	54.0	-24.7	Horiz
/4	2/01.000WI	54.5	+0.0 +0.0	+0.0 +0.0	+0.0 -40.3	+0.0	+0.0	47.3	54.0	-24.1	HOHZ
			+1.4	+3.3	+1.1	-19.5					
75	2754.417M	54.3	+0.0	+0.0	+0.0	+0.0	+0.0	29.3	54.0	-24.7	Vert
I	Ave	J T. J	+0.0	+0.0	-40.3	+29.0	10.0	27.3	J-T.U	۷٦.1	VCIT
			+1.4	+3.3	+1.1	-19.5					
L			. 1. 1	10.0	. 1.1	17.0					

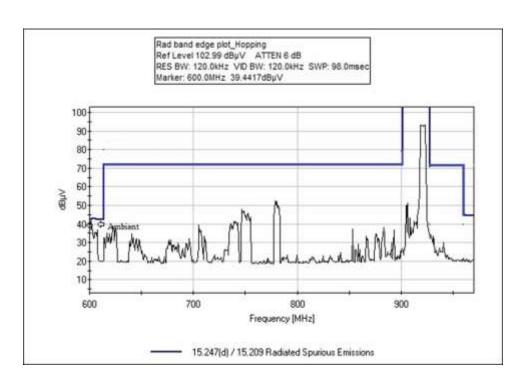
Page 37 of 62 Report No.: 101176-6A

^ 2	754.417M	56.6	+0.0	+0.0	+0.0	+0.0	+0.0	31.6	54.0	-22.4	Vert
			+0.0	+0.0	-40.3	+29.0					
			+1.4	+3.3	+1.1	-19.5					
77 4	590.567M	49.9	+0.0	+0.0	+0.0	+0.0	+0.0	29.1	54.0	-24.9	Horiz
			+0.0	+0.0	-40.5	+32.7					
			+1.8	+4.1	+0.6	-19.5					
78	195.975M	27.2	+0.0	+9.1	+6.0	+2.4	+0.0	16.9	43.5	-26.6	Vert
			-28.0	+0.2	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
79 4	590.667M	48.1	+0.0	+0.0	+0.0	+0.0	+0.0	27.3	54.0	-26.7	Vert
A	ve		+0.0	+0.0	-40.5	+32.7					
			+1.8	+4.1	+0.6	-19.5					
^ 4	590.725M	52.5	+0.0	+0.0	+0.0	+0.0	+0.0	31.7	54.0	-22.3	Vert
			+0.0	+0.0	-40.5	+32.7					
			+1.8	+4.1	+0.6	-19.5					
81 6	426.800M	43.4	+0.0	+0.0	+0.0	+0.0	+0.0	25.7	54.0	-28.3	Horiz
			+0.0	+0.0	-39.9	+34.0					
			+2.3	+5.0	+0.4	-19.5					
82 9	928.000M	45.2	+0.0	+0.0	+0.0	+0.0	+0.0	14.0	46.0	-32.0	Vert
			+0.0	+0.0	-42.5	+0.0			bandedge_1	H	
			+0.7	+1.7	+8.9	+0.0			20dBc_hop	ping	
83 9	928.000M	34.9	+0.0	+0.0	+0.0	+0.0	+0.0	43.4	87.5	-44.1	Vert
			+0.0	+0.0	+0.0	+0.0			Bandedge_	Н -	
			+0.0	+0.0	+0.0	+0.0			20dBc		
84 9	902.000M	26.3	+0.0	+0.0	+0.0	+0.0	+0.0	0.6	46.0	-45.4	Vert
			+0.0	+0.0	-42.7	+0.0			bandedge_1	L	
			+0.6	+1.7	+14.7	+0.0			20dBc_hop	ping	
85	902.000M	22.9	+0.0	+0.0	+0.0	+0.0	+0.0	31.0	87.5	-56.5	Vert
			+0.0	+0.0	+0.0	+0.0			bandedge_1	L	
			+0.0	+0.0	+0.0	+0.0			20dBc		


Page 38 of 62 Report No.: 101176-6A

Band Edge


	Band Edge Summary										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
614	FSK	Trace	24.7	<54	Pass						
902	FSK	Trace	31.0	<87.5	Pass						
928	FSK	Trace	43.4	< 87.5	Pass						
960	FSK	Trace	35.4	<54	Pass						
		H	lopping								
614	FSK	Trace	24.7	<54	Pass						
902	FSK	Trace	34.4	<87.5	Pass						
928	FSK	Trace	53.7	< 87.5	Pass						
960	FSK	Trace	35.4	<54	Pass						


Band Edge Plots

Page 39 of 62 Report No.: 101176-6A

Test Setup Photos

9kHz – 1GHz

9kHz – 1GHz

1 - 26GHz

1 - 26GHz

1 - 26GHz, Cone placement

1 - 26GHz, Cone placement

Y Axis

Y Axis

Battery

Battery

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92821 • 714 993 6112

Customer: Indyme Solutions, LLC

Specification: 15.207 AC Mains - Quasi-peak

 Work Order #:
 101176
 Date: 5/10/2018

 Test Type:
 Conducted Emissions
 Time: 15:33:45

Tested By: E. Wong Sequence#: 2

Software: EMITest 5.03.11 120/60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The ceiling mount EUT is placed on the Styrofoam platform. The Ethernet port of the EUT is connected to a POE power supply. An unterminated Ethernet cable is connected to the network port of the POE power supply.

Frequency: 902-928MHz TX frequency: 920.6MHz

Frequency range of measurement = 150kHz- 30MHz.

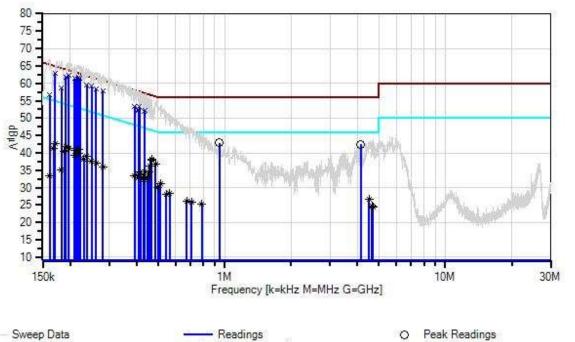
150 kHz-30 MHz;RBW=9 kHz,VBW=9kHz

Test environment conditions:

Temperature: 22°C Relative Humidity: 55 % Pressure: 100kPa

Site A

ANSI C63.10-2013


Page 46 of 62 Report No.: 101176-6A

QP Readings

Software Version: 5.03.11

Indyme Solutions, LLC WO#: 101176 Sequence#: 2 Date: 5/10/2018 15.207 AC Mains - Quasi-peak Test Lead: 120/60Hz L1-Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	3/2/2017	3/2/2019
T1	ANC00079	Attenuator		2/3/2017	2/3/2019
T2	ANP07338	Cable	2249-Y-240	2/19/2018	2/19/2020
T3	AN02610	High Pass Filter	HE9615-150K-	10/25/2017	10/25/2019
			50-720B		
T4	AN00969A	50uH LISN-Line 1 (L1)	3816/2NM	3/14/2017	3/14/2019
	AN00969A	50uH LISN-Line2 (L2)	3816/2NM	3/14/2017	3/14/2019
T5	ANP06986	Cable-Line L1(dB)	90cm-extcord	3/31/2018	3/31/2020
	ANP06986	Cable-Neutral L2(dB)	90cm-extcord	3/31/2018	3/31/2020

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV	dΒμV	dB	Ant
1		51.8	+9.8	+0.0	+0.2	+0.0	+0.0	61.8	62.9	-1.1	L1-Li
	QP		+0.0								
2		51.5	+9.8	+0.0	+0.2	+0.0	+0.0	61.5	62.8	-1.3	L1-Li
3	QP	50.0	+0.0	. 0. 0	. 0. 0	. 0. 0	. 0. 0	60.0	62.0	1.5	T 1 T '
3	196.541k QP	52.3	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	62.3	63.8	-1.5	L1-Li
4	_	51.3	+9.8	+0.0	+0.2	+0.0	+0.0	61.3	62.9	-1.6	L1-Li
-	QP	31.3	+0.0	10.0	10.2	10.0	10.0	01.5	02.7	-1.0	L1-L1
5		51.3	+9.8	+0.0	+0.2	+0.0	+0.0	61.3	63.1	-1.8	L1-Li
	QP	01.0	+0.0	. 0.0	. 0.2	. 0.0		01.0	00.1	1.0	21 21
6		51.4	+9.8	+0.0	+0.2	+0.0	+0.0	61.4	63.2	-1.8	L1-Li
	QP		+0.0								
7	171.089k	53.0	+9.8	+0.0	+0.2	+0.0	+0.0	63.0	64.9	-1.9	L1-Li
	QP		+0.0								
8	191.451k	51.8	+9.8	+0.0	+0.2	+0.0	+0.0	61.8	64.0	-2.2	L1-Li
	QP		+0.0								
9		49.6	+9.8	+0.0	+0.2	+0.0	+0.0	59.6	62.2	-2.6	L1-Li
	QP		+0.0								
10		49.2	+9.8	+0.0	+0.1	+0.0	+0.0	59.1	61.7	-2.6	L1-Li
	QP		+0.0								
11		48.0	+9.8	+0.0	+0.1	+0.0	+0.0	57.9	60.8	-2.9	L1-Li
	QP		+0.0								
12		48.5	+9.8	+0.0	+0.1	+0.0	+0.0	58.4	61.4	-3.0	L1-Li
12	QP	22.0	+0.0	. 0. 1	.0.2	. 0. 0	. 0. 0	42.0	16.0	2.1	T 1 T 1
13	945.248k	32.8	+9.8 +0.0	+0.1	+0.2	+0.0	+0.0	42.9	46.0	-3.1	L1-Li
14	4.148M	32.1	+9.8	+0.2	+0.1	+0.1	+0.0	42.4	46.0	-3.6	L1-Li
14	4.140IVI	34.1	+9.8	+0.2	+0.1	+0.1	+0.0	42.4	40.0	-5.0	L1-L1
15	412.521k	43.2	+9.8	+0.0	+0.2	+0.0	+0.0	53.2	57.6	-4.4	L1-Li
13	QP	73.2	+0.0	10.0	10.2	10.0	10.0	33.2	57.0	7.7	
16	391.432k	43.4	+9.8	+0.0	+0.2	+0.0	+0.0	53.4	58.0	-4.6	L1-Li
	QP		+0.0								-
17		42.3	+9.8	+0.0	+0.2	+0.0	+0.0	52.3	57.1	-4.8	L1-Li
	QP		+0.0								

18 432.883k QP	41.9	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	51.9	57.2	-5.3	L1-Li
19 408.158k	42.4	+9.8	+0.0	+0.2	+0.0	+0.0	52.4	57.7	-5.3	L1-Li
QP		+0.0								
20 408.158k QP	42.3	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	52.3	57.7	-5.4	L1-Li
21 181.997k	48.8	+9.8	+0.0	+0.2	+0.0	+0.0	58.8	64.4	-5.6	L1-Li
QP 22 466.335k	28.0	+0.0	+0.1	+0.2	+0.0	+0.0	38.1	46.6	-8.5	L1-Li
Ave 23 466.335k	27.7	+0.0	+0.1	+0.2	+0.0	+0.0	37.8	16.6	-8.8	L1-Li
23 466.335k Ave	21.1	+9.8 +0.0	+0.1	+0.2	+0.0	+0.0	37.6	46.6	-0.0	L1-L1
^ 466.334k	45.1	+9.8	+0.1	+0.2	+0.0	+0.0	55.2	46.6	+8.6	L1-Li
		+0.0								
^ 469.970k	43.8	+9.8	+0.1	+0.2	+0.0	+0.0	53.9	46.5	+7.4	L1-Li
26 161.635k	46.4	+0.0	+0.0	+0.4	ι Ο Ο	+0.0	56.6	65.1	-8.8	I 1 I ;
26 161.635k QP	40.4	+9.8 +0.0	+0.0	+0.4	+0.0	+0.0	30.0	65.4	-0.0	L1-Li
27 487.424k	26.8	+9.8	+0.1	+0.2	+0.0	+0.0	36.9	46.2	-9.3	L1-Li
Ave		+0.0								
^ 487.423k	45.0	+9.8 +0.0	+0.1	+0.2	+0.0	+0.0	55.1	46.2	+8.9	L1-Li
29 459.790k	26.2	+9.8	+0.1	+0.2	+0.0	+0.0	36.3	46.7	-10.4	L1-Li
Ave		+0.0								
30 217.630k Ave	31.1	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	41.1	52.9	-11.8	L1-Li
31 191.451k	31.9	+9.8	+0.0	+0.2	+0.0	+0.0	41.9	54.0	-12.1	L1-Li
Ave		+0.0								
32 171.089k	32.8	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	42.8	54.9	-12.1	L1-Li
Ave 33 212.540k	30.8	+9.8	+0.0	+0.2	+0.0	+0.0	40.8	53.1	-12.3	L1-Li
Ave Ave	30.6	+9.8	+0.0	+0.2	+0.0	+0.0	40.6	33.1	-12.3	L1-L1
34 456.154k	24.4	+9.8	+0.1	+0.2	+0.0	+0.0	34.5	46.8	-12.3	L1-Li
Ave		+0.0								
35 456.154k	24.3	+9.8	+0.1	+0.2	+0.0	+0.0	34.4	46.8	-12.4	L1-Li
Ave	45.0	+0.0	0.1	0.2	0.0	0.0		46.7	^ ^	Y 1 Y 1
^ 459.789k	45.8	+9.8 +0.0	+0.1	+0.2	+0.0	+0.0	55.9	46.7	+9.2	L1-Li
^ 456.153k	45.6	+9.8 +0.0	+0.1	+0.2	+0.0	+0.0	55.7	46.8	+8.9	L1-Li
38 196.541k	31.3	+9.8	+0.0	+0.2	+0.0	+0.0	41.3	53.8	-12.5	L1-Li
Ave	51.5	+0.0	10.0	10.2	10.0	10.0	71.5	55.0	14.3	T.1-I
^ 196.541k	56.0	+9.8	+0.0	+0.2	+0.0	+0.0	66.0	63.8	+2.2	L1-Li
40 405 5001	24.5	+0.0	.0.0	.0.2	.0.0	.0.0	24.5	47.1	12.6	T 1 T '
40 435.792k Ave	24.5	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	34.5	47.1	-12.6	L1-Li
^ 439.427k	47.1	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	57.1	57.1	+0.0	L1-Li
42 416.157k	24.6	+9.8	+0.0	+0.2	+0.0	+0.0	34.6	47.5	-12.9	L1-Li
Ave		+0.0	+0.0	+0.∠	±0.0	+0.0		+1.3	-12.9	
43 217.630k	29.8	+9.8	+0.0	+0.2	+0.0	+0.0	39.8	52.9	-13.1	L1-Li
Ave		+0.0								

Page 49 of 62 Report No.: 101176-6A

^	217.630k	55.3	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	65.3	62.9	+2.4	L1-Li
45	237.992k	28.9	+9.8	+0.0	+0.2	+0.0	+0.0	38.9	52.2	-13.3	L1-Li
	Ave		+0.0								
^	237.991k	54.3	+9.8	+0.0	+0.2	+0.0	+0.0	64.3	62.2	+2.1	L1-Li
			+0.0								
47	188.542k Ave	30.5	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	40.5	54.1	-13.6	L1-Li
٨	188.541k	52.8	+9.8	+0.0	+0.2	+0.0	+0.0	62.8	54.1	+8.7	L1-Li
^	101 4501	55.2	+0.0	.0.0	.0.0	. 0. 0	.0.0	65.2	64.0	.1.0	T 1 T '
	191.450k	55.3	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	65.3	64.0	+1.3	L1-Li
50	168.180k	31.2	+9.8	+0.0	+0.3	+0.0	+0.0	41.3	55.0	-13.7	L1-Li
		31.2		+0.0	+0.5	+0.0	+0.0	41.3	33.0	-13.7	L1-LI
	Ave	# 0.0	+0.0	0.0	0.0	0.0	0.0				* 4 * 1
^	168.180k	50.9	+9.8	+0.0	+0.3	+0.0	+0.0	61.0	55.0	+6.0	L1-Li
			+0.0								
^	171.088k	55.2	+9.8	+0.0	+0.2	+0.0	+0.0	65.2	64.9	+0.3	L1-Li
			+0.0								
53	448.882k Ave	23.0	+9.8 +0.0	+0.1	+0.2	+0.0	+0.0	33.1	46.9	-13.8	L1-Li
^	448.881k	45.7		₁ Ω 1	10.2	ι Ο Ο	ΙΟ Ο	55.8	16 O	1 Q O	111:
	448.881K	45./	+9.8 +0.0	+0.1	+0.2	+0.0	+0.0	<i>ა</i> ა.8	46.9	+8.9	L1-Li
55	208.904k	29.3	+9.8	+0.0	+0.2	+0.0	+0.0	39.3	53.2	-13.9	L1-Li
	Ave		+0.0								
^	208.903k	55.3	+9.8	+0.0	+0.2	+0.0	+0.0	65.3	63.2	+2.1	L1-Li
			+0.0								
^	212.539k	54.5	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	64.5	63.1	+1.4	L1-Li
58	250.354k	27.8	+9.8	+0.0	+0.1	+0.0	+0.0	37.7	51.7	-14.0	L1-Li
	250.554k Ave	21.0	+9.8	-0.U	FO.1	FU.U	10.0	31.1	31.7	-1 4 .U	P1-PI
^		52 /		ΙΩΩ	₁ ∩ 1	ι Ο Ο	+0.0	62.2	61.7	ı 1 <i>C</i>	111:
	250.354k	53.4	+9.8	+0.0	+0.1	+0.0	+0.0	63.3	61.7	+1.6	L1-Li
	440	22.5	+0.0				0.0		45.5	4	* 4 * .
60		23.6	+9.8	+0.0	+0.2	+0.0	+0.0	33.6	47.6	-14.0	L1-Li
	Ave		+0.0								
^	416.157k	47.7	+9.8	+0.0	+0.2	+0.0	+0.0	57.7	57.5	+0.2	L1-Li
			+0.0								
٨	416.157k	44.0	+9.8	+0.0	+0.2	+0.0	+0.0	54.0	57.5	-3.5	L1-Li
			+0.0								
63	432.883k	23.1	+9.8	+0.0	+0.2	+0.0	+0.0	33.1	47.2	-14.1	L1-Li
	Ave		+0.0	. 3.0	. 3.2	. 3.0					
٨	435.791k	46.9	+9.8	+0.0	+0.2	+0.0	+0.0	56.9	57.1	-0.2	L1-Li
	133.171K	10.7	+0.0	10.0	10.2	10.0	10.0	50.7	37.1	0.2	
65	229.993k	28.1	+9.8	+0.0	+0.2	+0.0	+0.0	38.1	52.4	-14.3	L1-Li
		20.1	+9.8 +0.0	±0.0	⊤∪. ∠	+0.0	±0.0	50.1	32.4	-14.3	L1-L1
٨	Ave	E 4 O		.0.0	.0.2	.00	.0.0	(10	(2.4	. 2. 4	T 1 T '
	229.992k	54.8	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	64.8	62.4	+2.4	L1-Li
67	261.990k	27.1	+9.8	+0.0	+0.1	+0.0	+0.0	37.0	51.4	-14.4	L1-Li
	Ave		+0.0	. 3.0		. 3.0					
٨	261.989k	53.3	+9.8	+0.0	+0.1	+0.0	+0.0	63.2	61.4	+1.8	L1-Li
			+0.0	10.0		10.0	10.0		J1. T	11.0	
69	391.432k	23.4	+9.8	+0.0	+0.2	+0.0	+0.0	33.4	48.0	-14.6	L1-Li
	Ave		+0.0								

Page 50 of 62 Report No.: 101176-6A

^	391.432k	48.4	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	58.4	58.0	+0.4	L1-Li
71	281.624k	26.1	+9.8	+0.0	+0.1	+0.0	+0.0	36.0	50.8	-14.8	L1-Li
	Ave	20.1	+0.0	10.0	10.1	10.0	10.0	30.0	30.0	14.0	DI DI
^	281.624k	52.3	+9.8	+0.0	+0.1	+0.0	+0.0	62.2	60.8	+1.4	L1-Li
	201.02 4 K	32.3	+0.0	10.0	10.1	10.0	10.0	02.2	00.0	11.7	L1-L1
73	430.702k	22.4	+9.8	+0.0	+0.2	+0.0	+0.0	32.4	47.2	-14.8	L1-Li
	430.702k Ave	22.4	+0.0	+0.0	⊤0.∠	+0.0	+0.0	32.4	47.2	-14.0	L1-L1
^	430.701k	46.6	+9.8	+0.0	+0.2	+0.0	+0.0	56.6	47.2	+9.4	L1-Li
	450.701K	40.0	+0.0	+0.0	⊤0.∠	+0.0	+0.0	30.0	47.2	⊤2 . 4	L1-L1
^	432.883k	46.8	+9.8	+0.0	+0.2	+0.0	+0.0	56.8	57.2	-0.4	L1-Li
	432.003K	40.0	+0.0	+0.0	⊤0.∠	+0.0	+0.0	30.6	31.2	-0.4	L1-L1
76	512.876k	21.1	+9.8	+0.1	+0.2	+0.0	+0.0	31.2	46.0	-14.8	L1-Li
	Ave	21.1	+0.0	⊤0.1	⊤0.∠	+0.0	+0.0	31.2	40.0	-14.0	L1-L1
^	512.875k	43.6	+9.8	+0.1	+0.2	+0.0	+0.0	53.7	46.0	+7.7	L1-Li
	312.073K	43.0	+0.0	+0.1	+0.2	+0.0	+0.0	33.1	40.0	+1.1	L1-L1
78	408.158k	22.9	+9.8	+0.0	+0.2	+0.0	+0.0	32.9	47.7	-14.8	L1-Li
		22.9	+0.0	+0.0	+0.2	+0.0	+0.0	32.9	47.7	-14.0	L1-L1
^	Ave 408.158k	48.1	+9.8	+0.0	+0.2	+0.0	+0.0	58.1	57.7	+0.4	L1-Li
	400.130K	40.1	+0.0	+0.0	+0.2	+0.0	+0.0	36.1	31.1	±0. 4	L1-L1
^	412.521k	47.7	+9.8	+0.0	+0.2	+0.0	+0.0	57.7	57.6	+0.1	L1-Li
	412.321K	47.7	+0.0	+0.0	⊤0.∠	+0.0	+0.0	31.1	37.0	+0.1	L1-L1
81	498.332k	19.9	+9.8	+0.1	+0.2	+0.0	+0.0	30.0	46.0	-16.0	L1-Li
	490.332k Ave	19.9	+0.0	⊤0.1	+0.2	+0.0	+0.0	30.0	40.0	-10.0	L1-L1
^	498.331k	43.5	+9.8	+0.1	+0.2	+0.0	+0.0	53.6	46.0	+7.6	L1-Li
	470.331K	45.5	+0.0	⊤0.1	+0.2	+0.0	+0.0	33.0	40.0	⊤7.0	L1-L1
83	563.780k	18.2	+9.8	+0.1	+0.2	+0.0	+0.0	28.3	46.0	-17.7	L1-Li
	Ave	10.2	+0.0	10.1	10.2	10.0	10.0	20.5	40.0	17.7	DI DI
^		41.2	+9.8	+0.1	+0.2	+0.0	+0.0	51.3	46.0	+5.3	L1-Li
	202.700K	11.2	+0.0	10.1	10.2	10.0	10.0	01.0	10.0	10.0	ET ET
٨	565.234k	41.0	+9.8	+0.1	+0.2	+0.0	+0.0	51.1	46.0	+5.1	L1-Li
	303.23 IK	11.0	+0.0	10.1	10.2	10.0	10.0	31.1	10.0	13.1	DI DI
86	544.873k	17.9	+9.8	+0.1	+0.2	+0.0	+0.0	28.0	46.0	-18.0	L1-Li
	Ave	17.5	+0.0	10.1	10.2	10.0	10.0	20.0	10.0	10.0	DI DI
٨		41.7	+9.8	+0.1	+0.2	+0.0	+0.0	51.8	46.0	+5.8	L1-Li
	311.072K	11.7	+0.0	10.1	10.2	10.0	10.0	31.0	10.0	13.0	DI DI
88	4.513M	16.2	+9.8	+0.2	+0.1	+0.1	+0.0	26.6	46.0	-19.4	L1-Li
	Ave	10.2	+0.2	. 0.2	. 0.1		10.0	20.0	10.0	17.1	2. 2.
^	4.513M	33.0	+9.8	+0.2	+0.1	+0.1	+0.0	43.4	46.0	-2.6	L1-Li
1		55.0	+0.2	. 0.2	. 0.1		10.0	.5.1	10.0	2.0	2. 2.
90	181.997k	25.0	+9.8	+0.0	+0.2	+0.0	+0.0	35.0	54.4	-19.4	L1-Li
, ,	Ave	_0.0	+0.0	. 3.0	. 3.2	. 5.0	. 0.0	22.0		-/	
^	181.997k	56.4	+9.8	+0.0	+0.2	+0.0	+0.0	66.4	64.4	+2.0	L1-Li
1		- 0	+0.0		. 3						
92	674.316k	16.1	+9.8	+0.1	+0.2	+0.0	+0.0	26.2	46.0	-19.8	L1-Li
	Ave		+0.0							,	
^	674.315k	37.8	+9.8	+0.1	+0.2	+0.0	+0.0	47.9	46.0	+1.9	L1-Li
			+0.0								
94	710.676k	15.6	+9.8	+0.1	+0.2	+0.0	+0.0	25.7	46.0	-20.3	L1-Li
	Ave		+0.0								
^	710.675k	37.2	+9.8	+0.1	+0.2	+0.0	+0.0	47.3	46.0	+1.3	L1-Li
1			+0.0								
-											

Page 51 of 62 Report No.: 101176-6A

96	790.668k	15.3	+9.8	+0.1	+0.2	+0.0	+0.0	25.4	46.0	-20.6	L1-Li
l A	Ave		+0.0								
^	790.668k	35.4	+9.8	+0.1	+0.2	+0.0	+0.0	45.5	46.0	-0.5	L1-Li
			+0.0								
98	4.658M	14.3	+9.8	+0.2	+0.1	+0.1	+0.0	24.7	46.0	-21.3	L1-Li
A	Ave		+0.2								
^	4.658M	32.8	+9.8	+0.2	+0.1	+0.1	+0.0	43.2	46.0	-2.8	L1-Li
			+0.2								
100	4.696M	14.1	+9.8	+0.2	+0.1	+0.1	+0.0	24.5	46.0	-21.5	L1-Li
A	Ave		+0.2								
^	4.696M	33.4	+9.8	+0.2	+0.1	+0.1	+0.0	43.8	46.0	-2.2	L1-Li
			+0.2								
102	161.635k	23.2	+9.8	+0.0	+0.4	+0.0	+0.0	33.4	55.4	-22.0	L1-Li
A	Ave		+0.0								
^	161.635k	56.9	+9.8	+0.0	+0.4	+0.0	+0.0	67.1	65.4	+1.7	L1-Li
			+0.0								

Page 52 of 62 Report No.: 101176-6A

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92821 • 714 993 6112

Customer: Indyme Solutions, LLC

Specification: 15.207 AC Mains - Quasi-peak

 Work Order #:
 101176
 Date: 5/10/2018

 Test Type:
 Conducted Emissions
 Time: 16:05:32

Tested By: E. Wong Sequence#: 3

Software: EMITest 5.03.11 120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The ceiling mount EUT is placed on the Styrofoam platform. The Ethernet port of the EUT is connected to a POE power supply. An unterminated Ethernet cable is connected to the network port of the POE power supply.

Frequency: 902-928MHz TX frequency: 920.6MHz

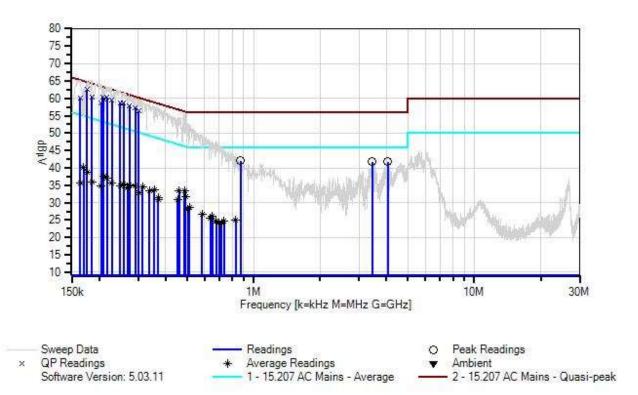
Frequency range of measurement = 150kHz-30MHz.

150 kHz-30 MHz;RBW=9 kHz,VBW=9kHz

Test environment conditions:

Temperature: 22°C Relative Humidity: 55 %

Pressure: 100kPa


Site A

ANSI C63.10-2013

Page 53 of 62 Report No.: 101176-6A

Indyme Solutions, LLC WO#: 101176 Sequence#; 3 Date: 5/10/2018 15.207 AC Mains - Quasi-peak Test Lead: 120/60Hz L2-Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	3/2/2017	3/2/2019
T1	ANC00079	Attenuator		2/3/2017	2/3/2019
T2	ANP07338	Cable	2249-Y-240	2/19/2018	2/19/2020
T3	AN02610	High Pass Filter	HE9615-150K-	10/25/2017	10/25/2019
			50-720B		
	AN00969A	50uH LISN-Line 1 (L1)	3816/2NM	3/14/2017	3/14/2019
T4	AN00969A	50uH LISN-Line2 (L2)	3816/2NM	3/14/2017	3/14/2019
	ANP06986	Cable-Line L1(dB)	90cm-extcord	3/31/2018	3/31/2020
T5	ANP06986	Cable-Neutral L2(dB)	90cm-extcord	3/31/2018	3/31/2020

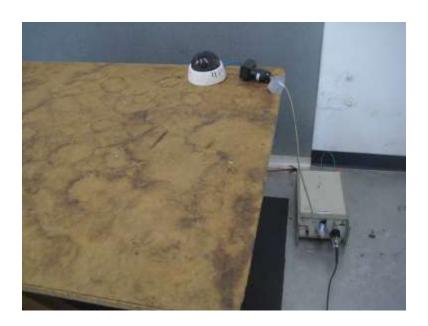
Measu	rement Data:		eading list	ted by ma	ırgin.			Test Lead	l: L2-Neut	tral	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	176.178k	52.5	+9.8	+0.0	+0.2	+0.0	+0.0	62.5	64.7	-2.2	L2-Ne
	QP		+0.0								
2	216.902k	50.3	+9.8	+0.0	+0.2	+0.0	+0.0	60.3	62.9	-2.6	L2-Ne
	QP		+0.0								
3	257.625k	48.9	+9.8	+0.0	+0.1	+0.0	+0.0	58.8	61.5	-2.7	L2-Ne
	QP		+0.0								
4	207.448k	50.4	+9.8	+0.0	+0.2	+0.0	+0.0	60.4	63.3	-2.9	L2-Ne
	QP		+0.0								
5	248.899k	48.9	+9.8	+0.0	+0.1	+0.0	+0.0	58.8	61.8	-3.0	L2-Ne
	QP		+0.0								
6	273.624k	48.0	+9.8	+0.0	+0.1	+0.0	+0.0	57.9	61.0	-3.1	L2-Ne
	QP		+0.0								
7		49.4	+9.8	+0.0	+0.2	+0.0	+0.0	59.4	62.5	-3.1	L2-Ne
	QP		+0.0								
8	291.804k	47.4	+9.8	+0.0	+0.1	+0.0	+0.0	57.3	60.5	-3.2	L2-Ne
_	QP		+0.0								
9	209.630k	49.9	+9.8	+0.0	+0.2	+0.0	+0.0	59.9	63.2	-3.3	L2-Ne
	QP		+0.0								
10	185.632k	50.4	+9.8	+0.0	+0.2	+0.0	+0.0	60.4	64.2	-3.8	L2-Ne
	QP		+0.0								
11	301.985k	46.4	+9.8	+0.0	+0.1	+0.0	+0.0	56.3	60.2	-3.9	L2-Ne
	QP		+0.0								
12	873.568k	31.9	+9.8	+0.1	+0.2	+0.0	+0.0	42.0	46.0	-4.0	L2-Ne
			+0.0								
13	4.062M	31.4	+9.8	+0.2	+0.1	+0.1	+0.0	41.7	46.0	-4.3	L2-Ne
			+0.1								
14	3.442M	31.5	+9.8	+0.1	+0.1	+0.1	+0.0	41.7	46.0	-4.3	L2-Ne
			+0.1								

Page 55 of 62 Report No.: 101176-6A

1.7 202.0121	40.0	0.0	0.0	0.0	0.0	0.0	7 0.0			
15 203.812k	48.8	+9.8	+0.0	+0.2	+0.0	+0.0	58.8	63.5	-4.7	L2-Ne
QP		+0.0								
16 163.816k	49.9	+9.8	+0.0	+0.4	+0.0	+0.0	60.1	65.3	-5.2	L2-Ne
QP		+0.0								
17 485.968k	23.2	+9.8	+0.1	+0.2	+0.0	+0.0	33.3	46.2	-12.9	L2-Ne
Ave		+0.0								
^ 485.968k	45.6	+9.8	+0.1	+0.2	+0.0	+0.0	55.7	46.2	+9.5	L2-Ne
		+0.0								
^ 484.513k	45.3	+9.8	+0.1	+0.2	+0.0	+0.0	55.4	46.3	+9.1	L2-Ne
		+0.0								
20 459.789k	23.2	+9.8	+0.1	+0.2	+0.0	+0.0	33.3	46.7	-13.4	L2-Ne
Ave	23.2	+0.0	10.1	10.2	10.0	10.0	55.5	10.7	13.1	22 110
^ 459.788k	44.5	+9.8	+0.1	+0.2	+0.0	+0.0	54.6	46.7	+7.9	L2-Ne
737.700K	77.5	+0.0	10.1	10.2	10.0	10.0	37.0	40.7	17.7	L2-11C
22 491.786k	21.6		· O 1	.0.2	. 0. 0	. 0. 0	31.7	1.6 1	1 / /	I O NI-
	21.0	+9.8	+0.1	+0.2	+0.0	+0.0	31./	46.1	-14.4	L2-Ne
Ave	45.0	+0.0	0.1	0.2	0.0	0.0		46.1	0.0	T 2 N
^ 491.785k	45.2	+9.8	+0.1	+0.2	+0.0	+0.0	55.3	46.1	+9.2	L2-Ne
		+0.0								
^ 495.421k	43.3	+9.8	+0.1	+0.2	+0.0	+0.0	53.4	46.1	+7.3	L2-Ne
		+0.0								
25 169.634k	30.1	+9.8	+0.0	+0.2	+0.0	+0.0	40.1	55.0	-14.9	L2-Ne
Ave		+0.0								
^ 169.633k	52.6	+9.8	+0.0	+0.2	+0.0	+0.0	62.6	55.0	+7.6	L2-Ne
		+0.0								
27 355.798k	23.8	+9.8	+0.0	+0.2	+0.0	+0.0	33.8	48.8	-15.0	L2-Ne
Ave		+0.0								
^ 355.798k	47.7	+9.8	+0.0	+0.2	+0.0	+0.0	57.7	48.8	+8.9	L2-Ne
333.170K	77.7	+0.0	10.0	10.2	10.0	10.0	37.7	40.0	10.7	L2 110
29 314.348k	24.5	+9.8	+0.0	+0.1	+0.0	+0.0	34.4	49.9	-15.5	L2-Ne
	24.3	+0.0	+0.0	+0.1	+0.0	+0.0	34.4	42.2	-13.3	L2-11C
Ave	40.2		. 0. 0	. 0. 1	. 0. 0	. 0. 0	50.2	40.0	.0.2	LON
^ 314.347k	49.3	+9.8	+0.0	+0.1	+0.0	+0.0	59.2	49.9	+9.3	L2-Ne
1 21 5 7201	40.0	+0.0		0.1		0.0		40.0		
^ 316.529k	49.0	+9.8	+0.0	+0.1	+0.0	+0.0	58.9	49.8	+9.1	L2-Ne
		+0.0								
32 216.902k	27.2	+9.8	+0.0	+0.2	+0.0	+0.0	37.2	52.9	-15.7	L2-Ne
Ave		+0.0								
^ 216.901k	53.4	+9.8	+0.0	+0.2	+0.0	+0.0	63.4	52.9	+10.5	L2-Ne
		+0.0								
34 291.804k	24.9	+9.8	+0.0	+0.1	+0.0	+0.0	34.8	50.5	-15.7	L2-Ne
Ave		+0.0								
^ 291.804k	50.3	+9.8	+0.0	+0.1	+0.0	+0.0	60.2	50.5	+9.7	L2-Ne
3,71.00 .R	20.0	+0.0	. 3.0				~ ~ · -			
36 209.630k	27.5	+9.8	+0.0	+0.2	+0.0	+0.0	37.5	53.2	-15.7	L2-Ne
Ave	21.3	+0.0	10.0	10.2	10.0	10.0	51.5	2.0	13.1	112-110
^ 209.629k	53.1	+9.8	+0.0	+0.2	ΙΟ Ο	+0.0	63.1	53.2	+9.9	I 2 No
209.029K	33.1		+0.0	+0.2	+0.0	+0.0	05.1	33.2	+7.7	L2-Ne
		+0.0								

38	338.345k Ave	23.5	+9.8 +0.0	+0.0	+0.1	+0.0	+0.0	33.4	49.2	-15.8	L2-Ne
^		48.7	+9.8	+0.0	+0.1	+0.0	+0.0	58.6	49.2	+9.4	L2-Ne
			+0.0								
40	273.624k Ave	25.3	+9.8 +0.0	+0.0	+0.1	+0.0	+0.0	35.2	51.0	-15.8	L2-Ne
٨		51.6	+9.8	+0.0	+0.1	+0.0	+0.0	61.5	51.0	+10.5	L2-Ne
	273.024K	31.0	+0.0	10.0	10.1	10.0	10.0	01.5	31.0	110.5	112 110
42	452.517k	20.8	+9.8	+0.1	+0.2	+0.0	+0.0	30.9	46.8	-15.9	L2-Ne
	Ave		+0.0								
٨		44.0	+9.8	+0.1	+0.2	+0.0	+0.0	54.1	46.8	+7.3	L2-Ne
			+0.0								
44	176.178k	28.7	+9.8	+0.0	+0.2	+0.0	+0.0	38.7	54.7	-16.0	L2-Ne
	Ave		+0.0								
٨		55.0	+9.8	+0.0	+0.2	+0.0	+0.0	65.0	54.7	+10.3	L2-Ne
	1,0.1,0K	23.0	+0.0	1 0.0	1 3.2	1 3.0	10.0	05.0	5 1.7	110.5	22 110
٨	173.269k	53.5	+9.8	+0.0	+0.2	+0.0	+0.0	63.5	54.8	+8.7	L2-Ne
	1/J.2UJK	55.5	+0.0	10.0	10.4	10.0	10.0	03.3	J 1 .0	10.7	112-11C
47	257.625k	25.6		+0.0	+0.1	+0.0	+0.0	35.5	51.5	-16.0	L2-Ne
		25.0	+9.8	+0.0	+0.1	+0.0	+0.0	33.3	31.3	-10.0	L2-Ne
	Ave	<i>51.7</i>	+0.0	. 0. 0	. 0. 1	. 0. 0	. 0. 0	(1.6	<i>51.5</i>	. 10.1	1 2 N
^	257.625k	51.7	+9.8	+0.0	+0.1	+0.0	+0.0	61.6	51.5	+10.1	L2-Ne
			+0.0								
49	227.810k	25.6	+9.8	+0.0	+0.2	+0.0	+0.0	35.6	52.5	-16.9	L2-Ne
-	Ave		+0.0								
^	227.810k	53.2	+9.8	+0.0	+0.2	+0.0	+0.0	63.2	52.5	+10.7	L2-Ne
			+0.0								
51	268.534k	24.3	+9.8	+0.0	+0.1	+0.0	+0.0	34.2	51.2	-17.0	L2-Ne
	Ave		+0.0								
^	268.533k	50.9	+9.8	+0.0	+0.1	+0.0	+0.0	60.8	51.2	+9.6	L2-Ne
			+0.0								
53	248.899k	24.9	+9.8	+0.0	+0.1	+0.0	+0.0	34.8	51.8	-17.0	L2-Ne
	Ave		+0.0								
	248.899k	52.5	+9.8	+0.0	+0.1	+0.0	+0.0	62.4	51.8	+10.6	L2-Ne
	210.000K	02.0	+0.0	10.0	10.1	10.0	10.0	02	21.0	110.0	22 1 10
55	369.615k	21.4	+9.8	+0.0	+0.2	+0.0	+0.0	31.4	48.5	-17.1	L2-Ne
	Ave	21.7	+0.0	10.0	10.2	10.0	10.0	J1.T	TO.J	1/.1	110
	511.420k	18.6	+9.8	+0.1	+0.2	+0.0	+0.0	28.7	46.0	-17.3	L2-Ne
	311.420k Ave	18.0	+9.8 +0.0	+0.1	+0.2	+0.0	+0.0	20.1	40.0	-1/.3	LZ-INE
٨		42.4		₊ 0.1	10.2	.00	ι Ο Ο	50.5	46.0		I O Ma
	511.420k	42.4	+9.8	+0.1	+0.2	+0.0	+0.0	52.5	46.0	+6.5	L2-Ne
	F1 F 0 F 4	42.0	+0.0	0.1	0.2		0.0		460		Y 0 3 Y
^	515.056k	42.0	+9.8	+0.1	+0.2	+0.0	+0.0	52.1	46.0	+6.1	L2-Ne
<u> </u>			+0.0								
59		23.0	+9.8	+0.0	+0.1	+0.0	+0.0	32.9	50.2	-17.3	L2-Ne
	Ave		+0.0								
^	301.985k	49.9	+9.8	+0.0	+0.1	+0.0	+0.0	59.8	50.2	+9.6	L2-Ne
			+0.0								
									-		

61	369.615k Ave	20.9	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	30.9	48.5	-17.6	L2-Ne
		47.0		0.0	0.0	0.0	0.0	57.0	40.5	0.0	T O N
^	369.615k	47.3	+9.8 +0.0	+0.0	+0.2	+0.0	+0.0	57.3	48.5	+8.8	L2-Ne
63	505.603k	18.1	+9.8	+0.1	+0.2	+0.0	+0.0	28.2	46.0	-17.8	L2-Ne
	Ave	10.1	+0.0	10.1	10.2	10.0	10.0	20.2	-10.0	-17.0	L2-11C
^		42.8		+0.1	+0.2	+0.0	+0.0	52.9	46.0	+6.9	I 2 No
	303.002K	42.8	+9.8	+0.1	+0.2	+0.0	+0.0	32.9	46.0	+0.9	L2-Ne
	507.0571	40.5	+0.0	. 0. 1	.0.0	. 0. 0	. 0. 0	50. 6	46.0		1 2 N
^	507.057k	42.5	+9.8	+0.1	+0.2	+0.0	+0.0	52.6	46.0	+6.6	L2-Ne
	107 (22)	27.0	+0.0		0.0			27.0		10.2	
66		25.9	+9.8	+0.0	+0.2	+0.0	+0.0	35.9	54.2	-18.3	L2-Ne
	Ave		+0.0								
^	185.632k	55.1	+9.8	+0.0	+0.2	+0.0	+0.0	65.1	54.2	+10.9	L2-Ne
			+0.0								
68	203.812k	24.7	+9.8	+0.0	+0.2	+0.0	+0.0	34.7	53.5	-18.8	L2-Ne
	Ave		+0.0								
^	203.812k	54.1	+9.8	+0.0	+0.2	+0.0	+0.0	64.1	53.5	+10.6	L2-Ne
			+0.0								
^	207.448k	53.0	+9.8	+0.0	+0.2	+0.0	+0.0	63.0	53.3	+9.7	L2-Ne
			+0.0								
71	583.414k	16.6	+9.8	+0.1	+0.2	+0.0	+0.0	26.7	46.0	-19.3	L2-Ne
	Ave		+0.0								
٨		39.5	+9.8	+0.1	+0.2	+0.0	+0.0	49.6	46.0	+3.6	L2-Ne
			+0.0								
73	163.816k	25.4	+9.8	+0.0	+0.4	+0.0	+0.0	35.6	55.3	-19.7	L2-Ne
	Ave	20	+0.0	. 0.0		. 0.0		22.0	00.0	2717	22 1 10
^		55.1	+9.8	+0.0	+0.4	+0.0	+0.0	65.3	55.3	+10.0	L2-Ne
	103.013K	33.1	+0.0	10.0	10.1	10.0	10.0	03.3	33.3	110.0	L2 110
75	648.862k	16.0	+9.8	+0.1	+0.2	+0.0	+0.0	26.1	46.0	-19.9	L2-Ne
	Ave	10.0	+0.0	10.1	10.2	10.0	10.0	20.1	40.0	17.7	L2 110
^		37.6	+9.8	+0.1	+0.2	+0.0	+0.0	47.7	46.0	+1.7	L2-Ne
	040.002K	37.0	+0.0	+0.1	+0.2	+0.0	+0.0	47.7	40.0	+1./	LZ-INC
77	637.954k	15.5	+9.8	ı O 1	+0.2	+0.0	+0.0	25.6	46.0	-20.4	I 2 No
		13.3		+0.1	+0.2	+0.0	+0.0	23.0	40.0	-20.4	L2-Ne
٨	Ave 627.0541-	37.6	+0.0	+0.1	10.2	+ O O	+0.0	17.7	46.0	+1.7	I 2 No
	637.954k	37.0	+9.8	+0.1	+0.2	+0.0	+0.0	47.7	46.0	+1./	L2-Ne
70	020 4021	14.0	+0.0	.0.1	.0.2	. 0. 0	. 0. 0	25.0	46.0	21.0	LON
79		14.9	+9.8	+0.1	+0.2	+0.0	+0.0	25.0	46.0	-21.0	L2-Ne
	Ave	24.0	+0.0	. 0. 1	.0.2	.00	. 0. 0	44.1	46.0	1.0	1037
٨	828.482k	34.0	+9.8	+0.1	+0.2	+0.0	+0.0	44.1	46.0	-1.9	L2-Ne
		4	+0.0				0.0	240	4.5.0		¥ 0 3 4
81		14.7	+9.8	+0.1	+0.2	+0.0	+0.0	24.8	46.0	-21.2	L2-Ne
	Ave		+0.0								
^	677.223k	37.6	+9.8	+0.1	+0.2	+0.0	+0.0	47.7	46.0	+1.7	L2-Ne
			+0.0								


83	734.673k	14.6	+9.8	+0.1	+0.2	+0.0	+0.0	24.7	46.0	-21.3	L2-Ne
		14.0		+0.1	+0.2	+0.0	+0.0	24.7	40.0	-21.3	LZ-INC
	Ave		+0.0								
٨	734.672k	35.5	+9.8	+0.1	+0.2	+0.0	+0.0	45.6	46.0	-0.4	L2-Ne
			+0.0								
85	717.220k	14.1	+9.8	+0.1	+0.2	+0.0	+0.0	24.2	46.0	-21.8	L2-Ne
	Ave		+0.0								
^	717.219k	36.0	+9.8	+0.1	+0.2	+0.0	+0.0	46.1	46.0	+0.1	L2-Ne
			+0.0								
^	720.855k	35.8	+9.8	+0.1	+0.2	+0.0	+0.0	45.9	46.0	-0.1	L2-Ne
			+0.0								
88	699.767k	14.0	+9.8	+0.1	+0.2	+0.0	+0.0	24.1	46.0	-21.9	L2-Ne
	Ave		+0.0								
٨	699.766k	36.3	+9.8	+0.1	+0.2	+0.0	+0.0	46.4	46.0	+0.4	L2-Ne
			+0.0								

Page 59 of 62 Report No.: 101176-6A

Test Setup Photos

Page 60 of 62 Report No.: 101176-6A

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS								
	Meter reading	(dBμV)						
+	Antenna Factor	(dB/m)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBμV/m)						

Page 61 of 62 Report No.: 101176-6A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz					
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 62 of 62 Report No.: 101176-6A